1 /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005
2 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
24 #include "coretypes.h"
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-flags.h"
35 #include "insn-attr.h"
45 #include "basic-block.h"
50 #include "target-def.h"
51 #include "targhooks.h"
52 #include "integrate.h"
53 #include "langhooks.h"
56 #define FRV_INLINE inline
59 /* The maximum number of distinct NOP patterns. There are three:
60 nop, fnop and mnop. */
61 #define NUM_NOP_PATTERNS 3
63 /* Classification of instructions and units: integer, floating-point/media,
64 branch and control. */
65 enum frv_insn_group
{ GROUP_I
, GROUP_FM
, GROUP_B
, GROUP_C
, NUM_GROUPS
};
67 /* The DFA names of the units, in packet order. */
68 static const char *const frv_unit_names
[] =
78 /* The classification of each unit in frv_unit_names[]. */
79 static const enum frv_insn_group frv_unit_groups
[ARRAY_SIZE (frv_unit_names
)] =
89 /* Return the DFA unit code associated with the Nth unit of integer
90 or floating-point group GROUP, */
91 #define NTH_UNIT(GROUP, N) frv_unit_codes[(GROUP) + (N) * 2 + 1]
93 /* Return the number of integer or floating-point unit UNIT
94 (1 for I1, 2 for F2, etc.). */
95 #define UNIT_NUMBER(UNIT) (((UNIT) - 1) / 2)
97 /* The DFA unit number for each unit in frv_unit_names[]. */
98 static int frv_unit_codes
[ARRAY_SIZE (frv_unit_names
)];
100 /* FRV_TYPE_TO_UNIT[T] is the last unit in frv_unit_names[] that can issue
101 an instruction of type T. The value is ARRAY_SIZE (frv_unit_names) if
102 no instruction of type T has been seen. */
103 static unsigned int frv_type_to_unit
[TYPE_UNKNOWN
+ 1];
105 /* An array of dummy nop INSNs, one for each type of nop that the
107 static GTY(()) rtx frv_nops
[NUM_NOP_PATTERNS
];
109 /* The number of nop instructions in frv_nops[]. */
110 static unsigned int frv_num_nops
;
112 /* Information about one __builtin_read or __builtin_write access, or
113 the combination of several such accesses. The most general value
114 is all-zeros (an unknown access to an unknown address). */
116 /* The type of access. FRV_IO_UNKNOWN means the access can be either
117 a read or a write. */
118 enum { FRV_IO_UNKNOWN
, FRV_IO_READ
, FRV_IO_WRITE
} type
;
120 /* The constant address being accessed, or zero if not known. */
121 HOST_WIDE_INT const_address
;
123 /* The run-time address, as used in operand 0 of the membar pattern. */
127 /* Return true if instruction INSN should be packed with the following
129 #define PACKING_FLAG_P(INSN) (GET_MODE (INSN) == TImode)
131 /* Set the value of PACKING_FLAG_P(INSN). */
132 #define SET_PACKING_FLAG(INSN) PUT_MODE (INSN, TImode)
133 #define CLEAR_PACKING_FLAG(INSN) PUT_MODE (INSN, VOIDmode)
135 /* Loop with REG set to each hard register in rtx X. */
136 #define FOR_EACH_REGNO(REG, X) \
137 for (REG = REGNO (X); \
138 REG < REGNO (X) + HARD_REGNO_NREGS (REGNO (X), GET_MODE (X)); \
141 /* This structure contains machine specific function data. */
142 struct machine_function
GTY(())
144 /* True if we have created an rtx that relies on the stack frame. */
147 /* True if this function contains at least one __builtin_{read,write}*. */
151 /* Temporary register allocation support structure. */
152 typedef struct frv_tmp_reg_struct
154 HARD_REG_SET regs
; /* possible registers to allocate */
155 int next_reg
[N_REG_CLASSES
]; /* next register to allocate per class */
159 /* Register state information for VLIW re-packing phase. */
160 #define REGSTATE_CC_MASK 0x07 /* Mask to isolate CCn for cond exec */
161 #define REGSTATE_MODIFIED 0x08 /* reg modified in current VLIW insn */
162 #define REGSTATE_IF_TRUE 0x10 /* reg modified in cond exec true */
163 #define REGSTATE_IF_FALSE 0x20 /* reg modified in cond exec false */
165 #define REGSTATE_IF_EITHER (REGSTATE_IF_TRUE | REGSTATE_IF_FALSE)
167 typedef unsigned char regstate_t
;
169 /* Used in frv_frame_accessor_t to indicate the direction of a register-to-
177 /* Information required by frv_frame_access. */
180 /* This field is FRV_LOAD if registers are to be loaded from the stack and
181 FRV_STORE if they should be stored onto the stack. FRV_STORE implies
182 the move is being done by the prologue code while FRV_LOAD implies it
183 is being done by the epilogue. */
184 enum frv_stack_op op
;
186 /* The base register to use when accessing the stack. This may be the
187 frame pointer, stack pointer, or a temporary. The choice of register
188 depends on which part of the frame is being accessed and how big the
192 /* The offset of BASE from the bottom of the current frame, in bytes. */
194 } frv_frame_accessor_t
;
196 /* Define the information needed to generate branch and scc insns. This is
197 stored from the compare operation. */
201 /* Conditional execution support gathered together in one structure. */
204 /* Linked list of insns to add if the conditional execution conversion was
205 successful. Each link points to an EXPR_LIST which points to the pattern
206 of the insn to add, and the insn to be inserted before. */
207 rtx added_insns_list
;
209 /* Identify which registers are safe to allocate for if conversions to
210 conditional execution. We keep the last allocated register in the
211 register classes between COND_EXEC statements. This will mean we allocate
212 different registers for each different COND_EXEC group if we can. This
213 might allow the scheduler to intermix two different COND_EXEC sections. */
214 frv_tmp_reg_t tmp_reg
;
216 /* For nested IFs, identify which CC registers are used outside of setting
217 via a compare isnsn, and using via a check insn. This will allow us to
218 know if we can rewrite the register to use a different register that will
219 be paired with the CR register controlling the nested IF-THEN blocks. */
220 HARD_REG_SET nested_cc_ok_rewrite
;
222 /* Temporary registers allocated to hold constants during conditional
224 rtx scratch_regs
[FIRST_PSEUDO_REGISTER
];
226 /* Current number of temp registers available. */
227 int cur_scratch_regs
;
229 /* Number of nested conditional execution blocks. */
230 int num_nested_cond_exec
;
232 /* Map of insns that set up constants in scratch registers. */
233 bitmap scratch_insns_bitmap
;
235 /* Conditional execution test register (CC0..CC7). */
238 /* Conditional execution compare register that is paired with cr_reg, so that
239 nested compares can be done. The csubcc and caddcc instructions don't
240 have enough bits to specify both a CC register to be set and a CR register
241 to do the test on, so the same bit number is used for both. Needless to
242 say, this is rather inconvenient for GCC. */
245 /* Extra CR registers used for &&, ||. */
249 /* Previous CR used in nested if, to make sure we are dealing with the same
250 nested if as the previous statement. */
251 rtx last_nested_if_cr
;
255 static /* GTY(()) */ frv_ifcvt_t frv_ifcvt
;
257 /* Map register number to smallest register class. */
258 enum reg_class regno_reg_class
[FIRST_PSEUDO_REGISTER
];
260 /* Map class letter into register class. */
261 enum reg_class reg_class_from_letter
[256];
263 /* Cached value of frv_stack_info. */
264 static frv_stack_t
*frv_stack_cache
= (frv_stack_t
*)0;
267 frv_cpu_t frv_cpu_type
= CPU_TYPE
; /* value of -mcpu= */
269 /* Forward references */
271 static bool frv_handle_option (size_t, const char *, int);
272 static int frv_default_flags_for_cpu (void);
273 static int frv_string_begins_with (tree
, const char *);
274 static FRV_INLINE
bool frv_small_data_reloc_p (rtx
, int);
275 static void frv_print_operand_memory_reference_reg
277 static void frv_print_operand_memory_reference (FILE *, rtx
, int);
278 static int frv_print_operand_jump_hint (rtx
);
279 static const char *comparison_string (enum rtx_code
, rtx
);
280 static FRV_INLINE
int frv_regno_ok_for_base_p (int, int);
281 static rtx
single_set_pattern (rtx
);
282 static int frv_function_contains_far_jump (void);
283 static rtx
frv_alloc_temp_reg (frv_tmp_reg_t
*,
287 static rtx
frv_frame_offset_rtx (int);
288 static rtx
frv_frame_mem (enum machine_mode
, rtx
, int);
289 static rtx
frv_dwarf_store (rtx
, int);
290 static void frv_frame_insn (rtx
, rtx
);
291 static void frv_frame_access (frv_frame_accessor_t
*,
293 static void frv_frame_access_multi (frv_frame_accessor_t
*,
295 static void frv_frame_access_standard_regs (enum frv_stack_op
,
297 static struct machine_function
*frv_init_machine_status (void);
298 static rtx
frv_int_to_acc (enum insn_code
, int, rtx
);
299 static enum machine_mode
frv_matching_accg_mode (enum machine_mode
);
300 static rtx
frv_read_argument (tree
*);
301 static rtx
frv_read_iacc_argument (enum machine_mode
, tree
*);
302 static int frv_check_constant_argument (enum insn_code
, int, rtx
);
303 static rtx
frv_legitimize_target (enum insn_code
, rtx
);
304 static rtx
frv_legitimize_argument (enum insn_code
, int, rtx
);
305 static rtx
frv_legitimize_tls_address (rtx
, enum tls_model
);
306 static rtx
frv_expand_set_builtin (enum insn_code
, tree
, rtx
);
307 static rtx
frv_expand_unop_builtin (enum insn_code
, tree
, rtx
);
308 static rtx
frv_expand_binop_builtin (enum insn_code
, tree
, rtx
);
309 static rtx
frv_expand_cut_builtin (enum insn_code
, tree
, rtx
);
310 static rtx
frv_expand_binopimm_builtin (enum insn_code
, tree
, rtx
);
311 static rtx
frv_expand_voidbinop_builtin (enum insn_code
, tree
);
312 static rtx
frv_expand_int_void2arg (enum insn_code
, tree
);
313 static rtx
frv_expand_prefetches (enum insn_code
, tree
);
314 static rtx
frv_expand_voidtriop_builtin (enum insn_code
, tree
);
315 static rtx
frv_expand_voidaccop_builtin (enum insn_code
, tree
);
316 static rtx
frv_expand_mclracc_builtin (tree
);
317 static rtx
frv_expand_mrdacc_builtin (enum insn_code
, tree
);
318 static rtx
frv_expand_mwtacc_builtin (enum insn_code
, tree
);
319 static rtx
frv_expand_noargs_builtin (enum insn_code
);
320 static void frv_split_iacc_move (rtx
, rtx
);
321 static rtx
frv_emit_comparison (enum rtx_code
, rtx
, rtx
);
322 static int frv_clear_registers_used (rtx
*, void *);
323 static void frv_ifcvt_add_insn (rtx
, rtx
, int);
324 static rtx
frv_ifcvt_rewrite_mem (rtx
, enum machine_mode
, rtx
);
325 static rtx
frv_ifcvt_load_value (rtx
, rtx
);
326 static int frv_acc_group_1 (rtx
*, void *);
327 static unsigned int frv_insn_unit (rtx
);
328 static bool frv_issues_to_branch_unit_p (rtx
);
329 static int frv_cond_flags (rtx
);
330 static bool frv_regstate_conflict_p (regstate_t
, regstate_t
);
331 static int frv_registers_conflict_p_1 (rtx
*, void *);
332 static bool frv_registers_conflict_p (rtx
);
333 static void frv_registers_update_1 (rtx
, rtx
, void *);
334 static void frv_registers_update (rtx
);
335 static void frv_start_packet (void);
336 static void frv_start_packet_block (void);
337 static void frv_finish_packet (void (*) (void));
338 static bool frv_pack_insn_p (rtx
);
339 static void frv_add_insn_to_packet (rtx
);
340 static void frv_insert_nop_in_packet (rtx
);
341 static bool frv_for_each_packet (void (*) (void));
342 static bool frv_sort_insn_group_1 (enum frv_insn_group
,
343 unsigned int, unsigned int,
344 unsigned int, unsigned int,
346 static int frv_compare_insns (const void *, const void *);
347 static void frv_sort_insn_group (enum frv_insn_group
);
348 static void frv_reorder_packet (void);
349 static void frv_fill_unused_units (enum frv_insn_group
);
350 static void frv_align_label (void);
351 static void frv_reorg_packet (void);
352 static void frv_register_nop (rtx
);
353 static void frv_reorg (void);
354 static void frv_pack_insns (void);
355 static void frv_function_prologue (FILE *, HOST_WIDE_INT
);
356 static void frv_function_epilogue (FILE *, HOST_WIDE_INT
);
357 static bool frv_assemble_integer (rtx
, unsigned, int);
358 static void frv_init_builtins (void);
359 static rtx
frv_expand_builtin (tree
, rtx
, rtx
, enum machine_mode
, int);
360 static void frv_init_libfuncs (void);
361 static bool frv_in_small_data_p (tree
);
362 static void frv_asm_output_mi_thunk
363 (FILE *, tree
, HOST_WIDE_INT
, HOST_WIDE_INT
, tree
);
364 static void frv_setup_incoming_varargs (CUMULATIVE_ARGS
*,
367 static rtx
frv_expand_builtin_saveregs (void);
368 static bool frv_rtx_costs (rtx
, int, int, int*);
369 static void frv_asm_out_constructor (rtx
, int);
370 static void frv_asm_out_destructor (rtx
, int);
371 static bool frv_function_symbol_referenced_p (rtx
);
372 static bool frv_cannot_force_const_mem (rtx
);
373 static const char *unspec_got_name (int);
374 static void frv_output_const_unspec (FILE *,
375 const struct frv_unspec
*);
376 static bool frv_function_ok_for_sibcall (tree
, tree
);
377 static rtx
frv_struct_value_rtx (tree
, int);
378 static bool frv_must_pass_in_stack (enum machine_mode mode
, tree type
);
379 static int frv_arg_partial_bytes (CUMULATIVE_ARGS
*, enum machine_mode
,
381 static void frv_output_dwarf_dtprel (FILE *, int, rtx
)
384 /* Allow us to easily change the default for -malloc-cc. */
385 #ifndef DEFAULT_NO_ALLOC_CC
386 #define MASK_DEFAULT_ALLOC_CC MASK_ALLOC_CC
388 #define MASK_DEFAULT_ALLOC_CC 0
391 /* Initialize the GCC target structure. */
392 #undef TARGET_ASM_FUNCTION_PROLOGUE
393 #define TARGET_ASM_FUNCTION_PROLOGUE frv_function_prologue
394 #undef TARGET_ASM_FUNCTION_EPILOGUE
395 #define TARGET_ASM_FUNCTION_EPILOGUE frv_function_epilogue
396 #undef TARGET_ASM_INTEGER
397 #define TARGET_ASM_INTEGER frv_assemble_integer
398 #undef TARGET_DEFAULT_TARGET_FLAGS
399 #define TARGET_DEFAULT_TARGET_FLAGS \
400 (MASK_DEFAULT_ALLOC_CC \
407 #undef TARGET_HANDLE_OPTION
408 #define TARGET_HANDLE_OPTION frv_handle_option
409 #undef TARGET_INIT_BUILTINS
410 #define TARGET_INIT_BUILTINS frv_init_builtins
411 #undef TARGET_EXPAND_BUILTIN
412 #define TARGET_EXPAND_BUILTIN frv_expand_builtin
413 #undef TARGET_INIT_LIBFUNCS
414 #define TARGET_INIT_LIBFUNCS frv_init_libfuncs
415 #undef TARGET_IN_SMALL_DATA_P
416 #define TARGET_IN_SMALL_DATA_P frv_in_small_data_p
417 #undef TARGET_RTX_COSTS
418 #define TARGET_RTX_COSTS frv_rtx_costs
419 #undef TARGET_ASM_CONSTRUCTOR
420 #define TARGET_ASM_CONSTRUCTOR frv_asm_out_constructor
421 #undef TARGET_ASM_DESTRUCTOR
422 #define TARGET_ASM_DESTRUCTOR frv_asm_out_destructor
424 #undef TARGET_ASM_OUTPUT_MI_THUNK
425 #define TARGET_ASM_OUTPUT_MI_THUNK frv_asm_output_mi_thunk
426 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
427 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
429 #undef TARGET_SCHED_ISSUE_RATE
430 #define TARGET_SCHED_ISSUE_RATE frv_issue_rate
432 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
433 #define TARGET_FUNCTION_OK_FOR_SIBCALL frv_function_ok_for_sibcall
434 #undef TARGET_CANNOT_FORCE_CONST_MEM
435 #define TARGET_CANNOT_FORCE_CONST_MEM frv_cannot_force_const_mem
437 #undef TARGET_HAVE_TLS
438 #define TARGET_HAVE_TLS HAVE_AS_TLS
440 #undef TARGET_STRUCT_VALUE_RTX
441 #define TARGET_STRUCT_VALUE_RTX frv_struct_value_rtx
442 #undef TARGET_MUST_PASS_IN_STACK
443 #define TARGET_MUST_PASS_IN_STACK frv_must_pass_in_stack
444 #undef TARGET_PASS_BY_REFERENCE
445 #define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
446 #undef TARGET_ARG_PARTIAL_BYTES
447 #define TARGET_ARG_PARTIAL_BYTES frv_arg_partial_bytes
449 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
450 #define TARGET_EXPAND_BUILTIN_SAVEREGS frv_expand_builtin_saveregs
451 #undef TARGET_SETUP_INCOMING_VARARGS
452 #define TARGET_SETUP_INCOMING_VARARGS frv_setup_incoming_varargs
453 #undef TARGET_MACHINE_DEPENDENT_REORG
454 #define TARGET_MACHINE_DEPENDENT_REORG frv_reorg
457 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
458 #define TARGET_ASM_OUTPUT_DWARF_DTPREL frv_output_dwarf_dtprel
461 struct gcc_target targetm
= TARGET_INITIALIZER
;
463 #define FRV_SYMBOL_REF_TLS_P(RTX) \
464 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
467 /* Any function call that satisfies the machine-independent
468 requirements is eligible on FR-V. */
471 frv_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED
,
472 tree exp ATTRIBUTE_UNUSED
)
477 /* Return true if SYMBOL is a small data symbol and relocation RELOC
478 can be used to access it directly in a load or store. */
480 static FRV_INLINE
bool
481 frv_small_data_reloc_p (rtx symbol
, int reloc
)
483 return (GET_CODE (symbol
) == SYMBOL_REF
484 && SYMBOL_REF_SMALL_P (symbol
)
485 && (!TARGET_FDPIC
|| flag_pic
== 1)
486 && (reloc
== R_FRV_GOTOFF12
|| reloc
== R_FRV_GPREL12
));
489 /* Return true if X is a valid relocation unspec. If it is, fill in UNSPEC
493 frv_const_unspec_p (rtx x
, struct frv_unspec
*unspec
)
495 if (GET_CODE (x
) == CONST
)
499 if (GET_CODE (x
) == PLUS
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
501 unspec
->offset
+= INTVAL (XEXP (x
, 1));
504 if (GET_CODE (x
) == UNSPEC
&& XINT (x
, 1) == UNSPEC_GOT
)
506 unspec
->symbol
= XVECEXP (x
, 0, 0);
507 unspec
->reloc
= INTVAL (XVECEXP (x
, 0, 1));
509 if (unspec
->offset
== 0)
512 if (frv_small_data_reloc_p (unspec
->symbol
, unspec
->reloc
)
513 && unspec
->offset
> 0
514 && (unsigned HOST_WIDE_INT
) unspec
->offset
< g_switch_value
)
521 /* Decide whether we can force certain constants to memory. If we
522 decide we can't, the caller should be able to cope with it in
525 We never allow constants to be forced into memory for TARGET_FDPIC.
526 This is necessary for several reasons:
528 1. Since LEGITIMATE_CONSTANT_P rejects constant pool addresses, the
529 target-independent code will try to force them into the constant
530 pool, thus leading to infinite recursion.
532 2. We can never introduce new constant pool references during reload.
533 Any such reference would require use of the pseudo FDPIC register.
535 3. We can't represent a constant added to a function pointer (which is
536 not the same as a pointer to a function+constant).
538 4. In many cases, it's more efficient to calculate the constant in-line. */
541 frv_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED
)
546 /* Implement TARGET_HANDLE_OPTION. */
549 frv_handle_option (size_t code
, const char *arg
, int value ATTRIBUTE_UNUSED
)
554 if (strcmp (arg
, "simple") == 0)
555 frv_cpu_type
= FRV_CPU_SIMPLE
;
556 else if (strcmp (arg
, "tomcat") == 0)
557 frv_cpu_type
= FRV_CPU_TOMCAT
;
558 else if (strcmp (arg
, "fr550") == 0)
559 frv_cpu_type
= FRV_CPU_FR550
;
560 else if (strcmp (arg
, "fr500") == 0)
561 frv_cpu_type
= FRV_CPU_FR500
;
562 else if (strcmp (arg
, "fr450") == 0)
563 frv_cpu_type
= FRV_CPU_FR450
;
564 else if (strcmp (arg
, "fr405") == 0)
565 frv_cpu_type
= FRV_CPU_FR405
;
566 else if (strcmp (arg
, "fr400") == 0)
567 frv_cpu_type
= FRV_CPU_FR400
;
568 else if (strcmp (arg
, "fr300") == 0)
569 frv_cpu_type
= FRV_CPU_FR300
;
570 else if (strcmp (arg
, "frv") == 0)
571 frv_cpu_type
= FRV_CPU_GENERIC
;
582 frv_default_flags_for_cpu (void)
584 switch (frv_cpu_type
)
586 case FRV_CPU_GENERIC
:
587 return MASK_DEFAULT_FRV
;
590 return MASK_DEFAULT_FR550
;
594 return MASK_DEFAULT_FR500
;
597 return MASK_DEFAULT_FR450
;
601 return MASK_DEFAULT_FR400
;
605 return MASK_DEFAULT_SIMPLE
;
612 /* Sometimes certain combinations of command options do not make
613 sense on a particular target machine. You can define a macro
614 `OVERRIDE_OPTIONS' to take account of this. This macro, if
615 defined, is executed once just after all the command options have
618 Don't use this macro to turn on various extra optimizations for
619 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
622 frv_override_options (void)
627 target_flags
|= (frv_default_flags_for_cpu () & ~target_flags_explicit
);
629 /* -mlibrary-pic sets -fPIC and -G0 and also suppresses warnings from the
630 linker about linking pic and non-pic code. */
633 if (!flag_pic
) /* -fPIC */
636 if (! g_switch_set
) /* -G0 */
643 /* A C expression whose value is a register class containing hard
644 register REGNO. In general there is more than one such class;
645 choose a class which is "minimal", meaning that no smaller class
646 also contains the register. */
648 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
650 enum reg_class
class;
654 int gpr_reg
= regno
- GPR_FIRST
;
656 if (gpr_reg
== GR8_REG
)
659 else if (gpr_reg
== GR9_REG
)
662 else if (gpr_reg
== GR14_REG
)
663 class = FDPIC_FPTR_REGS
;
665 else if (gpr_reg
== FDPIC_REGNO
)
668 else if ((gpr_reg
& 3) == 0)
671 else if ((gpr_reg
& 1) == 0)
678 else if (FPR_P (regno
))
680 int fpr_reg
= regno
- GPR_FIRST
;
681 if ((fpr_reg
& 3) == 0)
682 class = QUAD_FPR_REGS
;
684 else if ((fpr_reg
& 1) == 0)
691 else if (regno
== LR_REGNO
)
694 else if (regno
== LCR_REGNO
)
697 else if (ICC_P (regno
))
700 else if (FCC_P (regno
))
703 else if (ICR_P (regno
))
706 else if (FCR_P (regno
))
709 else if (ACC_P (regno
))
711 int r
= regno
- ACC_FIRST
;
713 class = QUAD_ACC_REGS
;
714 else if ((r
& 1) == 0)
715 class = EVEN_ACC_REGS
;
720 else if (ACCG_P (regno
))
726 regno_reg_class
[regno
] = class;
729 /* Check for small data option */
731 g_switch_value
= SDATA_DEFAULT_SIZE
;
733 /* A C expression which defines the machine-dependent operand
734 constraint letters for register classes. If CHAR is such a
735 letter, the value should be the register class corresponding to
736 it. Otherwise, the value should be `NO_REGS'. The register
737 letter `r', corresponding to class `GENERAL_REGS', will not be
738 passed to this macro; you do not need to handle it.
740 The following letters are unavailable, due to being used as
745 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
746 'Q', 'R', 'S', 'T', 'U'
748 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
750 for (i
= 0; i
< 256; i
++)
751 reg_class_from_letter
[i
] = NO_REGS
;
753 reg_class_from_letter
['a'] = ACC_REGS
;
754 reg_class_from_letter
['b'] = EVEN_ACC_REGS
;
755 reg_class_from_letter
['c'] = CC_REGS
;
756 reg_class_from_letter
['d'] = GPR_REGS
;
757 reg_class_from_letter
['e'] = EVEN_REGS
;
758 reg_class_from_letter
['f'] = FPR_REGS
;
759 reg_class_from_letter
['h'] = FEVEN_REGS
;
760 reg_class_from_letter
['l'] = LR_REG
;
761 reg_class_from_letter
['q'] = QUAD_REGS
;
762 reg_class_from_letter
['t'] = ICC_REGS
;
763 reg_class_from_letter
['u'] = FCC_REGS
;
764 reg_class_from_letter
['v'] = ICR_REGS
;
765 reg_class_from_letter
['w'] = FCR_REGS
;
766 reg_class_from_letter
['x'] = QUAD_FPR_REGS
;
767 reg_class_from_letter
['y'] = LCR_REG
;
768 reg_class_from_letter
['z'] = SPR_REGS
;
769 reg_class_from_letter
['A'] = QUAD_ACC_REGS
;
770 reg_class_from_letter
['B'] = ACCG_REGS
;
771 reg_class_from_letter
['C'] = CR_REGS
;
772 reg_class_from_letter
['W'] = FDPIC_CALL_REGS
; /* gp14+15 */
773 reg_class_from_letter
['Z'] = FDPIC_REGS
; /* gp15 */
775 /* There is no single unaligned SI op for PIC code. Sometimes we
776 need to use ".4byte" and sometimes we need to use ".picptr".
777 See frv_assemble_integer for details. */
778 if (flag_pic
|| TARGET_FDPIC
)
779 targetm
.asm_out
.unaligned_op
.si
= 0;
781 if ((target_flags_explicit
& MASK_LINKED_FP
) == 0)
782 target_flags
|= MASK_LINKED_FP
;
784 if ((target_flags_explicit
& MASK_OPTIMIZE_MEMBAR
) == 0)
785 target_flags
|= MASK_OPTIMIZE_MEMBAR
;
787 for (i
= 0; i
< ARRAY_SIZE (frv_unit_names
); i
++)
788 frv_unit_codes
[i
] = get_cpu_unit_code (frv_unit_names
[i
]);
790 for (i
= 0; i
< ARRAY_SIZE (frv_type_to_unit
); i
++)
791 frv_type_to_unit
[i
] = ARRAY_SIZE (frv_unit_codes
);
793 init_machine_status
= frv_init_machine_status
;
797 /* Some machines may desire to change what optimizations are performed for
798 various optimization levels. This macro, if defined, is executed once just
799 after the optimization level is determined and before the remainder of the
800 command options have been parsed. Values set in this macro are used as the
801 default values for the other command line options.
803 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
804 `-O' is specified, and 0 if neither is specified.
806 SIZE is nonzero if `-Os' is specified, 0 otherwise.
808 You should not use this macro to change options that are not
809 machine-specific. These should uniformly selected by the same optimization
810 level on all supported machines. Use this macro to enable machine-specific
813 *Do not examine `write_symbols' in this macro!* The debugging options are
814 *not supposed to alter the generated code. */
816 /* On the FRV, possibly disable VLIW packing which is done by the 2nd
817 scheduling pass at the current time. */
819 frv_optimization_options (int level
, int size ATTRIBUTE_UNUSED
)
823 #ifdef DISABLE_SCHED2
824 flag_schedule_insns_after_reload
= 0;
833 /* Return true if NAME (a STRING_CST node) begins with PREFIX. */
836 frv_string_begins_with (tree name
, const char *prefix
)
838 int prefix_len
= strlen (prefix
);
840 /* Remember: NAME's length includes the null terminator. */
841 return (TREE_STRING_LENGTH (name
) > prefix_len
842 && strncmp (TREE_STRING_POINTER (name
), prefix
, prefix_len
) == 0);
845 /* Zero or more C statements that may conditionally modify two variables
846 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
847 been initialized from the two preceding macros.
849 This is necessary in case the fixed or call-clobbered registers depend on
852 You need not define this macro if it has no work to do.
854 If the usage of an entire class of registers depends on the target flags,
855 you may indicate this to GCC by using this macro to modify `fixed_regs' and
856 `call_used_regs' to 1 for each of the registers in the classes which should
857 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
858 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
860 (However, if this class is not included in `GENERAL_REGS' and all of the
861 insn patterns whose constraints permit this class are controlled by target
862 switches, then GCC will automatically avoid using these registers when the
863 target switches are opposed to them.) */
866 frv_conditional_register_usage (void)
870 for (i
= GPR_FIRST
+ NUM_GPRS
; i
<= GPR_LAST
; i
++)
871 fixed_regs
[i
] = call_used_regs
[i
] = 1;
873 for (i
= FPR_FIRST
+ NUM_FPRS
; i
<= FPR_LAST
; i
++)
874 fixed_regs
[i
] = call_used_regs
[i
] = 1;
876 /* Reserve the registers used for conditional execution. At present, we need
877 1 ICC and 1 ICR register. */
878 fixed_regs
[ICC_TEMP
] = call_used_regs
[ICC_TEMP
] = 1;
879 fixed_regs
[ICR_TEMP
] = call_used_regs
[ICR_TEMP
] = 1;
883 fixed_regs
[ICC_FIRST
] = call_used_regs
[ICC_FIRST
] = 1;
884 fixed_regs
[FCC_FIRST
] = call_used_regs
[FCC_FIRST
] = 1;
885 fixed_regs
[ICR_FIRST
] = call_used_regs
[ICR_FIRST
] = 1;
886 fixed_regs
[FCR_FIRST
] = call_used_regs
[FCR_FIRST
] = 1;
890 fixed_regs
[GPR_FIRST
+ 16] = fixed_regs
[GPR_FIRST
+ 17] =
891 call_used_regs
[GPR_FIRST
+ 16] = call_used_regs
[GPR_FIRST
+ 17] = 0;
894 /* If -fpic, SDA_BASE_REG is the PIC register. */
895 if (g_switch_value
== 0 && !flag_pic
)
896 fixed_regs
[SDA_BASE_REG
] = call_used_regs
[SDA_BASE_REG
] = 0;
899 fixed_regs
[PIC_REGNO
] = call_used_regs
[PIC_REGNO
] = 0;
905 * Compute the stack frame layout
908 * +---------------+-----------------------+-----------------------+
909 * |Register |type |caller-save/callee-save|
910 * +---------------+-----------------------+-----------------------+
911 * |GR0 |Zero register | - |
912 * |GR1 |Stack pointer(SP) | - |
913 * |GR2 |Frame pointer(FP) | - |
914 * |GR3 |Hidden parameter | caller save |
915 * |GR4-GR7 | - | caller save |
916 * |GR8-GR13 |Argument register | caller save |
917 * |GR14-GR15 | - | caller save |
918 * |GR16-GR31 | - | callee save |
919 * |GR32-GR47 | - | caller save |
920 * |GR48-GR63 | - | callee save |
921 * |FR0-FR15 | - | caller save |
922 * |FR16-FR31 | - | callee save |
923 * |FR32-FR47 | - | caller save |
924 * |FR48-FR63 | - | callee save |
925 * +---------------+-----------------------+-----------------------+
929 * SP-> |-----------------------------------|
931 * |-----------------------------------|
932 * | Register save area |
933 * |-----------------------------------|
934 * | Local variable save area |
935 * FP-> |-----------------------------------|
937 * |-----------------------------------|
938 * | Hidden parameter save area |
939 * |-----------------------------------|
940 * | Return address(LR) storage area |
941 * |-----------------------------------|
942 * | Padding for alignment |
943 * |-----------------------------------|
944 * | Register argument area |
945 * OLD SP-> |-----------------------------------|
947 * |-----------------------------------|
950 * Argument area/Parameter area:
952 * When a function is called, this area is used for argument transfer. When
953 * the argument is set up by the caller function, this area is referred to as
954 * the argument area. When the argument is referenced by the callee function,
955 * this area is referred to as the parameter area. The area is allocated when
956 * all arguments cannot be placed on the argument register at the time of
959 * Register save area:
961 * This is a register save area that must be guaranteed for the caller
962 * function. This area is not secured when the register save operation is not
965 * Local variable save area:
967 * This is the area for local variables and temporary variables.
971 * This area stores the FP value of the caller function.
973 * Hidden parameter save area:
975 * This area stores the start address of the return value storage
976 * area for a struct/union return function.
977 * When a struct/union is used as the return value, the caller
978 * function stores the return value storage area start address in
979 * register GR3 and passes it to the caller function.
980 * The callee function interprets the address stored in the GR3
981 * as the return value storage area start address.
982 * When register GR3 needs to be saved into memory, the callee
983 * function saves it in the hidden parameter save area. This
984 * area is not secured when the save operation is not needed.
986 * Return address(LR) storage area:
988 * This area saves the LR. The LR stores the address of a return to the caller
989 * function for the purpose of function calling.
991 * Argument register area:
993 * This area saves the argument register. This area is not secured when the
994 * save operation is not needed.
998 * Arguments, the count of which equals the count of argument registers (6
999 * words), are positioned in registers GR8 to GR13 and delivered to the callee
1000 * function. When a struct/union return function is called, the return value
1001 * area address is stored in register GR3. Arguments not placed in the
1002 * argument registers will be stored in the stack argument area for transfer
1003 * purposes. When an 8-byte type argument is to be delivered using registers,
1004 * it is divided into two and placed in two registers for transfer. When
1005 * argument registers must be saved to memory, the callee function secures an
1006 * argument register save area in the stack. In this case, a continuous
1007 * argument register save area must be established in the parameter area. The
1008 * argument register save area must be allocated as needed to cover the size of
1009 * the argument register to be saved. If the function has a variable count of
1010 * arguments, it saves all argument registers in the argument register save
1013 * Argument Extension Format:
1015 * When an argument is to be stored in the stack, its type is converted to an
1016 * extended type in accordance with the individual argument type. The argument
1017 * is freed by the caller function after the return from the callee function is
1020 * +-----------------------+---------------+------------------------+
1021 * | Argument Type |Extended Type |Stack Storage Size(byte)|
1022 * +-----------------------+---------------+------------------------+
1024 * |signed char |int | 4 |
1025 * |unsigned char |int | 4 |
1026 * |[signed] short int |int | 4 |
1027 * |unsigned short int |int | 4 |
1028 * |[signed] int |No extension | 4 |
1029 * |unsigned int |No extension | 4 |
1030 * |[signed] long int |No extension | 4 |
1031 * |unsigned long int |No extension | 4 |
1032 * |[signed] long long int |No extension | 8 |
1033 * |unsigned long long int |No extension | 8 |
1034 * |float |double | 8 |
1035 * |double |No extension | 8 |
1036 * |long double |No extension | 8 |
1037 * |pointer |No extension | 4 |
1038 * |struct/union |- | 4 (*1) |
1039 * +-----------------------+---------------+------------------------+
1041 * When a struct/union is to be delivered as an argument, the caller copies it
1042 * to the local variable area and delivers the address of that area.
1046 * +-------------------------------+----------------------+
1047 * |Return Value Type |Return Value Interface|
1048 * +-------------------------------+----------------------+
1050 * |[signed|unsigned] char |GR8 |
1051 * |[signed|unsigned] short int |GR8 |
1052 * |[signed|unsigned] int |GR8 |
1053 * |[signed|unsigned] long int |GR8 |
1055 * |[signed|unsigned] long long int|GR8 & GR9 |
1057 * |double |GR8 & GR9 |
1058 * |long double |GR8 & GR9 |
1059 * |struct/union |(*1) |
1060 * +-------------------------------+----------------------+
1062 * When a struct/union is used as the return value, the caller function stores
1063 * the start address of the return value storage area into GR3 and then passes
1064 * it to the callee function. The callee function interprets GR3 as the start
1065 * address of the return value storage area. When this address needs to be
1066 * saved in memory, the callee function secures the hidden parameter save area
1067 * and saves the address in that area.
1071 frv_stack_info (void)
1073 static frv_stack_t info
, zero_info
;
1074 frv_stack_t
*info_ptr
= &info
;
1075 tree fndecl
= current_function_decl
;
1083 /* If we've already calculated the values and reload is complete,
1085 if (frv_stack_cache
)
1086 return frv_stack_cache
;
1088 /* Zero all fields. */
1091 /* Set up the register range information. */
1092 info_ptr
->regs
[STACK_REGS_GPR
].name
= "gpr";
1093 info_ptr
->regs
[STACK_REGS_GPR
].first
= LAST_ARG_REGNUM
+ 1;
1094 info_ptr
->regs
[STACK_REGS_GPR
].last
= GPR_LAST
;
1095 info_ptr
->regs
[STACK_REGS_GPR
].dword_p
= TRUE
;
1097 info_ptr
->regs
[STACK_REGS_FPR
].name
= "fpr";
1098 info_ptr
->regs
[STACK_REGS_FPR
].first
= FPR_FIRST
;
1099 info_ptr
->regs
[STACK_REGS_FPR
].last
= FPR_LAST
;
1100 info_ptr
->regs
[STACK_REGS_FPR
].dword_p
= TRUE
;
1102 info_ptr
->regs
[STACK_REGS_LR
].name
= "lr";
1103 info_ptr
->regs
[STACK_REGS_LR
].first
= LR_REGNO
;
1104 info_ptr
->regs
[STACK_REGS_LR
].last
= LR_REGNO
;
1105 info_ptr
->regs
[STACK_REGS_LR
].special_p
= 1;
1107 info_ptr
->regs
[STACK_REGS_CC
].name
= "cc";
1108 info_ptr
->regs
[STACK_REGS_CC
].first
= CC_FIRST
;
1109 info_ptr
->regs
[STACK_REGS_CC
].last
= CC_LAST
;
1110 info_ptr
->regs
[STACK_REGS_CC
].field_p
= TRUE
;
1112 info_ptr
->regs
[STACK_REGS_LCR
].name
= "lcr";
1113 info_ptr
->regs
[STACK_REGS_LCR
].first
= LCR_REGNO
;
1114 info_ptr
->regs
[STACK_REGS_LCR
].last
= LCR_REGNO
;
1116 info_ptr
->regs
[STACK_REGS_STDARG
].name
= "stdarg";
1117 info_ptr
->regs
[STACK_REGS_STDARG
].first
= FIRST_ARG_REGNUM
;
1118 info_ptr
->regs
[STACK_REGS_STDARG
].last
= LAST_ARG_REGNUM
;
1119 info_ptr
->regs
[STACK_REGS_STDARG
].dword_p
= 1;
1120 info_ptr
->regs
[STACK_REGS_STDARG
].special_p
= 1;
1122 info_ptr
->regs
[STACK_REGS_STRUCT
].name
= "struct";
1123 info_ptr
->regs
[STACK_REGS_STRUCT
].first
= FRV_STRUCT_VALUE_REGNUM
;
1124 info_ptr
->regs
[STACK_REGS_STRUCT
].last
= FRV_STRUCT_VALUE_REGNUM
;
1125 info_ptr
->regs
[STACK_REGS_STRUCT
].special_p
= 1;
1127 info_ptr
->regs
[STACK_REGS_FP
].name
= "fp";
1128 info_ptr
->regs
[STACK_REGS_FP
].first
= FRAME_POINTER_REGNUM
;
1129 info_ptr
->regs
[STACK_REGS_FP
].last
= FRAME_POINTER_REGNUM
;
1130 info_ptr
->regs
[STACK_REGS_FP
].special_p
= 1;
1132 /* Determine if this is a stdarg function. If so, allocate space to store
1139 /* Find the last argument, and see if it is __builtin_va_alist. */
1140 for (cur_arg
= DECL_ARGUMENTS (fndecl
); cur_arg
!= (tree
)0; cur_arg
= next_arg
)
1142 next_arg
= TREE_CHAIN (cur_arg
);
1143 if (next_arg
== (tree
)0)
1145 if (DECL_NAME (cur_arg
)
1146 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (cur_arg
)), "__builtin_va_alist"))
1154 /* Iterate over all of the register ranges. */
1155 for (range
= 0; range
< STACK_REGS_MAX
; range
++)
1157 frv_stack_regs_t
*reg_ptr
= &(info_ptr
->regs
[range
]);
1158 int first
= reg_ptr
->first
;
1159 int last
= reg_ptr
->last
;
1161 int size_2words
= 0;
1164 /* Calculate which registers need to be saved & save area size. */
1168 for (regno
= first
; regno
<= last
; regno
++)
1170 if ((regs_ever_live
[regno
] && !call_used_regs
[regno
])
1171 || (current_function_calls_eh_return
1172 && (regno
>= FIRST_EH_REGNUM
&& regno
<= LAST_EH_REGNUM
))
1173 || (!TARGET_FDPIC
&& flag_pic
1174 && cfun
->uses_pic_offset_table
&& regno
== PIC_REGNO
))
1176 info_ptr
->save_p
[regno
] = REG_SAVE_1WORD
;
1177 size_1word
+= UNITS_PER_WORD
;
1182 /* Calculate whether we need to create a frame after everything else
1183 has been processed. */
1188 if (regs_ever_live
[LR_REGNO
]
1190 /* This is set for __builtin_return_address, etc. */
1191 || cfun
->machine
->frame_needed
1192 || (TARGET_LINKED_FP
&& frame_pointer_needed
)
1193 || (!TARGET_FDPIC
&& flag_pic
1194 && cfun
->uses_pic_offset_table
))
1196 info_ptr
->save_p
[LR_REGNO
] = REG_SAVE_1WORD
;
1197 size_1word
+= UNITS_PER_WORD
;
1201 case STACK_REGS_STDARG
:
1204 /* If this is a stdarg function with a non varardic
1205 argument split between registers and the stack,
1206 adjust the saved registers downward. */
1207 last
-= (ADDR_ALIGN (cfun
->pretend_args_size
, UNITS_PER_WORD
)
1210 for (regno
= first
; regno
<= last
; regno
++)
1212 info_ptr
->save_p
[regno
] = REG_SAVE_1WORD
;
1213 size_1word
+= UNITS_PER_WORD
;
1216 info_ptr
->stdarg_size
= size_1word
;
1220 case STACK_REGS_STRUCT
:
1221 if (cfun
->returns_struct
)
1223 info_ptr
->save_p
[FRV_STRUCT_VALUE_REGNUM
] = REG_SAVE_1WORD
;
1224 size_1word
+= UNITS_PER_WORD
;
1232 /* If this is a field, it only takes one word. */
1233 if (reg_ptr
->field_p
)
1234 size_1word
= UNITS_PER_WORD
;
1236 /* Determine which register pairs can be saved together. */
1237 else if (reg_ptr
->dword_p
&& TARGET_DWORD
)
1239 for (regno
= first
; regno
< last
; regno
+= 2)
1241 if (info_ptr
->save_p
[regno
] && info_ptr
->save_p
[regno
+1])
1243 size_2words
+= 2 * UNITS_PER_WORD
;
1244 size_1word
-= 2 * UNITS_PER_WORD
;
1245 info_ptr
->save_p
[regno
] = REG_SAVE_2WORDS
;
1246 info_ptr
->save_p
[regno
+1] = REG_SAVE_NO_SAVE
;
1251 reg_ptr
->size_1word
= size_1word
;
1252 reg_ptr
->size_2words
= size_2words
;
1254 if (! reg_ptr
->special_p
)
1256 info_ptr
->regs_size_1word
+= size_1word
;
1257 info_ptr
->regs_size_2words
+= size_2words
;
1262 /* Set up the sizes of each each field in the frame body, making the sizes
1263 of each be divisible by the size of a dword if dword operations might
1264 be used, or the size of a word otherwise. */
1265 alignment
= (TARGET_DWORD
? 2 * UNITS_PER_WORD
: UNITS_PER_WORD
);
1267 info_ptr
->parameter_size
= ADDR_ALIGN (cfun
->outgoing_args_size
, alignment
);
1268 info_ptr
->regs_size
= ADDR_ALIGN (info_ptr
->regs_size_2words
1269 + info_ptr
->regs_size_1word
,
1271 info_ptr
->vars_size
= ADDR_ALIGN (get_frame_size (), alignment
);
1273 info_ptr
->pretend_size
= cfun
->pretend_args_size
;
1275 /* Work out the size of the frame, excluding the header. Both the frame
1276 body and register parameter area will be dword-aligned. */
1277 info_ptr
->total_size
1278 = (ADDR_ALIGN (info_ptr
->parameter_size
1279 + info_ptr
->regs_size
1280 + info_ptr
->vars_size
,
1282 + ADDR_ALIGN (info_ptr
->pretend_size
1283 + info_ptr
->stdarg_size
,
1284 2 * UNITS_PER_WORD
));
1286 /* See if we need to create a frame at all, if so add header area. */
1287 if (info_ptr
->total_size
> 0
1288 || frame_pointer_needed
1289 || info_ptr
->regs
[STACK_REGS_LR
].size_1word
> 0
1290 || info_ptr
->regs
[STACK_REGS_STRUCT
].size_1word
> 0)
1292 offset
= info_ptr
->parameter_size
;
1293 info_ptr
->header_size
= 4 * UNITS_PER_WORD
;
1294 info_ptr
->total_size
+= 4 * UNITS_PER_WORD
;
1296 /* Calculate the offsets to save normal register pairs. */
1297 for (range
= 0; range
< STACK_REGS_MAX
; range
++)
1299 frv_stack_regs_t
*reg_ptr
= &(info_ptr
->regs
[range
]);
1300 if (! reg_ptr
->special_p
)
1302 int first
= reg_ptr
->first
;
1303 int last
= reg_ptr
->last
;
1306 for (regno
= first
; regno
<= last
; regno
++)
1307 if (info_ptr
->save_p
[regno
] == REG_SAVE_2WORDS
1308 && regno
!= FRAME_POINTER_REGNUM
1309 && (regno
< FIRST_ARG_REGNUM
1310 || regno
> LAST_ARG_REGNUM
))
1312 info_ptr
->reg_offset
[regno
] = offset
;
1313 offset
+= 2 * UNITS_PER_WORD
;
1318 /* Calculate the offsets to save normal single registers. */
1319 for (range
= 0; range
< STACK_REGS_MAX
; range
++)
1321 frv_stack_regs_t
*reg_ptr
= &(info_ptr
->regs
[range
]);
1322 if (! reg_ptr
->special_p
)
1324 int first
= reg_ptr
->first
;
1325 int last
= reg_ptr
->last
;
1328 for (regno
= first
; regno
<= last
; regno
++)
1329 if (info_ptr
->save_p
[regno
] == REG_SAVE_1WORD
1330 && regno
!= FRAME_POINTER_REGNUM
1331 && (regno
< FIRST_ARG_REGNUM
1332 || regno
> LAST_ARG_REGNUM
))
1334 info_ptr
->reg_offset
[regno
] = offset
;
1335 offset
+= UNITS_PER_WORD
;
1340 /* Calculate the offset to save the local variables at. */
1341 offset
= ADDR_ALIGN (offset
, alignment
);
1342 if (info_ptr
->vars_size
)
1344 info_ptr
->vars_offset
= offset
;
1345 offset
+= info_ptr
->vars_size
;
1348 /* Align header to a dword-boundary. */
1349 offset
= ADDR_ALIGN (offset
, 2 * UNITS_PER_WORD
);
1351 /* Calculate the offsets in the fixed frame. */
1352 info_ptr
->save_p
[FRAME_POINTER_REGNUM
] = REG_SAVE_1WORD
;
1353 info_ptr
->reg_offset
[FRAME_POINTER_REGNUM
] = offset
;
1354 info_ptr
->regs
[STACK_REGS_FP
].size_1word
= UNITS_PER_WORD
;
1356 info_ptr
->save_p
[LR_REGNO
] = REG_SAVE_1WORD
;
1357 info_ptr
->reg_offset
[LR_REGNO
] = offset
+ 2*UNITS_PER_WORD
;
1358 info_ptr
->regs
[STACK_REGS_LR
].size_1word
= UNITS_PER_WORD
;
1360 if (cfun
->returns_struct
)
1362 info_ptr
->save_p
[FRV_STRUCT_VALUE_REGNUM
] = REG_SAVE_1WORD
;
1363 info_ptr
->reg_offset
[FRV_STRUCT_VALUE_REGNUM
] = offset
+ UNITS_PER_WORD
;
1364 info_ptr
->regs
[STACK_REGS_STRUCT
].size_1word
= UNITS_PER_WORD
;
1367 /* Calculate the offsets to store the arguments passed in registers
1368 for stdarg functions. The register pairs are first and the single
1369 register if any is last. The register save area starts on a
1371 if (info_ptr
->stdarg_size
)
1373 int first
= info_ptr
->regs
[STACK_REGS_STDARG
].first
;
1374 int last
= info_ptr
->regs
[STACK_REGS_STDARG
].last
;
1377 /* Skip the header. */
1378 offset
+= 4 * UNITS_PER_WORD
;
1379 for (regno
= first
; regno
<= last
; regno
++)
1381 if (info_ptr
->save_p
[regno
] == REG_SAVE_2WORDS
)
1383 info_ptr
->reg_offset
[regno
] = offset
;
1384 offset
+= 2 * UNITS_PER_WORD
;
1386 else if (info_ptr
->save_p
[regno
] == REG_SAVE_1WORD
)
1388 info_ptr
->reg_offset
[regno
] = offset
;
1389 offset
+= UNITS_PER_WORD
;
1395 if (reload_completed
)
1396 frv_stack_cache
= info_ptr
;
1402 /* Print the information about the frv stack offsets, etc. when debugging. */
1405 frv_debug_stack (frv_stack_t
*info
)
1410 info
= frv_stack_info ();
1412 fprintf (stderr
, "\nStack information for function %s:\n",
1413 ((current_function_decl
&& DECL_NAME (current_function_decl
))
1414 ? IDENTIFIER_POINTER (DECL_NAME (current_function_decl
))
1417 fprintf (stderr
, "\ttotal_size\t= %6d\n", info
->total_size
);
1418 fprintf (stderr
, "\tvars_size\t= %6d\n", info
->vars_size
);
1419 fprintf (stderr
, "\tparam_size\t= %6d\n", info
->parameter_size
);
1420 fprintf (stderr
, "\tregs_size\t= %6d, 1w = %3d, 2w = %3d\n",
1421 info
->regs_size
, info
->regs_size_1word
, info
->regs_size_2words
);
1423 fprintf (stderr
, "\theader_size\t= %6d\n", info
->header_size
);
1424 fprintf (stderr
, "\tpretend_size\t= %6d\n", info
->pretend_size
);
1425 fprintf (stderr
, "\tvars_offset\t= %6d\n", info
->vars_offset
);
1426 fprintf (stderr
, "\tregs_offset\t= %6d\n", info
->regs_offset
);
1428 for (range
= 0; range
< STACK_REGS_MAX
; range
++)
1430 frv_stack_regs_t
*regs
= &(info
->regs
[range
]);
1431 if ((regs
->size_1word
+ regs
->size_2words
) > 0)
1433 int first
= regs
->first
;
1434 int last
= regs
->last
;
1437 fprintf (stderr
, "\t%s\tsize\t= %6d, 1w = %3d, 2w = %3d, save =",
1438 regs
->name
, regs
->size_1word
+ regs
->size_2words
,
1439 regs
->size_1word
, regs
->size_2words
);
1441 for (regno
= first
; regno
<= last
; regno
++)
1443 if (info
->save_p
[regno
] == REG_SAVE_1WORD
)
1444 fprintf (stderr
, " %s (%d)", reg_names
[regno
],
1445 info
->reg_offset
[regno
]);
1447 else if (info
->save_p
[regno
] == REG_SAVE_2WORDS
)
1448 fprintf (stderr
, " %s-%s (%d)", reg_names
[regno
],
1449 reg_names
[regno
+1], info
->reg_offset
[regno
]);
1452 fputc ('\n', stderr
);
1462 /* Used during final to control the packing of insns. The value is
1463 1 if the current instruction should be packed with the next one,
1464 0 if it shouldn't or -1 if packing is disabled altogether. */
1466 static int frv_insn_packing_flag
;
1468 /* True if the current function contains a far jump. */
1471 frv_function_contains_far_jump (void)
1473 rtx insn
= get_insns ();
1475 && !(GET_CODE (insn
) == JUMP_INSN
1476 /* Ignore tablejump patterns. */
1477 && GET_CODE (PATTERN (insn
)) != ADDR_VEC
1478 && GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
1479 && get_attr_far_jump (insn
) == FAR_JUMP_YES
))
1480 insn
= NEXT_INSN (insn
);
1481 return (insn
!= NULL
);
1484 /* For the FRV, this function makes sure that a function with far jumps
1485 will return correctly. It also does the VLIW packing. */
1488 frv_function_prologue (FILE *file
, HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
1490 /* If no frame was created, check whether the function uses a call
1491 instruction to implement a far jump. If so, save the link in gr3 and
1492 replace all returns to LR with returns to GR3. GR3 is used because it
1493 is call-clobbered, because is not available to the register allocator,
1494 and because all functions that take a hidden argument pointer will have
1496 if (frv_stack_info ()->total_size
== 0 && frv_function_contains_far_jump ())
1500 /* Just to check that the above comment is true. */
1501 gcc_assert (!regs_ever_live
[GPR_FIRST
+ 3]);
1503 /* Generate the instruction that saves the link register. */
1504 fprintf (file
, "\tmovsg lr,gr3\n");
1506 /* Replace the LR with GR3 in *return_internal patterns. The insn
1507 will now return using jmpl @(gr3,0) rather than bralr. We cannot
1508 simply emit a different assembly directive because bralr and jmpl
1509 execute in different units. */
1510 for (insn
= get_insns(); insn
!= NULL
; insn
= NEXT_INSN (insn
))
1511 if (GET_CODE (insn
) == JUMP_INSN
)
1513 rtx pattern
= PATTERN (insn
);
1514 if (GET_CODE (pattern
) == PARALLEL
1515 && XVECLEN (pattern
, 0) >= 2
1516 && GET_CODE (XVECEXP (pattern
, 0, 0)) == RETURN
1517 && GET_CODE (XVECEXP (pattern
, 0, 1)) == USE
)
1519 rtx address
= XEXP (XVECEXP (pattern
, 0, 1), 0);
1520 if (GET_CODE (address
) == REG
&& REGNO (address
) == LR_REGNO
)
1521 REGNO (address
) = GPR_FIRST
+ 3;
1528 /* Allow the garbage collector to free the nops created by frv_reorg. */
1529 memset (frv_nops
, 0, sizeof (frv_nops
));
1533 /* Return the next available temporary register in a given class. */
1536 frv_alloc_temp_reg (
1537 frv_tmp_reg_t
*info
, /* which registers are available */
1538 enum reg_class
class, /* register class desired */
1539 enum machine_mode mode
, /* mode to allocate register with */
1540 int mark_as_used
, /* register not available after allocation */
1541 int no_abort
) /* return NULL instead of aborting */
1543 int regno
= info
->next_reg
[ (int)class ];
1544 int orig_regno
= regno
;
1545 HARD_REG_SET
*reg_in_class
= ®_class_contents
[ (int)class ];
1550 if (TEST_HARD_REG_BIT (*reg_in_class
, regno
)
1551 && TEST_HARD_REG_BIT (info
->regs
, regno
))
1554 if (++regno
>= FIRST_PSEUDO_REGISTER
)
1556 if (regno
== orig_regno
)
1558 gcc_assert (no_abort
);
1563 nr
= HARD_REGNO_NREGS (regno
, mode
);
1564 info
->next_reg
[ (int)class ] = regno
+ nr
;
1567 for (i
= 0; i
< nr
; i
++)
1568 CLEAR_HARD_REG_BIT (info
->regs
, regno
+i
);
1570 return gen_rtx_REG (mode
, regno
);
1574 /* Return an rtx with the value OFFSET, which will either be a register or a
1575 signed 12-bit integer. It can be used as the second operand in an "add"
1576 instruction, or as the index in a load or store.
1578 The function returns a constant rtx if OFFSET is small enough, otherwise
1579 it loads the constant into register OFFSET_REGNO and returns that. */
1581 frv_frame_offset_rtx (int offset
)
1583 rtx offset_rtx
= GEN_INT (offset
);
1584 if (IN_RANGE_P (offset
, -2048, 2047))
1588 rtx reg_rtx
= gen_rtx_REG (SImode
, OFFSET_REGNO
);
1589 if (IN_RANGE_P (offset
, -32768, 32767))
1590 emit_insn (gen_movsi (reg_rtx
, offset_rtx
));
1593 emit_insn (gen_movsi_high (reg_rtx
, offset_rtx
));
1594 emit_insn (gen_movsi_lo_sum (reg_rtx
, offset_rtx
));
1600 /* Generate (mem:MODE (plus:Pmode BASE (frv_frame_offset OFFSET)))). The
1601 prologue and epilogue uses such expressions to access the stack. */
1603 frv_frame_mem (enum machine_mode mode
, rtx base
, int offset
)
1605 return gen_rtx_MEM (mode
, gen_rtx_PLUS (Pmode
,
1607 frv_frame_offset_rtx (offset
)));
1610 /* Generate a frame-related expression:
1612 (set REG (mem (plus (sp) (const_int OFFSET)))).
1614 Such expressions are used in FRAME_RELATED_EXPR notes for more complex
1615 instructions. Marking the expressions as frame-related is superfluous if
1616 the note contains just a single set. But if the note contains a PARALLEL
1617 or SEQUENCE that has several sets, each set must be individually marked
1618 as frame-related. */
1620 frv_dwarf_store (rtx reg
, int offset
)
1622 rtx set
= gen_rtx_SET (VOIDmode
,
1623 gen_rtx_MEM (GET_MODE (reg
),
1624 plus_constant (stack_pointer_rtx
,
1627 RTX_FRAME_RELATED_P (set
) = 1;
1631 /* Emit a frame-related instruction whose pattern is PATTERN. The
1632 instruction is the last in a sequence that cumulatively performs the
1633 operation described by DWARF_PATTERN. The instruction is marked as
1634 frame-related and has a REG_FRAME_RELATED_EXPR note containing
1637 frv_frame_insn (rtx pattern
, rtx dwarf_pattern
)
1639 rtx insn
= emit_insn (pattern
);
1640 RTX_FRAME_RELATED_P (insn
) = 1;
1641 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
1646 /* Emit instructions that transfer REG to or from the memory location (sp +
1647 STACK_OFFSET). The register is stored in memory if ACCESSOR->OP is
1648 FRV_STORE and loaded if it is FRV_LOAD. Only the prologue uses this
1649 function to store registers and only the epilogue uses it to load them.
1651 The caller sets up ACCESSOR so that BASE is equal to (sp + BASE_OFFSET).
1652 The generated instruction will use BASE as its base register. BASE may
1653 simply be the stack pointer, but if several accesses are being made to a
1654 region far away from the stack pointer, it may be more efficient to set
1655 up a temporary instead.
1657 Store instructions will be frame-related and will be annotated with the
1658 overall effect of the store. Load instructions will be followed by a
1659 (use) to prevent later optimizations from zapping them.
1661 The function takes care of the moves to and from SPRs, using TEMP_REGNO
1662 as a temporary in such cases. */
1664 frv_frame_access (frv_frame_accessor_t
*accessor
, rtx reg
, int stack_offset
)
1666 enum machine_mode mode
= GET_MODE (reg
);
1667 rtx mem
= frv_frame_mem (mode
,
1669 stack_offset
- accessor
->base_offset
);
1671 if (accessor
->op
== FRV_LOAD
)
1673 if (SPR_P (REGNO (reg
)))
1675 rtx temp
= gen_rtx_REG (mode
, TEMP_REGNO
);
1676 emit_insn (gen_rtx_SET (VOIDmode
, temp
, mem
));
1677 emit_insn (gen_rtx_SET (VOIDmode
, reg
, temp
));
1680 emit_insn (gen_rtx_SET (VOIDmode
, reg
, mem
));
1681 emit_insn (gen_rtx_USE (VOIDmode
, reg
));
1685 if (SPR_P (REGNO (reg
)))
1687 rtx temp
= gen_rtx_REG (mode
, TEMP_REGNO
);
1688 emit_insn (gen_rtx_SET (VOIDmode
, temp
, reg
));
1689 frv_frame_insn (gen_rtx_SET (Pmode
, mem
, temp
),
1690 frv_dwarf_store (reg
, stack_offset
));
1692 else if (GET_MODE (reg
) == DImode
)
1694 /* For DImode saves, the dwarf2 version needs to be a SEQUENCE
1695 with a separate save for each register. */
1696 rtx reg1
= gen_rtx_REG (SImode
, REGNO (reg
));
1697 rtx reg2
= gen_rtx_REG (SImode
, REGNO (reg
) + 1);
1698 rtx set1
= frv_dwarf_store (reg1
, stack_offset
);
1699 rtx set2
= frv_dwarf_store (reg2
, stack_offset
+ 4);
1700 frv_frame_insn (gen_rtx_SET (Pmode
, mem
, reg
),
1701 gen_rtx_PARALLEL (VOIDmode
,
1702 gen_rtvec (2, set1
, set2
)));
1705 frv_frame_insn (gen_rtx_SET (Pmode
, mem
, reg
),
1706 frv_dwarf_store (reg
, stack_offset
));
1710 /* A function that uses frv_frame_access to transfer a group of registers to
1711 or from the stack. ACCESSOR is passed directly to frv_frame_access, INFO
1712 is the stack information generated by frv_stack_info, and REG_SET is the
1713 number of the register set to transfer. */
1715 frv_frame_access_multi (frv_frame_accessor_t
*accessor
,
1719 frv_stack_regs_t
*regs_info
;
1722 regs_info
= &info
->regs
[reg_set
];
1723 for (regno
= regs_info
->first
; regno
<= regs_info
->last
; regno
++)
1724 if (info
->save_p
[regno
])
1725 frv_frame_access (accessor
,
1726 info
->save_p
[regno
] == REG_SAVE_2WORDS
1727 ? gen_rtx_REG (DImode
, regno
)
1728 : gen_rtx_REG (SImode
, regno
),
1729 info
->reg_offset
[regno
]);
1732 /* Save or restore callee-saved registers that are kept outside the frame
1733 header. The function saves the registers if OP is FRV_STORE and restores
1734 them if OP is FRV_LOAD. INFO is the stack information generated by
1737 frv_frame_access_standard_regs (enum frv_stack_op op
, frv_stack_t
*info
)
1739 frv_frame_accessor_t accessor
;
1742 accessor
.base
= stack_pointer_rtx
;
1743 accessor
.base_offset
= 0;
1744 frv_frame_access_multi (&accessor
, info
, STACK_REGS_GPR
);
1745 frv_frame_access_multi (&accessor
, info
, STACK_REGS_FPR
);
1746 frv_frame_access_multi (&accessor
, info
, STACK_REGS_LCR
);
1750 /* Called after register allocation to add any instructions needed for the
1751 prologue. Using a prologue insn is favored compared to putting all of the
1752 instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
1753 it allows the scheduler to intermix instructions with the saves of
1754 the caller saved registers. In some cases, it might be necessary
1755 to emit a barrier instruction as the last insn to prevent such
1758 Also any insns generated here should have RTX_FRAME_RELATED_P(insn) = 1
1759 so that the debug info generation code can handle them properly. */
1761 frv_expand_prologue (void)
1763 frv_stack_t
*info
= frv_stack_info ();
1764 rtx sp
= stack_pointer_rtx
;
1765 rtx fp
= frame_pointer_rtx
;
1766 frv_frame_accessor_t accessor
;
1768 if (TARGET_DEBUG_STACK
)
1769 frv_debug_stack (info
);
1771 if (info
->total_size
== 0)
1774 /* We're interested in three areas of the frame here:
1776 A: the register save area
1778 C: the header after B
1780 If the frame pointer isn't used, we'll have to set up A, B and C
1781 using the stack pointer. If the frame pointer is used, we'll access
1785 B: set up using sp or a temporary (see below)
1788 We set up B using the stack pointer if the frame is small enough.
1789 Otherwise, it's more efficient to copy the old stack pointer into a
1790 temporary and use that.
1792 Note that it's important to make sure the prologue and epilogue use the
1793 same registers to access A and C, since doing otherwise will confuse
1794 the aliasing code. */
1796 /* Set up ACCESSOR for accessing region B above. If the frame pointer
1797 isn't used, the same method will serve for C. */
1798 accessor
.op
= FRV_STORE
;
1799 if (frame_pointer_needed
&& info
->total_size
> 2048)
1803 accessor
.base
= gen_rtx_REG (Pmode
, OLD_SP_REGNO
);
1804 accessor
.base_offset
= info
->total_size
;
1805 insn
= emit_insn (gen_movsi (accessor
.base
, sp
));
1809 accessor
.base
= stack_pointer_rtx
;
1810 accessor
.base_offset
= 0;
1813 /* Allocate the stack space. */
1815 rtx asm_offset
= frv_frame_offset_rtx (-info
->total_size
);
1816 rtx dwarf_offset
= GEN_INT (-info
->total_size
);
1818 frv_frame_insn (gen_stack_adjust (sp
, sp
, asm_offset
),
1821 gen_rtx_PLUS (Pmode
, sp
, dwarf_offset
)));
1824 /* If the frame pointer is needed, store the old one at (sp + FP_OFFSET)
1825 and point the new one to that location. */
1826 if (frame_pointer_needed
)
1828 int fp_offset
= info
->reg_offset
[FRAME_POINTER_REGNUM
];
1830 /* ASM_SRC and DWARF_SRC both point to the frame header. ASM_SRC is
1831 based on ACCESSOR.BASE but DWARF_SRC is always based on the stack
1833 rtx asm_src
= plus_constant (accessor
.base
,
1834 fp_offset
- accessor
.base_offset
);
1835 rtx dwarf_src
= plus_constant (sp
, fp_offset
);
1837 /* Store the old frame pointer at (sp + FP_OFFSET). */
1838 frv_frame_access (&accessor
, fp
, fp_offset
);
1840 /* Set up the new frame pointer. */
1841 frv_frame_insn (gen_rtx_SET (VOIDmode
, fp
, asm_src
),
1842 gen_rtx_SET (VOIDmode
, fp
, dwarf_src
));
1844 /* Access region C from the frame pointer. */
1846 accessor
.base_offset
= fp_offset
;
1849 /* Set up region C. */
1850 frv_frame_access_multi (&accessor
, info
, STACK_REGS_STRUCT
);
1851 frv_frame_access_multi (&accessor
, info
, STACK_REGS_LR
);
1852 frv_frame_access_multi (&accessor
, info
, STACK_REGS_STDARG
);
1854 /* Set up region A. */
1855 frv_frame_access_standard_regs (FRV_STORE
, info
);
1857 /* If this is a varargs/stdarg function, issue a blockage to prevent the
1858 scheduler from moving loads before the stores saving the registers. */
1859 if (info
->stdarg_size
> 0)
1860 emit_insn (gen_blockage ());
1862 /* Set up pic register/small data register for this function. */
1863 if (!TARGET_FDPIC
&& flag_pic
&& cfun
->uses_pic_offset_table
)
1864 emit_insn (gen_pic_prologue (gen_rtx_REG (Pmode
, PIC_REGNO
),
1865 gen_rtx_REG (Pmode
, LR_REGNO
),
1866 gen_rtx_REG (SImode
, OFFSET_REGNO
)));
1870 /* Under frv, all of the work is done via frv_expand_epilogue, but
1871 this function provides a convenient place to do cleanup. */
1874 frv_function_epilogue (FILE *file ATTRIBUTE_UNUSED
,
1875 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
1877 frv_stack_cache
= (frv_stack_t
*)0;
1879 /* Zap last used registers for conditional execution. */
1880 memset (&frv_ifcvt
.tmp_reg
, 0, sizeof (frv_ifcvt
.tmp_reg
));
1882 /* Release the bitmap of created insns. */
1883 BITMAP_FREE (frv_ifcvt
.scratch_insns_bitmap
);
1887 /* Called after register allocation to add any instructions needed for the
1888 epilogue. Using an epilogue insn is favored compared to putting all of the
1889 instructions in the TARGET_ASM_FUNCTION_PROLOGUE target hook, since
1890 it allows the scheduler to intermix instructions with the saves of
1891 the caller saved registers. In some cases, it might be necessary
1892 to emit a barrier instruction as the last insn to prevent such
1896 frv_expand_epilogue (bool emit_return
)
1898 frv_stack_t
*info
= frv_stack_info ();
1899 rtx fp
= frame_pointer_rtx
;
1900 rtx sp
= stack_pointer_rtx
;
1904 fp_offset
= info
->reg_offset
[FRAME_POINTER_REGNUM
];
1906 /* Restore the stack pointer to its original value if alloca or the like
1908 if (! current_function_sp_is_unchanging
)
1909 emit_insn (gen_addsi3 (sp
, fp
, frv_frame_offset_rtx (-fp_offset
)));
1911 /* Restore the callee-saved registers that were used in this function. */
1912 frv_frame_access_standard_regs (FRV_LOAD
, info
);
1914 /* Set RETURN_ADDR to the address we should return to. Set it to NULL if
1915 no return instruction should be emitted. */
1916 if (info
->save_p
[LR_REGNO
])
1921 /* Use the same method to access the link register's slot as we did in
1922 the prologue. In other words, use the frame pointer if available,
1923 otherwise use the stack pointer.
1925 LR_OFFSET is the offset of the link register's slot from the start
1926 of the frame and MEM is a memory rtx for it. */
1927 lr_offset
= info
->reg_offset
[LR_REGNO
];
1928 if (frame_pointer_needed
)
1929 mem
= frv_frame_mem (Pmode
, fp
, lr_offset
- fp_offset
);
1931 mem
= frv_frame_mem (Pmode
, sp
, lr_offset
);
1933 /* Load the old link register into a GPR. */
1934 return_addr
= gen_rtx_REG (Pmode
, TEMP_REGNO
);
1935 emit_insn (gen_rtx_SET (VOIDmode
, return_addr
, mem
));
1938 return_addr
= gen_rtx_REG (Pmode
, LR_REGNO
);
1940 /* Restore the old frame pointer. Emit a USE afterwards to make sure
1941 the load is preserved. */
1942 if (frame_pointer_needed
)
1944 emit_insn (gen_rtx_SET (VOIDmode
, fp
, gen_rtx_MEM (Pmode
, fp
)));
1945 emit_insn (gen_rtx_USE (VOIDmode
, fp
));
1948 /* Deallocate the stack frame. */
1949 if (info
->total_size
!= 0)
1951 rtx offset
= frv_frame_offset_rtx (info
->total_size
);
1952 emit_insn (gen_stack_adjust (sp
, sp
, offset
));
1955 /* If this function uses eh_return, add the final stack adjustment now. */
1956 if (current_function_calls_eh_return
)
1957 emit_insn (gen_stack_adjust (sp
, sp
, EH_RETURN_STACKADJ_RTX
));
1960 emit_jump_insn (gen_epilogue_return (return_addr
));
1963 rtx lr
= return_addr
;
1965 if (REGNO (return_addr
) != LR_REGNO
)
1967 lr
= gen_rtx_REG (Pmode
, LR_REGNO
);
1968 emit_move_insn (lr
, return_addr
);
1971 emit_insn (gen_rtx_USE (VOIDmode
, lr
));
1976 /* Worker function for TARGET_ASM_OUTPUT_MI_THUNK. */
1979 frv_asm_output_mi_thunk (FILE *file
,
1980 tree thunk_fndecl ATTRIBUTE_UNUSED
,
1981 HOST_WIDE_INT delta
,
1982 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED
,
1985 const char *name_func
= XSTR (XEXP (DECL_RTL (function
), 0), 0);
1986 const char *name_arg0
= reg_names
[FIRST_ARG_REGNUM
];
1987 const char *name_jmp
= reg_names
[JUMP_REGNO
];
1988 const char *parallel
= (frv_issue_rate () > 1 ? ".p" : "");
1990 /* Do the add using an addi if possible. */
1991 if (IN_RANGE_P (delta
, -2048, 2047))
1992 fprintf (file
, "\taddi %s,#%d,%s\n", name_arg0
, (int) delta
, name_arg0
);
1995 const char *const name_add
= reg_names
[TEMP_REGNO
];
1996 fprintf (file
, "\tsethi%s #hi(" HOST_WIDE_INT_PRINT_DEC
"),%s\n",
1997 parallel
, delta
, name_add
);
1998 fprintf (file
, "\tsetlo #lo(" HOST_WIDE_INT_PRINT_DEC
"),%s\n",
2000 fprintf (file
, "\tadd %s,%s,%s\n", name_add
, name_arg0
, name_arg0
);
2005 const char *name_pic
= reg_names
[FDPIC_REGNO
];
2006 name_jmp
= reg_names
[FDPIC_FPTR_REGNO
];
2010 fprintf (file
, "\tsethi%s #gotofffuncdeschi(", parallel
);
2011 assemble_name (file
, name_func
);
2012 fprintf (file
, "),%s\n", name_jmp
);
2014 fprintf (file
, "\tsetlo #gotofffuncdesclo(");
2015 assemble_name (file
, name_func
);
2016 fprintf (file
, "),%s\n", name_jmp
);
2018 fprintf (file
, "\tldd @(%s,%s), %s\n", name_jmp
, name_pic
, name_jmp
);
2022 fprintf (file
, "\tlddo @(%s,#gotofffuncdesc12(", name_pic
);
2023 assemble_name (file
, name_func
);
2024 fprintf (file
, "\t)), %s\n", name_jmp
);
2029 fprintf (file
, "\tsethi%s #hi(", parallel
);
2030 assemble_name (file
, name_func
);
2031 fprintf (file
, "),%s\n", name_jmp
);
2033 fprintf (file
, "\tsetlo #lo(");
2034 assemble_name (file
, name_func
);
2035 fprintf (file
, "),%s\n", name_jmp
);
2039 /* Use JUMP_REGNO as a temporary PIC register. */
2040 const char *name_lr
= reg_names
[LR_REGNO
];
2041 const char *name_gppic
= name_jmp
;
2042 const char *name_tmp
= reg_names
[TEMP_REGNO
];
2044 fprintf (file
, "\tmovsg %s,%s\n", name_lr
, name_tmp
);
2045 fprintf (file
, "\tcall 1f\n");
2046 fprintf (file
, "1:\tmovsg %s,%s\n", name_lr
, name_gppic
);
2047 fprintf (file
, "\tmovgs %s,%s\n", name_tmp
, name_lr
);
2048 fprintf (file
, "\tsethi%s #gprelhi(1b),%s\n", parallel
, name_tmp
);
2049 fprintf (file
, "\tsetlo #gprello(1b),%s\n", name_tmp
);
2050 fprintf (file
, "\tsub %s,%s,%s\n", name_gppic
, name_tmp
, name_gppic
);
2052 fprintf (file
, "\tsethi%s #gprelhi(", parallel
);
2053 assemble_name (file
, name_func
);
2054 fprintf (file
, "),%s\n", name_tmp
);
2056 fprintf (file
, "\tsetlo #gprello(");
2057 assemble_name (file
, name_func
);
2058 fprintf (file
, "),%s\n", name_tmp
);
2060 fprintf (file
, "\tadd %s,%s,%s\n", name_gppic
, name_tmp
, name_jmp
);
2063 /* Jump to the function address. */
2064 fprintf (file
, "\tjmpl @(%s,%s)\n", name_jmp
, reg_names
[GPR_FIRST
+0]);
2068 /* A C expression which is nonzero if a function must have and use a frame
2069 pointer. This expression is evaluated in the reload pass. If its value is
2070 nonzero the function will have a frame pointer.
2072 The expression can in principle examine the current function and decide
2073 according to the facts, but on most machines the constant 0 or the constant
2074 1 suffices. Use 0 when the machine allows code to be generated with no
2075 frame pointer, and doing so saves some time or space. Use 1 when there is
2076 no possible advantage to avoiding a frame pointer.
2078 In certain cases, the compiler does not know how to produce valid code
2079 without a frame pointer. The compiler recognizes those cases and
2080 automatically gives the function a frame pointer regardless of what
2081 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
2083 In a function that does not require a frame pointer, the frame pointer
2084 register can be allocated for ordinary usage, unless you mark it as a fixed
2085 register. See `FIXED_REGISTERS' for more information. */
2087 /* On frv, create a frame whenever we need to create stack. */
2090 frv_frame_pointer_required (void)
2092 /* If we forgoing the usual linkage requirements, we only need
2093 a frame pointer if the stack pointer might change. */
2094 if (!TARGET_LINKED_FP
)
2095 return !current_function_sp_is_unchanging
;
2097 if (! current_function_is_leaf
)
2100 if (get_frame_size () != 0)
2106 if (!current_function_sp_is_unchanging
)
2109 if (!TARGET_FDPIC
&& flag_pic
&& cfun
->uses_pic_offset_table
)
2115 if (cfun
->machine
->frame_needed
)
2122 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
2123 initial difference between the specified pair of registers. This macro must
2124 be defined if `ELIMINABLE_REGS' is defined. */
2126 /* See frv_stack_info for more details on the frv stack frame. */
2129 frv_initial_elimination_offset (int from
, int to
)
2131 frv_stack_t
*info
= frv_stack_info ();
2134 if (to
== STACK_POINTER_REGNUM
&& from
== ARG_POINTER_REGNUM
)
2135 ret
= info
->total_size
- info
->pretend_size
;
2137 else if (to
== STACK_POINTER_REGNUM
&& from
== FRAME_POINTER_REGNUM
)
2138 ret
= info
->reg_offset
[FRAME_POINTER_REGNUM
];
2140 else if (to
== FRAME_POINTER_REGNUM
&& from
== ARG_POINTER_REGNUM
)
2141 ret
= (info
->total_size
2142 - info
->reg_offset
[FRAME_POINTER_REGNUM
]
2143 - info
->pretend_size
);
2148 if (TARGET_DEBUG_STACK
)
2149 fprintf (stderr
, "Eliminate %s to %s by adding %d\n",
2150 reg_names
[from
], reg_names
[to
], ret
);
2156 /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */
2159 frv_setup_incoming_varargs (CUMULATIVE_ARGS
*cum
,
2160 enum machine_mode mode
,
2161 tree type ATTRIBUTE_UNUSED
,
2165 if (TARGET_DEBUG_ARG
)
2167 "setup_vararg: words = %2d, mode = %4s, pretend_size = %d, second_time = %d\n",
2168 *cum
, GET_MODE_NAME (mode
), *pretend_size
, second_time
);
2172 /* Worker function for TARGET_EXPAND_BUILTIN_SAVEREGS. */
2175 frv_expand_builtin_saveregs (void)
2177 int offset
= UNITS_PER_WORD
* FRV_NUM_ARG_REGS
;
2179 if (TARGET_DEBUG_ARG
)
2180 fprintf (stderr
, "expand_builtin_saveregs: offset from ap = %d\n",
2183 return gen_rtx_PLUS (Pmode
, virtual_incoming_args_rtx
, GEN_INT (- offset
));
2187 /* Expand __builtin_va_start to do the va_start macro. */
2190 frv_expand_builtin_va_start (tree valist
, rtx nextarg
)
2193 int num
= cfun
->args_info
- FIRST_ARG_REGNUM
- FRV_NUM_ARG_REGS
;
2195 nextarg
= gen_rtx_PLUS (Pmode
, virtual_incoming_args_rtx
,
2196 GEN_INT (UNITS_PER_WORD
* num
));
2198 if (TARGET_DEBUG_ARG
)
2200 fprintf (stderr
, "va_start: args_info = %d, num = %d\n",
2201 cfun
->args_info
, num
);
2203 debug_rtx (nextarg
);
2206 t
= build (MODIFY_EXPR
, TREE_TYPE (valist
), valist
,
2207 make_tree (ptr_type_node
, nextarg
));
2208 TREE_SIDE_EFFECTS (t
) = 1;
2210 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
2214 /* Expand a block move operation, and return 1 if successful. Return 0
2215 if we should let the compiler generate normal code.
2217 operands[0] is the destination
2218 operands[1] is the source
2219 operands[2] is the length
2220 operands[3] is the alignment */
2222 /* Maximum number of loads to do before doing the stores */
2223 #ifndef MAX_MOVE_REG
2224 #define MAX_MOVE_REG 4
2227 /* Maximum number of total loads to do. */
2228 #ifndef TOTAL_MOVE_REG
2229 #define TOTAL_MOVE_REG 8
2233 frv_expand_block_move (rtx operands
[])
2235 rtx orig_dest
= operands
[0];
2236 rtx orig_src
= operands
[1];
2237 rtx bytes_rtx
= operands
[2];
2238 rtx align_rtx
= operands
[3];
2239 int constp
= (GET_CODE (bytes_rtx
) == CONST_INT
);
2252 rtx stores
[MAX_MOVE_REG
];
2254 enum machine_mode mode
;
2256 /* If this is not a fixed size move, just call memcpy. */
2260 /* This should be a fixed size alignment. */
2261 gcc_assert (GET_CODE (align_rtx
) == CONST_INT
);
2263 align
= INTVAL (align_rtx
);
2265 /* Anything to move? */
2266 bytes
= INTVAL (bytes_rtx
);
2270 /* Don't support real large moves. */
2271 if (bytes
> TOTAL_MOVE_REG
*align
)
2274 /* Move the address into scratch registers. */
2275 dest_reg
= copy_addr_to_reg (XEXP (orig_dest
, 0));
2276 src_reg
= copy_addr_to_reg (XEXP (orig_src
, 0));
2278 num_reg
= offset
= 0;
2279 for ( ; bytes
> 0; (bytes
-= move_bytes
), (offset
+= move_bytes
))
2281 /* Calculate the correct offset for src/dest. */
2285 dest_addr
= dest_reg
;
2289 src_addr
= plus_constant (src_reg
, offset
);
2290 dest_addr
= plus_constant (dest_reg
, offset
);
2293 /* Generate the appropriate load and store, saving the stores
2295 if (bytes
>= 4 && align
>= 4)
2297 else if (bytes
>= 2 && align
>= 2)
2302 move_bytes
= GET_MODE_SIZE (mode
);
2303 tmp_reg
= gen_reg_rtx (mode
);
2304 src_mem
= change_address (orig_src
, mode
, src_addr
);
2305 dest_mem
= change_address (orig_dest
, mode
, dest_addr
);
2306 emit_insn (gen_rtx_SET (VOIDmode
, tmp_reg
, src_mem
));
2307 stores
[num_reg
++] = gen_rtx_SET (VOIDmode
, dest_mem
, tmp_reg
);
2309 if (num_reg
>= MAX_MOVE_REG
)
2311 for (i
= 0; i
< num_reg
; i
++)
2312 emit_insn (stores
[i
]);
2317 for (i
= 0; i
< num_reg
; i
++)
2318 emit_insn (stores
[i
]);
2324 /* Expand a block clear operation, and return 1 if successful. Return 0
2325 if we should let the compiler generate normal code.
2327 operands[0] is the destination
2328 operands[1] is the length
2329 operands[3] is the alignment */
2332 frv_expand_block_clear (rtx operands
[])
2334 rtx orig_dest
= operands
[0];
2335 rtx bytes_rtx
= operands
[1];
2336 rtx align_rtx
= operands
[3];
2337 int constp
= (GET_CODE (bytes_rtx
) == CONST_INT
);
2346 enum machine_mode mode
;
2348 /* If this is not a fixed size move, just call memcpy. */
2352 /* This should be a fixed size alignment. */
2353 gcc_assert (GET_CODE (align_rtx
) == CONST_INT
);
2355 align
= INTVAL (align_rtx
);
2357 /* Anything to move? */
2358 bytes
= INTVAL (bytes_rtx
);
2362 /* Don't support real large clears. */
2363 if (bytes
> TOTAL_MOVE_REG
*align
)
2366 /* Move the address into a scratch register. */
2367 dest_reg
= copy_addr_to_reg (XEXP (orig_dest
, 0));
2369 num_reg
= offset
= 0;
2370 for ( ; bytes
> 0; (bytes
-= clear_bytes
), (offset
+= clear_bytes
))
2372 /* Calculate the correct offset for src/dest. */
2373 dest_addr
= ((offset
== 0)
2375 : plus_constant (dest_reg
, offset
));
2377 /* Generate the appropriate store of gr0. */
2378 if (bytes
>= 4 && align
>= 4)
2380 else if (bytes
>= 2 && align
>= 2)
2385 clear_bytes
= GET_MODE_SIZE (mode
);
2386 dest_mem
= change_address (orig_dest
, mode
, dest_addr
);
2387 emit_insn (gen_rtx_SET (VOIDmode
, dest_mem
, const0_rtx
));
2394 /* The following variable is used to output modifiers of assembler
2395 code of the current output insn. */
2397 static rtx
*frv_insn_operands
;
2399 /* The following function is used to add assembler insn code suffix .p
2400 if it is necessary. */
2403 frv_asm_output_opcode (FILE *f
, const char *ptr
)
2407 if (frv_insn_packing_flag
<= 0)
2410 for (; *ptr
&& *ptr
!= ' ' && *ptr
!= '\t';)
2413 if (c
== '%' && ((*ptr
>= 'a' && *ptr
<= 'z')
2414 || (*ptr
>= 'A' && *ptr
<= 'Z')))
2416 int letter
= *ptr
++;
2419 frv_print_operand (f
, frv_insn_operands
[c
], letter
);
2420 while ((c
= *ptr
) >= '0' && c
<= '9')
2432 /* Set up the packing bit for the current output insn. Note that this
2433 function is not called for asm insns. */
2436 frv_final_prescan_insn (rtx insn
, rtx
*opvec
,
2437 int noperands ATTRIBUTE_UNUSED
)
2441 if (frv_insn_packing_flag
>= 0)
2443 frv_insn_operands
= opvec
;
2444 frv_insn_packing_flag
= PACKING_FLAG_P (insn
);
2446 else if (recog_memoized (insn
) >= 0
2447 && get_attr_acc_group (insn
) == ACC_GROUP_ODD
)
2448 /* Packing optimizations have been disabled, but INSN can only
2449 be issued in M1. Insert an mnop in M0. */
2450 fprintf (asm_out_file
, "\tmnop.p\n");
2456 /* A C expression whose value is RTL representing the address in a stack frame
2457 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
2458 an RTL expression for the address of the stack frame itself.
2460 If you don't define this macro, the default is to return the value of
2461 FRAMEADDR--that is, the stack frame address is also the address of the stack
2462 word that points to the previous frame. */
2464 /* The default is correct, but we need to make sure the frame gets created. */
2466 frv_dynamic_chain_address (rtx frame
)
2468 cfun
->machine
->frame_needed
= 1;
2473 /* A C expression whose value is RTL representing the value of the return
2474 address for the frame COUNT steps up from the current frame, after the
2475 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
2476 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
2479 The value of the expression must always be the correct address when COUNT is
2480 zero, but may be `NULL_RTX' if there is not way to determine the return
2481 address of other frames. */
2484 frv_return_addr_rtx (int count
, rtx frame
)
2488 cfun
->machine
->frame_needed
= 1;
2489 return gen_rtx_MEM (Pmode
, plus_constant (frame
, 8));
2492 /* Given a memory reference MEMREF, interpret the referenced memory as
2493 an array of MODE values, and return a reference to the element
2494 specified by INDEX. Assume that any pre-modification implicit in
2495 MEMREF has already happened.
2497 MEMREF must be a legitimate operand for modes larger than SImode.
2498 GO_IF_LEGITIMATE_ADDRESS forbids register+register addresses, which
2499 this function cannot handle. */
2501 frv_index_memory (rtx memref
, enum machine_mode mode
, int index
)
2503 rtx base
= XEXP (memref
, 0);
2504 if (GET_CODE (base
) == PRE_MODIFY
)
2505 base
= XEXP (base
, 0);
2506 return change_address (memref
, mode
,
2507 plus_constant (base
, index
* GET_MODE_SIZE (mode
)));
2511 /* Print a memory address as an operand to reference that memory location. */
2513 frv_print_operand_address (FILE * stream
, rtx x
)
2515 if (GET_CODE (x
) == MEM
)
2518 switch (GET_CODE (x
))
2521 fputs (reg_names
[ REGNO (x
)], stream
);
2525 fprintf (stream
, "%ld", (long) INTVAL (x
));
2529 assemble_name (stream
, XSTR (x
, 0));
2534 output_addr_const (stream
, x
);
2541 fatal_insn ("bad insn to frv_print_operand_address:", x
);
2546 frv_print_operand_memory_reference_reg (FILE * stream
, rtx x
)
2548 int regno
= true_regnum (x
);
2550 fputs (reg_names
[regno
], stream
);
2552 fatal_insn ("bad register to frv_print_operand_memory_reference_reg:", x
);
2555 /* Print a memory reference suitable for the ld/st instructions. */
2558 frv_print_operand_memory_reference (FILE * stream
, rtx x
, int addr_offset
)
2560 struct frv_unspec unspec
;
2564 switch (GET_CODE (x
))
2571 case PRE_MODIFY
: /* (pre_modify (reg) (plus (reg) (reg))) */
2573 x1
= XEXP (XEXP (x
, 1), 1);
2583 if (GET_CODE (x0
) == CONST_INT
)
2591 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x
);
2600 else if (GET_CODE (x1
) != CONST_INT
)
2601 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x
);
2604 fputs ("@(", stream
);
2606 fputs (reg_names
[GPR_R0
], stream
);
2607 else if (GET_CODE (x0
) == REG
|| GET_CODE (x0
) == SUBREG
)
2608 frv_print_operand_memory_reference_reg (stream
, x0
);
2610 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x
);
2612 fputs (",", stream
);
2614 fputs (reg_names
[GPR_R0
], stream
);
2618 switch (GET_CODE (x1
))
2622 frv_print_operand_memory_reference_reg (stream
, x1
);
2626 fprintf (stream
, "%ld", (long) (INTVAL (x1
) + addr_offset
));
2630 if (!frv_const_unspec_p (x1
, &unspec
))
2631 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x1
);
2632 frv_output_const_unspec (stream
, &unspec
);
2636 fatal_insn ("bad insn to frv_print_operand_memory_reference:", x
);
2640 fputs (")", stream
);
2644 /* Return 2 for likely branches and 0 for non-likely branches */
2646 #define FRV_JUMP_LIKELY 2
2647 #define FRV_JUMP_NOT_LIKELY 0
2650 frv_print_operand_jump_hint (rtx insn
)
2655 HOST_WIDE_INT prob
= -1;
2656 enum { UNKNOWN
, BACKWARD
, FORWARD
} jump_type
= UNKNOWN
;
2658 gcc_assert (GET_CODE (insn
) == JUMP_INSN
);
2660 /* Assume any non-conditional jump is likely. */
2661 if (! any_condjump_p (insn
))
2662 ret
= FRV_JUMP_LIKELY
;
2666 labelref
= condjump_label (insn
);
2669 rtx label
= XEXP (labelref
, 0);
2670 jump_type
= (insn_current_address
> INSN_ADDRESSES (INSN_UID (label
))
2675 note
= find_reg_note (insn
, REG_BR_PROB
, 0);
2677 ret
= ((jump_type
== BACKWARD
) ? FRV_JUMP_LIKELY
: FRV_JUMP_NOT_LIKELY
);
2681 prob
= INTVAL (XEXP (note
, 0));
2682 ret
= ((prob
>= (REG_BR_PROB_BASE
/ 2))
2684 : FRV_JUMP_NOT_LIKELY
);
2696 case UNKNOWN
: direction
= "unknown jump direction"; break;
2697 case BACKWARD
: direction
= "jump backward"; break;
2698 case FORWARD
: direction
= "jump forward"; break;
2702 "%s: uid %ld, %s, probability = %ld, max prob. = %ld, hint = %d\n",
2703 IDENTIFIER_POINTER (DECL_NAME (current_function_decl
)),
2704 (long)INSN_UID (insn
), direction
, (long)prob
,
2705 (long)REG_BR_PROB_BASE
, ret
);
2713 /* Return the comparison operator to use for CODE given that the ICC
2717 comparison_string (enum rtx_code code
, rtx op0
)
2719 bool is_nz_p
= GET_MODE (op0
) == CC_NZmode
;
2722 default: output_operand_lossage ("bad condition code");
2723 case EQ
: return "eq";
2724 case NE
: return "ne";
2725 case LT
: return is_nz_p
? "n" : "lt";
2726 case LE
: return "le";
2727 case GT
: return "gt";
2728 case GE
: return is_nz_p
? "p" : "ge";
2729 case LTU
: return is_nz_p
? "no" : "c";
2730 case LEU
: return is_nz_p
? "eq" : "ls";
2731 case GTU
: return is_nz_p
? "ne" : "hi";
2732 case GEU
: return is_nz_p
? "ra" : "nc";
2736 /* Print an operand to an assembler instruction.
2738 `%' followed by a letter and a digit says to output an operand in an
2739 alternate fashion. Four letters have standard, built-in meanings described
2740 below. The machine description macro `PRINT_OPERAND' can define additional
2741 letters with nonstandard meanings.
2743 `%cDIGIT' can be used to substitute an operand that is a constant value
2744 without the syntax that normally indicates an immediate operand.
2746 `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated
2749 `%aDIGIT' can be used to substitute an operand as if it were a memory
2750 reference, with the actual operand treated as the address. This may be
2751 useful when outputting a "load address" instruction, because often the
2752 assembler syntax for such an instruction requires you to write the operand
2753 as if it were a memory reference.
2755 `%lDIGIT' is used to substitute a `label_ref' into a jump instruction.
2757 `%=' outputs a number which is unique to each instruction in the entire
2758 compilation. This is useful for making local labels to be referred to more
2759 than once in a single template that generates multiple assembler
2762 `%' followed by a punctuation character specifies a substitution that does
2763 not use an operand. Only one case is standard: `%%' outputs a `%' into the
2764 assembler code. Other nonstandard cases can be defined in the
2765 `PRINT_OPERAND' macro. You must also define which punctuation characters
2766 are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. */
2769 frv_print_operand (FILE * file
, rtx x
, int code
)
2771 struct frv_unspec unspec
;
2772 HOST_WIDE_INT value
;
2775 if (code
!= 0 && !isalpha (code
))
2778 else if (GET_CODE (x
) == CONST_INT
)
2781 else if (GET_CODE (x
) == CONST_DOUBLE
)
2783 if (GET_MODE (x
) == SFmode
)
2788 REAL_VALUE_FROM_CONST_DOUBLE (rv
, x
);
2789 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
2793 else if (GET_MODE (x
) == VOIDmode
)
2794 value
= CONST_DOUBLE_LOW (x
);
2797 fatal_insn ("bad insn in frv_print_operand, bad const_double", x
);
2808 fputs (reg_names
[GPR_R0
], file
);
2812 fprintf (file
, "%d", frv_print_operand_jump_hint (current_output_insn
));
2816 /* Output small data area base register (gr16). */
2817 fputs (reg_names
[SDA_BASE_REG
], file
);
2821 /* Output pic register (gr17). */
2822 fputs (reg_names
[PIC_REGNO
], file
);
2826 /* Output the temporary integer CCR register. */
2827 fputs (reg_names
[ICR_TEMP
], file
);
2831 /* Output the temporary integer CC register. */
2832 fputs (reg_names
[ICC_TEMP
], file
);
2835 /* case 'a': print an address. */
2838 /* Print appropriate test for integer branch false operation. */
2839 fputs (comparison_string (reverse_condition (GET_CODE (x
)),
2840 XEXP (x
, 0)), file
);
2844 /* Print appropriate test for integer branch true operation. */
2845 fputs (comparison_string (GET_CODE (x
), XEXP (x
, 0)), file
);
2849 /* Print 1 for a NE and 0 for an EQ to give the final argument
2850 for a conditional instruction. */
2851 if (GET_CODE (x
) == NE
)
2854 else if (GET_CODE (x
) == EQ
)
2858 fatal_insn ("bad insn to frv_print_operand, 'e' modifier:", x
);
2862 /* Print appropriate test for floating point branch false operation. */
2863 switch (GET_CODE (x
))
2866 fatal_insn ("bad insn to frv_print_operand, 'F' modifier:", x
);
2868 case EQ
: fputs ("ne", file
); break;
2869 case NE
: fputs ("eq", file
); break;
2870 case LT
: fputs ("uge", file
); break;
2871 case LE
: fputs ("ug", file
); break;
2872 case GT
: fputs ("ule", file
); break;
2873 case GE
: fputs ("ul", file
); break;
2878 /* Print appropriate test for floating point branch true operation. */
2879 switch (GET_CODE (x
))
2882 fatal_insn ("bad insn to frv_print_operand, 'f' modifier:", x
);
2884 case EQ
: fputs ("eq", file
); break;
2885 case NE
: fputs ("ne", file
); break;
2886 case LT
: fputs ("lt", file
); break;
2887 case LE
: fputs ("le", file
); break;
2888 case GT
: fputs ("gt", file
); break;
2889 case GE
: fputs ("ge", file
); break;
2894 /* Print appropriate GOT function. */
2895 if (GET_CODE (x
) != CONST_INT
)
2896 fatal_insn ("bad insn to frv_print_operand, 'g' modifier:", x
);
2897 fputs (unspec_got_name (INTVAL (x
)), file
);
2901 /* Print 'i' if the operand is a constant, or is a memory reference that
2903 if (GET_CODE (x
) == MEM
)
2904 x
= ((GET_CODE (XEXP (x
, 0)) == PLUS
)
2905 ? XEXP (XEXP (x
, 0), 1)
2907 else if (GET_CODE (x
) == PLUS
)
2910 switch (GET_CODE (x
))
2924 /* For jump instructions, print 'i' if the operand is a constant or
2925 is an expression that adds a constant. */
2926 if (GET_CODE (x
) == CONST_INT
)
2931 if (GET_CODE (x
) == CONST_INT
2932 || (GET_CODE (x
) == PLUS
2933 && (GET_CODE (XEXP (x
, 1)) == CONST_INT
2934 || GET_CODE (XEXP (x
, 0)) == CONST_INT
)))
2940 /* Print the lower register of a double word register pair */
2941 if (GET_CODE (x
) == REG
)
2942 fputs (reg_names
[ REGNO (x
)+1 ], file
);
2944 fatal_insn ("bad insn to frv_print_operand, 'L' modifier:", x
);
2947 /* case 'l': print a LABEL_REF. */
2951 /* Print a memory reference for ld/st/jmp, %N prints a memory reference
2952 for the second word of double memory operations. */
2953 offset
= (code
== 'M') ? 0 : UNITS_PER_WORD
;
2954 switch (GET_CODE (x
))
2957 fatal_insn ("bad insn to frv_print_operand, 'M/N' modifier:", x
);
2960 frv_print_operand_memory_reference (file
, XEXP (x
, 0), offset
);
2968 frv_print_operand_memory_reference (file
, x
, offset
);
2974 /* Print the opcode of a command. */
2975 switch (GET_CODE (x
))
2978 fatal_insn ("bad insn to frv_print_operand, 'O' modifier:", x
);
2980 case PLUS
: fputs ("add", file
); break;
2981 case MINUS
: fputs ("sub", file
); break;
2982 case AND
: fputs ("and", file
); break;
2983 case IOR
: fputs ("or", file
); break;
2984 case XOR
: fputs ("xor", file
); break;
2985 case ASHIFT
: fputs ("sll", file
); break;
2986 case ASHIFTRT
: fputs ("sra", file
); break;
2987 case LSHIFTRT
: fputs ("srl", file
); break;
2991 /* case 'n': negate and print a constant int. */
2994 /* Print PIC label using operand as the number. */
2995 if (GET_CODE (x
) != CONST_INT
)
2996 fatal_insn ("bad insn to frv_print_operand, P modifier:", x
);
2998 fprintf (file
, ".LCF%ld", (long)INTVAL (x
));
3002 /* Print 'u' if the operand is a update load/store. */
3003 if (GET_CODE (x
) == MEM
&& GET_CODE (XEXP (x
, 0)) == PRE_MODIFY
)
3008 /* If value is 0, print gr0, otherwise it must be a register. */
3009 if (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == 0)
3010 fputs (reg_names
[GPR_R0
], file
);
3012 else if (GET_CODE (x
) == REG
)
3013 fputs (reg_names
[REGNO (x
)], file
);
3016 fatal_insn ("bad insn in frv_print_operand, z case", x
);
3020 /* Print constant in hex. */
3021 if (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
3023 fprintf (file
, "%s0x%.4lx", IMMEDIATE_PREFIX
, (long) value
);
3030 if (GET_CODE (x
) == REG
)
3031 fputs (reg_names
[REGNO (x
)], file
);
3033 else if (GET_CODE (x
) == CONST_INT
3034 || GET_CODE (x
) == CONST_DOUBLE
)
3035 fprintf (file
, "%s%ld", IMMEDIATE_PREFIX
, (long) value
);
3037 else if (frv_const_unspec_p (x
, &unspec
))
3038 frv_output_const_unspec (file
, &unspec
);
3040 else if (GET_CODE (x
) == MEM
)
3041 frv_print_operand_address (file
, XEXP (x
, 0));
3043 else if (CONSTANT_ADDRESS_P (x
))
3044 frv_print_operand_address (file
, x
);
3047 fatal_insn ("bad insn in frv_print_operand, 0 case", x
);
3052 fatal_insn ("frv_print_operand: unknown code", x
);
3060 /* A C statement (sans semicolon) for initializing the variable CUM for the
3061 state at the beginning of the argument list. The variable has type
3062 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
3063 of the function which will receive the args, or 0 if the args are to a
3064 compiler support library function. The value of INDIRECT is nonzero when
3065 processing an indirect call, for example a call through a function pointer.
3066 The value of INDIRECT is zero for a call to an explicitly named function, a
3067 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
3068 arguments for the function being compiled.
3070 When processing a call to a compiler support library function, LIBNAME
3071 identifies which one. It is a `symbol_ref' rtx which contains the name of
3072 the function, as a string. LIBNAME is 0 when an ordinary C function call is
3073 being processed. Thus, each time this macro is called, either LIBNAME or
3074 FNTYPE is nonzero, but never both of them at once. */
3077 frv_init_cumulative_args (CUMULATIVE_ARGS
*cum
,
3083 *cum
= FIRST_ARG_REGNUM
;
3085 if (TARGET_DEBUG_ARG
)
3087 fprintf (stderr
, "\ninit_cumulative_args:");
3088 if (!fndecl
&& fntype
)
3089 fputs (" indirect", stderr
);
3092 fputs (" incoming", stderr
);
3096 tree ret_type
= TREE_TYPE (fntype
);
3097 fprintf (stderr
, " return=%s,",
3098 tree_code_name
[ (int)TREE_CODE (ret_type
) ]);
3101 if (libname
&& GET_CODE (libname
) == SYMBOL_REF
)
3102 fprintf (stderr
, " libname=%s", XSTR (libname
, 0));
3104 if (cfun
->returns_struct
)
3105 fprintf (stderr
, " return-struct");
3107 putc ('\n', stderr
);
3112 /* Return true if we should pass an argument on the stack rather than
3116 frv_must_pass_in_stack (enum machine_mode mode
, tree type
)
3118 if (mode
== BLKmode
)
3122 return AGGREGATE_TYPE_P (type
);
3125 /* If defined, a C expression that gives the alignment boundary, in bits, of an
3126 argument with the specified mode and type. If it is not defined,
3127 `PARM_BOUNDARY' is used for all arguments. */
3130 frv_function_arg_boundary (enum machine_mode mode ATTRIBUTE_UNUSED
,
3131 tree type ATTRIBUTE_UNUSED
)
3133 return BITS_PER_WORD
;
3137 frv_function_arg (CUMULATIVE_ARGS
*cum
,
3138 enum machine_mode mode
,
3139 tree type ATTRIBUTE_UNUSED
,
3141 int incoming ATTRIBUTE_UNUSED
)
3143 enum machine_mode xmode
= (mode
== BLKmode
) ? SImode
: mode
;
3148 /* Return a marker for use in the call instruction. */
3149 if (xmode
== VOIDmode
)
3155 else if (arg_num
<= LAST_ARG_REGNUM
)
3157 ret
= gen_rtx_REG (xmode
, arg_num
);
3158 debstr
= reg_names
[arg_num
];
3167 if (TARGET_DEBUG_ARG
)
3169 "function_arg: words = %2d, mode = %4s, named = %d, size = %3d, arg = %s\n",
3170 arg_num
, GET_MODE_NAME (mode
), named
, GET_MODE_SIZE (mode
), debstr
);
3176 /* A C statement (sans semicolon) to update the summarizer variable CUM to
3177 advance past an argument in the argument list. The values MODE, TYPE and
3178 NAMED describe that argument. Once this is done, the variable CUM is
3179 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
3181 This macro need not do anything if the argument in question was passed on
3182 the stack. The compiler knows how to track the amount of stack space used
3183 for arguments without any special help. */
3186 frv_function_arg_advance (CUMULATIVE_ARGS
*cum
,
3187 enum machine_mode mode
,
3188 tree type ATTRIBUTE_UNUSED
,
3191 enum machine_mode xmode
= (mode
== BLKmode
) ? SImode
: mode
;
3192 int bytes
= GET_MODE_SIZE (xmode
);
3193 int words
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
3196 *cum
= arg_num
+ words
;
3198 if (TARGET_DEBUG_ARG
)
3200 "function_adv: words = %2d, mode = %4s, named = %d, size = %3d\n",
3201 arg_num
, GET_MODE_NAME (mode
), named
, words
* UNITS_PER_WORD
);
3205 /* A C expression for the number of words, at the beginning of an argument,
3206 must be put in registers. The value must be zero for arguments that are
3207 passed entirely in registers or that are entirely pushed on the stack.
3209 On some machines, certain arguments must be passed partially in registers
3210 and partially in memory. On these machines, typically the first N words of
3211 arguments are passed in registers, and the rest on the stack. If a
3212 multi-word argument (a `double' or a structure) crosses that boundary, its
3213 first few words must be passed in registers and the rest must be pushed.
3214 This macro tells the compiler when this occurs, and how many of the words
3215 should go in registers.
3217 `FUNCTION_ARG' for these arguments should return the first register to be
3218 used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for
3219 the called function. */
3222 frv_arg_partial_bytes (CUMULATIVE_ARGS
*cum
, enum machine_mode mode
,
3223 tree type ATTRIBUTE_UNUSED
, bool named ATTRIBUTE_UNUSED
)
3225 enum machine_mode xmode
= (mode
== BLKmode
) ? SImode
: mode
;
3226 int bytes
= GET_MODE_SIZE (xmode
);
3227 int words
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
3231 ret
= ((arg_num
<= LAST_ARG_REGNUM
&& arg_num
+ words
> LAST_ARG_REGNUM
+1)
3232 ? LAST_ARG_REGNUM
- arg_num
+ 1
3234 ret
*= UNITS_PER_WORD
;
3236 if (TARGET_DEBUG_ARG
&& ret
)
3237 fprintf (stderr
, "frv_arg_partial_bytes: %d\n", ret
);
3243 /* Return true if a register is ok to use as a base or index register. */
3245 static FRV_INLINE
int
3246 frv_regno_ok_for_base_p (int regno
, int strict_p
)
3252 return (reg_renumber
[regno
] >= 0 && GPR_P (reg_renumber
[regno
]));
3254 if (regno
== ARG_POINTER_REGNUM
)
3257 return (regno
>= FIRST_PSEUDO_REGISTER
);
3261 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
3262 RTX) is a legitimate memory address on the target machine for a memory
3263 operand of mode MODE.
3265 It usually pays to define several simpler macros to serve as subroutines for
3266 this one. Otherwise it may be too complicated to understand.
3268 This macro must exist in two variants: a strict variant and a non-strict
3269 one. The strict variant is used in the reload pass. It must be defined so
3270 that any pseudo-register that has not been allocated a hard register is
3271 considered a memory reference. In contexts where some kind of register is
3272 required, a pseudo-register with no hard register must be rejected.
3274 The non-strict variant is used in other passes. It must be defined to
3275 accept all pseudo-registers in every context where some kind of register is
3278 Compiler source files that want to use the strict variant of this macro
3279 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
3280 conditional to define the strict variant in that case and the non-strict
3283 Subroutines to check for acceptable registers for various purposes (one for
3284 base registers, one for index registers, and so on) are typically among the
3285 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
3286 subroutine macros need have two variants; the higher levels of macros may be
3287 the same whether strict or not.
3289 Normally, constant addresses which are the sum of a `symbol_ref' and an
3290 integer are stored inside a `const' RTX to mark them as constant.
3291 Therefore, there is no need to recognize such sums specifically as
3292 legitimate addresses. Normally you would simply recognize any `const' as
3295 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
3296 are not marked with `const'. It assumes that a naked `plus' indicates
3297 indexing. If so, then you *must* reject such naked constant sums as
3298 illegitimate addresses, so that none of them will be given to
3299 `PRINT_OPERAND_ADDRESS'.
3301 On some machines, whether a symbolic address is legitimate depends on the
3302 section that the address refers to. On these machines, define the macro
3303 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
3304 then check for it here. When you see a `const', you will have to look
3305 inside it to find the `symbol_ref' in order to determine the section.
3307 The best way to modify the name string is by adding text to the beginning,
3308 with suitable punctuation to prevent any ambiguity. Allocate the new name
3309 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
3310 remove and decode the added text and output the name accordingly, and define
3311 `(* targetm.strip_name_encoding)' to access the original name string.
3313 You can check the information stored here into the `symbol_ref' in the
3314 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
3315 `PRINT_OPERAND_ADDRESS'. */
3318 frv_legitimate_address_p (enum machine_mode mode
,
3322 int allow_double_reg_p
)
3326 HOST_WIDE_INT value
;
3329 if (FRV_SYMBOL_REF_TLS_P (x
))
3332 switch (GET_CODE (x
))
3339 if (GET_CODE (x
) != REG
)
3345 ret
= frv_regno_ok_for_base_p (REGNO (x
), strict_p
);
3351 if (GET_CODE (x0
) != REG
3352 || ! frv_regno_ok_for_base_p (REGNO (x0
), strict_p
)
3353 || GET_CODE (x1
) != PLUS
3354 || ! rtx_equal_p (x0
, XEXP (x1
, 0))
3355 || GET_CODE (XEXP (x1
, 1)) != REG
3356 || ! frv_regno_ok_for_base_p (REGNO (XEXP (x1
, 1)), strict_p
))
3363 /* 12 bit immediate */
3368 ret
= IN_RANGE_P (INTVAL (x
), -2048, 2047);
3370 /* If we can't use load/store double operations, make sure we can
3371 address the second word. */
3372 if (ret
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
3373 ret
= IN_RANGE_P (INTVAL (x
) + GET_MODE_SIZE (mode
) - 1,
3382 if (GET_CODE (x0
) == SUBREG
)
3383 x0
= SUBREG_REG (x0
);
3385 if (GET_CODE (x0
) != REG
)
3388 regno0
= REGNO (x0
);
3389 if (!frv_regno_ok_for_base_p (regno0
, strict_p
))
3392 switch (GET_CODE (x1
))
3398 x1
= SUBREG_REG (x1
);
3399 if (GET_CODE (x1
) != REG
)
3405 /* Do not allow reg+reg addressing for modes > 1 word if we
3406 can't depend on having move double instructions. */
3407 if (!allow_double_reg_p
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
3410 ret
= frv_regno_ok_for_base_p (REGNO (x1
), strict_p
);
3414 /* 12 bit immediate */
3419 value
= INTVAL (x1
);
3420 ret
= IN_RANGE_P (value
, -2048, 2047);
3422 /* If we can't use load/store double operations, make sure we can
3423 address the second word. */
3424 if (ret
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
)
3425 ret
= IN_RANGE_P (value
+ GET_MODE_SIZE (mode
) - 1, -2048, 2047);
3430 if (!condexec_p
&& got12_operand (x1
, VOIDmode
))
3438 if (TARGET_DEBUG_ADDR
)
3440 fprintf (stderr
, "\n========== GO_IF_LEGITIMATE_ADDRESS, mode = %s, result = %d, addresses are %sstrict%s\n",
3441 GET_MODE_NAME (mode
), ret
, (strict_p
) ? "" : "not ",
3442 (condexec_p
) ? ", inside conditional code" : "");
3449 /* Given an ADDR, generate code to inline the PLT. */
3451 gen_inlined_tls_plt (rtx addr
)
3454 rtx picreg
= get_hard_reg_initial_val (Pmode
, FDPIC_REG
);
3457 dest
= gen_reg_rtx (DImode
);
3464 lddi.p @(gr15, #gottlsdesc12(ADDR)), gr8
3465 calll #gettlsoff(ADDR)@(gr8, gr0)
3467 emit_insn (gen_tls_lddi (dest
, addr
, picreg
));
3474 sethi.p #gottlsdeschi(ADDR), gr8
3475 setlo #gottlsdesclo(ADDR), gr8
3476 ldd #tlsdesc(ADDR)@(gr15, gr8), gr8
3477 calll #gettlsoff(ADDR)@(gr8, gr0)
3479 rtx reguse
= gen_reg_rtx (Pmode
);
3480 emit_insn (gen_tlsoff_hilo (reguse
, addr
, GEN_INT (R_FRV_GOTTLSDESCHI
)));
3481 emit_insn (gen_tls_tlsdesc_ldd (dest
, picreg
, reguse
, addr
));
3484 retval
= gen_reg_rtx (Pmode
);
3485 emit_insn (gen_tls_indirect_call (retval
, addr
, dest
, picreg
));
3489 /* Emit a TLSMOFF or TLSMOFF12 offset, depending on -mTLS. Returns
3490 the destination address. */
3492 gen_tlsmoff (rtx addr
, rtx reg
)
3494 rtx dest
= gen_reg_rtx (Pmode
);
3498 /* sethi.p #tlsmoffhi(x), grA
3499 setlo #tlsmofflo(x), grA
3501 dest
= gen_reg_rtx (Pmode
);
3502 emit_insn (gen_tlsoff_hilo (dest
, addr
,
3503 GEN_INT (R_FRV_TLSMOFFHI
)));
3504 dest
= gen_rtx_PLUS (Pmode
, dest
, reg
);
3508 /* addi grB, #tlsmoff12(x), grC
3510 ld/st @(grB, #tlsmoff12(x)), grC
3512 dest
= gen_reg_rtx (Pmode
);
3513 emit_insn (gen_symGOTOFF2reg_i (dest
, addr
, reg
,
3514 GEN_INT (R_FRV_TLSMOFF12
)));
3519 /* Generate code for a TLS address. */
3521 frv_legitimize_tls_address (rtx addr
, enum tls_model model
)
3523 rtx dest
, tp
= gen_rtx_REG (Pmode
, 29);
3524 rtx picreg
= get_hard_reg_initial_val (Pmode
, 15);
3528 case TLS_MODEL_INITIAL_EXEC
:
3532 ldi @(gr15, #gottlsoff12(x)), gr5
3534 dest
= gen_reg_rtx (Pmode
);
3535 emit_insn (gen_tls_load_gottlsoff12 (dest
, addr
, picreg
));
3536 dest
= gen_rtx_PLUS (Pmode
, tp
, dest
);
3540 /* -fPIC or anything else.
3542 sethi.p #gottlsoffhi(x), gr14
3543 setlo #gottlsofflo(x), gr14
3544 ld #tlsoff(x)@(gr15, gr14), gr9
3546 rtx tmp
= gen_reg_rtx (Pmode
);
3547 dest
= gen_reg_rtx (Pmode
);
3548 emit_insn (gen_tlsoff_hilo (tmp
, addr
,
3549 GEN_INT (R_FRV_GOTTLSOFF_HI
)));
3551 emit_insn (gen_tls_tlsoff_ld (dest
, picreg
, tmp
, addr
));
3552 dest
= gen_rtx_PLUS (Pmode
, tp
, dest
);
3555 case TLS_MODEL_LOCAL_DYNAMIC
:
3559 if (TARGET_INLINE_PLT
)
3560 retval
= gen_inlined_tls_plt (GEN_INT (0));
3563 /* call #gettlsoff(0) */
3564 retval
= gen_reg_rtx (Pmode
);
3565 emit_insn (gen_call_gettlsoff (retval
, GEN_INT (0), picreg
));
3568 reg
= gen_reg_rtx (Pmode
);
3569 emit_insn (gen_rtx_SET (VOIDmode
, reg
,
3570 gen_rtx_PLUS (Pmode
,
3573 dest
= gen_tlsmoff (addr
, reg
);
3576 dest = gen_reg_rtx (Pmode);
3577 emit_insn (gen_tlsoff_hilo (dest, addr,
3578 GEN_INT (R_FRV_TLSMOFFHI)));
3579 dest = gen_rtx_PLUS (Pmode, dest, reg);
3583 case TLS_MODEL_LOCAL_EXEC
:
3584 dest
= gen_tlsmoff (addr
, gen_rtx_REG (Pmode
, 29));
3586 case TLS_MODEL_GLOBAL_DYNAMIC
:
3590 if (TARGET_INLINE_PLT
)
3591 retval
= gen_inlined_tls_plt (addr
);
3594 /* call #gettlsoff(x) */
3595 retval
= gen_reg_rtx (Pmode
);
3596 emit_insn (gen_call_gettlsoff (retval
, addr
, picreg
));
3598 dest
= gen_rtx_PLUS (Pmode
, retval
, tp
);
3609 frv_legitimize_address (rtx x
,
3610 rtx oldx ATTRIBUTE_UNUSED
,
3611 enum machine_mode mode ATTRIBUTE_UNUSED
)
3613 if (GET_CODE (x
) == SYMBOL_REF
)
3615 enum tls_model model
= SYMBOL_REF_TLS_MODEL (x
);
3617 return frv_legitimize_tls_address (x
, model
);
3623 /* Test whether a local function descriptor is canonical, i.e.,
3624 whether we can use FUNCDESC_GOTOFF to compute the address of the
3628 frv_local_funcdesc_p (rtx fnx
)
3631 enum symbol_visibility vis
;
3634 if (! SYMBOL_REF_LOCAL_P (fnx
))
3637 fn
= SYMBOL_REF_DECL (fnx
);
3642 vis
= DECL_VISIBILITY (fn
);
3644 if (vis
== VISIBILITY_PROTECTED
)
3645 /* Private function descriptors for protected functions are not
3646 canonical. Temporarily change the visibility to global. */
3647 vis
= VISIBILITY_DEFAULT
;
3648 else if (flag_shlib
)
3649 /* If we're already compiling for a shared library (that, unlike
3650 executables, can't assume that the existence of a definition
3651 implies local binding), we can skip the re-testing. */
3654 ret
= default_binds_local_p_1 (fn
, flag_pic
);
3656 DECL_VISIBILITY (fn
) = vis
;
3661 /* Load the _gp symbol into DEST. SRC is supposed to be the FDPIC
3665 frv_gen_GPsym2reg (rtx dest
, rtx src
)
3667 tree gp
= get_identifier ("_gp");
3668 rtx gp_sym
= gen_rtx_SYMBOL_REF (Pmode
, IDENTIFIER_POINTER (gp
));
3670 return gen_symGOT2reg (dest
, gp_sym
, src
, GEN_INT (R_FRV_GOT12
));
3674 unspec_got_name (int i
)
3678 case R_FRV_GOT12
: return "got12";
3679 case R_FRV_GOTHI
: return "gothi";
3680 case R_FRV_GOTLO
: return "gotlo";
3681 case R_FRV_FUNCDESC
: return "funcdesc";
3682 case R_FRV_FUNCDESC_GOT12
: return "gotfuncdesc12";
3683 case R_FRV_FUNCDESC_GOTHI
: return "gotfuncdeschi";
3684 case R_FRV_FUNCDESC_GOTLO
: return "gotfuncdesclo";
3685 case R_FRV_FUNCDESC_VALUE
: return "funcdescvalue";
3686 case R_FRV_FUNCDESC_GOTOFF12
: return "gotofffuncdesc12";
3687 case R_FRV_FUNCDESC_GOTOFFHI
: return "gotofffuncdeschi";
3688 case R_FRV_FUNCDESC_GOTOFFLO
: return "gotofffuncdesclo";
3689 case R_FRV_GOTOFF12
: return "gotoff12";
3690 case R_FRV_GOTOFFHI
: return "gotoffhi";
3691 case R_FRV_GOTOFFLO
: return "gotofflo";
3692 case R_FRV_GPREL12
: return "gprel12";
3693 case R_FRV_GPRELHI
: return "gprelhi";
3694 case R_FRV_GPRELLO
: return "gprello";
3695 case R_FRV_GOTTLSOFF_HI
: return "gottlsoffhi";
3696 case R_FRV_GOTTLSOFF_LO
: return "gottlsofflo";
3697 case R_FRV_TLSMOFFHI
: return "tlsmoffhi";
3698 case R_FRV_TLSMOFFLO
: return "tlsmofflo";
3699 case R_FRV_TLSMOFF12
: return "tlsmoff12";
3700 case R_FRV_TLSDESCHI
: return "tlsdeschi";
3701 case R_FRV_TLSDESCLO
: return "tlsdesclo";
3702 case R_FRV_GOTTLSDESCHI
: return "gottlsdeschi";
3703 case R_FRV_GOTTLSDESCLO
: return "gottlsdesclo";
3704 default: gcc_unreachable ();
3708 /* Write the assembler syntax for UNSPEC to STREAM. Note that any offset
3709 is added inside the relocation operator. */
3712 frv_output_const_unspec (FILE *stream
, const struct frv_unspec
*unspec
)
3714 fprintf (stream
, "#%s(", unspec_got_name (unspec
->reloc
));
3715 output_addr_const (stream
, plus_constant (unspec
->symbol
, unspec
->offset
));
3716 fputs (")", stream
);
3719 /* Implement FIND_BASE_TERM. See whether ORIG_X represents #gprel12(foo)
3720 or #gotoff12(foo) for some small data symbol foo. If so, return foo,
3721 otherwise return ORIG_X. */
3724 frv_find_base_term (rtx x
)
3726 struct frv_unspec unspec
;
3728 if (frv_const_unspec_p (x
, &unspec
)
3729 && frv_small_data_reloc_p (unspec
.symbol
, unspec
.reloc
))
3730 return plus_constant (unspec
.symbol
, unspec
.offset
);
3735 /* Return 1 if operand is a valid FRV address. CONDEXEC_P is true if
3736 the operand is used by a predicated instruction. */
3739 frv_legitimate_memory_operand (rtx op
, enum machine_mode mode
, int condexec_p
)
3741 return ((GET_MODE (op
) == mode
|| mode
== VOIDmode
)
3742 && GET_CODE (op
) == MEM
3743 && frv_legitimate_address_p (mode
, XEXP (op
, 0),
3744 reload_completed
, condexec_p
, FALSE
));
3748 frv_expand_fdpic_call (rtx
*operands
, bool ret_value
, bool sibcall
)
3750 rtx lr
= gen_rtx_REG (Pmode
, LR_REGNO
);
3751 rtx picreg
= get_hard_reg_initial_val (SImode
, FDPIC_REG
);
3757 rvrtx
= operands
[0];
3761 addr
= XEXP (operands
[0], 0);
3763 /* Inline PLTs if we're optimizing for speed. We'd like to inline
3764 any calls that would involve a PLT, but can't tell, since we
3765 don't know whether an extern function is going to be provided by
3766 a separate translation unit or imported from a separate module.
3767 When compiling for shared libraries, if the function has default
3768 visibility, we assume it's overridable, so we inline the PLT, but
3769 for executables, we don't really have a way to make a good
3770 decision: a function is as likely to be imported from a shared
3771 library as it is to be defined in the executable itself. We
3772 assume executables will get global functions defined locally,
3773 whereas shared libraries will have them potentially overridden,
3774 so we only inline PLTs when compiling for shared libraries.
3776 In order to mark a function as local to a shared library, any
3777 non-default visibility attribute suffices. Unfortunately,
3778 there's no simple way to tag a function declaration as ``in a
3779 different module'', which we could then use to trigger PLT
3780 inlining on executables. There's -minline-plt, but it affects
3781 all external functions, so one would have to also mark function
3782 declarations available in the same module with non-default
3783 visibility, which is advantageous in itself. */
3784 if (GET_CODE (addr
) == SYMBOL_REF
3785 && ((!SYMBOL_REF_LOCAL_P (addr
) && TARGET_INLINE_PLT
)
3789 dest
= gen_reg_rtx (SImode
);
3791 x
= gen_symGOTOFF2reg_hilo (dest
, addr
, OUR_FDPIC_REG
,
3792 GEN_INT (R_FRV_FUNCDESC_GOTOFF12
));
3794 x
= gen_symGOTOFF2reg (dest
, addr
, OUR_FDPIC_REG
,
3795 GEN_INT (R_FRV_FUNCDESC_GOTOFF12
));
3797 cfun
->uses_pic_offset_table
= TRUE
;
3800 else if (GET_CODE (addr
) == SYMBOL_REF
)
3802 /* These are always either local, or handled through a local
3805 c
= gen_call_value_fdpicsi (rvrtx
, addr
, operands
[1],
3806 operands
[2], picreg
, lr
);
3808 c
= gen_call_fdpicsi (addr
, operands
[1], operands
[2], picreg
, lr
);
3812 else if (! ldd_address_operand (addr
, Pmode
))
3813 addr
= force_reg (Pmode
, addr
);
3815 picreg
= gen_reg_rtx (DImode
);
3816 emit_insn (gen_movdi_ldd (picreg
, addr
));
3818 if (sibcall
&& ret_value
)
3819 c
= gen_sibcall_value_fdpicdi (rvrtx
, picreg
, const0_rtx
);
3821 c
= gen_sibcall_fdpicdi (picreg
, const0_rtx
);
3823 c
= gen_call_value_fdpicdi (rvrtx
, picreg
, const0_rtx
, lr
);
3825 c
= gen_call_fdpicdi (picreg
, const0_rtx
, lr
);
3829 /* Look for a SYMBOL_REF of a function in an rtx. We always want to
3830 process these separately from any offsets, such that we add any
3831 offsets to the function descriptor (the actual pointer), not to the
3832 function address. */
3835 frv_function_symbol_referenced_p (rtx x
)
3841 if (GET_CODE (x
) == SYMBOL_REF
)
3842 return SYMBOL_REF_FUNCTION_P (x
);
3844 length
= GET_RTX_LENGTH (GET_CODE (x
));
3845 format
= GET_RTX_FORMAT (GET_CODE (x
));
3847 for (j
= 0; j
< length
; ++j
)
3852 if (frv_function_symbol_referenced_p (XEXP (x
, j
)))
3858 if (XVEC (x
, j
) != 0)
3861 for (k
= 0; k
< XVECLEN (x
, j
); ++k
)
3862 if (frv_function_symbol_referenced_p (XVECEXP (x
, j
, k
)))
3868 /* Nothing to do. */
3876 /* Return true if the memory operand is one that can be conditionally
3880 condexec_memory_operand (rtx op
, enum machine_mode mode
)
3882 enum machine_mode op_mode
= GET_MODE (op
);
3885 if (mode
!= VOIDmode
&& op_mode
!= mode
)
3900 if (GET_CODE (op
) != MEM
)
3903 addr
= XEXP (op
, 0);
3904 return frv_legitimate_address_p (mode
, addr
, reload_completed
, TRUE
, FALSE
);
3907 /* Return true if the bare return instruction can be used outside of the
3908 epilog code. For frv, we only do it if there was no stack allocation. */
3911 direct_return_p (void)
3915 if (!reload_completed
)
3918 info
= frv_stack_info ();
3919 return (info
->total_size
== 0);
3924 frv_emit_move (enum machine_mode mode
, rtx dest
, rtx src
)
3926 if (GET_CODE (src
) == SYMBOL_REF
)
3928 enum tls_model model
= SYMBOL_REF_TLS_MODEL (src
);
3930 src
= frv_legitimize_tls_address (src
, model
);
3936 if (frv_emit_movsi (dest
, src
))
3945 if (!reload_in_progress
3946 && !reload_completed
3947 && !register_operand (dest
, mode
)
3948 && !reg_or_0_operand (src
, mode
))
3949 src
= copy_to_mode_reg (mode
, src
);
3956 emit_insn (gen_rtx_SET (VOIDmode
, dest
, src
));
3959 /* Emit code to handle a MOVSI, adding in the small data register or pic
3960 register if needed to load up addresses. Return TRUE if the appropriate
3961 instructions are emitted. */
3964 frv_emit_movsi (rtx dest
, rtx src
)
3966 int base_regno
= -1;
3969 struct frv_unspec old_unspec
;
3971 if (!reload_in_progress
3972 && !reload_completed
3973 && !register_operand (dest
, SImode
)
3974 && (!reg_or_0_operand (src
, SImode
)
3975 /* Virtual registers will almost always be replaced by an
3976 add instruction, so expose this to CSE by copying to
3977 an intermediate register. */
3978 || (GET_CODE (src
) == REG
3979 && IN_RANGE_P (REGNO (src
),
3980 FIRST_VIRTUAL_REGISTER
,
3981 LAST_VIRTUAL_REGISTER
))))
3983 emit_insn (gen_rtx_SET (VOIDmode
, dest
, copy_to_mode_reg (SImode
, src
)));
3987 /* Explicitly add in the PIC or small data register if needed. */
3988 switch (GET_CODE (src
))
3997 /* Using GPREL12, we use a single GOT entry for all symbols
3998 in read-only sections, but trade sequences such as:
4000 sethi #gothi(label), gr#
4001 setlo #gotlo(label), gr#
4006 ld @(gr15,#got12(_gp)), gr#
4007 sethi #gprelhi(label), gr##
4008 setlo #gprello(label), gr##
4011 We may often be able to share gr# for multiple
4012 computations of GPREL addresses, and we may often fold
4013 the final add into the pair of registers of a load or
4014 store instruction, so it's often profitable. Even when
4015 optimizing for size, we're trading a GOT entry for an
4016 additional instruction, which trades GOT space
4017 (read-write) for code size (read-only, shareable), as
4018 long as the symbol is not used in more than two different
4021 With -fpie/-fpic, we'd be trading a single load for a
4022 sequence of 4 instructions, because the offset of the
4023 label can't be assumed to be addressable with 12 bits, so
4024 we don't do this. */
4025 if (TARGET_GPREL_RO
)
4026 unspec
= R_FRV_GPREL12
;
4028 unspec
= R_FRV_GOT12
;
4031 base_regno
= PIC_REGNO
;
4036 if (frv_const_unspec_p (src
, &old_unspec
))
4039 if (TARGET_FDPIC
&& frv_function_symbol_referenced_p (XEXP (src
, 0)))
4042 src
= force_reg (GET_MODE (XEXP (src
, 0)), XEXP (src
, 0));
4043 emit_move_insn (dest
, src
);
4048 sym
= XEXP (sym
, 0);
4049 if (GET_CODE (sym
) == PLUS
4050 && GET_CODE (XEXP (sym
, 0)) == SYMBOL_REF
4051 && GET_CODE (XEXP (sym
, 1)) == CONST_INT
)
4052 sym
= XEXP (sym
, 0);
4053 if (GET_CODE (sym
) == SYMBOL_REF
)
4055 else if (GET_CODE (sym
) == LABEL_REF
)
4058 goto handle_whatever
;
4066 enum tls_model model
= SYMBOL_REF_TLS_MODEL (sym
);
4070 src
= frv_legitimize_tls_address (src
, model
);
4071 emit_move_insn (dest
, src
);
4075 if (SYMBOL_REF_FUNCTION_P (sym
))
4077 if (frv_local_funcdesc_p (sym
))
4078 unspec
= R_FRV_FUNCDESC_GOTOFF12
;
4080 unspec
= R_FRV_FUNCDESC_GOT12
;
4084 if (CONSTANT_POOL_ADDRESS_P (sym
))
4085 switch (GET_CODE (get_pool_constant (sym
)))
4092 unspec
= R_FRV_GOTOFF12
;
4097 if (TARGET_GPREL_RO
)
4098 unspec
= R_FRV_GPREL12
;
4100 unspec
= R_FRV_GOT12
;
4103 else if (SYMBOL_REF_LOCAL_P (sym
)
4104 && !SYMBOL_REF_EXTERNAL_P (sym
)
4105 && SYMBOL_REF_DECL (sym
)
4106 && (!DECL_P (SYMBOL_REF_DECL (sym
))
4107 || !DECL_COMMON (SYMBOL_REF_DECL (sym
))))
4109 tree decl
= SYMBOL_REF_DECL (sym
);
4110 tree init
= TREE_CODE (decl
) == VAR_DECL
4111 ? DECL_INITIAL (decl
)
4112 : TREE_CODE (decl
) == CONSTRUCTOR
4115 bool named_section
, readonly
;
4117 if (init
&& init
!= error_mark_node
)
4118 reloc
= compute_reloc_for_constant (init
);
4120 named_section
= TREE_CODE (decl
) == VAR_DECL
4121 && lookup_attribute ("section", DECL_ATTRIBUTES (decl
));
4122 readonly
= decl_readonly_section (decl
, reloc
);
4125 unspec
= R_FRV_GOT12
;
4127 unspec
= R_FRV_GOTOFF12
;
4128 else if (readonly
&& TARGET_GPREL_RO
)
4129 unspec
= R_FRV_GPREL12
;
4131 unspec
= R_FRV_GOT12
;
4134 unspec
= R_FRV_GOT12
;
4138 else if (SYMBOL_REF_SMALL_P (sym
))
4139 base_regno
= SDA_BASE_REG
;
4142 base_regno
= PIC_REGNO
;
4147 if (base_regno
>= 0)
4149 if (GET_CODE (sym
) == SYMBOL_REF
&& SYMBOL_REF_SMALL_P (sym
))
4150 emit_insn (gen_symGOTOFF2reg (dest
, src
,
4151 gen_rtx_REG (Pmode
, base_regno
),
4152 GEN_INT (R_FRV_GPREL12
)));
4154 emit_insn (gen_symGOTOFF2reg_hilo (dest
, src
,
4155 gen_rtx_REG (Pmode
, base_regno
),
4156 GEN_INT (R_FRV_GPREL12
)));
4157 if (base_regno
== PIC_REGNO
)
4158 cfun
->uses_pic_offset_table
= TRUE
;
4166 /* Since OUR_FDPIC_REG is a pseudo register, we can't safely introduce
4167 new uses of it once reload has begun. */
4168 gcc_assert (!reload_in_progress
&& !reload_completed
);
4172 case R_FRV_GOTOFF12
:
4173 if (!frv_small_data_reloc_p (sym
, unspec
))
4174 x
= gen_symGOTOFF2reg_hilo (dest
, src
, OUR_FDPIC_REG
,
4177 x
= gen_symGOTOFF2reg (dest
, src
, OUR_FDPIC_REG
, GEN_INT (unspec
));
4180 if (!frv_small_data_reloc_p (sym
, unspec
))
4181 x
= gen_symGPREL2reg_hilo (dest
, src
, OUR_FDPIC_REG
,
4184 x
= gen_symGPREL2reg (dest
, src
, OUR_FDPIC_REG
, GEN_INT (unspec
));
4186 case R_FRV_FUNCDESC_GOTOFF12
:
4188 x
= gen_symGOTOFF2reg_hilo (dest
, src
, OUR_FDPIC_REG
,
4191 x
= gen_symGOTOFF2reg (dest
, src
, OUR_FDPIC_REG
, GEN_INT (unspec
));
4195 x
= gen_symGOT2reg_hilo (dest
, src
, OUR_FDPIC_REG
,
4198 x
= gen_symGOT2reg (dest
, src
, OUR_FDPIC_REG
, GEN_INT (unspec
));
4202 cfun
->uses_pic_offset_table
= TRUE
;
4211 /* Return a string to output a single word move. */
4214 output_move_single (rtx operands
[], rtx insn
)
4216 rtx dest
= operands
[0];
4217 rtx src
= operands
[1];
4219 if (GET_CODE (dest
) == REG
)
4221 int dest_regno
= REGNO (dest
);
4222 enum machine_mode mode
= GET_MODE (dest
);
4224 if (GPR_P (dest_regno
))
4226 if (GET_CODE (src
) == REG
)
4228 /* gpr <- some sort of register */
4229 int src_regno
= REGNO (src
);
4231 if (GPR_P (src_regno
))
4232 return "mov %1, %0";
4234 else if (FPR_P (src_regno
))
4235 return "movfg %1, %0";
4237 else if (SPR_P (src_regno
))
4238 return "movsg %1, %0";
4241 else if (GET_CODE (src
) == MEM
)
4250 return "ldsb%I1%U1 %M1,%0";
4253 return "ldsh%I1%U1 %M1,%0";
4257 return "ld%I1%U1 %M1, %0";
4261 else if (GET_CODE (src
) == CONST_INT
4262 || GET_CODE (src
) == CONST_DOUBLE
)
4264 /* gpr <- integer/floating constant */
4265 HOST_WIDE_INT value
;
4267 if (GET_CODE (src
) == CONST_INT
)
4268 value
= INTVAL (src
);
4270 else if (mode
== SFmode
)
4275 REAL_VALUE_FROM_CONST_DOUBLE (rv
, src
);
4276 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
4281 value
= CONST_DOUBLE_LOW (src
);
4283 if (IN_RANGE_P (value
, -32768, 32767))
4284 return "setlos %1, %0";
4289 else if (GET_CODE (src
) == SYMBOL_REF
4290 || GET_CODE (src
) == LABEL_REF
4291 || GET_CODE (src
) == CONST
)
4297 else if (FPR_P (dest_regno
))
4299 if (GET_CODE (src
) == REG
)
4301 /* fpr <- some sort of register */
4302 int src_regno
= REGNO (src
);
4304 if (GPR_P (src_regno
))
4305 return "movgf %1, %0";
4307 else if (FPR_P (src_regno
))
4309 if (TARGET_HARD_FLOAT
)
4310 return "fmovs %1, %0";
4312 return "mor %1, %1, %0";
4316 else if (GET_CODE (src
) == MEM
)
4325 return "ldbf%I1%U1 %M1,%0";
4328 return "ldhf%I1%U1 %M1,%0";
4332 return "ldf%I1%U1 %M1, %0";
4336 else if (ZERO_P (src
))
4337 return "movgf %., %0";
4340 else if (SPR_P (dest_regno
))
4342 if (GET_CODE (src
) == REG
)
4344 /* spr <- some sort of register */
4345 int src_regno
= REGNO (src
);
4347 if (GPR_P (src_regno
))
4348 return "movgs %1, %0";
4350 else if (ZERO_P (src
))
4351 return "movgs %., %0";
4355 else if (GET_CODE (dest
) == MEM
)
4357 if (GET_CODE (src
) == REG
)
4359 int src_regno
= REGNO (src
);
4360 enum machine_mode mode
= GET_MODE (dest
);
4362 if (GPR_P (src_regno
))
4370 return "stb%I0%U0 %1, %M0";
4373 return "sth%I0%U0 %1, %M0";
4377 return "st%I0%U0 %1, %M0";
4381 else if (FPR_P (src_regno
))
4389 return "stbf%I0%U0 %1, %M0";
4392 return "sthf%I0%U0 %1, %M0";
4396 return "stf%I0%U0 %1, %M0";
4401 else if (ZERO_P (src
))
4403 switch (GET_MODE (dest
))
4409 return "stb%I0%U0 %., %M0";
4412 return "sth%I0%U0 %., %M0";
4416 return "st%I0%U0 %., %M0";
4421 fatal_insn ("bad output_move_single operand", insn
);
4426 /* Return a string to output a double word move. */
4429 output_move_double (rtx operands
[], rtx insn
)
4431 rtx dest
= operands
[0];
4432 rtx src
= operands
[1];
4433 enum machine_mode mode
= GET_MODE (dest
);
4435 if (GET_CODE (dest
) == REG
)
4437 int dest_regno
= REGNO (dest
);
4439 if (GPR_P (dest_regno
))
4441 if (GET_CODE (src
) == REG
)
4443 /* gpr <- some sort of register */
4444 int src_regno
= REGNO (src
);
4446 if (GPR_P (src_regno
))
4449 else if (FPR_P (src_regno
))
4451 if (((dest_regno
- GPR_FIRST
) & 1) == 0
4452 && ((src_regno
- FPR_FIRST
) & 1) == 0)
4453 return "movfgd %1, %0";
4459 else if (GET_CODE (src
) == MEM
)
4462 if (dbl_memory_one_insn_operand (src
, mode
))
4463 return "ldd%I1%U1 %M1, %0";
4468 else if (GET_CODE (src
) == CONST_INT
4469 || GET_CODE (src
) == CONST_DOUBLE
)
4473 else if (FPR_P (dest_regno
))
4475 if (GET_CODE (src
) == REG
)
4477 /* fpr <- some sort of register */
4478 int src_regno
= REGNO (src
);
4480 if (GPR_P (src_regno
))
4482 if (((dest_regno
- FPR_FIRST
) & 1) == 0
4483 && ((src_regno
- GPR_FIRST
) & 1) == 0)
4484 return "movgfd %1, %0";
4489 else if (FPR_P (src_regno
))
4492 && ((dest_regno
- FPR_FIRST
) & 1) == 0
4493 && ((src_regno
- FPR_FIRST
) & 1) == 0)
4494 return "fmovd %1, %0";
4500 else if (GET_CODE (src
) == MEM
)
4503 if (dbl_memory_one_insn_operand (src
, mode
))
4504 return "lddf%I1%U1 %M1, %0";
4509 else if (ZERO_P (src
))
4514 else if (GET_CODE (dest
) == MEM
)
4516 if (GET_CODE (src
) == REG
)
4518 int src_regno
= REGNO (src
);
4520 if (GPR_P (src_regno
))
4522 if (((src_regno
- GPR_FIRST
) & 1) == 0
4523 && dbl_memory_one_insn_operand (dest
, mode
))
4524 return "std%I0%U0 %1, %M0";
4529 if (FPR_P (src_regno
))
4531 if (((src_regno
- FPR_FIRST
) & 1) == 0
4532 && dbl_memory_one_insn_operand (dest
, mode
))
4533 return "stdf%I0%U0 %1, %M0";
4539 else if (ZERO_P (src
))
4541 if (dbl_memory_one_insn_operand (dest
, mode
))
4542 return "std%I0%U0 %., %M0";
4548 fatal_insn ("bad output_move_double operand", insn
);
4553 /* Return a string to output a single word conditional move.
4554 Operand0 -- EQ/NE of ccr register and 0
4555 Operand1 -- CCR register
4556 Operand2 -- destination
4557 Operand3 -- source */
4560 output_condmove_single (rtx operands
[], rtx insn
)
4562 rtx dest
= operands
[2];
4563 rtx src
= operands
[3];
4565 if (GET_CODE (dest
) == REG
)
4567 int dest_regno
= REGNO (dest
);
4568 enum machine_mode mode
= GET_MODE (dest
);
4570 if (GPR_P (dest_regno
))
4572 if (GET_CODE (src
) == REG
)
4574 /* gpr <- some sort of register */
4575 int src_regno
= REGNO (src
);
4577 if (GPR_P (src_regno
))
4578 return "cmov %z3, %2, %1, %e0";
4580 else if (FPR_P (src_regno
))
4581 return "cmovfg %3, %2, %1, %e0";
4584 else if (GET_CODE (src
) == MEM
)
4593 return "cldsb%I3%U3 %M3, %2, %1, %e0";
4596 return "cldsh%I3%U3 %M3, %2, %1, %e0";
4600 return "cld%I3%U3 %M3, %2, %1, %e0";
4604 else if (ZERO_P (src
))
4605 return "cmov %., %2, %1, %e0";
4608 else if (FPR_P (dest_regno
))
4610 if (GET_CODE (src
) == REG
)
4612 /* fpr <- some sort of register */
4613 int src_regno
= REGNO (src
);
4615 if (GPR_P (src_regno
))
4616 return "cmovgf %3, %2, %1, %e0";
4618 else if (FPR_P (src_regno
))
4620 if (TARGET_HARD_FLOAT
)
4621 return "cfmovs %3,%2,%1,%e0";
4623 return "cmor %3, %3, %2, %1, %e0";
4627 else if (GET_CODE (src
) == MEM
)
4630 if (mode
== SImode
|| mode
== SFmode
)
4631 return "cldf%I3%U3 %M3, %2, %1, %e0";
4634 else if (ZERO_P (src
))
4635 return "cmovgf %., %2, %1, %e0";
4639 else if (GET_CODE (dest
) == MEM
)
4641 if (GET_CODE (src
) == REG
)
4643 int src_regno
= REGNO (src
);
4644 enum machine_mode mode
= GET_MODE (dest
);
4646 if (GPR_P (src_regno
))
4654 return "cstb%I2%U2 %3, %M2, %1, %e0";
4657 return "csth%I2%U2 %3, %M2, %1, %e0";
4661 return "cst%I2%U2 %3, %M2, %1, %e0";
4665 else if (FPR_P (src_regno
) && (mode
== SImode
|| mode
== SFmode
))
4666 return "cstf%I2%U2 %3, %M2, %1, %e0";
4669 else if (ZERO_P (src
))
4671 enum machine_mode mode
= GET_MODE (dest
);
4678 return "cstb%I2%U2 %., %M2, %1, %e0";
4681 return "csth%I2%U2 %., %M2, %1, %e0";
4685 return "cst%I2%U2 %., %M2, %1, %e0";
4690 fatal_insn ("bad output_condmove_single operand", insn
);
4695 /* Emit the appropriate code to do a comparison, returning the register the
4696 comparison was done it. */
4699 frv_emit_comparison (enum rtx_code test
, rtx op0
, rtx op1
)
4701 enum machine_mode cc_mode
;
4704 /* Floating point doesn't have comparison against a constant. */
4705 if (GET_MODE (op0
) == CC_FPmode
&& GET_CODE (op1
) != REG
)
4706 op1
= force_reg (GET_MODE (op0
), op1
);
4708 /* Possibly disable using anything but a fixed register in order to work
4709 around cse moving comparisons past function calls. */
4710 cc_mode
= SELECT_CC_MODE (test
, op0
, op1
);
4711 cc_reg
= ((TARGET_ALLOC_CC
)
4712 ? gen_reg_rtx (cc_mode
)
4713 : gen_rtx_REG (cc_mode
,
4714 (cc_mode
== CC_FPmode
) ? FCC_FIRST
: ICC_FIRST
));
4716 emit_insn (gen_rtx_SET (VOIDmode
, cc_reg
,
4717 gen_rtx_COMPARE (cc_mode
, op0
, op1
)));
4723 /* Emit code for a conditional branch. The comparison operands were previously
4724 stored in frv_compare_op0 and frv_compare_op1.
4726 XXX: I originally wanted to add a clobber of a CCR register to use in
4727 conditional execution, but that confuses the rest of the compiler. */
4730 frv_emit_cond_branch (enum rtx_code test
, rtx label
)
4735 rtx cc_reg
= frv_emit_comparison (test
, frv_compare_op0
, frv_compare_op1
);
4736 enum machine_mode cc_mode
= GET_MODE (cc_reg
);
4738 /* Branches generate:
4740 (if_then_else (<test>, <cc_reg>, (const_int 0))
4741 (label_ref <branch_label>)
4743 label_ref
= gen_rtx_LABEL_REF (VOIDmode
, label
);
4744 test_rtx
= gen_rtx_fmt_ee (test
, cc_mode
, cc_reg
, const0_rtx
);
4745 if_else
= gen_rtx_IF_THEN_ELSE (cc_mode
, test_rtx
, label_ref
, pc_rtx
);
4746 emit_jump_insn (gen_rtx_SET (VOIDmode
, pc_rtx
, if_else
));
4751 /* Emit code to set a gpr to 1/0 based on a comparison. The comparison
4752 operands were previously stored in frv_compare_op0 and frv_compare_op1. */
4755 frv_emit_scc (enum rtx_code test
, rtx target
)
4761 rtx cc_reg
= frv_emit_comparison (test
, frv_compare_op0
, frv_compare_op1
);
4763 /* SCC instructions generate:
4764 (parallel [(set <target> (<test>, <cc_reg>, (const_int 0))
4765 (clobber (<ccr_reg>))]) */
4766 test_rtx
= gen_rtx_fmt_ee (test
, SImode
, cc_reg
, const0_rtx
);
4767 set
= gen_rtx_SET (VOIDmode
, target
, test_rtx
);
4769 cr_reg
= ((TARGET_ALLOC_CC
)
4770 ? gen_reg_rtx (CC_CCRmode
)
4771 : gen_rtx_REG (CC_CCRmode
,
4772 ((GET_MODE (cc_reg
) == CC_FPmode
)
4776 clobber
= gen_rtx_CLOBBER (VOIDmode
, cr_reg
);
4777 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, set
, clobber
)));
4782 /* Split a SCC instruction into component parts, returning a SEQUENCE to hold
4783 the separate insns. */
4786 frv_split_scc (rtx dest
, rtx test
, rtx cc_reg
, rtx cr_reg
, HOST_WIDE_INT value
)
4792 /* Set the appropriate CCR bit. */
4793 emit_insn (gen_rtx_SET (VOIDmode
,
4795 gen_rtx_fmt_ee (GET_CODE (test
),
4800 /* Move the value into the destination. */
4801 emit_move_insn (dest
, GEN_INT (value
));
4803 /* Move 0 into the destination if the test failed */
4804 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4805 gen_rtx_EQ (GET_MODE (cr_reg
),
4808 gen_rtx_SET (VOIDmode
, dest
, const0_rtx
)));
4810 /* Finish up, return sequence. */
4817 /* Emit the code for a conditional move, return TRUE if we could do the
4821 frv_emit_cond_move (rtx dest
, rtx test_rtx
, rtx src1
, rtx src2
)
4828 enum rtx_code test
= GET_CODE (test_rtx
);
4829 rtx cc_reg
= frv_emit_comparison (test
, frv_compare_op0
, frv_compare_op1
);
4830 enum machine_mode cc_mode
= GET_MODE (cc_reg
);
4832 /* Conditional move instructions generate:
4833 (parallel [(set <target>
4834 (if_then_else (<test> <cc_reg> (const_int 0))
4837 (clobber (<ccr_reg>))]) */
4839 /* Handle various cases of conditional move involving two constants. */
4840 if (GET_CODE (src1
) == CONST_INT
&& GET_CODE (src2
) == CONST_INT
)
4842 HOST_WIDE_INT value1
= INTVAL (src1
);
4843 HOST_WIDE_INT value2
= INTVAL (src2
);
4845 /* Having 0 as one of the constants can be done by loading the other
4846 constant, and optionally moving in gr0. */
4847 if (value1
== 0 || value2
== 0)
4850 /* If the first value is within an addi range and also the difference
4851 between the two fits in an addi's range, load up the difference, then
4852 conditionally move in 0, and then unconditionally add the first
4854 else if (IN_RANGE_P (value1
, -2048, 2047)
4855 && IN_RANGE_P (value2
- value1
, -2048, 2047))
4858 /* If neither condition holds, just force the constant into a
4862 src1
= force_reg (GET_MODE (dest
), src1
);
4863 src2
= force_reg (GET_MODE (dest
), src2
);
4867 /* If one value is a register, insure the other value is either 0 or a
4871 if (GET_CODE (src1
) == CONST_INT
&& INTVAL (src1
) != 0)
4872 src1
= force_reg (GET_MODE (dest
), src1
);
4874 if (GET_CODE (src2
) == CONST_INT
&& INTVAL (src2
) != 0)
4875 src2
= force_reg (GET_MODE (dest
), src2
);
4878 test2
= gen_rtx_fmt_ee (test
, cc_mode
, cc_reg
, const0_rtx
);
4879 if_rtx
= gen_rtx_IF_THEN_ELSE (GET_MODE (dest
), test2
, src1
, src2
);
4881 set
= gen_rtx_SET (VOIDmode
, dest
, if_rtx
);
4883 cr_reg
= ((TARGET_ALLOC_CC
)
4884 ? gen_reg_rtx (CC_CCRmode
)
4885 : gen_rtx_REG (CC_CCRmode
,
4886 (cc_mode
== CC_FPmode
) ? FCR_FIRST
: ICR_FIRST
));
4888 clobber_cc
= gen_rtx_CLOBBER (VOIDmode
, cr_reg
);
4889 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, set
, clobber_cc
)));
4894 /* Split a conditional move into constituent parts, returning a SEQUENCE
4895 containing all of the insns. */
4898 frv_split_cond_move (rtx operands
[])
4900 rtx dest
= operands
[0];
4901 rtx test
= operands
[1];
4902 rtx cc_reg
= operands
[2];
4903 rtx src1
= operands
[3];
4904 rtx src2
= operands
[4];
4905 rtx cr_reg
= operands
[5];
4907 enum machine_mode cr_mode
= GET_MODE (cr_reg
);
4911 /* Set the appropriate CCR bit. */
4912 emit_insn (gen_rtx_SET (VOIDmode
,
4914 gen_rtx_fmt_ee (GET_CODE (test
),
4919 /* Handle various cases of conditional move involving two constants. */
4920 if (GET_CODE (src1
) == CONST_INT
&& GET_CODE (src2
) == CONST_INT
)
4922 HOST_WIDE_INT value1
= INTVAL (src1
);
4923 HOST_WIDE_INT value2
= INTVAL (src2
);
4925 /* Having 0 as one of the constants can be done by loading the other
4926 constant, and optionally moving in gr0. */
4929 emit_move_insn (dest
, src2
);
4930 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4931 gen_rtx_NE (cr_mode
, cr_reg
,
4933 gen_rtx_SET (VOIDmode
, dest
, src1
)));
4936 else if (value2
== 0)
4938 emit_move_insn (dest
, src1
);
4939 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4940 gen_rtx_EQ (cr_mode
, cr_reg
,
4942 gen_rtx_SET (VOIDmode
, dest
, src2
)));
4945 /* If the first value is within an addi range and also the difference
4946 between the two fits in an addi's range, load up the difference, then
4947 conditionally move in 0, and then unconditionally add the first
4949 else if (IN_RANGE_P (value1
, -2048, 2047)
4950 && IN_RANGE_P (value2
- value1
, -2048, 2047))
4952 rtx dest_si
= ((GET_MODE (dest
) == SImode
)
4954 : gen_rtx_SUBREG (SImode
, dest
, 0));
4956 emit_move_insn (dest_si
, GEN_INT (value2
- value1
));
4957 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4958 gen_rtx_NE (cr_mode
, cr_reg
,
4960 gen_rtx_SET (VOIDmode
, dest_si
,
4962 emit_insn (gen_addsi3 (dest_si
, dest_si
, src1
));
4970 /* Emit the conditional move for the test being true if needed. */
4971 if (! rtx_equal_p (dest
, src1
))
4972 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4973 gen_rtx_NE (cr_mode
, cr_reg
, const0_rtx
),
4974 gen_rtx_SET (VOIDmode
, dest
, src1
)));
4976 /* Emit the conditional move for the test being false if needed. */
4977 if (! rtx_equal_p (dest
, src2
))
4978 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
4979 gen_rtx_EQ (cr_mode
, cr_reg
, const0_rtx
),
4980 gen_rtx_SET (VOIDmode
, dest
, src2
)));
4983 /* Finish up, return sequence. */
4990 /* Split (set DEST SOURCE), where DEST is a double register and SOURCE is a
4991 memory location that is not known to be dword-aligned. */
4993 frv_split_double_load (rtx dest
, rtx source
)
4995 int regno
= REGNO (dest
);
4996 rtx dest1
= gen_highpart (SImode
, dest
);
4997 rtx dest2
= gen_lowpart (SImode
, dest
);
4998 rtx address
= XEXP (source
, 0);
5000 /* If the address is pre-modified, load the lower-numbered register
5001 first, then load the other register using an integer offset from
5002 the modified base register. This order should always be safe,
5003 since the pre-modification cannot affect the same registers as the
5006 The situation for other loads is more complicated. Loading one
5007 of the registers could affect the value of ADDRESS, so we must
5008 be careful which order we do them in. */
5009 if (GET_CODE (address
) == PRE_MODIFY
5010 || ! refers_to_regno_p (regno
, regno
+ 1, address
, NULL
))
5012 /* It is safe to load the lower-numbered register first. */
5013 emit_move_insn (dest1
, change_address (source
, SImode
, NULL
));
5014 emit_move_insn (dest2
, frv_index_memory (source
, SImode
, 1));
5018 /* ADDRESS is not pre-modified and the address depends on the
5019 lower-numbered register. Load the higher-numbered register
5021 emit_move_insn (dest2
, frv_index_memory (source
, SImode
, 1));
5022 emit_move_insn (dest1
, change_address (source
, SImode
, NULL
));
5026 /* Split (set DEST SOURCE), where DEST refers to a dword memory location
5027 and SOURCE is either a double register or the constant zero. */
5029 frv_split_double_store (rtx dest
, rtx source
)
5031 rtx dest1
= change_address (dest
, SImode
, NULL
);
5032 rtx dest2
= frv_index_memory (dest
, SImode
, 1);
5033 if (ZERO_P (source
))
5035 emit_move_insn (dest1
, CONST0_RTX (SImode
));
5036 emit_move_insn (dest2
, CONST0_RTX (SImode
));
5040 emit_move_insn (dest1
, gen_highpart (SImode
, source
));
5041 emit_move_insn (dest2
, gen_lowpart (SImode
, source
));
5046 /* Split a min/max operation returning a SEQUENCE containing all of the
5050 frv_split_minmax (rtx operands
[])
5052 rtx dest
= operands
[0];
5053 rtx minmax
= operands
[1];
5054 rtx src1
= operands
[2];
5055 rtx src2
= operands
[3];
5056 rtx cc_reg
= operands
[4];
5057 rtx cr_reg
= operands
[5];
5059 enum rtx_code test_code
;
5060 enum machine_mode cr_mode
= GET_MODE (cr_reg
);
5064 /* Figure out which test to use. */
5065 switch (GET_CODE (minmax
))
5070 case SMIN
: test_code
= LT
; break;
5071 case SMAX
: test_code
= GT
; break;
5072 case UMIN
: test_code
= LTU
; break;
5073 case UMAX
: test_code
= GTU
; break;
5076 /* Issue the compare instruction. */
5077 emit_insn (gen_rtx_SET (VOIDmode
,
5079 gen_rtx_COMPARE (GET_MODE (cc_reg
),
5082 /* Set the appropriate CCR bit. */
5083 emit_insn (gen_rtx_SET (VOIDmode
,
5085 gen_rtx_fmt_ee (test_code
,
5090 /* If are taking the min/max of a nonzero constant, load that first, and
5091 then do a conditional move of the other value. */
5092 if (GET_CODE (src2
) == CONST_INT
&& INTVAL (src2
) != 0)
5094 gcc_assert (!rtx_equal_p (dest
, src1
));
5096 emit_move_insn (dest
, src2
);
5097 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
5098 gen_rtx_NE (cr_mode
, cr_reg
, const0_rtx
),
5099 gen_rtx_SET (VOIDmode
, dest
, src1
)));
5102 /* Otherwise, do each half of the move. */
5105 /* Emit the conditional move for the test being true if needed. */
5106 if (! rtx_equal_p (dest
, src1
))
5107 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
5108 gen_rtx_NE (cr_mode
, cr_reg
, const0_rtx
),
5109 gen_rtx_SET (VOIDmode
, dest
, src1
)));
5111 /* Emit the conditional move for the test being false if needed. */
5112 if (! rtx_equal_p (dest
, src2
))
5113 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
5114 gen_rtx_EQ (cr_mode
, cr_reg
, const0_rtx
),
5115 gen_rtx_SET (VOIDmode
, dest
, src2
)));
5118 /* Finish up, return sequence. */
5125 /* Split an integer abs operation returning a SEQUENCE containing all of the
5129 frv_split_abs (rtx operands
[])
5131 rtx dest
= operands
[0];
5132 rtx src
= operands
[1];
5133 rtx cc_reg
= operands
[2];
5134 rtx cr_reg
= operands
[3];
5139 /* Issue the compare < 0 instruction. */
5140 emit_insn (gen_rtx_SET (VOIDmode
,
5142 gen_rtx_COMPARE (CCmode
, src
, const0_rtx
)));
5144 /* Set the appropriate CCR bit. */
5145 emit_insn (gen_rtx_SET (VOIDmode
,
5147 gen_rtx_fmt_ee (LT
, CC_CCRmode
, cc_reg
, const0_rtx
)));
5149 /* Emit the conditional negate if the value is negative. */
5150 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
5151 gen_rtx_NE (CC_CCRmode
, cr_reg
, const0_rtx
),
5152 gen_negsi2 (dest
, src
)));
5154 /* Emit the conditional move for the test being false if needed. */
5155 if (! rtx_equal_p (dest
, src
))
5156 emit_insn (gen_rtx_COND_EXEC (VOIDmode
,
5157 gen_rtx_EQ (CC_CCRmode
, cr_reg
, const0_rtx
),
5158 gen_rtx_SET (VOIDmode
, dest
, src
)));
5160 /* Finish up, return sequence. */
5167 /* An internal function called by for_each_rtx to clear in a hard_reg set each
5168 register used in an insn. */
5171 frv_clear_registers_used (rtx
*ptr
, void *data
)
5173 if (GET_CODE (*ptr
) == REG
)
5175 int regno
= REGNO (*ptr
);
5176 HARD_REG_SET
*p_regs
= (HARD_REG_SET
*)data
;
5178 if (regno
< FIRST_PSEUDO_REGISTER
)
5180 int reg_max
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (*ptr
));
5182 while (regno
< reg_max
)
5184 CLEAR_HARD_REG_BIT (*p_regs
, regno
);
5194 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
5196 /* On the FR-V, we don't have any extra fields per se, but it is useful hook to
5197 initialize the static storage. */
5199 frv_ifcvt_init_extra_fields (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
)
5201 frv_ifcvt
.added_insns_list
= NULL_RTX
;
5202 frv_ifcvt
.cur_scratch_regs
= 0;
5203 frv_ifcvt
.num_nested_cond_exec
= 0;
5204 frv_ifcvt
.cr_reg
= NULL_RTX
;
5205 frv_ifcvt
.nested_cc_reg
= NULL_RTX
;
5206 frv_ifcvt
.extra_int_cr
= NULL_RTX
;
5207 frv_ifcvt
.extra_fp_cr
= NULL_RTX
;
5208 frv_ifcvt
.last_nested_if_cr
= NULL_RTX
;
5212 /* Internal function to add a potential insn to the list of insns to be inserted
5213 if the conditional execution conversion is successful. */
5216 frv_ifcvt_add_insn (rtx pattern
, rtx insn
, int before_p
)
5218 rtx link
= alloc_EXPR_LIST (VOIDmode
, pattern
, insn
);
5220 link
->jump
= before_p
; /* Mark to add this before or after insn. */
5221 frv_ifcvt
.added_insns_list
= alloc_EXPR_LIST (VOIDmode
, link
,
5222 frv_ifcvt
.added_insns_list
);
5224 if (TARGET_DEBUG_COND_EXEC
)
5227 "\n:::::::::: frv_ifcvt_add_insn: add the following %s insn %d:\n",
5228 (before_p
) ? "before" : "after",
5229 (int)INSN_UID (insn
));
5231 debug_rtx (pattern
);
5236 /* A C expression to modify the code described by the conditional if
5237 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
5238 FALSE_EXPR for converting if-then and if-then-else code to conditional
5239 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
5240 tests cannot be converted. */
5243 frv_ifcvt_modify_tests (ce_if_block_t
*ce_info
, rtx
*p_true
, rtx
*p_false
)
5245 basic_block test_bb
= ce_info
->test_bb
; /* test basic block */
5246 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
5247 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
5248 basic_block join_bb
= ce_info
->join_bb
; /* join block or NULL */
5249 rtx true_expr
= *p_true
;
5253 enum machine_mode mode
= GET_MODE (true_expr
);
5257 frv_tmp_reg_t
*tmp_reg
= &frv_ifcvt
.tmp_reg
;
5259 rtx sub_cond_exec_reg
;
5261 enum rtx_code code_true
;
5262 enum rtx_code code_false
;
5263 enum reg_class cc_class
;
5264 enum reg_class cr_class
;
5267 reg_set_iterator rsi
;
5269 /* Make sure we are only dealing with hard registers. Also honor the
5270 -mno-cond-exec switch, and -mno-nested-cond-exec switches if
5272 if (!reload_completed
|| !TARGET_COND_EXEC
5273 || (!TARGET_NESTED_CE
&& ce_info
->pass
> 1))
5276 /* Figure out which registers we can allocate for our own purposes. Only
5277 consider registers that are not preserved across function calls and are
5278 not fixed. However, allow the ICC/ICR temporary registers to be allocated
5279 if we did not need to use them in reloading other registers. */
5280 memset (&tmp_reg
->regs
, 0, sizeof (tmp_reg
->regs
));
5281 COPY_HARD_REG_SET (tmp_reg
->regs
, call_used_reg_set
);
5282 AND_COMPL_HARD_REG_SET (tmp_reg
->regs
, fixed_reg_set
);
5283 SET_HARD_REG_BIT (tmp_reg
->regs
, ICC_TEMP
);
5284 SET_HARD_REG_BIT (tmp_reg
->regs
, ICR_TEMP
);
5286 /* If this is a nested IF, we need to discover whether the CC registers that
5287 are set/used inside of the block are used anywhere else. If not, we can
5288 change them to be the CC register that is paired with the CR register that
5289 controls the outermost IF block. */
5290 if (ce_info
->pass
> 1)
5292 CLEAR_HARD_REG_SET (frv_ifcvt
.nested_cc_ok_rewrite
);
5293 for (j
= CC_FIRST
; j
<= CC_LAST
; j
++)
5294 if (TEST_HARD_REG_BIT (tmp_reg
->regs
, j
))
5296 if (REGNO_REG_SET_P (then_bb
->il
.rtl
->global_live_at_start
, j
))
5300 && REGNO_REG_SET_P (else_bb
->il
.rtl
->global_live_at_start
, j
))
5304 && REGNO_REG_SET_P (join_bb
->il
.rtl
->global_live_at_start
, j
))
5307 SET_HARD_REG_BIT (frv_ifcvt
.nested_cc_ok_rewrite
, j
);
5311 for (j
= 0; j
< frv_ifcvt
.cur_scratch_regs
; j
++)
5312 frv_ifcvt
.scratch_regs
[j
] = NULL_RTX
;
5314 frv_ifcvt
.added_insns_list
= NULL_RTX
;
5315 frv_ifcvt
.cur_scratch_regs
= 0;
5317 bb
= (basic_block
*) alloca ((2 + ce_info
->num_multiple_test_blocks
)
5318 * sizeof (basic_block
));
5324 /* Remove anything live at the beginning of the join block from being
5325 available for allocation. */
5326 EXECUTE_IF_SET_IN_REG_SET (join_bb
->il
.rtl
->global_live_at_start
, 0, regno
, rsi
)
5328 if (regno
< FIRST_PSEUDO_REGISTER
)
5329 CLEAR_HARD_REG_BIT (tmp_reg
->regs
, regno
);
5333 /* Add in all of the blocks in multiple &&/|| blocks to be scanned. */
5335 if (ce_info
->num_multiple_test_blocks
)
5337 basic_block multiple_test_bb
= ce_info
->last_test_bb
;
5339 while (multiple_test_bb
!= test_bb
)
5341 bb
[num_bb
++] = multiple_test_bb
;
5342 multiple_test_bb
= EDGE_PRED (multiple_test_bb
, 0)->src
;
5346 /* Add in the THEN and ELSE blocks to be scanned. */
5347 bb
[num_bb
++] = then_bb
;
5349 bb
[num_bb
++] = else_bb
;
5351 sub_cond_exec_reg
= NULL_RTX
;
5352 frv_ifcvt
.num_nested_cond_exec
= 0;
5354 /* Scan all of the blocks for registers that must not be allocated. */
5355 for (j
= 0; j
< num_bb
; j
++)
5357 rtx last_insn
= BB_END (bb
[j
]);
5358 rtx insn
= BB_HEAD (bb
[j
]);
5362 fprintf (dump_file
, "Scanning %s block %d, start %d, end %d\n",
5363 (bb
[j
] == else_bb
) ? "else" : ((bb
[j
] == then_bb
) ? "then" : "test"),
5365 (int) INSN_UID (BB_HEAD (bb
[j
])),
5366 (int) INSN_UID (BB_END (bb
[j
])));
5368 /* Anything live at the beginning of the block is obviously unavailable
5370 EXECUTE_IF_SET_IN_REG_SET (bb
[j
]->il
.rtl
->global_live_at_start
, 0, regno
, rsi
)
5372 if (regno
< FIRST_PSEUDO_REGISTER
)
5373 CLEAR_HARD_REG_BIT (tmp_reg
->regs
, regno
);
5376 /* Loop through the insns in the block. */
5379 /* Mark any new registers that are created as being unavailable for
5380 allocation. Also see if the CC register used in nested IFs can be
5386 int skip_nested_if
= FALSE
;
5388 for_each_rtx (&PATTERN (insn
), frv_clear_registers_used
,
5389 (void *)&tmp_reg
->regs
);
5391 pattern
= PATTERN (insn
);
5392 if (GET_CODE (pattern
) == COND_EXEC
)
5394 rtx reg
= XEXP (COND_EXEC_TEST (pattern
), 0);
5396 if (reg
!= sub_cond_exec_reg
)
5398 sub_cond_exec_reg
= reg
;
5399 frv_ifcvt
.num_nested_cond_exec
++;
5403 set
= single_set_pattern (pattern
);
5406 rtx dest
= SET_DEST (set
);
5407 rtx src
= SET_SRC (set
);
5409 if (GET_CODE (dest
) == REG
)
5411 int regno
= REGNO (dest
);
5412 enum rtx_code src_code
= GET_CODE (src
);
5414 if (CC_P (regno
) && src_code
== COMPARE
)
5415 skip_nested_if
= TRUE
;
5417 else if (CR_P (regno
)
5418 && (src_code
== IF_THEN_ELSE
5419 || COMPARISON_P (src
)))
5420 skip_nested_if
= TRUE
;
5424 if (! skip_nested_if
)
5425 for_each_rtx (&PATTERN (insn
), frv_clear_registers_used
,
5426 (void *)&frv_ifcvt
.nested_cc_ok_rewrite
);
5429 if (insn
== last_insn
)
5432 insn
= NEXT_INSN (insn
);
5436 /* If this is a nested if, rewrite the CC registers that are available to
5437 include the ones that can be rewritten, to increase the chance of being
5438 able to allocate a paired CC/CR register combination. */
5439 if (ce_info
->pass
> 1)
5441 for (j
= CC_FIRST
; j
<= CC_LAST
; j
++)
5442 if (TEST_HARD_REG_BIT (frv_ifcvt
.nested_cc_ok_rewrite
, j
))
5443 SET_HARD_REG_BIT (tmp_reg
->regs
, j
);
5445 CLEAR_HARD_REG_BIT (tmp_reg
->regs
, j
);
5451 fprintf (dump_file
, "Available GPRs: ");
5453 for (j
= GPR_FIRST
; j
<= GPR_LAST
; j
++)
5454 if (TEST_HARD_REG_BIT (tmp_reg
->regs
, j
))
5456 fprintf (dump_file
, " %d [%s]", j
, reg_names
[j
]);
5457 if (++num_gprs
> GPR_TEMP_NUM
+2)
5461 fprintf (dump_file
, "%s\nAvailable CRs: ",
5462 (num_gprs
> GPR_TEMP_NUM
+2) ? " ..." : "");
5464 for (j
= CR_FIRST
; j
<= CR_LAST
; j
++)
5465 if (TEST_HARD_REG_BIT (tmp_reg
->regs
, j
))
5466 fprintf (dump_file
, " %d [%s]", j
, reg_names
[j
]);
5468 fputs ("\n", dump_file
);
5470 if (ce_info
->pass
> 1)
5472 fprintf (dump_file
, "Modifiable CCs: ");
5473 for (j
= CC_FIRST
; j
<= CC_LAST
; j
++)
5474 if (TEST_HARD_REG_BIT (tmp_reg
->regs
, j
))
5475 fprintf (dump_file
, " %d [%s]", j
, reg_names
[j
]);
5477 fprintf (dump_file
, "\n%d nested COND_EXEC statements\n",
5478 frv_ifcvt
.num_nested_cond_exec
);
5482 /* Allocate the appropriate temporary condition code register. Try to
5483 allocate the ICR/FCR register that corresponds to the ICC/FCC register so
5484 that conditional cmp's can be done. */
5485 if (mode
== CCmode
|| mode
== CC_UNSmode
|| mode
== CC_NZmode
)
5487 cr_class
= ICR_REGS
;
5488 cc_class
= ICC_REGS
;
5489 cc_first
= ICC_FIRST
;
5492 else if (mode
== CC_FPmode
)
5494 cr_class
= FCR_REGS
;
5495 cc_class
= FCC_REGS
;
5496 cc_first
= FCC_FIRST
;
5501 cc_first
= cc_last
= 0;
5502 cr_class
= cc_class
= NO_REGS
;
5505 cc
= XEXP (true_expr
, 0);
5506 nested_cc
= cr
= NULL_RTX
;
5507 if (cc_class
!= NO_REGS
)
5509 /* For nested IFs and &&/||, see if we can find a CC and CR register pair
5510 so we can execute a csubcc/caddcc/cfcmps instruction. */
5513 for (cc_regno
= cc_first
; cc_regno
<= cc_last
; cc_regno
++)
5515 int cr_regno
= cc_regno
- CC_FIRST
+ CR_FIRST
;
5517 if (TEST_HARD_REG_BIT (frv_ifcvt
.tmp_reg
.regs
, cc_regno
)
5518 && TEST_HARD_REG_BIT (frv_ifcvt
.tmp_reg
.regs
, cr_regno
))
5520 frv_ifcvt
.tmp_reg
.next_reg
[ (int)cr_class
] = cr_regno
;
5521 cr
= frv_alloc_temp_reg (tmp_reg
, cr_class
, CC_CCRmode
, TRUE
,
5524 frv_ifcvt
.tmp_reg
.next_reg
[ (int)cc_class
] = cc_regno
;
5525 nested_cc
= frv_alloc_temp_reg (tmp_reg
, cc_class
, CCmode
,
5535 fprintf (dump_file
, "Could not allocate a CR temporary register\n");
5542 "Will use %s for conditional execution, %s for nested comparisons\n",
5543 reg_names
[ REGNO (cr
)],
5544 (nested_cc
) ? reg_names
[ REGNO (nested_cc
) ] : "<none>");
5546 /* Set the CCR bit. Note for integer tests, we reverse the condition so that
5547 in an IF-THEN-ELSE sequence, we are testing the TRUE case against the CCR
5548 bit being true. We don't do this for floating point, because of NaNs. */
5549 code
= GET_CODE (true_expr
);
5550 if (GET_MODE (cc
) != CC_FPmode
)
5552 code
= reverse_condition (code
);
5562 check_insn
= gen_rtx_SET (VOIDmode
, cr
,
5563 gen_rtx_fmt_ee (code
, CC_CCRmode
, cc
, const0_rtx
));
5565 /* Record the check insn to be inserted later. */
5566 frv_ifcvt_add_insn (check_insn
, BB_END (test_bb
), TRUE
);
5568 /* Update the tests. */
5569 frv_ifcvt
.cr_reg
= cr
;
5570 frv_ifcvt
.nested_cc_reg
= nested_cc
;
5571 *p_true
= gen_rtx_fmt_ee (code_true
, CC_CCRmode
, cr
, const0_rtx
);
5572 *p_false
= gen_rtx_fmt_ee (code_false
, CC_CCRmode
, cr
, const0_rtx
);
5575 /* Fail, don't do this conditional execution. */
5578 *p_false
= NULL_RTX
;
5580 fprintf (dump_file
, "Disabling this conditional execution.\n");
5586 /* A C expression to modify the code described by the conditional if
5587 information CE_INFO, for the basic block BB, possibly updating the tests in
5588 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
5589 if-then-else code to conditional instructions. Set either TRUE_EXPR or
5590 FALSE_EXPR to a null pointer if the tests cannot be converted. */
5592 /* p_true and p_false are given expressions of the form:
5594 (and (eq:CC_CCR (reg:CC_CCR)
5600 frv_ifcvt_modify_multiple_tests (ce_if_block_t
*ce_info
,
5605 rtx old_true
= XEXP (*p_true
, 0);
5606 rtx old_false
= XEXP (*p_false
, 0);
5607 rtx true_expr
= XEXP (*p_true
, 1);
5608 rtx false_expr
= XEXP (*p_false
, 1);
5611 rtx cr
= XEXP (old_true
, 0);
5613 rtx new_cr
= NULL_RTX
;
5614 rtx
*p_new_cr
= (rtx
*)0;
5618 enum reg_class cr_class
;
5619 enum machine_mode mode
= GET_MODE (true_expr
);
5620 rtx (*logical_func
)(rtx
, rtx
, rtx
);
5622 if (TARGET_DEBUG_COND_EXEC
)
5625 "\n:::::::::: frv_ifcvt_modify_multiple_tests, before modification for %s\ntrue insn:\n",
5626 ce_info
->and_and_p
? "&&" : "||");
5628 debug_rtx (*p_true
);
5630 fputs ("\nfalse insn:\n", stderr
);
5631 debug_rtx (*p_false
);
5634 if (!TARGET_MULTI_CE
)
5637 if (GET_CODE (cr
) != REG
)
5640 if (mode
== CCmode
|| mode
== CC_UNSmode
|| mode
== CC_NZmode
)
5642 cr_class
= ICR_REGS
;
5643 p_new_cr
= &frv_ifcvt
.extra_int_cr
;
5645 else if (mode
== CC_FPmode
)
5647 cr_class
= FCR_REGS
;
5648 p_new_cr
= &frv_ifcvt
.extra_fp_cr
;
5653 /* Allocate a temp CR, reusing a previously allocated temp CR if we have 3 or
5654 more &&/|| tests. */
5658 new_cr
= *p_new_cr
= frv_alloc_temp_reg (&frv_ifcvt
.tmp_reg
, cr_class
,
5659 CC_CCRmode
, TRUE
, TRUE
);
5664 if (ce_info
->and_and_p
)
5666 old_test
= old_false
;
5667 test_expr
= true_expr
;
5668 logical_func
= (GET_CODE (old_true
) == EQ
) ? gen_andcr
: gen_andncr
;
5669 *p_true
= gen_rtx_NE (CC_CCRmode
, cr
, const0_rtx
);
5670 *p_false
= gen_rtx_EQ (CC_CCRmode
, cr
, const0_rtx
);
5674 old_test
= old_false
;
5675 test_expr
= false_expr
;
5676 logical_func
= (GET_CODE (old_false
) == EQ
) ? gen_orcr
: gen_orncr
;
5677 *p_true
= gen_rtx_EQ (CC_CCRmode
, cr
, const0_rtx
);
5678 *p_false
= gen_rtx_NE (CC_CCRmode
, cr
, const0_rtx
);
5681 /* First add the andcr/andncr/orcr/orncr, which will be added after the
5682 conditional check instruction, due to frv_ifcvt_add_insn being a LIFO
5684 frv_ifcvt_add_insn ((*logical_func
) (cr
, cr
, new_cr
), BB_END (bb
), TRUE
);
5686 /* Now add the conditional check insn. */
5687 cc
= XEXP (test_expr
, 0);
5688 compare
= gen_rtx_fmt_ee (GET_CODE (test_expr
), CC_CCRmode
, cc
, const0_rtx
);
5689 if_else
= gen_rtx_IF_THEN_ELSE (CC_CCRmode
, old_test
, compare
, const0_rtx
);
5691 check_insn
= gen_rtx_SET (VOIDmode
, new_cr
, if_else
);
5693 /* Add the new check insn to the list of check insns that need to be
5695 frv_ifcvt_add_insn (check_insn
, BB_END (bb
), TRUE
);
5697 if (TARGET_DEBUG_COND_EXEC
)
5699 fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, after modification\ntrue insn:\n",
5702 debug_rtx (*p_true
);
5704 fputs ("\nfalse insn:\n", stderr
);
5705 debug_rtx (*p_false
);
5711 *p_true
= *p_false
= NULL_RTX
;
5713 /* If we allocated a CR register, release it. */
5716 CLEAR_HARD_REG_BIT (frv_ifcvt
.tmp_reg
.regs
, REGNO (new_cr
));
5717 *p_new_cr
= NULL_RTX
;
5720 if (TARGET_DEBUG_COND_EXEC
)
5721 fputs ("\n:::::::::: frv_ifcvt_modify_multiple_tests, failed.\n", stderr
);
5727 /* Return a register which will be loaded with a value if an IF block is
5728 converted to conditional execution. This is used to rewrite instructions
5729 that use constants to ones that just use registers. */
5732 frv_ifcvt_load_value (rtx value
, rtx insn ATTRIBUTE_UNUSED
)
5734 int num_alloc
= frv_ifcvt
.cur_scratch_regs
;
5738 /* We know gr0 == 0, so replace any errant uses. */
5739 if (value
== const0_rtx
)
5740 return gen_rtx_REG (SImode
, GPR_FIRST
);
5742 /* First search all registers currently loaded to see if we have an
5743 applicable constant. */
5744 if (CONSTANT_P (value
)
5745 || (GET_CODE (value
) == REG
&& REGNO (value
) == LR_REGNO
))
5747 for (i
= 0; i
< num_alloc
; i
++)
5749 if (rtx_equal_p (SET_SRC (frv_ifcvt
.scratch_regs
[i
]), value
))
5750 return SET_DEST (frv_ifcvt
.scratch_regs
[i
]);
5754 /* Have we exhausted the number of registers available? */
5755 if (num_alloc
>= GPR_TEMP_NUM
)
5758 fprintf (dump_file
, "Too many temporary registers allocated\n");
5763 /* Allocate the new register. */
5764 reg
= frv_alloc_temp_reg (&frv_ifcvt
.tmp_reg
, GPR_REGS
, SImode
, TRUE
, TRUE
);
5768 fputs ("Could not find a scratch register\n", dump_file
);
5773 frv_ifcvt
.cur_scratch_regs
++;
5774 frv_ifcvt
.scratch_regs
[num_alloc
] = gen_rtx_SET (VOIDmode
, reg
, value
);
5778 if (GET_CODE (value
) == CONST_INT
)
5779 fprintf (dump_file
, "Register %s will hold %ld\n",
5780 reg_names
[ REGNO (reg
)], (long)INTVAL (value
));
5782 else if (GET_CODE (value
) == REG
&& REGNO (value
) == LR_REGNO
)
5783 fprintf (dump_file
, "Register %s will hold LR\n",
5784 reg_names
[ REGNO (reg
)]);
5787 fprintf (dump_file
, "Register %s will hold a saved value\n",
5788 reg_names
[ REGNO (reg
)]);
5795 /* Update a MEM used in conditional code that might contain an offset to put
5796 the offset into a scratch register, so that the conditional load/store
5797 operations can be used. This function returns the original pointer if the
5798 MEM is valid to use in conditional code, NULL if we can't load up the offset
5799 into a temporary register, or the new MEM if we were successful. */
5802 frv_ifcvt_rewrite_mem (rtx mem
, enum machine_mode mode
, rtx insn
)
5804 rtx addr
= XEXP (mem
, 0);
5806 if (!frv_legitimate_address_p (mode
, addr
, reload_completed
, TRUE
, FALSE
))
5808 if (GET_CODE (addr
) == PLUS
)
5810 rtx addr_op0
= XEXP (addr
, 0);
5811 rtx addr_op1
= XEXP (addr
, 1);
5813 if (GET_CODE (addr_op0
) == REG
&& CONSTANT_P (addr_op1
))
5815 rtx reg
= frv_ifcvt_load_value (addr_op1
, insn
);
5819 addr
= gen_rtx_PLUS (Pmode
, addr_op0
, reg
);
5826 else if (CONSTANT_P (addr
))
5827 addr
= frv_ifcvt_load_value (addr
, insn
);
5832 if (addr
== NULL_RTX
)
5835 else if (XEXP (mem
, 0) != addr
)
5836 return change_address (mem
, mode
, addr
);
5843 /* Given a PATTERN, return a SET expression if this PATTERN has only a single
5844 SET, possibly conditionally executed. It may also have CLOBBERs, USEs. */
5847 single_set_pattern (rtx pattern
)
5852 if (GET_CODE (pattern
) == COND_EXEC
)
5853 pattern
= COND_EXEC_CODE (pattern
);
5855 if (GET_CODE (pattern
) == SET
)
5858 else if (GET_CODE (pattern
) == PARALLEL
)
5860 for (i
= 0, set
= 0; i
< XVECLEN (pattern
, 0); i
++)
5862 rtx sub
= XVECEXP (pattern
, 0, i
);
5864 switch (GET_CODE (sub
))
5888 /* A C expression to modify the code described by the conditional if
5889 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
5890 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
5891 insn cannot be converted to be executed conditionally. */
5894 frv_ifcvt_modify_insn (ce_if_block_t
*ce_info
,
5898 rtx orig_ce_pattern
= pattern
;
5904 gcc_assert (GET_CODE (pattern
) == COND_EXEC
);
5906 test
= COND_EXEC_TEST (pattern
);
5907 if (GET_CODE (test
) == AND
)
5909 rtx cr
= frv_ifcvt
.cr_reg
;
5912 op0
= XEXP (test
, 0);
5913 if (! rtx_equal_p (cr
, XEXP (op0
, 0)))
5916 op1
= XEXP (test
, 1);
5917 test_reg
= XEXP (op1
, 0);
5918 if (GET_CODE (test_reg
) != REG
)
5921 /* Is this the first nested if block in this sequence? If so, generate
5922 an andcr or andncr. */
5923 if (! frv_ifcvt
.last_nested_if_cr
)
5927 frv_ifcvt
.last_nested_if_cr
= test_reg
;
5928 if (GET_CODE (op0
) == NE
)
5929 and_op
= gen_andcr (test_reg
, cr
, test_reg
);
5931 and_op
= gen_andncr (test_reg
, cr
, test_reg
);
5933 frv_ifcvt_add_insn (and_op
, insn
, TRUE
);
5936 /* If this isn't the first statement in the nested if sequence, see if we
5937 are dealing with the same register. */
5938 else if (! rtx_equal_p (test_reg
, frv_ifcvt
.last_nested_if_cr
))
5941 COND_EXEC_TEST (pattern
) = test
= op1
;
5944 /* If this isn't a nested if, reset state variables. */
5947 frv_ifcvt
.last_nested_if_cr
= NULL_RTX
;
5950 set
= single_set_pattern (pattern
);
5953 rtx dest
= SET_DEST (set
);
5954 rtx src
= SET_SRC (set
);
5955 enum machine_mode mode
= GET_MODE (dest
);
5957 /* Check for normal binary operators. */
5958 if (mode
== SImode
&& ARITHMETIC_P (src
))
5960 op0
= XEXP (src
, 0);
5961 op1
= XEXP (src
, 1);
5963 if (integer_register_operand (op0
, SImode
) && CONSTANT_P (op1
))
5965 op1
= frv_ifcvt_load_value (op1
, insn
);
5967 COND_EXEC_CODE (pattern
)
5968 = gen_rtx_SET (VOIDmode
, dest
, gen_rtx_fmt_ee (GET_CODE (src
),
5976 /* For multiply by a constant, we need to handle the sign extending
5977 correctly. Add a USE of the value after the multiply to prevent flow
5978 from cratering because only one register out of the two were used. */
5979 else if (mode
== DImode
&& GET_CODE (src
) == MULT
)
5981 op0
= XEXP (src
, 0);
5982 op1
= XEXP (src
, 1);
5983 if (GET_CODE (op0
) == SIGN_EXTEND
&& GET_CODE (op1
) == CONST_INT
)
5985 op1
= frv_ifcvt_load_value (op1
, insn
);
5988 op1
= gen_rtx_SIGN_EXTEND (DImode
, op1
);
5989 COND_EXEC_CODE (pattern
)
5990 = gen_rtx_SET (VOIDmode
, dest
,
5991 gen_rtx_MULT (DImode
, op0
, op1
));
5997 frv_ifcvt_add_insn (gen_rtx_USE (VOIDmode
, dest
), insn
, FALSE
);
6000 /* If we are just loading a constant created for a nested conditional
6001 execution statement, just load the constant without any conditional
6002 execution, since we know that the constant will not interfere with any
6004 else if (frv_ifcvt
.scratch_insns_bitmap
6005 && bitmap_bit_p (frv_ifcvt
.scratch_insns_bitmap
,
6007 && REG_P (SET_DEST (set
))
6008 /* We must not unconditionally set a scratch reg chosen
6009 for a nested if-converted block if its incoming
6010 value from the TEST block (or the result of the THEN
6011 branch) could/should propagate to the JOIN block.
6012 It suffices to test whether the register is live at
6013 the JOIN point: if it's live there, we can infer
6014 that we set it in the former JOIN block of the
6015 nested if-converted block (otherwise it wouldn't
6016 have been available as a scratch register), and it
6017 is either propagated through or set in the other
6018 conditional block. It's probably not worth trying
6019 to catch the latter case, and it could actually
6020 limit scheduling of the combined block quite
6023 && ! (REGNO_REG_SET_P
6024 (ce_info
->join_bb
->il
.rtl
->global_live_at_start
,
6025 REGNO (SET_DEST (set
))))
6026 /* Similarly, we must not unconditionally set a reg
6027 used as scratch in the THEN branch if the same reg
6028 is live in the ELSE branch. */
6029 && (! ce_info
->else_bb
6030 || BLOCK_FOR_INSN (insn
) == ce_info
->else_bb
6031 || ! (REGNO_REG_SET_P
6032 (ce_info
->else_bb
->il
.rtl
->global_live_at_start
,
6033 REGNO (SET_DEST (set
))))))
6036 else if (mode
== QImode
|| mode
== HImode
|| mode
== SImode
6039 int changed_p
= FALSE
;
6041 /* Check for just loading up a constant */
6042 if (CONSTANT_P (src
) && integer_register_operand (dest
, mode
))
6044 src
= frv_ifcvt_load_value (src
, insn
);
6051 /* See if we need to fix up stores */
6052 if (GET_CODE (dest
) == MEM
)
6054 rtx new_mem
= frv_ifcvt_rewrite_mem (dest
, mode
, insn
);
6059 else if (new_mem
!= dest
)
6066 /* See if we need to fix up loads */
6067 if (GET_CODE (src
) == MEM
)
6069 rtx new_mem
= frv_ifcvt_rewrite_mem (src
, mode
, insn
);
6074 else if (new_mem
!= src
)
6081 /* If either src or destination changed, redo SET. */
6083 COND_EXEC_CODE (pattern
) = gen_rtx_SET (VOIDmode
, dest
, src
);
6086 /* Rewrite a nested set cccr in terms of IF_THEN_ELSE. Also deal with
6087 rewriting the CC register to be the same as the paired CC/CR register
6089 else if (mode
== CC_CCRmode
&& COMPARISON_P (src
))
6091 int regno
= REGNO (XEXP (src
, 0));
6094 if (ce_info
->pass
> 1
6095 && regno
!= (int)REGNO (frv_ifcvt
.nested_cc_reg
)
6096 && TEST_HARD_REG_BIT (frv_ifcvt
.nested_cc_ok_rewrite
, regno
))
6098 src
= gen_rtx_fmt_ee (GET_CODE (src
),
6100 frv_ifcvt
.nested_cc_reg
,
6104 if_else
= gen_rtx_IF_THEN_ELSE (CC_CCRmode
, test
, src
, const0_rtx
);
6105 pattern
= gen_rtx_SET (VOIDmode
, dest
, if_else
);
6108 /* Remap a nested compare instruction to use the paired CC/CR reg. */
6109 else if (ce_info
->pass
> 1
6110 && GET_CODE (dest
) == REG
6111 && CC_P (REGNO (dest
))
6112 && REGNO (dest
) != REGNO (frv_ifcvt
.nested_cc_reg
)
6113 && TEST_HARD_REG_BIT (frv_ifcvt
.nested_cc_ok_rewrite
,
6115 && GET_CODE (src
) == COMPARE
)
6117 PUT_MODE (frv_ifcvt
.nested_cc_reg
, GET_MODE (dest
));
6118 COND_EXEC_CODE (pattern
)
6119 = gen_rtx_SET (VOIDmode
, frv_ifcvt
.nested_cc_reg
, copy_rtx (src
));
6123 if (TARGET_DEBUG_COND_EXEC
)
6125 rtx orig_pattern
= PATTERN (insn
);
6127 PATTERN (insn
) = pattern
;
6129 "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn after modification:\n",
6133 PATTERN (insn
) = orig_pattern
;
6139 if (TARGET_DEBUG_COND_EXEC
)
6141 rtx orig_pattern
= PATTERN (insn
);
6143 PATTERN (insn
) = orig_ce_pattern
;
6145 "\n:::::::::: frv_ifcvt_modify_insn: pass = %d, insn could not be modified:\n",
6149 PATTERN (insn
) = orig_pattern
;
6156 /* A C expression to perform any final machine dependent modifications in
6157 converting code to conditional execution in the code described by the
6158 conditional if information CE_INFO. */
6161 frv_ifcvt_modify_final (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
)
6165 rtx p
= frv_ifcvt
.added_insns_list
;
6168 /* Loop inserting the check insns. The last check insn is the first test,
6169 and is the appropriate place to insert constants. */
6174 rtx check_and_insert_insns
= XEXP (p
, 0);
6177 check_insn
= XEXP (check_and_insert_insns
, 0);
6178 existing_insn
= XEXP (check_and_insert_insns
, 1);
6181 /* The jump bit is used to say that the new insn is to be inserted BEFORE
6182 the existing insn, otherwise it is to be inserted AFTER. */
6183 if (check_and_insert_insns
->jump
)
6185 emit_insn_before (check_insn
, existing_insn
);
6186 check_and_insert_insns
->jump
= 0;
6189 emit_insn_after (check_insn
, existing_insn
);
6191 free_EXPR_LIST_node (check_and_insert_insns
);
6192 free_EXPR_LIST_node (old_p
);
6194 while (p
!= NULL_RTX
);
6196 /* Load up any constants needed into temp gprs */
6197 for (i
= 0; i
< frv_ifcvt
.cur_scratch_regs
; i
++)
6199 rtx insn
= emit_insn_before (frv_ifcvt
.scratch_regs
[i
], existing_insn
);
6200 if (! frv_ifcvt
.scratch_insns_bitmap
)
6201 frv_ifcvt
.scratch_insns_bitmap
= BITMAP_ALLOC (NULL
);
6202 bitmap_set_bit (frv_ifcvt
.scratch_insns_bitmap
, INSN_UID (insn
));
6203 frv_ifcvt
.scratch_regs
[i
] = NULL_RTX
;
6206 frv_ifcvt
.added_insns_list
= NULL_RTX
;
6207 frv_ifcvt
.cur_scratch_regs
= 0;
6211 /* A C expression to cancel any machine dependent modifications in converting
6212 code to conditional execution in the code described by the conditional if
6213 information CE_INFO. */
6216 frv_ifcvt_modify_cancel (ce_if_block_t
*ce_info ATTRIBUTE_UNUSED
)
6219 rtx p
= frv_ifcvt
.added_insns_list
;
6221 /* Loop freeing up the EXPR_LIST's allocated. */
6222 while (p
!= NULL_RTX
)
6224 rtx check_and_jump
= XEXP (p
, 0);
6228 free_EXPR_LIST_node (check_and_jump
);
6229 free_EXPR_LIST_node (old_p
);
6232 /* Release any temporary gprs allocated. */
6233 for (i
= 0; i
< frv_ifcvt
.cur_scratch_regs
; i
++)
6234 frv_ifcvt
.scratch_regs
[i
] = NULL_RTX
;
6236 frv_ifcvt
.added_insns_list
= NULL_RTX
;
6237 frv_ifcvt
.cur_scratch_regs
= 0;
6241 /* A C expression for the size in bytes of the trampoline, as an integer.
6245 setlo #0, <static_chain>
6247 sethi #0, <static_chain>
6248 jmpl @(gr0,<jmp_reg>) */
6251 frv_trampoline_size (void)
6254 /* Allocate room for the function descriptor and the lddi
6257 return 5 /* instructions */ * 4 /* instruction size. */;
6261 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
6262 RTX for the address of the trampoline; FNADDR is an RTX for the address of
6263 the nested function; STATIC_CHAIN is an RTX for the static chain value that
6264 should be passed to the function when it is called.
6269 setlo #0, <static_chain>
6271 sethi #0, <static_chain>
6272 jmpl @(gr0,<jmp_reg>) */
6275 frv_initialize_trampoline (rtx addr
, rtx fnaddr
, rtx static_chain
)
6277 rtx sc_reg
= force_reg (Pmode
, static_chain
);
6279 emit_library_call (gen_rtx_SYMBOL_REF (SImode
, "__trampoline_setup"),
6282 GEN_INT (frv_trampoline_size ()), SImode
,
6288 /* Many machines have some registers that cannot be copied directly to or from
6289 memory or even from other types of registers. An example is the `MQ'
6290 register, which on most machines, can only be copied to or from general
6291 registers, but not memory. Some machines allow copying all registers to and
6292 from memory, but require a scratch register for stores to some memory
6293 locations (e.g., those with symbolic address on the RT, and those with
6294 certain symbolic address on the SPARC when compiling PIC). In some cases,
6295 both an intermediate and a scratch register are required.
6297 You should define these macros to indicate to the reload phase that it may
6298 need to allocate at least one register for a reload in addition to the
6299 register to contain the data. Specifically, if copying X to a register
6300 CLASS in MODE requires an intermediate register, you should define
6301 `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of
6302 whose registers can be used as intermediate registers or scratch registers.
6304 If copying a register CLASS in MODE to X requires an intermediate or scratch
6305 register, `SECONDARY_OUTPUT_RELOAD_CLASS' should be defined to return the
6306 largest register class required. If the requirements for input and output
6307 reloads are the same, the macro `SECONDARY_RELOAD_CLASS' should be used
6308 instead of defining both macros identically.
6310 The values returned by these macros are often `GENERAL_REGS'. Return
6311 `NO_REGS' if no spare register is needed; i.e., if X can be directly copied
6312 to or from a register of CLASS in MODE without requiring a scratch register.
6313 Do not define this macro if it would always return `NO_REGS'.
6315 If a scratch register is required (either with or without an intermediate
6316 register), you should define patterns for `reload_inM' or `reload_outM', as
6317 required.. These patterns, which will normally be implemented with a
6318 `define_expand', should be similar to the `movM' patterns, except that
6319 operand 2 is the scratch register.
6321 Define constraints for the reload register and scratch register that contain
6322 a single register class. If the original reload register (whose class is
6323 CLASS) can meet the constraint given in the pattern, the value returned by
6324 these macros is used for the class of the scratch register. Otherwise, two
6325 additional reload registers are required. Their classes are obtained from
6326 the constraints in the insn pattern.
6328 X might be a pseudo-register or a `subreg' of a pseudo-register, which could
6329 either be in a hard register or in memory. Use `true_regnum' to find out;
6330 it will return -1 if the pseudo is in memory and the hard register number if
6331 it is in a register.
6333 These macros should not be used in the case where a particular class of
6334 registers can only be copied to memory and not to another class of
6335 registers. In that case, secondary reload registers are not needed and
6336 would not be helpful. Instead, a stack location must be used to perform the
6337 copy and the `movM' pattern should use memory as an intermediate storage.
6338 This case often occurs between floating-point and general registers. */
6341 frv_secondary_reload_class (enum reg_class
class,
6342 enum machine_mode mode ATTRIBUTE_UNUSED
,
6344 int in_p ATTRIBUTE_UNUSED
)
6354 /* Accumulators/Accumulator guard registers need to go through floating
6360 if (x
&& GET_CODE (x
) == REG
)
6362 int regno
= REGNO (x
);
6364 if (ACC_P (regno
) || ACCG_P (regno
))
6369 /* Nonzero constants should be loaded into an FPR through a GPR. */
6373 if (x
&& CONSTANT_P (x
) && !ZERO_P (x
))
6379 /* All of these types need gpr registers. */
6391 /* The accumulators need fpr registers */
6404 /* A C expression whose value is nonzero if pseudos that have been assigned to
6405 registers of class CLASS would likely be spilled because registers of CLASS
6406 are needed for spill registers.
6408 The default value of this macro returns 1 if CLASS has exactly one register
6409 and zero otherwise. On most machines, this default should be used. Only
6410 define this macro to some other expression if pseudo allocated by
6411 `local-alloc.c' end up in memory because their hard registers were needed
6412 for spill registers. If this macro returns nonzero for those classes, those
6413 pseudos will only be allocated by `global.c', which knows how to reallocate
6414 the pseudo to another register. If there would not be another register
6415 available for reallocation, you should not change the definition of this
6416 macro since the only effect of such a definition would be to slow down
6417 register allocation. */
6420 frv_class_likely_spilled_p (enum reg_class
class)
6430 case FDPIC_FPTR_REGS
:
6452 /* An expression for the alignment of a structure field FIELD if the
6453 alignment computed in the usual way is COMPUTED. GCC uses this
6454 value instead of the value in `BIGGEST_ALIGNMENT' or
6455 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
6457 /* The definition type of the bit field data is either char, short, long or
6458 long long. The maximum bit size is the number of bits of its own type.
6460 The bit field data is assigned to a storage unit that has an adequate size
6461 for bit field data retention and is located at the smallest address.
6463 Consecutive bit field data are packed at consecutive bits having the same
6464 storage unit, with regard to the type, beginning with the MSB and continuing
6467 If a field to be assigned lies over a bit field type boundary, its
6468 assignment is completed by aligning it with a boundary suitable for the
6471 When a bit field having a bit length of 0 is declared, it is forcibly
6472 assigned to the next storage unit.
6485 &x 00000000 00000000 00000000 00000000
6488 &x+4 00000000 00000000 00000000 00000000
6491 &x+8 00000000 00000000 00000000 00000000
6494 &x+12 00000000 00000000 00000000 00000000
6500 frv_adjust_field_align (tree field
, int computed
)
6502 /* Make sure that the bitfield is not wider than the type. */
6503 if (DECL_BIT_FIELD (field
)
6504 && !DECL_ARTIFICIAL (field
))
6506 tree parent
= DECL_CONTEXT (field
);
6507 tree prev
= NULL_TREE
;
6510 for (cur
= TYPE_FIELDS (parent
); cur
&& cur
!= field
; cur
= TREE_CHAIN (cur
))
6512 if (TREE_CODE (cur
) != FIELD_DECL
)
6520 /* If this isn't a :0 field and if the previous element is a bitfield
6521 also, see if the type is different, if so, we will need to align the
6522 bit-field to the next boundary. */
6524 && ! DECL_PACKED (field
)
6525 && ! integer_zerop (DECL_SIZE (field
))
6526 && DECL_BIT_FIELD_TYPE (field
) != DECL_BIT_FIELD_TYPE (prev
))
6528 int prev_align
= TYPE_ALIGN (TREE_TYPE (prev
));
6529 int cur_align
= TYPE_ALIGN (TREE_TYPE (field
));
6530 computed
= (prev_align
> cur_align
) ? prev_align
: cur_align
;
6538 /* A C expression that is nonzero if it is permissible to store a value of mode
6539 MODE in hard register number REGNO (or in several registers starting with
6540 that one). For a machine where all registers are equivalent, a suitable
6543 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
6545 It is not necessary for this macro to check for the numbers of fixed
6546 registers, because the allocation mechanism considers them to be always
6549 On some machines, double-precision values must be kept in even/odd register
6550 pairs. The way to implement that is to define this macro to reject odd
6551 register numbers for such modes.
6553 The minimum requirement for a mode to be OK in a register is that the
6554 `movMODE' instruction pattern support moves between the register and any
6555 other hard register for which the mode is OK; and that moving a value into
6556 the register and back out not alter it.
6558 Since the same instruction used to move `SImode' will work for all narrower
6559 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
6560 to distinguish between these modes, provided you define patterns `movhi',
6561 etc., to take advantage of this. This is useful because of the interaction
6562 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
6563 all integer modes to be tieable.
6565 Many machines have special registers for floating point arithmetic. Often
6566 people assume that floating point machine modes are allowed only in floating
6567 point registers. This is not true. Any registers that can hold integers
6568 can safely *hold* a floating point machine mode, whether or not floating
6569 arithmetic can be done on it in those registers. Integer move instructions
6570 can be used to move the values.
6572 On some machines, though, the converse is true: fixed-point machine modes
6573 may not go in floating registers. This is true if the floating registers
6574 normalize any value stored in them, because storing a non-floating value
6575 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
6576 fixed-point machine modes in floating registers. But if the floating
6577 registers do not automatically normalize, if you can store any bit pattern
6578 in one and retrieve it unchanged without a trap, then any machine mode may
6579 go in a floating register, so you can define this macro to say so.
6581 The primary significance of special floating registers is rather that they
6582 are the registers acceptable in floating point arithmetic instructions.
6583 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
6584 writing the proper constraints for those instructions.
6586 On some machines, the floating registers are especially slow to access, so
6587 that it is better to store a value in a stack frame than in such a register
6588 if floating point arithmetic is not being done. As long as the floating
6589 registers are not in class `GENERAL_REGS', they will not be used unless some
6590 pattern's constraint asks for one. */
6593 frv_hard_regno_mode_ok (int regno
, enum machine_mode mode
)
6603 return ICC_P (regno
) || GPR_P (regno
);
6606 return CR_P (regno
) || GPR_P (regno
);
6609 return FCC_P (regno
) || GPR_P (regno
);
6615 /* Set BASE to the first register in REGNO's class. Set MASK to the
6616 bits that must be clear in (REGNO - BASE) for the register to be
6618 if (INTEGRAL_MODE_P (mode
) || FLOAT_MODE_P (mode
) || VECTOR_MODE_P (mode
))
6622 /* ACCGs store one byte. Two-byte quantities must start in
6623 even-numbered registers, four-byte ones in registers whose
6624 numbers are divisible by four, and so on. */
6626 mask
= GET_MODE_SIZE (mode
) - 1;
6630 /* The other registers store one word. */
6631 if (GPR_P (regno
) || regno
== AP_FIRST
)
6634 else if (FPR_P (regno
))
6637 else if (ACC_P (regno
))
6640 else if (SPR_P (regno
))
6641 return mode
== SImode
;
6643 /* Fill in the table. */
6647 /* Anything smaller than an SI is OK in any word-sized register. */
6648 if (GET_MODE_SIZE (mode
) < 4)
6651 mask
= (GET_MODE_SIZE (mode
) / 4) - 1;
6653 return (((regno
- base
) & mask
) == 0);
6660 /* A C expression for the number of consecutive hard registers, starting at
6661 register number REGNO, required to hold a value of mode MODE.
6663 On a machine where all registers are exactly one word, a suitable definition
6666 #define HARD_REGNO_NREGS(REGNO, MODE) \
6667 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
6668 / UNITS_PER_WORD)) */
6670 /* On the FRV, make the CC_FP mode take 3 words in the integer registers, so
6671 that we can build the appropriate instructions to properly reload the
6672 values. Also, make the byte-sized accumulator guards use one guard
6676 frv_hard_regno_nregs (int regno
, enum machine_mode mode
)
6679 return GET_MODE_SIZE (mode
);
6681 return (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
6685 /* A C expression for the maximum number of consecutive registers of
6686 class CLASS needed to hold a value of mode MODE.
6688 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
6689 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
6690 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
6692 This macro helps control the handling of multiple-word values in
6695 This declaration is required. */
6698 frv_class_max_nregs (enum reg_class
class, enum machine_mode mode
)
6700 if (class == ACCG_REGS
)
6701 /* An N-byte value requires N accumulator guards. */
6702 return GET_MODE_SIZE (mode
);
6704 return (GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
6708 /* A C expression that is nonzero if X is a legitimate constant for an
6709 immediate operand on the target machine. You can assume that X satisfies
6710 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
6711 definition for this macro on machines where anything `CONSTANT_P' is valid. */
6714 frv_legitimate_constant_p (rtx x
)
6716 enum machine_mode mode
= GET_MODE (x
);
6718 /* frv_cannot_force_const_mem always returns true for FDPIC. This
6719 means that the move expanders will be expected to deal with most
6720 kinds of constant, regardless of what we return here.
6722 However, among its other duties, LEGITIMATE_CONSTANT_P decides whether
6723 a constant can be entered into reg_equiv_constant[]. If we return true,
6724 reload can create new instances of the constant whenever it likes.
6726 The idea is therefore to accept as many constants as possible (to give
6727 reload more freedom) while rejecting constants that can only be created
6728 at certain times. In particular, anything with a symbolic component will
6729 require use of the pseudo FDPIC register, which is only available before
6732 return LEGITIMATE_PIC_OPERAND_P (x
);
6734 /* All of the integer constants are ok. */
6735 if (GET_CODE (x
) != CONST_DOUBLE
)
6738 /* double integer constants are ok. */
6739 if (mode
== VOIDmode
|| mode
== DImode
)
6742 /* 0 is always ok. */
6743 if (x
== CONST0_RTX (mode
))
6746 /* If floating point is just emulated, allow any constant, since it will be
6747 constructed in the GPRs. */
6748 if (!TARGET_HAS_FPRS
)
6751 if (mode
== DFmode
&& !TARGET_DOUBLE
)
6754 /* Otherwise store the constant away and do a load. */
6758 /* Implement SELECT_CC_MODE. Choose CC_FP for floating-point comparisons,
6759 CC_NZ for comparisons against zero in which a single Z or N flag test
6760 is enough, CC_UNS for other unsigned comparisons, and CC for other
6761 signed comparisons. */
6764 frv_select_cc_mode (enum rtx_code code
, rtx x
, rtx y
)
6766 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
6775 return y
== const0_rtx
? CC_NZmode
: CCmode
;
6781 return y
== const0_rtx
? CC_NZmode
: CC_UNSmode
;
6788 /* A C expression for the cost of moving data from a register in class FROM to
6789 one in class TO. The classes are expressed using the enumeration values
6790 such as `GENERAL_REGS'. A value of 4 is the default; other values are
6791 interpreted relative to that.
6793 It is not required that the cost always equal 2 when FROM is the same as TO;
6794 on some machines it is expensive to move between registers if they are not
6797 If reload sees an insn consisting of a single `set' between two hard
6798 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
6799 value of 2, reload does not check to ensure that the constraints of the insn
6800 are met. Setting a cost of other than 2 will allow reload to verify that
6801 the constraints are met. You should do this if the `movM' pattern's
6802 constraints do not allow such copying. */
6804 #define HIGH_COST 40
6805 #define MEDIUM_COST 3
6809 frv_register_move_cost (enum reg_class from
, enum reg_class to
)
6893 /* Implementation of TARGET_ASM_INTEGER. In the FRV case we need to
6894 use ".picptr" to generate safe relocations for PIC code. We also
6895 need a fixup entry for aligned (non-debugging) code. */
6898 frv_assemble_integer (rtx value
, unsigned int size
, int aligned_p
)
6900 if ((flag_pic
|| TARGET_FDPIC
) && size
== UNITS_PER_WORD
)
6902 if (GET_CODE (value
) == CONST
6903 || GET_CODE (value
) == SYMBOL_REF
6904 || GET_CODE (value
) == LABEL_REF
)
6906 if (TARGET_FDPIC
&& GET_CODE (value
) == SYMBOL_REF
6907 && SYMBOL_REF_FUNCTION_P (value
))
6909 fputs ("\t.picptr\tfuncdesc(", asm_out_file
);
6910 output_addr_const (asm_out_file
, value
);
6911 fputs (")\n", asm_out_file
);
6914 else if (TARGET_FDPIC
&& GET_CODE (value
) == CONST
6915 && frv_function_symbol_referenced_p (value
))
6917 if (aligned_p
&& !TARGET_FDPIC
)
6919 static int label_num
= 0;
6923 ASM_GENERATE_INTERNAL_LABEL (buf
, "LCP", label_num
++);
6924 p
= (* targetm
.strip_name_encoding
) (buf
);
6926 fprintf (asm_out_file
, "%s:\n", p
);
6927 fprintf (asm_out_file
, "%s\n", FIXUP_SECTION_ASM_OP
);
6928 fprintf (asm_out_file
, "\t.picptr\t%s\n", p
);
6929 fprintf (asm_out_file
, "\t.previous\n");
6931 assemble_integer_with_op ("\t.picptr\t", value
);
6936 /* We've set the unaligned SI op to NULL, so we always have to
6937 handle the unaligned case here. */
6938 assemble_integer_with_op ("\t.4byte\t", value
);
6942 return default_assemble_integer (value
, size
, aligned_p
);
6945 /* Function to set up the backend function structure. */
6947 static struct machine_function
*
6948 frv_init_machine_status (void)
6950 return ggc_alloc_cleared (sizeof (struct machine_function
));
6953 /* Implement TARGET_SCHED_ISSUE_RATE. */
6956 frv_issue_rate (void)
6961 switch (frv_cpu_type
)
6965 case FRV_CPU_SIMPLE
:
6973 case FRV_CPU_GENERIC
:
6975 case FRV_CPU_TOMCAT
:
6983 /* A for_each_rtx callback. If X refers to an accumulator, return
6984 ACC_GROUP_ODD if the bit 2 of the register number is set and
6985 ACC_GROUP_EVEN if it is clear. Return 0 (ACC_GROUP_NONE)
6989 frv_acc_group_1 (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
6993 if (ACC_P (REGNO (*x
)))
6994 return (REGNO (*x
) - ACC_FIRST
) & 4 ? ACC_GROUP_ODD
: ACC_GROUP_EVEN
;
6995 if (ACCG_P (REGNO (*x
)))
6996 return (REGNO (*x
) - ACCG_FIRST
) & 4 ? ACC_GROUP_ODD
: ACC_GROUP_EVEN
;
7001 /* Return the value of INSN's acc_group attribute. */
7004 frv_acc_group (rtx insn
)
7006 /* This distinction only applies to the FR550 packing constraints. */
7007 if (frv_cpu_type
!= FRV_CPU_FR550
)
7008 return ACC_GROUP_NONE
;
7009 return for_each_rtx (&PATTERN (insn
), frv_acc_group_1
, 0);
7012 /* Return the index of the DFA unit in FRV_UNIT_NAMES[] that instruction
7013 INSN will try to claim first. Since this value depends only on the
7014 type attribute, we can cache the results in FRV_TYPE_TO_UNIT[]. */
7017 frv_insn_unit (rtx insn
)
7019 enum attr_type type
;
7021 type
= get_attr_type (insn
);
7022 if (frv_type_to_unit
[type
] == ARRAY_SIZE (frv_unit_codes
))
7024 /* We haven't seen this type of instruction before. */
7028 /* Issue the instruction on its own to see which unit it prefers. */
7029 state
= alloca (state_size ());
7030 state_reset (state
);
7031 state_transition (state
, insn
);
7033 /* Find out which unit was taken. */
7034 for (unit
= 0; unit
< ARRAY_SIZE (frv_unit_codes
); unit
++)
7035 if (cpu_unit_reservation_p (state
, frv_unit_codes
[unit
]))
7038 gcc_assert (unit
!= ARRAY_SIZE (frv_unit_codes
));
7040 frv_type_to_unit
[type
] = unit
;
7042 return frv_type_to_unit
[type
];
7045 /* Return true if INSN issues to a branch unit. */
7048 frv_issues_to_branch_unit_p (rtx insn
)
7050 return frv_unit_groups
[frv_insn_unit (insn
)] == GROUP_B
;
7053 /* The current state of the packing pass, implemented by frv_pack_insns. */
7055 /* The state of the pipeline DFA. */
7058 /* Which hardware registers are set within the current packet,
7059 and the conditions under which they are set. */
7060 regstate_t regstate
[FIRST_PSEUDO_REGISTER
];
7062 /* The memory locations that have been modified so far in this
7063 packet. MEM is the memref and COND is the regstate_t condition
7064 under which it is set. */
7070 /* The number of valid entries in MEMS. The value is larger than
7071 ARRAY_SIZE (mems) if there were too many mems to record. */
7072 unsigned int num_mems
;
7074 /* The maximum number of instructions that can be packed together. */
7075 unsigned int issue_rate
;
7077 /* The instructions in the packet, partitioned into groups. */
7078 struct frv_packet_group
{
7079 /* How many instructions in the packet belong to this group. */
7080 unsigned int num_insns
;
7082 /* A list of the instructions that belong to this group, in the order
7083 they appear in the rtl stream. */
7084 rtx insns
[ARRAY_SIZE (frv_unit_codes
)];
7086 /* The contents of INSNS after they have been sorted into the correct
7087 assembly-language order. Element X issues to unit X. The list may
7088 contain extra nops. */
7089 rtx sorted
[ARRAY_SIZE (frv_unit_codes
)];
7091 /* The member of frv_nops[] to use in sorted[]. */
7093 } groups
[NUM_GROUPS
];
7095 /* The instructions that make up the current packet. */
7096 rtx insns
[ARRAY_SIZE (frv_unit_codes
)];
7097 unsigned int num_insns
;
7100 /* Return the regstate_t flags for the given COND_EXEC condition.
7101 Abort if the condition isn't in the right form. */
7104 frv_cond_flags (rtx cond
)
7106 gcc_assert ((GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
7107 && GET_CODE (XEXP (cond
, 0)) == REG
7108 && CR_P (REGNO (XEXP (cond
, 0)))
7109 && XEXP (cond
, 1) == const0_rtx
);
7110 return ((REGNO (XEXP (cond
, 0)) - CR_FIRST
)
7111 | (GET_CODE (cond
) == NE
7113 : REGSTATE_IF_FALSE
));
7117 /* Return true if something accessed under condition COND2 can
7118 conflict with something written under condition COND1. */
7121 frv_regstate_conflict_p (regstate_t cond1
, regstate_t cond2
)
7123 /* If either reference was unconditional, we have a conflict. */
7124 if ((cond1
& REGSTATE_IF_EITHER
) == 0
7125 || (cond2
& REGSTATE_IF_EITHER
) == 0)
7128 /* The references might conflict if they were controlled by
7130 if ((cond1
& REGSTATE_CC_MASK
) != (cond2
& REGSTATE_CC_MASK
))
7133 /* They definitely conflict if they are controlled by the
7135 if ((cond1
& cond2
& REGSTATE_IF_EITHER
) != 0)
7142 /* A for_each_rtx callback. Return 1 if *X depends on an instruction in
7143 the current packet. DATA points to a regstate_t that describes the
7144 condition under which *X might be set or used. */
7147 frv_registers_conflict_p_1 (rtx
*x
, void *data
)
7149 unsigned int regno
, i
;
7152 cond
= *(regstate_t
*) data
;
7154 if (GET_CODE (*x
) == REG
)
7155 FOR_EACH_REGNO (regno
, *x
)
7156 if ((frv_packet
.regstate
[regno
] & REGSTATE_MODIFIED
) != 0)
7157 if (frv_regstate_conflict_p (frv_packet
.regstate
[regno
], cond
))
7160 if (GET_CODE (*x
) == MEM
)
7162 /* If we ran out of memory slots, assume a conflict. */
7163 if (frv_packet
.num_mems
> ARRAY_SIZE (frv_packet
.mems
))
7166 /* Check for output or true dependencies with earlier MEMs. */
7167 for (i
= 0; i
< frv_packet
.num_mems
; i
++)
7168 if (frv_regstate_conflict_p (frv_packet
.mems
[i
].cond
, cond
))
7170 if (true_dependence (frv_packet
.mems
[i
].mem
, VOIDmode
,
7174 if (output_dependence (frv_packet
.mems
[i
].mem
, *x
))
7179 /* The return values of calls aren't significant: they describe
7180 the effect of the call as a whole, not of the insn itself. */
7181 if (GET_CODE (*x
) == SET
&& GET_CODE (SET_SRC (*x
)) == CALL
)
7183 if (for_each_rtx (&SET_SRC (*x
), frv_registers_conflict_p_1
, data
))
7188 /* Check subexpressions. */
7193 /* Return true if something in X might depend on an instruction
7194 in the current packet. */
7197 frv_registers_conflict_p (rtx x
)
7202 if (GET_CODE (x
) == COND_EXEC
)
7204 if (for_each_rtx (&XEXP (x
, 0), frv_registers_conflict_p_1
, &flags
))
7207 flags
|= frv_cond_flags (XEXP (x
, 0));
7210 return for_each_rtx (&x
, frv_registers_conflict_p_1
, &flags
);
7214 /* A note_stores callback. DATA points to the regstate_t condition
7215 under which X is modified. Update FRV_PACKET accordingly. */
7218 frv_registers_update_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
7222 if (GET_CODE (x
) == REG
)
7223 FOR_EACH_REGNO (regno
, x
)
7224 frv_packet
.regstate
[regno
] |= *(regstate_t
*) data
;
7226 if (GET_CODE (x
) == MEM
)
7228 if (frv_packet
.num_mems
< ARRAY_SIZE (frv_packet
.mems
))
7230 frv_packet
.mems
[frv_packet
.num_mems
].mem
= x
;
7231 frv_packet
.mems
[frv_packet
.num_mems
].cond
= *(regstate_t
*) data
;
7233 frv_packet
.num_mems
++;
7238 /* Update the register state information for an instruction whose
7242 frv_registers_update (rtx x
)
7246 flags
= REGSTATE_MODIFIED
;
7247 if (GET_CODE (x
) == COND_EXEC
)
7249 flags
|= frv_cond_flags (XEXP (x
, 0));
7252 note_stores (x
, frv_registers_update_1
, &flags
);
7256 /* Initialize frv_packet for the start of a new packet. */
7259 frv_start_packet (void)
7261 enum frv_insn_group group
;
7263 memset (frv_packet
.regstate
, 0, sizeof (frv_packet
.regstate
));
7264 frv_packet
.num_mems
= 0;
7265 frv_packet
.num_insns
= 0;
7266 for (group
= 0; group
< NUM_GROUPS
; group
++)
7267 frv_packet
.groups
[group
].num_insns
= 0;
7271 /* Likewise for the start of a new basic block. */
7274 frv_start_packet_block (void)
7276 state_reset (frv_packet
.dfa_state
);
7277 frv_start_packet ();
7281 /* Finish the current packet, if any, and start a new one. Call
7282 HANDLE_PACKET with FRV_PACKET describing the completed packet. */
7285 frv_finish_packet (void (*handle_packet
) (void))
7287 if (frv_packet
.num_insns
> 0)
7290 state_transition (frv_packet
.dfa_state
, 0);
7291 frv_start_packet ();
7296 /* Return true if INSN can be added to the current packet. Update
7297 the DFA state on success. */
7300 frv_pack_insn_p (rtx insn
)
7302 /* See if the packet is already as long as it can be. */
7303 if (frv_packet
.num_insns
== frv_packet
.issue_rate
)
7306 /* If the scheduler thought that an instruction should start a packet,
7307 it's usually a good idea to believe it. It knows much more about
7308 the latencies than we do.
7310 There are some exceptions though:
7312 - Conditional instructions are scheduled on the assumption that
7313 they will be executed. This is usually a good thing, since it
7314 tends to avoid unnecessary stalls in the conditional code.
7315 But we want to pack conditional instructions as tightly as
7316 possible, in order to optimize the case where they aren't
7319 - The scheduler will always put branches on their own, even
7320 if there's no real dependency.
7322 - There's no point putting a call in its own packet unless
7324 if (frv_packet
.num_insns
> 0
7325 && GET_CODE (insn
) == INSN
7326 && GET_MODE (insn
) == TImode
7327 && GET_CODE (PATTERN (insn
)) != COND_EXEC
)
7330 /* Check for register conflicts. Don't do this for setlo since any
7331 conflict will be with the partnering sethi, with which it can
7333 if (get_attr_type (insn
) != TYPE_SETLO
)
7334 if (frv_registers_conflict_p (PATTERN (insn
)))
7337 return state_transition (frv_packet
.dfa_state
, insn
) < 0;
7341 /* Add instruction INSN to the current packet. */
7344 frv_add_insn_to_packet (rtx insn
)
7346 struct frv_packet_group
*packet_group
;
7348 packet_group
= &frv_packet
.groups
[frv_unit_groups
[frv_insn_unit (insn
)]];
7349 packet_group
->insns
[packet_group
->num_insns
++] = insn
;
7350 frv_packet
.insns
[frv_packet
.num_insns
++] = insn
;
7352 frv_registers_update (PATTERN (insn
));
7356 /* Insert INSN (a member of frv_nops[]) into the current packet. If the
7357 packet ends in a branch or call, insert the nop before it, otherwise
7361 frv_insert_nop_in_packet (rtx insn
)
7363 struct frv_packet_group
*packet_group
;
7366 packet_group
= &frv_packet
.groups
[frv_unit_groups
[frv_insn_unit (insn
)]];
7367 last
= frv_packet
.insns
[frv_packet
.num_insns
- 1];
7368 if (GET_CODE (last
) != INSN
)
7370 insn
= emit_insn_before (PATTERN (insn
), last
);
7371 frv_packet
.insns
[frv_packet
.num_insns
- 1] = insn
;
7372 frv_packet
.insns
[frv_packet
.num_insns
++] = last
;
7376 insn
= emit_insn_after (PATTERN (insn
), last
);
7377 frv_packet
.insns
[frv_packet
.num_insns
++] = insn
;
7379 packet_group
->insns
[packet_group
->num_insns
++] = insn
;
7383 /* If packing is enabled, divide the instructions into packets and
7384 return true. Call HANDLE_PACKET for each complete packet. */
7387 frv_for_each_packet (void (*handle_packet
) (void))
7389 rtx insn
, next_insn
;
7391 frv_packet
.issue_rate
= frv_issue_rate ();
7393 /* Early exit if we don't want to pack insns. */
7395 || !flag_schedule_insns_after_reload
7396 || !TARGET_VLIW_BRANCH
7397 || frv_packet
.issue_rate
== 1)
7400 /* Set up the initial packing state. */
7402 frv_packet
.dfa_state
= alloca (state_size ());
7404 frv_start_packet_block ();
7405 for (insn
= get_insns (); insn
!= 0; insn
= next_insn
)
7410 code
= GET_CODE (insn
);
7411 next_insn
= NEXT_INSN (insn
);
7413 if (code
== CODE_LABEL
)
7415 frv_finish_packet (handle_packet
);
7416 frv_start_packet_block ();
7420 switch (GET_CODE (PATTERN (insn
)))
7429 /* Calls mustn't be packed on a TOMCAT. */
7430 if (GET_CODE (insn
) == CALL_INSN
&& frv_cpu_type
== FRV_CPU_TOMCAT
)
7431 frv_finish_packet (handle_packet
);
7433 /* Since the last instruction in a packet determines the EH
7434 region, any exception-throwing instruction must come at
7435 the end of reordered packet. Insns that issue to a
7436 branch unit are bound to come last; for others it's
7437 too hard to predict. */
7438 eh_insn_p
= (find_reg_note (insn
, REG_EH_REGION
, NULL
) != NULL
);
7439 if (eh_insn_p
&& !frv_issues_to_branch_unit_p (insn
))
7440 frv_finish_packet (handle_packet
);
7442 /* Finish the current packet if we can't add INSN to it.
7443 Simulate cycles until INSN is ready to issue. */
7444 if (!frv_pack_insn_p (insn
))
7446 frv_finish_packet (handle_packet
);
7447 while (!frv_pack_insn_p (insn
))
7448 state_transition (frv_packet
.dfa_state
, 0);
7451 /* Add the instruction to the packet. */
7452 frv_add_insn_to_packet (insn
);
7454 /* Calls and jumps end a packet, as do insns that throw
7456 if (code
== CALL_INSN
|| code
== JUMP_INSN
|| eh_insn_p
)
7457 frv_finish_packet (handle_packet
);
7461 frv_finish_packet (handle_packet
);
7466 /* Subroutine of frv_sort_insn_group. We are trying to sort
7467 frv_packet.groups[GROUP].sorted[0...NUM_INSNS-1] into assembly
7468 language order. We have already picked a new position for
7469 frv_packet.groups[GROUP].sorted[X] if bit X of ISSUED is set.
7470 These instructions will occupy elements [0, LOWER_SLOT) and
7471 [UPPER_SLOT, NUM_INSNS) of the final (sorted) array. STATE is
7472 the DFA state after issuing these instructions.
7474 Try filling elements [LOWER_SLOT, UPPER_SLOT) with every permutation
7475 of the unused instructions. Return true if one such permutation gives
7476 a valid ordering, leaving the successful permutation in sorted[].
7477 Do not modify sorted[] until a valid permutation is found. */
7480 frv_sort_insn_group_1 (enum frv_insn_group group
,
7481 unsigned int lower_slot
, unsigned int upper_slot
,
7482 unsigned int issued
, unsigned int num_insns
,
7485 struct frv_packet_group
*packet_group
;
7491 /* Early success if we've filled all the slots. */
7492 if (lower_slot
== upper_slot
)
7495 packet_group
= &frv_packet
.groups
[group
];
7496 dfa_size
= state_size ();
7497 test_state
= alloca (dfa_size
);
7499 /* Try issuing each unused instruction. */
7500 for (i
= num_insns
- 1; i
+ 1 != 0; i
--)
7501 if (~issued
& (1 << i
))
7503 insn
= packet_group
->sorted
[i
];
7504 memcpy (test_state
, state
, dfa_size
);
7505 if (state_transition (test_state
, insn
) < 0
7506 && cpu_unit_reservation_p (test_state
,
7507 NTH_UNIT (group
, upper_slot
- 1))
7508 && frv_sort_insn_group_1 (group
, lower_slot
, upper_slot
- 1,
7509 issued
| (1 << i
), num_insns
,
7512 packet_group
->sorted
[upper_slot
- 1] = insn
;
7520 /* Compare two instructions by their frv_insn_unit. */
7523 frv_compare_insns (const void *first
, const void *second
)
7525 const rtx
*insn1
= first
, *insn2
= second
;
7526 return frv_insn_unit (*insn1
) - frv_insn_unit (*insn2
);
7529 /* Copy frv_packet.groups[GROUP].insns[] to frv_packet.groups[GROUP].sorted[]
7530 and sort it into assembly language order. See frv.md for a description of
7534 frv_sort_insn_group (enum frv_insn_group group
)
7536 struct frv_packet_group
*packet_group
;
7537 unsigned int first
, i
, nop
, max_unit
, num_slots
;
7538 state_t state
, test_state
;
7541 packet_group
= &frv_packet
.groups
[group
];
7543 /* Assume no nop is needed. */
7544 packet_group
->nop
= 0;
7546 if (packet_group
->num_insns
== 0)
7549 /* Copy insns[] to sorted[]. */
7550 memcpy (packet_group
->sorted
, packet_group
->insns
,
7551 sizeof (rtx
) * packet_group
->num_insns
);
7553 /* Sort sorted[] by the unit that each insn tries to take first. */
7554 if (packet_group
->num_insns
> 1)
7555 qsort (packet_group
->sorted
, packet_group
->num_insns
,
7556 sizeof (rtx
), frv_compare_insns
);
7558 /* That's always enough for branch and control insns. */
7559 if (group
== GROUP_B
|| group
== GROUP_C
)
7562 dfa_size
= state_size ();
7563 state
= alloca (dfa_size
);
7564 test_state
= alloca (dfa_size
);
7566 /* Find the highest FIRST such that sorted[0...FIRST-1] can issue
7567 consecutively and such that the DFA takes unit X when sorted[X]
7568 is added. Set STATE to the new DFA state. */
7569 state_reset (test_state
);
7570 for (first
= 0; first
< packet_group
->num_insns
; first
++)
7572 memcpy (state
, test_state
, dfa_size
);
7573 if (state_transition (test_state
, packet_group
->sorted
[first
]) >= 0
7574 || !cpu_unit_reservation_p (test_state
, NTH_UNIT (group
, first
)))
7578 /* If all the instructions issued in ascending order, we're done. */
7579 if (first
== packet_group
->num_insns
)
7582 /* Add nops to the end of sorted[] and try each permutation until
7583 we find one that works. */
7584 for (nop
= 0; nop
< frv_num_nops
; nop
++)
7586 max_unit
= frv_insn_unit (frv_nops
[nop
]);
7587 if (frv_unit_groups
[max_unit
] == group
)
7589 packet_group
->nop
= frv_nops
[nop
];
7590 num_slots
= UNIT_NUMBER (max_unit
) + 1;
7591 for (i
= packet_group
->num_insns
; i
< num_slots
; i
++)
7592 packet_group
->sorted
[i
] = frv_nops
[nop
];
7593 if (frv_sort_insn_group_1 (group
, first
, num_slots
,
7594 (1 << first
) - 1, num_slots
, state
))
7601 /* Sort the current packet into assembly-language order. Set packing
7602 flags as appropriate. */
7605 frv_reorder_packet (void)
7607 unsigned int cursor
[NUM_GROUPS
];
7608 rtx insns
[ARRAY_SIZE (frv_unit_groups
)];
7609 unsigned int unit
, to
, from
;
7610 enum frv_insn_group group
;
7611 struct frv_packet_group
*packet_group
;
7613 /* First sort each group individually. */
7614 for (group
= 0; group
< NUM_GROUPS
; group
++)
7617 frv_sort_insn_group (group
);
7620 /* Go through the unit template and try add an instruction from
7621 that unit's group. */
7623 for (unit
= 0; unit
< ARRAY_SIZE (frv_unit_groups
); unit
++)
7625 group
= frv_unit_groups
[unit
];
7626 packet_group
= &frv_packet
.groups
[group
];
7627 if (cursor
[group
] < packet_group
->num_insns
)
7629 /* frv_reorg should have added nops for us. */
7630 gcc_assert (packet_group
->sorted
[cursor
[group
]]
7631 != packet_group
->nop
);
7632 insns
[to
++] = packet_group
->sorted
[cursor
[group
]++];
7636 gcc_assert (to
== frv_packet
.num_insns
);
7638 /* Clear the last instruction's packing flag, thus marking the end of
7639 a packet. Reorder the other instructions relative to it. */
7640 CLEAR_PACKING_FLAG (insns
[to
- 1]);
7641 for (from
= 0; from
< to
- 1; from
++)
7643 remove_insn (insns
[from
]);
7644 add_insn_before (insns
[from
], insns
[to
- 1]);
7645 SET_PACKING_FLAG (insns
[from
]);
7650 /* Divide instructions into packets. Reorder the contents of each
7651 packet so that they are in the correct assembly-language order.
7653 Since this pass can change the raw meaning of the rtl stream, it must
7654 only be called at the last minute, just before the instructions are
7658 frv_pack_insns (void)
7660 if (frv_for_each_packet (frv_reorder_packet
))
7661 frv_insn_packing_flag
= 0;
7663 frv_insn_packing_flag
= -1;
7666 /* See whether we need to add nops to group GROUP in order to
7667 make a valid packet. */
7670 frv_fill_unused_units (enum frv_insn_group group
)
7672 unsigned int non_nops
, nops
, i
;
7673 struct frv_packet_group
*packet_group
;
7675 packet_group
= &frv_packet
.groups
[group
];
7677 /* Sort the instructions into assembly-language order.
7678 Use nops to fill slots that are otherwise unused. */
7679 frv_sort_insn_group (group
);
7681 /* See how many nops are needed before the final useful instruction. */
7683 for (non_nops
= 0; non_nops
< packet_group
->num_insns
; non_nops
++)
7684 while (packet_group
->sorted
[i
++] == packet_group
->nop
)
7687 /* Insert that many nops into the instruction stream. */
7689 frv_insert_nop_in_packet (packet_group
->nop
);
7692 /* Return true if accesses IO1 and IO2 refer to the same doubleword. */
7695 frv_same_doubleword_p (const struct frv_io
*io1
, const struct frv_io
*io2
)
7697 if (io1
->const_address
!= 0 && io2
->const_address
!= 0)
7698 return io1
->const_address
== io2
->const_address
;
7700 if (io1
->var_address
!= 0 && io2
->var_address
!= 0)
7701 return rtx_equal_p (io1
->var_address
, io2
->var_address
);
7706 /* Return true if operations IO1 and IO2 are guaranteed to complete
7710 frv_io_fixed_order_p (const struct frv_io
*io1
, const struct frv_io
*io2
)
7712 /* The order of writes is always preserved. */
7713 if (io1
->type
== FRV_IO_WRITE
&& io2
->type
== FRV_IO_WRITE
)
7716 /* The order of reads isn't preserved. */
7717 if (io1
->type
!= FRV_IO_WRITE
&& io2
->type
!= FRV_IO_WRITE
)
7720 /* One operation is a write and the other is (or could be) a read.
7721 The order is only guaranteed if the accesses are to the same
7723 return frv_same_doubleword_p (io1
, io2
);
7726 /* Generalize I/O operation X so that it covers both X and Y. */
7729 frv_io_union (struct frv_io
*x
, const struct frv_io
*y
)
7731 if (x
->type
!= y
->type
)
7732 x
->type
= FRV_IO_UNKNOWN
;
7733 if (!frv_same_doubleword_p (x
, y
))
7735 x
->const_address
= 0;
7740 /* Fill IO with information about the load or store associated with
7741 membar instruction INSN. */
7744 frv_extract_membar (struct frv_io
*io
, rtx insn
)
7746 extract_insn (insn
);
7747 io
->type
= INTVAL (recog_data
.operand
[2]);
7748 io
->const_address
= INTVAL (recog_data
.operand
[1]);
7749 io
->var_address
= XEXP (recog_data
.operand
[0], 0);
7752 /* A note_stores callback for which DATA points to an rtx. Nullify *DATA
7753 if X is a register and *DATA depends on X. */
7756 frv_io_check_address (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
7760 if (REG_P (x
) && *other
!= 0 && reg_overlap_mentioned_p (x
, *other
))
7764 /* A note_stores callback for which DATA points to a HARD_REG_SET.
7765 Remove every modified register from the set. */
7768 frv_io_handle_set (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
7770 HARD_REG_SET
*set
= data
;
7774 FOR_EACH_REGNO (regno
, x
)
7775 CLEAR_HARD_REG_BIT (*set
, regno
);
7778 /* A for_each_rtx callback for which DATA points to a HARD_REG_SET.
7779 Add every register in *X to the set. */
7782 frv_io_handle_use_1 (rtx
*x
, void *data
)
7784 HARD_REG_SET
*set
= data
;
7788 FOR_EACH_REGNO (regno
, *x
)
7789 SET_HARD_REG_BIT (*set
, regno
);
7794 /* A note_stores callback that applies frv_io_handle_use_1 to an
7795 entire rhs value. */
7798 frv_io_handle_use (rtx
*x
, void *data
)
7800 for_each_rtx (x
, frv_io_handle_use_1
, data
);
7803 /* Go through block BB looking for membars to remove. There are two
7804 cases where intra-block analysis is enough:
7806 - a membar is redundant if it occurs between two consecutive I/O
7807 operations and if those operations are guaranteed to complete
7810 - a membar for a __builtin_read is redundant if the result is
7811 used before the next I/O operation is issued.
7813 If the last membar in the block could not be removed, and there
7814 are guaranteed to be no I/O operations between that membar and
7815 the end of the block, store the membar in *LAST_MEMBAR, otherwise
7818 Describe the block's first I/O operation in *NEXT_IO. Describe
7819 an unknown operation if the block doesn't do any I/O. */
7822 frv_optimize_membar_local (basic_block bb
, struct frv_io
*next_io
,
7825 HARD_REG_SET used_regs
;
7826 rtx next_membar
, set
, insn
;
7829 /* NEXT_IO is the next I/O operation to be performed after the current
7830 instruction. It starts off as being an unknown operation. */
7831 memset (next_io
, 0, sizeof (*next_io
));
7833 /* NEXT_IS_END_P is true if NEXT_IO describes the end of the block. */
7834 next_is_end_p
= true;
7836 /* If the current instruction is a __builtin_read or __builtin_write,
7837 NEXT_MEMBAR is the membar instruction associated with it. NEXT_MEMBAR
7838 is null if the membar has already been deleted.
7840 Note that the initialization here should only be needed to
7841 suppress warnings. */
7844 /* USED_REGS is the set of registers that are used before the
7845 next I/O instruction. */
7846 CLEAR_HARD_REG_SET (used_regs
);
7848 for (insn
= BB_END (bb
); insn
!= BB_HEAD (bb
); insn
= PREV_INSN (insn
))
7849 if (GET_CODE (insn
) == CALL_INSN
)
7851 /* We can't predict what a call will do to volatile memory. */
7852 memset (next_io
, 0, sizeof (struct frv_io
));
7853 next_is_end_p
= false;
7854 CLEAR_HARD_REG_SET (used_regs
);
7856 else if (INSN_P (insn
))
7857 switch (recog_memoized (insn
))
7859 case CODE_FOR_optional_membar_qi
:
7860 case CODE_FOR_optional_membar_hi
:
7861 case CODE_FOR_optional_membar_si
:
7862 case CODE_FOR_optional_membar_di
:
7866 /* Local information isn't enough to decide whether this
7867 membar is needed. Stash it away for later. */
7868 *last_membar
= insn
;
7869 frv_extract_membar (next_io
, insn
);
7870 next_is_end_p
= false;
7874 /* Check whether the I/O operation before INSN could be
7875 reordered with one described by NEXT_IO. If it can't,
7876 INSN will not be needed. */
7877 struct frv_io prev_io
;
7879 frv_extract_membar (&prev_io
, insn
);
7880 if (frv_io_fixed_order_p (&prev_io
, next_io
))
7884 ";; [Local] Removing membar %d since order"
7885 " of accesses is guaranteed\n",
7886 INSN_UID (next_membar
));
7888 insn
= NEXT_INSN (insn
);
7889 delete_insn (next_membar
);
7897 /* Invalidate NEXT_IO's address if it depends on something that
7898 is clobbered by INSN. */
7899 if (next_io
->var_address
)
7900 note_stores (PATTERN (insn
), frv_io_check_address
,
7901 &next_io
->var_address
);
7903 /* If the next membar is associated with a __builtin_read,
7904 see if INSN reads from that address. If it does, and if
7905 the destination register is used before the next I/O access,
7906 there is no need for the membar. */
7907 set
= PATTERN (insn
);
7908 if (next_io
->type
== FRV_IO_READ
7909 && next_io
->var_address
!= 0
7911 && GET_CODE (set
) == SET
7912 && GET_CODE (SET_DEST (set
)) == REG
7913 && TEST_HARD_REG_BIT (used_regs
, REGNO (SET_DEST (set
))))
7917 src
= SET_SRC (set
);
7918 if (GET_CODE (src
) == ZERO_EXTEND
)
7919 src
= XEXP (src
, 0);
7921 if (GET_CODE (src
) == MEM
7922 && rtx_equal_p (XEXP (src
, 0), next_io
->var_address
))
7926 ";; [Local] Removing membar %d since the target"
7927 " of %d is used before the I/O operation\n",
7928 INSN_UID (next_membar
), INSN_UID (insn
));
7930 if (next_membar
== *last_membar
)
7933 delete_insn (next_membar
);
7938 /* If INSN has volatile references, forget about any registers
7939 that are used after it. Otherwise forget about uses that
7940 are (or might be) defined by INSN. */
7941 if (volatile_refs_p (PATTERN (insn
)))
7942 CLEAR_HARD_REG_SET (used_regs
);
7944 note_stores (PATTERN (insn
), frv_io_handle_set
, &used_regs
);
7946 note_uses (&PATTERN (insn
), frv_io_handle_use
, &used_regs
);
7951 /* See if MEMBAR, the last membar instruction in BB, can be removed.
7952 FIRST_IO[X] describes the first operation performed by basic block X. */
7955 frv_optimize_membar_global (basic_block bb
, struct frv_io
*first_io
,
7958 struct frv_io this_io
, next_io
;
7962 /* We need to keep the membar if there is an edge to the exit block. */
7963 FOR_EACH_EDGE (succ
, ei
, bb
->succs
)
7964 /* for (succ = bb->succ; succ != 0; succ = succ->succ_next) */
7965 if (succ
->dest
== EXIT_BLOCK_PTR
)
7968 /* Work out the union of all successor blocks. */
7969 ei
= ei_start (bb
->succs
);
7970 ei_cond (ei
, &succ
);
7971 /* next_io = first_io[bb->succ->dest->index]; */
7972 next_io
= first_io
[succ
->dest
->index
];
7973 ei
= ei_start (bb
->succs
);
7974 if (ei_cond (ei
, &succ
))
7976 for (ei_next (&ei
); ei_cond (ei
, &succ
); ei_next (&ei
))
7977 /*for (succ = bb->succ->succ_next; succ != 0; succ = succ->succ_next)*/
7978 frv_io_union (&next_io
, &first_io
[succ
->dest
->index
]);
7983 frv_extract_membar (&this_io
, membar
);
7984 if (frv_io_fixed_order_p (&this_io
, &next_io
))
7988 ";; [Global] Removing membar %d since order of accesses"
7989 " is guaranteed\n", INSN_UID (membar
));
7991 delete_insn (membar
);
7995 /* Remove redundant membars from the current function. */
7998 frv_optimize_membar (void)
8001 struct frv_io
*first_io
;
8004 compute_bb_for_insn ();
8005 first_io
= xcalloc (last_basic_block
, sizeof (struct frv_io
));
8006 last_membar
= xcalloc (last_basic_block
, sizeof (rtx
));
8009 frv_optimize_membar_local (bb
, &first_io
[bb
->index
],
8010 &last_membar
[bb
->index
]);
8013 if (last_membar
[bb
->index
] != 0)
8014 frv_optimize_membar_global (bb
, first_io
, last_membar
[bb
->index
]);
8020 /* Used by frv_reorg to keep track of the current packet's address. */
8021 static unsigned int frv_packet_address
;
8023 /* If the current packet falls through to a label, try to pad the packet
8024 with nops in order to fit the label's alignment requirements. */
8027 frv_align_label (void)
8029 unsigned int alignment
, target
, nop
;
8030 rtx x
, last
, barrier
, label
;
8032 /* Walk forward to the start of the next packet. Set ALIGNMENT to the
8033 maximum alignment of that packet, LABEL to the last label between
8034 the packets, and BARRIER to the last barrier. */
8035 last
= frv_packet
.insns
[frv_packet
.num_insns
- 1];
8036 label
= barrier
= 0;
8038 for (x
= NEXT_INSN (last
); x
!= 0 && !INSN_P (x
); x
= NEXT_INSN (x
))
8042 unsigned int subalign
= 1 << label_to_alignment (x
);
8043 alignment
= MAX (alignment
, subalign
);
8050 /* If -malign-labels, and the packet falls through to an unaligned
8051 label, try introducing a nop to align that label to 8 bytes. */
8052 if (TARGET_ALIGN_LABELS
8055 && frv_packet
.num_insns
< frv_packet
.issue_rate
)
8056 alignment
= MAX (alignment
, 8);
8058 /* Advance the address to the end of the current packet. */
8059 frv_packet_address
+= frv_packet
.num_insns
* 4;
8061 /* Work out the target address, after alignment. */
8062 target
= (frv_packet_address
+ alignment
- 1) & -alignment
;
8064 /* If the packet falls through to the label, try to find an efficient
8065 padding sequence. */
8068 /* First try adding nops to the current packet. */
8069 for (nop
= 0; nop
< frv_num_nops
; nop
++)
8070 while (frv_packet_address
< target
&& frv_pack_insn_p (frv_nops
[nop
]))
8072 frv_insert_nop_in_packet (frv_nops
[nop
]);
8073 frv_packet_address
+= 4;
8076 /* If we still haven't reached the target, add some new packets that
8077 contain only nops. If there are two types of nop, insert an
8078 alternating sequence of frv_nops[0] and frv_nops[1], which will
8079 lead to packets like:
8086 etc. Just emit frv_nops[0] if that's the only nop we have. */
8087 last
= frv_packet
.insns
[frv_packet
.num_insns
- 1];
8089 while (frv_packet_address
< target
)
8091 last
= emit_insn_after (PATTERN (frv_nops
[nop
]), last
);
8092 frv_packet_address
+= 4;
8093 if (frv_num_nops
> 1)
8098 frv_packet_address
= target
;
8101 /* Subroutine of frv_reorg, called after each packet has been constructed
8105 frv_reorg_packet (void)
8107 frv_fill_unused_units (GROUP_I
);
8108 frv_fill_unused_units (GROUP_FM
);
8112 /* Add an instruction with pattern NOP to frv_nops[]. */
8115 frv_register_nop (rtx nop
)
8117 nop
= make_insn_raw (nop
);
8118 NEXT_INSN (nop
) = 0;
8119 PREV_INSN (nop
) = 0;
8120 frv_nops
[frv_num_nops
++] = nop
;
8123 /* Implement TARGET_MACHINE_DEPENDENT_REORG. Divide the instructions
8124 into packets and check whether we need to insert nops in order to
8125 fulfill the processor's issue requirements. Also, if the user has
8126 requested a certain alignment for a label, try to meet that alignment
8127 by inserting nops in the previous packet. */
8132 if (optimize
> 0 && TARGET_OPTIMIZE_MEMBAR
&& cfun
->machine
->has_membar_p
)
8133 frv_optimize_membar ();
8136 frv_register_nop (gen_nop ());
8138 frv_register_nop (gen_mnop ());
8139 if (TARGET_HARD_FLOAT
)
8140 frv_register_nop (gen_fnop ());
8142 /* Estimate the length of each branch. Although this may change after
8143 we've inserted nops, it will only do so in big functions. */
8144 shorten_branches (get_insns ());
8146 frv_packet_address
= 0;
8147 frv_for_each_packet (frv_reorg_packet
);
8150 #define def_builtin(name, type, code) \
8151 lang_hooks.builtin_function ((name), (type), (code), BUILT_IN_MD, NULL, NULL)
8153 struct builtin_description
8155 enum insn_code icode
;
8157 enum frv_builtins code
;
8158 enum rtx_code comparison
;
8162 /* Media intrinsics that take a single, constant argument. */
8164 static struct builtin_description bdesc_set
[] =
8166 { CODE_FOR_mhdsets
, "__MHDSETS", FRV_BUILTIN_MHDSETS
, 0, 0 }
8169 /* Media intrinsics that take just one argument. */
8171 static struct builtin_description bdesc_1arg
[] =
8173 { CODE_FOR_mnot
, "__MNOT", FRV_BUILTIN_MNOT
, 0, 0 },
8174 { CODE_FOR_munpackh
, "__MUNPACKH", FRV_BUILTIN_MUNPACKH
, 0, 0 },
8175 { CODE_FOR_mbtoh
, "__MBTOH", FRV_BUILTIN_MBTOH
, 0, 0 },
8176 { CODE_FOR_mhtob
, "__MHTOB", FRV_BUILTIN_MHTOB
, 0, 0 },
8177 { CODE_FOR_mabshs
, "__MABSHS", FRV_BUILTIN_MABSHS
, 0, 0 },
8178 { CODE_FOR_scutss
, "__SCUTSS", FRV_BUILTIN_SCUTSS
, 0, 0 }
8181 /* Media intrinsics that take two arguments. */
8183 static struct builtin_description bdesc_2arg
[] =
8185 { CODE_FOR_mand
, "__MAND", FRV_BUILTIN_MAND
, 0, 0 },
8186 { CODE_FOR_mor
, "__MOR", FRV_BUILTIN_MOR
, 0, 0 },
8187 { CODE_FOR_mxor
, "__MXOR", FRV_BUILTIN_MXOR
, 0, 0 },
8188 { CODE_FOR_maveh
, "__MAVEH", FRV_BUILTIN_MAVEH
, 0, 0 },
8189 { CODE_FOR_msaths
, "__MSATHS", FRV_BUILTIN_MSATHS
, 0, 0 },
8190 { CODE_FOR_msathu
, "__MSATHU", FRV_BUILTIN_MSATHU
, 0, 0 },
8191 { CODE_FOR_maddhss
, "__MADDHSS", FRV_BUILTIN_MADDHSS
, 0, 0 },
8192 { CODE_FOR_maddhus
, "__MADDHUS", FRV_BUILTIN_MADDHUS
, 0, 0 },
8193 { CODE_FOR_msubhss
, "__MSUBHSS", FRV_BUILTIN_MSUBHSS
, 0, 0 },
8194 { CODE_FOR_msubhus
, "__MSUBHUS", FRV_BUILTIN_MSUBHUS
, 0, 0 },
8195 { CODE_FOR_mqaddhss
, "__MQADDHSS", FRV_BUILTIN_MQADDHSS
, 0, 0 },
8196 { CODE_FOR_mqaddhus
, "__MQADDHUS", FRV_BUILTIN_MQADDHUS
, 0, 0 },
8197 { CODE_FOR_mqsubhss
, "__MQSUBHSS", FRV_BUILTIN_MQSUBHSS
, 0, 0 },
8198 { CODE_FOR_mqsubhus
, "__MQSUBHUS", FRV_BUILTIN_MQSUBHUS
, 0, 0 },
8199 { CODE_FOR_mpackh
, "__MPACKH", FRV_BUILTIN_MPACKH
, 0, 0 },
8200 { CODE_FOR_mcop1
, "__Mcop1", FRV_BUILTIN_MCOP1
, 0, 0 },
8201 { CODE_FOR_mcop2
, "__Mcop2", FRV_BUILTIN_MCOP2
, 0, 0 },
8202 { CODE_FOR_mwcut
, "__MWCUT", FRV_BUILTIN_MWCUT
, 0, 0 },
8203 { CODE_FOR_mqsaths
, "__MQSATHS", FRV_BUILTIN_MQSATHS
, 0, 0 },
8204 { CODE_FOR_mqlclrhs
, "__MQLCLRHS", FRV_BUILTIN_MQLCLRHS
, 0, 0 },
8205 { CODE_FOR_mqlmths
, "__MQLMTHS", FRV_BUILTIN_MQLMTHS
, 0, 0 },
8206 { CODE_FOR_smul
, "__SMUL", FRV_BUILTIN_SMUL
, 0, 0 },
8207 { CODE_FOR_umul
, "__UMUL", FRV_BUILTIN_UMUL
, 0, 0 },
8208 { CODE_FOR_addss
, "__ADDSS", FRV_BUILTIN_ADDSS
, 0, 0 },
8209 { CODE_FOR_subss
, "__SUBSS", FRV_BUILTIN_SUBSS
, 0, 0 },
8210 { CODE_FOR_slass
, "__SLASS", FRV_BUILTIN_SLASS
, 0, 0 },
8211 { CODE_FOR_scan
, "__SCAN", FRV_BUILTIN_SCAN
, 0, 0 }
8214 /* Integer intrinsics that take two arguments and have no return value. */
8216 static struct builtin_description bdesc_int_void2arg
[] =
8218 { CODE_FOR_smass
, "__SMASS", FRV_BUILTIN_SMASS
, 0, 0 },
8219 { CODE_FOR_smsss
, "__SMSSS", FRV_BUILTIN_SMSSS
, 0, 0 },
8220 { CODE_FOR_smu
, "__SMU", FRV_BUILTIN_SMU
, 0, 0 }
8223 static struct builtin_description bdesc_prefetches
[] =
8225 { CODE_FOR_frv_prefetch0
, "__data_prefetch0", FRV_BUILTIN_PREFETCH0
, 0, 0 },
8226 { CODE_FOR_frv_prefetch
, "__data_prefetch", FRV_BUILTIN_PREFETCH
, 0, 0 }
8229 /* Media intrinsics that take two arguments, the first being an ACC number. */
8231 static struct builtin_description bdesc_cut
[] =
8233 { CODE_FOR_mcut
, "__MCUT", FRV_BUILTIN_MCUT
, 0, 0 },
8234 { CODE_FOR_mcutss
, "__MCUTSS", FRV_BUILTIN_MCUTSS
, 0, 0 },
8235 { CODE_FOR_mdcutssi
, "__MDCUTSSI", FRV_BUILTIN_MDCUTSSI
, 0, 0 }
8238 /* Two-argument media intrinsics with an immediate second argument. */
8240 static struct builtin_description bdesc_2argimm
[] =
8242 { CODE_FOR_mrotli
, "__MROTLI", FRV_BUILTIN_MROTLI
, 0, 0 },
8243 { CODE_FOR_mrotri
, "__MROTRI", FRV_BUILTIN_MROTRI
, 0, 0 },
8244 { CODE_FOR_msllhi
, "__MSLLHI", FRV_BUILTIN_MSLLHI
, 0, 0 },
8245 { CODE_FOR_msrlhi
, "__MSRLHI", FRV_BUILTIN_MSRLHI
, 0, 0 },
8246 { CODE_FOR_msrahi
, "__MSRAHI", FRV_BUILTIN_MSRAHI
, 0, 0 },
8247 { CODE_FOR_mexpdhw
, "__MEXPDHW", FRV_BUILTIN_MEXPDHW
, 0, 0 },
8248 { CODE_FOR_mexpdhd
, "__MEXPDHD", FRV_BUILTIN_MEXPDHD
, 0, 0 },
8249 { CODE_FOR_mdrotli
, "__MDROTLI", FRV_BUILTIN_MDROTLI
, 0, 0 },
8250 { CODE_FOR_mcplhi
, "__MCPLHI", FRV_BUILTIN_MCPLHI
, 0, 0 },
8251 { CODE_FOR_mcpli
, "__MCPLI", FRV_BUILTIN_MCPLI
, 0, 0 },
8252 { CODE_FOR_mhsetlos
, "__MHSETLOS", FRV_BUILTIN_MHSETLOS
, 0, 0 },
8253 { CODE_FOR_mhsetloh
, "__MHSETLOH", FRV_BUILTIN_MHSETLOH
, 0, 0 },
8254 { CODE_FOR_mhsethis
, "__MHSETHIS", FRV_BUILTIN_MHSETHIS
, 0, 0 },
8255 { CODE_FOR_mhsethih
, "__MHSETHIH", FRV_BUILTIN_MHSETHIH
, 0, 0 },
8256 { CODE_FOR_mhdseth
, "__MHDSETH", FRV_BUILTIN_MHDSETH
, 0, 0 },
8257 { CODE_FOR_mqsllhi
, "__MQSLLHI", FRV_BUILTIN_MQSLLHI
, 0, 0 },
8258 { CODE_FOR_mqsrahi
, "__MQSRAHI", FRV_BUILTIN_MQSRAHI
, 0, 0 }
8261 /* Media intrinsics that take two arguments and return void, the first argument
8262 being a pointer to 4 words in memory. */
8264 static struct builtin_description bdesc_void2arg
[] =
8266 { CODE_FOR_mdunpackh
, "__MDUNPACKH", FRV_BUILTIN_MDUNPACKH
, 0, 0 },
8267 { CODE_FOR_mbtohe
, "__MBTOHE", FRV_BUILTIN_MBTOHE
, 0, 0 },
8270 /* Media intrinsics that take three arguments, the first being a const_int that
8271 denotes an accumulator, and that return void. */
8273 static struct builtin_description bdesc_void3arg
[] =
8275 { CODE_FOR_mcpxrs
, "__MCPXRS", FRV_BUILTIN_MCPXRS
, 0, 0 },
8276 { CODE_FOR_mcpxru
, "__MCPXRU", FRV_BUILTIN_MCPXRU
, 0, 0 },
8277 { CODE_FOR_mcpxis
, "__MCPXIS", FRV_BUILTIN_MCPXIS
, 0, 0 },
8278 { CODE_FOR_mcpxiu
, "__MCPXIU", FRV_BUILTIN_MCPXIU
, 0, 0 },
8279 { CODE_FOR_mmulhs
, "__MMULHS", FRV_BUILTIN_MMULHS
, 0, 0 },
8280 { CODE_FOR_mmulhu
, "__MMULHU", FRV_BUILTIN_MMULHU
, 0, 0 },
8281 { CODE_FOR_mmulxhs
, "__MMULXHS", FRV_BUILTIN_MMULXHS
, 0, 0 },
8282 { CODE_FOR_mmulxhu
, "__MMULXHU", FRV_BUILTIN_MMULXHU
, 0, 0 },
8283 { CODE_FOR_mmachs
, "__MMACHS", FRV_BUILTIN_MMACHS
, 0, 0 },
8284 { CODE_FOR_mmachu
, "__MMACHU", FRV_BUILTIN_MMACHU
, 0, 0 },
8285 { CODE_FOR_mmrdhs
, "__MMRDHS", FRV_BUILTIN_MMRDHS
, 0, 0 },
8286 { CODE_FOR_mmrdhu
, "__MMRDHU", FRV_BUILTIN_MMRDHU
, 0, 0 },
8287 { CODE_FOR_mqcpxrs
, "__MQCPXRS", FRV_BUILTIN_MQCPXRS
, 0, 0 },
8288 { CODE_FOR_mqcpxru
, "__MQCPXRU", FRV_BUILTIN_MQCPXRU
, 0, 0 },
8289 { CODE_FOR_mqcpxis
, "__MQCPXIS", FRV_BUILTIN_MQCPXIS
, 0, 0 },
8290 { CODE_FOR_mqcpxiu
, "__MQCPXIU", FRV_BUILTIN_MQCPXIU
, 0, 0 },
8291 { CODE_FOR_mqmulhs
, "__MQMULHS", FRV_BUILTIN_MQMULHS
, 0, 0 },
8292 { CODE_FOR_mqmulhu
, "__MQMULHU", FRV_BUILTIN_MQMULHU
, 0, 0 },
8293 { CODE_FOR_mqmulxhs
, "__MQMULXHS", FRV_BUILTIN_MQMULXHS
, 0, 0 },
8294 { CODE_FOR_mqmulxhu
, "__MQMULXHU", FRV_BUILTIN_MQMULXHU
, 0, 0 },
8295 { CODE_FOR_mqmachs
, "__MQMACHS", FRV_BUILTIN_MQMACHS
, 0, 0 },
8296 { CODE_FOR_mqmachu
, "__MQMACHU", FRV_BUILTIN_MQMACHU
, 0, 0 },
8297 { CODE_FOR_mqxmachs
, "__MQXMACHS", FRV_BUILTIN_MQXMACHS
, 0, 0 },
8298 { CODE_FOR_mqxmacxhs
, "__MQXMACXHS", FRV_BUILTIN_MQXMACXHS
, 0, 0 },
8299 { CODE_FOR_mqmacxhs
, "__MQMACXHS", FRV_BUILTIN_MQMACXHS
, 0, 0 }
8302 /* Media intrinsics that take two accumulator numbers as argument and
8305 static struct builtin_description bdesc_voidacc
[] =
8307 { CODE_FOR_maddaccs
, "__MADDACCS", FRV_BUILTIN_MADDACCS
, 0, 0 },
8308 { CODE_FOR_msubaccs
, "__MSUBACCS", FRV_BUILTIN_MSUBACCS
, 0, 0 },
8309 { CODE_FOR_masaccs
, "__MASACCS", FRV_BUILTIN_MASACCS
, 0, 0 },
8310 { CODE_FOR_mdaddaccs
, "__MDADDACCS", FRV_BUILTIN_MDADDACCS
, 0, 0 },
8311 { CODE_FOR_mdsubaccs
, "__MDSUBACCS", FRV_BUILTIN_MDSUBACCS
, 0, 0 },
8312 { CODE_FOR_mdasaccs
, "__MDASACCS", FRV_BUILTIN_MDASACCS
, 0, 0 }
8315 /* Intrinsics that load a value and then issue a MEMBAR. The load is
8316 a normal move and the ICODE is for the membar. */
8318 static struct builtin_description bdesc_loads
[] =
8320 { CODE_FOR_optional_membar_qi
, "__builtin_read8",
8321 FRV_BUILTIN_READ8
, 0, 0 },
8322 { CODE_FOR_optional_membar_hi
, "__builtin_read16",
8323 FRV_BUILTIN_READ16
, 0, 0 },
8324 { CODE_FOR_optional_membar_si
, "__builtin_read32",
8325 FRV_BUILTIN_READ32
, 0, 0 },
8326 { CODE_FOR_optional_membar_di
, "__builtin_read64",
8327 FRV_BUILTIN_READ64
, 0, 0 }
8330 /* Likewise stores. */
8332 static struct builtin_description bdesc_stores
[] =
8334 { CODE_FOR_optional_membar_qi
, "__builtin_write8",
8335 FRV_BUILTIN_WRITE8
, 0, 0 },
8336 { CODE_FOR_optional_membar_hi
, "__builtin_write16",
8337 FRV_BUILTIN_WRITE16
, 0, 0 },
8338 { CODE_FOR_optional_membar_si
, "__builtin_write32",
8339 FRV_BUILTIN_WRITE32
, 0, 0 },
8340 { CODE_FOR_optional_membar_di
, "__builtin_write64",
8341 FRV_BUILTIN_WRITE64
, 0, 0 },
8344 /* Initialize media builtins. */
8347 frv_init_builtins (void)
8349 tree endlink
= void_list_node
;
8350 tree accumulator
= integer_type_node
;
8351 tree integer
= integer_type_node
;
8352 tree voidt
= void_type_node
;
8353 tree uhalf
= short_unsigned_type_node
;
8354 tree sword1
= long_integer_type_node
;
8355 tree uword1
= long_unsigned_type_node
;
8356 tree sword2
= long_long_integer_type_node
;
8357 tree uword2
= long_long_unsigned_type_node
;
8358 tree uword4
= build_pointer_type (uword1
);
8359 tree vptr
= build_pointer_type (build_type_variant (void_type_node
, 0, 1));
8360 tree ubyte
= unsigned_char_type_node
;
8361 tree iacc
= integer_type_node
;
8363 #define UNARY(RET, T1) \
8364 build_function_type (RET, tree_cons (NULL_TREE, T1, endlink))
8366 #define BINARY(RET, T1, T2) \
8367 build_function_type (RET, tree_cons (NULL_TREE, T1, \
8368 tree_cons (NULL_TREE, T2, endlink)))
8370 #define TRINARY(RET, T1, T2, T3) \
8371 build_function_type (RET, tree_cons (NULL_TREE, T1, \
8372 tree_cons (NULL_TREE, T2, \
8373 tree_cons (NULL_TREE, T3, endlink))))
8375 #define QUAD(RET, T1, T2, T3, T4) \
8376 build_function_type (RET, tree_cons (NULL_TREE, T1, \
8377 tree_cons (NULL_TREE, T2, \
8378 tree_cons (NULL_TREE, T3, \
8379 tree_cons (NULL_TREE, T4, endlink)))))
8381 tree void_ftype_void
= build_function_type (voidt
, endlink
);
8383 tree void_ftype_acc
= UNARY (voidt
, accumulator
);
8384 tree void_ftype_uw4_uw1
= BINARY (voidt
, uword4
, uword1
);
8385 tree void_ftype_uw4_uw2
= BINARY (voidt
, uword4
, uword2
);
8386 tree void_ftype_acc_uw1
= BINARY (voidt
, accumulator
, uword1
);
8387 tree void_ftype_acc_acc
= BINARY (voidt
, accumulator
, accumulator
);
8388 tree void_ftype_acc_uw1_uw1
= TRINARY (voidt
, accumulator
, uword1
, uword1
);
8389 tree void_ftype_acc_sw1_sw1
= TRINARY (voidt
, accumulator
, sword1
, sword1
);
8390 tree void_ftype_acc_uw2_uw2
= TRINARY (voidt
, accumulator
, uword2
, uword2
);
8391 tree void_ftype_acc_sw2_sw2
= TRINARY (voidt
, accumulator
, sword2
, sword2
);
8393 tree uw1_ftype_uw1
= UNARY (uword1
, uword1
);
8394 tree uw1_ftype_sw1
= UNARY (uword1
, sword1
);
8395 tree uw1_ftype_uw2
= UNARY (uword1
, uword2
);
8396 tree uw1_ftype_acc
= UNARY (uword1
, accumulator
);
8397 tree uw1_ftype_uh_uh
= BINARY (uword1
, uhalf
, uhalf
);
8398 tree uw1_ftype_uw1_uw1
= BINARY (uword1
, uword1
, uword1
);
8399 tree uw1_ftype_uw1_int
= BINARY (uword1
, uword1
, integer
);
8400 tree uw1_ftype_acc_uw1
= BINARY (uword1
, accumulator
, uword1
);
8401 tree uw1_ftype_acc_sw1
= BINARY (uword1
, accumulator
, sword1
);
8402 tree uw1_ftype_uw2_uw1
= BINARY (uword1
, uword2
, uword1
);
8403 tree uw1_ftype_uw2_int
= BINARY (uword1
, uword2
, integer
);
8405 tree sw1_ftype_int
= UNARY (sword1
, integer
);
8406 tree sw1_ftype_sw1_sw1
= BINARY (sword1
, sword1
, sword1
);
8407 tree sw1_ftype_sw1_int
= BINARY (sword1
, sword1
, integer
);
8409 tree uw2_ftype_uw1
= UNARY (uword2
, uword1
);
8410 tree uw2_ftype_uw1_int
= BINARY (uword2
, uword1
, integer
);
8411 tree uw2_ftype_uw2_uw2
= BINARY (uword2
, uword2
, uword2
);
8412 tree uw2_ftype_uw2_int
= BINARY (uword2
, uword2
, integer
);
8413 tree uw2_ftype_acc_int
= BINARY (uword2
, accumulator
, integer
);
8414 tree uw2_ftype_uh_uh_uh_uh
= QUAD (uword2
, uhalf
, uhalf
, uhalf
, uhalf
);
8416 tree sw2_ftype_sw2_sw2
= BINARY (sword2
, sword2
, sword2
);
8417 tree sw2_ftype_sw2_int
= BINARY (sword2
, sword2
, integer
);
8418 tree uw2_ftype_uw1_uw1
= BINARY (uword2
, uword1
, uword1
);
8419 tree sw2_ftype_sw1_sw1
= BINARY (sword2
, sword1
, sword1
);
8420 tree void_ftype_sw1_sw1
= BINARY (voidt
, sword1
, sword1
);
8421 tree void_ftype_iacc_sw2
= BINARY (voidt
, iacc
, sword2
);
8422 tree void_ftype_iacc_sw1
= BINARY (voidt
, iacc
, sword1
);
8423 tree sw1_ftype_sw1
= UNARY (sword1
, sword1
);
8424 tree sw2_ftype_iacc
= UNARY (sword2
, iacc
);
8425 tree sw1_ftype_iacc
= UNARY (sword1
, iacc
);
8426 tree void_ftype_ptr
= UNARY (voidt
, const_ptr_type_node
);
8427 tree uw1_ftype_vptr
= UNARY (uword1
, vptr
);
8428 tree uw2_ftype_vptr
= UNARY (uword2
, vptr
);
8429 tree void_ftype_vptr_ub
= BINARY (voidt
, vptr
, ubyte
);
8430 tree void_ftype_vptr_uh
= BINARY (voidt
, vptr
, uhalf
);
8431 tree void_ftype_vptr_uw1
= BINARY (voidt
, vptr
, uword1
);
8432 tree void_ftype_vptr_uw2
= BINARY (voidt
, vptr
, uword2
);
8434 def_builtin ("__MAND", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MAND
);
8435 def_builtin ("__MOR", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MOR
);
8436 def_builtin ("__MXOR", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MXOR
);
8437 def_builtin ("__MNOT", uw1_ftype_uw1
, FRV_BUILTIN_MNOT
);
8438 def_builtin ("__MROTLI", uw1_ftype_uw1_int
, FRV_BUILTIN_MROTLI
);
8439 def_builtin ("__MROTRI", uw1_ftype_uw1_int
, FRV_BUILTIN_MROTRI
);
8440 def_builtin ("__MWCUT", uw1_ftype_uw2_uw1
, FRV_BUILTIN_MWCUT
);
8441 def_builtin ("__MAVEH", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MAVEH
);
8442 def_builtin ("__MSLLHI", uw1_ftype_uw1_int
, FRV_BUILTIN_MSLLHI
);
8443 def_builtin ("__MSRLHI", uw1_ftype_uw1_int
, FRV_BUILTIN_MSRLHI
);
8444 def_builtin ("__MSRAHI", sw1_ftype_sw1_int
, FRV_BUILTIN_MSRAHI
);
8445 def_builtin ("__MSATHS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_MSATHS
);
8446 def_builtin ("__MSATHU", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MSATHU
);
8447 def_builtin ("__MADDHSS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_MADDHSS
);
8448 def_builtin ("__MADDHUS", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MADDHUS
);
8449 def_builtin ("__MSUBHSS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_MSUBHSS
);
8450 def_builtin ("__MSUBHUS", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MSUBHUS
);
8451 def_builtin ("__MMULHS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MMULHS
);
8452 def_builtin ("__MMULHU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MMULHU
);
8453 def_builtin ("__MMULXHS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MMULXHS
);
8454 def_builtin ("__MMULXHU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MMULXHU
);
8455 def_builtin ("__MMACHS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MMACHS
);
8456 def_builtin ("__MMACHU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MMACHU
);
8457 def_builtin ("__MMRDHS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MMRDHS
);
8458 def_builtin ("__MMRDHU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MMRDHU
);
8459 def_builtin ("__MQADDHSS", sw2_ftype_sw2_sw2
, FRV_BUILTIN_MQADDHSS
);
8460 def_builtin ("__MQADDHUS", uw2_ftype_uw2_uw2
, FRV_BUILTIN_MQADDHUS
);
8461 def_builtin ("__MQSUBHSS", sw2_ftype_sw2_sw2
, FRV_BUILTIN_MQSUBHSS
);
8462 def_builtin ("__MQSUBHUS", uw2_ftype_uw2_uw2
, FRV_BUILTIN_MQSUBHUS
);
8463 def_builtin ("__MQMULHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQMULHS
);
8464 def_builtin ("__MQMULHU", void_ftype_acc_uw2_uw2
, FRV_BUILTIN_MQMULHU
);
8465 def_builtin ("__MQMULXHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQMULXHS
);
8466 def_builtin ("__MQMULXHU", void_ftype_acc_uw2_uw2
, FRV_BUILTIN_MQMULXHU
);
8467 def_builtin ("__MQMACHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQMACHS
);
8468 def_builtin ("__MQMACHU", void_ftype_acc_uw2_uw2
, FRV_BUILTIN_MQMACHU
);
8469 def_builtin ("__MCPXRS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MCPXRS
);
8470 def_builtin ("__MCPXRU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MCPXRU
);
8471 def_builtin ("__MCPXIS", void_ftype_acc_sw1_sw1
, FRV_BUILTIN_MCPXIS
);
8472 def_builtin ("__MCPXIU", void_ftype_acc_uw1_uw1
, FRV_BUILTIN_MCPXIU
);
8473 def_builtin ("__MQCPXRS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQCPXRS
);
8474 def_builtin ("__MQCPXRU", void_ftype_acc_uw2_uw2
, FRV_BUILTIN_MQCPXRU
);
8475 def_builtin ("__MQCPXIS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQCPXIS
);
8476 def_builtin ("__MQCPXIU", void_ftype_acc_uw2_uw2
, FRV_BUILTIN_MQCPXIU
);
8477 def_builtin ("__MCUT", uw1_ftype_acc_uw1
, FRV_BUILTIN_MCUT
);
8478 def_builtin ("__MCUTSS", uw1_ftype_acc_sw1
, FRV_BUILTIN_MCUTSS
);
8479 def_builtin ("__MEXPDHW", uw1_ftype_uw1_int
, FRV_BUILTIN_MEXPDHW
);
8480 def_builtin ("__MEXPDHD", uw2_ftype_uw1_int
, FRV_BUILTIN_MEXPDHD
);
8481 def_builtin ("__MPACKH", uw1_ftype_uh_uh
, FRV_BUILTIN_MPACKH
);
8482 def_builtin ("__MUNPACKH", uw2_ftype_uw1
, FRV_BUILTIN_MUNPACKH
);
8483 def_builtin ("__MDPACKH", uw2_ftype_uh_uh_uh_uh
, FRV_BUILTIN_MDPACKH
);
8484 def_builtin ("__MDUNPACKH", void_ftype_uw4_uw2
, FRV_BUILTIN_MDUNPACKH
);
8485 def_builtin ("__MBTOH", uw2_ftype_uw1
, FRV_BUILTIN_MBTOH
);
8486 def_builtin ("__MHTOB", uw1_ftype_uw2
, FRV_BUILTIN_MHTOB
);
8487 def_builtin ("__MBTOHE", void_ftype_uw4_uw1
, FRV_BUILTIN_MBTOHE
);
8488 def_builtin ("__MCLRACC", void_ftype_acc
, FRV_BUILTIN_MCLRACC
);
8489 def_builtin ("__MCLRACCA", void_ftype_void
, FRV_BUILTIN_MCLRACCA
);
8490 def_builtin ("__MRDACC", uw1_ftype_acc
, FRV_BUILTIN_MRDACC
);
8491 def_builtin ("__MRDACCG", uw1_ftype_acc
, FRV_BUILTIN_MRDACCG
);
8492 def_builtin ("__MWTACC", void_ftype_acc_uw1
, FRV_BUILTIN_MWTACC
);
8493 def_builtin ("__MWTACCG", void_ftype_acc_uw1
, FRV_BUILTIN_MWTACCG
);
8494 def_builtin ("__Mcop1", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MCOP1
);
8495 def_builtin ("__Mcop2", uw1_ftype_uw1_uw1
, FRV_BUILTIN_MCOP2
);
8496 def_builtin ("__MTRAP", void_ftype_void
, FRV_BUILTIN_MTRAP
);
8497 def_builtin ("__MQXMACHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQXMACHS
);
8498 def_builtin ("__MQXMACXHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQXMACXHS
);
8499 def_builtin ("__MQMACXHS", void_ftype_acc_sw2_sw2
, FRV_BUILTIN_MQMACXHS
);
8500 def_builtin ("__MADDACCS", void_ftype_acc_acc
, FRV_BUILTIN_MADDACCS
);
8501 def_builtin ("__MSUBACCS", void_ftype_acc_acc
, FRV_BUILTIN_MSUBACCS
);
8502 def_builtin ("__MASACCS", void_ftype_acc_acc
, FRV_BUILTIN_MASACCS
);
8503 def_builtin ("__MDADDACCS", void_ftype_acc_acc
, FRV_BUILTIN_MDADDACCS
);
8504 def_builtin ("__MDSUBACCS", void_ftype_acc_acc
, FRV_BUILTIN_MDSUBACCS
);
8505 def_builtin ("__MDASACCS", void_ftype_acc_acc
, FRV_BUILTIN_MDASACCS
);
8506 def_builtin ("__MABSHS", uw1_ftype_sw1
, FRV_BUILTIN_MABSHS
);
8507 def_builtin ("__MDROTLI", uw2_ftype_uw2_int
, FRV_BUILTIN_MDROTLI
);
8508 def_builtin ("__MCPLHI", uw1_ftype_uw2_int
, FRV_BUILTIN_MCPLHI
);
8509 def_builtin ("__MCPLI", uw1_ftype_uw2_int
, FRV_BUILTIN_MCPLI
);
8510 def_builtin ("__MDCUTSSI", uw2_ftype_acc_int
, FRV_BUILTIN_MDCUTSSI
);
8511 def_builtin ("__MQSATHS", sw2_ftype_sw2_sw2
, FRV_BUILTIN_MQSATHS
);
8512 def_builtin ("__MHSETLOS", sw1_ftype_sw1_int
, FRV_BUILTIN_MHSETLOS
);
8513 def_builtin ("__MHSETHIS", sw1_ftype_sw1_int
, FRV_BUILTIN_MHSETHIS
);
8514 def_builtin ("__MHDSETS", sw1_ftype_int
, FRV_BUILTIN_MHDSETS
);
8515 def_builtin ("__MHSETLOH", uw1_ftype_uw1_int
, FRV_BUILTIN_MHSETLOH
);
8516 def_builtin ("__MHSETHIH", uw1_ftype_uw1_int
, FRV_BUILTIN_MHSETHIH
);
8517 def_builtin ("__MHDSETH", uw1_ftype_uw1_int
, FRV_BUILTIN_MHDSETH
);
8518 def_builtin ("__MQLCLRHS", sw2_ftype_sw2_sw2
, FRV_BUILTIN_MQLCLRHS
);
8519 def_builtin ("__MQLMTHS", sw2_ftype_sw2_sw2
, FRV_BUILTIN_MQLMTHS
);
8520 def_builtin ("__MQSLLHI", uw2_ftype_uw2_int
, FRV_BUILTIN_MQSLLHI
);
8521 def_builtin ("__MQSRAHI", sw2_ftype_sw2_int
, FRV_BUILTIN_MQSRAHI
);
8522 def_builtin ("__SMUL", sw2_ftype_sw1_sw1
, FRV_BUILTIN_SMUL
);
8523 def_builtin ("__UMUL", uw2_ftype_uw1_uw1
, FRV_BUILTIN_UMUL
);
8524 def_builtin ("__SMASS", void_ftype_sw1_sw1
, FRV_BUILTIN_SMASS
);
8525 def_builtin ("__SMSSS", void_ftype_sw1_sw1
, FRV_BUILTIN_SMSSS
);
8526 def_builtin ("__SMU", void_ftype_sw1_sw1
, FRV_BUILTIN_SMU
);
8527 def_builtin ("__ADDSS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_ADDSS
);
8528 def_builtin ("__SUBSS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_SUBSS
);
8529 def_builtin ("__SLASS", sw1_ftype_sw1_sw1
, FRV_BUILTIN_SLASS
);
8530 def_builtin ("__SCAN", sw1_ftype_sw1_sw1
, FRV_BUILTIN_SCAN
);
8531 def_builtin ("__SCUTSS", sw1_ftype_sw1
, FRV_BUILTIN_SCUTSS
);
8532 def_builtin ("__IACCreadll", sw2_ftype_iacc
, FRV_BUILTIN_IACCreadll
);
8533 def_builtin ("__IACCreadl", sw1_ftype_iacc
, FRV_BUILTIN_IACCreadl
);
8534 def_builtin ("__IACCsetll", void_ftype_iacc_sw2
, FRV_BUILTIN_IACCsetll
);
8535 def_builtin ("__IACCsetl", void_ftype_iacc_sw1
, FRV_BUILTIN_IACCsetl
);
8536 def_builtin ("__data_prefetch0", void_ftype_ptr
, FRV_BUILTIN_PREFETCH0
);
8537 def_builtin ("__data_prefetch", void_ftype_ptr
, FRV_BUILTIN_PREFETCH
);
8538 def_builtin ("__builtin_read8", uw1_ftype_vptr
, FRV_BUILTIN_READ8
);
8539 def_builtin ("__builtin_read16", uw1_ftype_vptr
, FRV_BUILTIN_READ16
);
8540 def_builtin ("__builtin_read32", uw1_ftype_vptr
, FRV_BUILTIN_READ32
);
8541 def_builtin ("__builtin_read64", uw2_ftype_vptr
, FRV_BUILTIN_READ64
);
8543 def_builtin ("__builtin_write8", void_ftype_vptr_ub
, FRV_BUILTIN_WRITE8
);
8544 def_builtin ("__builtin_write16", void_ftype_vptr_uh
, FRV_BUILTIN_WRITE16
);
8545 def_builtin ("__builtin_write32", void_ftype_vptr_uw1
, FRV_BUILTIN_WRITE32
);
8546 def_builtin ("__builtin_write64", void_ftype_vptr_uw2
, FRV_BUILTIN_WRITE64
);
8554 /* Set the names for various arithmetic operations according to the
8557 frv_init_libfuncs (void)
8559 set_optab_libfunc (smod_optab
, SImode
, "__modi");
8560 set_optab_libfunc (umod_optab
, SImode
, "__umodi");
8562 set_optab_libfunc (add_optab
, DImode
, "__addll");
8563 set_optab_libfunc (sub_optab
, DImode
, "__subll");
8564 set_optab_libfunc (smul_optab
, DImode
, "__mulll");
8565 set_optab_libfunc (sdiv_optab
, DImode
, "__divll");
8566 set_optab_libfunc (smod_optab
, DImode
, "__modll");
8567 set_optab_libfunc (umod_optab
, DImode
, "__umodll");
8568 set_optab_libfunc (and_optab
, DImode
, "__andll");
8569 set_optab_libfunc (ior_optab
, DImode
, "__orll");
8570 set_optab_libfunc (xor_optab
, DImode
, "__xorll");
8571 set_optab_libfunc (one_cmpl_optab
, DImode
, "__notll");
8573 set_optab_libfunc (add_optab
, SFmode
, "__addf");
8574 set_optab_libfunc (sub_optab
, SFmode
, "__subf");
8575 set_optab_libfunc (smul_optab
, SFmode
, "__mulf");
8576 set_optab_libfunc (sdiv_optab
, SFmode
, "__divf");
8578 set_optab_libfunc (add_optab
, DFmode
, "__addd");
8579 set_optab_libfunc (sub_optab
, DFmode
, "__subd");
8580 set_optab_libfunc (smul_optab
, DFmode
, "__muld");
8581 set_optab_libfunc (sdiv_optab
, DFmode
, "__divd");
8583 set_conv_libfunc (sext_optab
, DFmode
, SFmode
, "__ftod");
8584 set_conv_libfunc (trunc_optab
, SFmode
, DFmode
, "__dtof");
8586 set_conv_libfunc (sfix_optab
, SImode
, SFmode
, "__ftoi");
8587 set_conv_libfunc (sfix_optab
, DImode
, SFmode
, "__ftoll");
8588 set_conv_libfunc (sfix_optab
, SImode
, DFmode
, "__dtoi");
8589 set_conv_libfunc (sfix_optab
, DImode
, DFmode
, "__dtoll");
8591 set_conv_libfunc (ufix_optab
, SImode
, SFmode
, "__ftoui");
8592 set_conv_libfunc (ufix_optab
, DImode
, SFmode
, "__ftoull");
8593 set_conv_libfunc (ufix_optab
, SImode
, DFmode
, "__dtoui");
8594 set_conv_libfunc (ufix_optab
, DImode
, DFmode
, "__dtoull");
8596 set_conv_libfunc (sfloat_optab
, SFmode
, SImode
, "__itof");
8597 set_conv_libfunc (sfloat_optab
, SFmode
, DImode
, "__lltof");
8598 set_conv_libfunc (sfloat_optab
, DFmode
, SImode
, "__itod");
8599 set_conv_libfunc (sfloat_optab
, DFmode
, DImode
, "__lltod");
8602 /* Convert an integer constant to an accumulator register. ICODE is the
8603 code of the target instruction, OPNUM is the number of the
8604 accumulator operand and OPVAL is the constant integer. Try both
8605 ACC and ACCG registers; only report an error if neither fit the
8609 frv_int_to_acc (enum insn_code icode
, int opnum
, rtx opval
)
8614 /* ACCs and ACCGs are implicit global registers if media intrinsics
8615 are being used. We set up this lazily to avoid creating lots of
8616 unnecessary call_insn rtl in non-media code. */
8617 for (i
= 0; i
<= ACC_MASK
; i
++)
8618 if ((i
& ACC_MASK
) == i
)
8619 global_regs
[i
+ ACC_FIRST
] = global_regs
[i
+ ACCG_FIRST
] = 1;
8621 if (GET_CODE (opval
) != CONST_INT
)
8623 error ("accumulator is not a constant integer");
8626 if ((INTVAL (opval
) & ~ACC_MASK
) != 0)
8628 error ("accumulator number is out of bounds");
8632 reg
= gen_rtx_REG (insn_data
[icode
].operand
[opnum
].mode
,
8633 ACC_FIRST
+ INTVAL (opval
));
8634 if (! (*insn_data
[icode
].operand
[opnum
].predicate
) (reg
, VOIDmode
))
8635 REGNO (reg
) = ACCG_FIRST
+ INTVAL (opval
);
8637 if (! (*insn_data
[icode
].operand
[opnum
].predicate
) (reg
, VOIDmode
))
8639 error ("inappropriate accumulator for %qs", insn_data
[icode
].name
);
8645 /* If an ACC rtx has mode MODE, return the mode that the matching ACCG
8648 static enum machine_mode
8649 frv_matching_accg_mode (enum machine_mode mode
)
8667 /* Given that a __builtin_read or __builtin_write function is accessing
8668 address ADDRESS, return the value that should be used as operand 1
8672 frv_io_address_cookie (rtx address
)
8674 return (GET_CODE (address
) == CONST_INT
8675 ? GEN_INT (INTVAL (address
) / 8 * 8)
8679 /* Return the accumulator guard that should be paired with accumulator
8680 register ACC. The mode of the returned register is in the same
8681 class as ACC, but is four times smaller. */
8684 frv_matching_accg_for_acc (rtx acc
)
8686 return gen_rtx_REG (frv_matching_accg_mode (GET_MODE (acc
)),
8687 REGNO (acc
) - ACC_FIRST
+ ACCG_FIRST
);
8690 /* Read a value from the head of the tree list pointed to by ARGLISTPTR.
8691 Return the value as an rtx and replace *ARGLISTPTR with the tail of the
8695 frv_read_argument (tree
*arglistptr
)
8697 tree next
= TREE_VALUE (*arglistptr
);
8698 *arglistptr
= TREE_CHAIN (*arglistptr
);
8699 return expand_expr (next
, NULL_RTX
, VOIDmode
, 0);
8702 /* Like frv_read_argument, but interpret the argument as the number
8703 of an IACC register and return a (reg:MODE ...) rtx for it. */
8706 frv_read_iacc_argument (enum machine_mode mode
, tree
*arglistptr
)
8711 op
= frv_read_argument (arglistptr
);
8712 if (GET_CODE (op
) != CONST_INT
8714 || INTVAL (op
) > IACC_LAST
- IACC_FIRST
8715 || ((INTVAL (op
) * 4) & (GET_MODE_SIZE (mode
) - 1)) != 0)
8717 error ("invalid IACC argument");
8721 /* IACCs are implicit global registers. We set up this lazily to
8722 avoid creating lots of unnecessary call_insn rtl when IACCs aren't
8724 regno
= INTVAL (op
) + IACC_FIRST
;
8725 for (i
= 0; i
< HARD_REGNO_NREGS (regno
, mode
); i
++)
8726 global_regs
[regno
+ i
] = 1;
8728 return gen_rtx_REG (mode
, regno
);
8731 /* Return true if OPVAL can be used for operand OPNUM of instruction ICODE.
8732 The instruction should require a constant operand of some sort. The
8733 function prints an error if OPVAL is not valid. */
8736 frv_check_constant_argument (enum insn_code icode
, int opnum
, rtx opval
)
8738 if (GET_CODE (opval
) != CONST_INT
)
8740 error ("%qs expects a constant argument", insn_data
[icode
].name
);
8743 if (! (*insn_data
[icode
].operand
[opnum
].predicate
) (opval
, VOIDmode
))
8745 error ("constant argument out of range for %qs", insn_data
[icode
].name
);
8751 /* Return a legitimate rtx for instruction ICODE's return value. Use TARGET
8752 if it's not null, has the right mode, and satisfies operand 0's
8756 frv_legitimize_target (enum insn_code icode
, rtx target
)
8758 enum machine_mode mode
= insn_data
[icode
].operand
[0].mode
;
8761 || GET_MODE (target
) != mode
8762 || ! (*insn_data
[icode
].operand
[0].predicate
) (target
, mode
))
8763 return gen_reg_rtx (mode
);
8768 /* Given that ARG is being passed as operand OPNUM to instruction ICODE,
8769 check whether ARG satisfies the operand's constraints. If it doesn't,
8770 copy ARG to a temporary register and return that. Otherwise return ARG
8774 frv_legitimize_argument (enum insn_code icode
, int opnum
, rtx arg
)
8776 enum machine_mode mode
= insn_data
[icode
].operand
[opnum
].mode
;
8778 if ((*insn_data
[icode
].operand
[opnum
].predicate
) (arg
, mode
))
8781 return copy_to_mode_reg (mode
, arg
);
8784 /* Return a volatile memory reference of mode MODE whose address is ARG. */
8787 frv_volatile_memref (enum machine_mode mode
, rtx arg
)
8791 mem
= gen_rtx_MEM (mode
, memory_address (mode
, arg
));
8792 MEM_VOLATILE_P (mem
) = 1;
8796 /* Expand builtins that take a single, constant argument. At the moment,
8797 only MHDSETS falls into this category. */
8800 frv_expand_set_builtin (enum insn_code icode
, tree arglist
, rtx target
)
8803 rtx op0
= frv_read_argument (&arglist
);
8805 if (! frv_check_constant_argument (icode
, 1, op0
))
8808 target
= frv_legitimize_target (icode
, target
);
8809 pat
= GEN_FCN (icode
) (target
, op0
);
8817 /* Expand builtins that take one operand. */
8820 frv_expand_unop_builtin (enum insn_code icode
, tree arglist
, rtx target
)
8823 rtx op0
= frv_read_argument (&arglist
);
8825 target
= frv_legitimize_target (icode
, target
);
8826 op0
= frv_legitimize_argument (icode
, 1, op0
);
8827 pat
= GEN_FCN (icode
) (target
, op0
);
8835 /* Expand builtins that take two operands. */
8838 frv_expand_binop_builtin (enum insn_code icode
, tree arglist
, rtx target
)
8841 rtx op0
= frv_read_argument (&arglist
);
8842 rtx op1
= frv_read_argument (&arglist
);
8844 target
= frv_legitimize_target (icode
, target
);
8845 op0
= frv_legitimize_argument (icode
, 1, op0
);
8846 op1
= frv_legitimize_argument (icode
, 2, op1
);
8847 pat
= GEN_FCN (icode
) (target
, op0
, op1
);
8855 /* Expand cut-style builtins, which take two operands and an implicit ACCG
8859 frv_expand_cut_builtin (enum insn_code icode
, tree arglist
, rtx target
)
8862 rtx op0
= frv_read_argument (&arglist
);
8863 rtx op1
= frv_read_argument (&arglist
);
8866 target
= frv_legitimize_target (icode
, target
);
8867 op0
= frv_int_to_acc (icode
, 1, op0
);
8871 if (icode
== CODE_FOR_mdcutssi
|| GET_CODE (op1
) == CONST_INT
)
8873 if (! frv_check_constant_argument (icode
, 2, op1
))
8877 op1
= frv_legitimize_argument (icode
, 2, op1
);
8879 op2
= frv_matching_accg_for_acc (op0
);
8880 pat
= GEN_FCN (icode
) (target
, op0
, op1
, op2
);
8888 /* Expand builtins that take two operands and the second is immediate. */
8891 frv_expand_binopimm_builtin (enum insn_code icode
, tree arglist
, rtx target
)
8894 rtx op0
= frv_read_argument (&arglist
);
8895 rtx op1
= frv_read_argument (&arglist
);
8897 if (! frv_check_constant_argument (icode
, 2, op1
))
8900 target
= frv_legitimize_target (icode
, target
);
8901 op0
= frv_legitimize_argument (icode
, 1, op0
);
8902 pat
= GEN_FCN (icode
) (target
, op0
, op1
);
8910 /* Expand builtins that take two operands, the first operand being a pointer to
8911 ints and return void. */
8914 frv_expand_voidbinop_builtin (enum insn_code icode
, tree arglist
)
8917 rtx op0
= frv_read_argument (&arglist
);
8918 rtx op1
= frv_read_argument (&arglist
);
8919 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
8922 if (GET_CODE (op0
) != MEM
)
8926 if (! offsettable_address_p (0, mode0
, op0
))
8928 reg
= gen_reg_rtx (Pmode
);
8929 emit_insn (gen_rtx_SET (VOIDmode
, reg
, op0
));
8932 op0
= gen_rtx_MEM (SImode
, reg
);
8935 addr
= XEXP (op0
, 0);
8936 if (! offsettable_address_p (0, mode0
, addr
))
8937 addr
= copy_to_mode_reg (Pmode
, op0
);
8939 op0
= change_address (op0
, V4SImode
, addr
);
8940 op1
= frv_legitimize_argument (icode
, 1, op1
);
8941 pat
= GEN_FCN (icode
) (op0
, op1
);
8949 /* Expand builtins that take two long operands and return void. */
8952 frv_expand_int_void2arg (enum insn_code icode
, tree arglist
)
8955 rtx op0
= frv_read_argument (&arglist
);
8956 rtx op1
= frv_read_argument (&arglist
);
8958 op0
= frv_legitimize_argument (icode
, 1, op0
);
8959 op1
= frv_legitimize_argument (icode
, 1, op1
);
8960 pat
= GEN_FCN (icode
) (op0
, op1
);
8968 /* Expand prefetch builtins. These take a single address as argument. */
8971 frv_expand_prefetches (enum insn_code icode
, tree arglist
)
8974 rtx op0
= frv_read_argument (&arglist
);
8976 pat
= GEN_FCN (icode
) (force_reg (Pmode
, op0
));
8984 /* Expand builtins that take three operands and return void. The first
8985 argument must be a constant that describes a pair or quad accumulators. A
8986 fourth argument is created that is the accumulator guard register that
8987 corresponds to the accumulator. */
8990 frv_expand_voidtriop_builtin (enum insn_code icode
, tree arglist
)
8993 rtx op0
= frv_read_argument (&arglist
);
8994 rtx op1
= frv_read_argument (&arglist
);
8995 rtx op2
= frv_read_argument (&arglist
);
8998 op0
= frv_int_to_acc (icode
, 0, op0
);
9002 op1
= frv_legitimize_argument (icode
, 1, op1
);
9003 op2
= frv_legitimize_argument (icode
, 2, op2
);
9004 op3
= frv_matching_accg_for_acc (op0
);
9005 pat
= GEN_FCN (icode
) (op0
, op1
, op2
, op3
);
9013 /* Expand builtins that perform accumulator-to-accumulator operations.
9014 These builtins take two accumulator numbers as argument and return
9018 frv_expand_voidaccop_builtin (enum insn_code icode
, tree arglist
)
9021 rtx op0
= frv_read_argument (&arglist
);
9022 rtx op1
= frv_read_argument (&arglist
);
9026 op0
= frv_int_to_acc (icode
, 0, op0
);
9030 op1
= frv_int_to_acc (icode
, 1, op1
);
9034 op2
= frv_matching_accg_for_acc (op0
);
9035 op3
= frv_matching_accg_for_acc (op1
);
9036 pat
= GEN_FCN (icode
) (op0
, op1
, op2
, op3
);
9044 /* Expand a __builtin_read* function. ICODE is the instruction code for the
9045 membar and TARGET_MODE is the mode that the loaded value should have. */
9048 frv_expand_load_builtin (enum insn_code icode
, enum machine_mode target_mode
,
9049 tree arglist
, rtx target
)
9051 rtx op0
= frv_read_argument (&arglist
);
9052 rtx cookie
= frv_io_address_cookie (op0
);
9054 if (target
== 0 || !REG_P (target
))
9055 target
= gen_reg_rtx (target_mode
);
9056 op0
= frv_volatile_memref (insn_data
[icode
].operand
[0].mode
, op0
);
9057 convert_move (target
, op0
, 1);
9058 emit_insn (GEN_FCN (icode
) (copy_rtx (op0
), cookie
, GEN_INT (FRV_IO_READ
)));
9059 cfun
->machine
->has_membar_p
= 1;
9063 /* Likewise __builtin_write* functions. */
9066 frv_expand_store_builtin (enum insn_code icode
, tree arglist
)
9068 rtx op0
= frv_read_argument (&arglist
);
9069 rtx op1
= frv_read_argument (&arglist
);
9070 rtx cookie
= frv_io_address_cookie (op0
);
9072 op0
= frv_volatile_memref (insn_data
[icode
].operand
[0].mode
, op0
);
9073 convert_move (op0
, force_reg (insn_data
[icode
].operand
[0].mode
, op1
), 1);
9074 emit_insn (GEN_FCN (icode
) (copy_rtx (op0
), cookie
, GEN_INT (FRV_IO_WRITE
)));
9075 cfun
->machine
->has_membar_p
= 1;
9079 /* Expand the MDPACKH builtin. It takes four unsigned short arguments and
9080 each argument forms one word of the two double-word input registers.
9081 ARGLIST is a TREE_LIST of the arguments and TARGET, if nonnull,
9082 suggests a good place to put the return value. */
9085 frv_expand_mdpackh_builtin (tree arglist
, rtx target
)
9087 enum insn_code icode
= CODE_FOR_mdpackh
;
9089 rtx arg1
= frv_read_argument (&arglist
);
9090 rtx arg2
= frv_read_argument (&arglist
);
9091 rtx arg3
= frv_read_argument (&arglist
);
9092 rtx arg4
= frv_read_argument (&arglist
);
9094 target
= frv_legitimize_target (icode
, target
);
9095 op0
= gen_reg_rtx (DImode
);
9096 op1
= gen_reg_rtx (DImode
);
9098 /* The high half of each word is not explicitly initialized, so indicate
9099 that the input operands are not live before this point. */
9100 emit_insn (gen_rtx_CLOBBER (DImode
, op0
));
9101 emit_insn (gen_rtx_CLOBBER (DImode
, op1
));
9103 /* Move each argument into the low half of its associated input word. */
9104 emit_move_insn (simplify_gen_subreg (HImode
, op0
, DImode
, 2), arg1
);
9105 emit_move_insn (simplify_gen_subreg (HImode
, op0
, DImode
, 6), arg2
);
9106 emit_move_insn (simplify_gen_subreg (HImode
, op1
, DImode
, 2), arg3
);
9107 emit_move_insn (simplify_gen_subreg (HImode
, op1
, DImode
, 6), arg4
);
9109 pat
= GEN_FCN (icode
) (target
, op0
, op1
);
9117 /* Expand the MCLRACC builtin. This builtin takes a single accumulator
9118 number as argument. */
9121 frv_expand_mclracc_builtin (tree arglist
)
9123 enum insn_code icode
= CODE_FOR_mclracc
;
9125 rtx op0
= frv_read_argument (&arglist
);
9127 op0
= frv_int_to_acc (icode
, 0, op0
);
9131 pat
= GEN_FCN (icode
) (op0
);
9138 /* Expand builtins that take no arguments. */
9141 frv_expand_noargs_builtin (enum insn_code icode
)
9143 rtx pat
= GEN_FCN (icode
) (const0_rtx
);
9150 /* Expand MRDACC and MRDACCG. These builtins take a single accumulator
9151 number or accumulator guard number as argument and return an SI integer. */
9154 frv_expand_mrdacc_builtin (enum insn_code icode
, tree arglist
)
9157 rtx target
= gen_reg_rtx (SImode
);
9158 rtx op0
= frv_read_argument (&arglist
);
9160 op0
= frv_int_to_acc (icode
, 1, op0
);
9164 pat
= GEN_FCN (icode
) (target
, op0
);
9172 /* Expand MWTACC and MWTACCG. These builtins take an accumulator or
9173 accumulator guard as their first argument and an SImode value as their
9177 frv_expand_mwtacc_builtin (enum insn_code icode
, tree arglist
)
9180 rtx op0
= frv_read_argument (&arglist
);
9181 rtx op1
= frv_read_argument (&arglist
);
9183 op0
= frv_int_to_acc (icode
, 0, op0
);
9187 op1
= frv_legitimize_argument (icode
, 1, op1
);
9188 pat
= GEN_FCN (icode
) (op0
, op1
);
9195 /* Emit a move from SRC to DEST in SImode chunks. This can be used
9196 to move DImode values into and out of IACC0. */
9199 frv_split_iacc_move (rtx dest
, rtx src
)
9201 enum machine_mode inner
;
9204 inner
= GET_MODE (dest
);
9205 for (i
= 0; i
< GET_MODE_SIZE (inner
); i
+= GET_MODE_SIZE (SImode
))
9206 emit_move_insn (simplify_gen_subreg (SImode
, dest
, inner
, i
),
9207 simplify_gen_subreg (SImode
, src
, inner
, i
));
9210 /* Expand builtins. */
9213 frv_expand_builtin (tree exp
,
9215 rtx subtarget ATTRIBUTE_UNUSED
,
9216 enum machine_mode mode ATTRIBUTE_UNUSED
,
9217 int ignore ATTRIBUTE_UNUSED
)
9219 tree arglist
= TREE_OPERAND (exp
, 1);
9220 tree fndecl
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
9221 unsigned fcode
= (unsigned)DECL_FUNCTION_CODE (fndecl
);
9223 struct builtin_description
*d
;
9225 if (fcode
< FRV_BUILTIN_FIRST_NONMEDIA
&& !TARGET_MEDIA
)
9227 error ("media functions are not available unless -mmedia is used");
9233 case FRV_BUILTIN_MCOP1
:
9234 case FRV_BUILTIN_MCOP2
:
9235 case FRV_BUILTIN_MDUNPACKH
:
9236 case FRV_BUILTIN_MBTOHE
:
9237 if (! TARGET_MEDIA_REV1
)
9239 error ("this media function is only available on the fr500");
9244 case FRV_BUILTIN_MQXMACHS
:
9245 case FRV_BUILTIN_MQXMACXHS
:
9246 case FRV_BUILTIN_MQMACXHS
:
9247 case FRV_BUILTIN_MADDACCS
:
9248 case FRV_BUILTIN_MSUBACCS
:
9249 case FRV_BUILTIN_MASACCS
:
9250 case FRV_BUILTIN_MDADDACCS
:
9251 case FRV_BUILTIN_MDSUBACCS
:
9252 case FRV_BUILTIN_MDASACCS
:
9253 case FRV_BUILTIN_MABSHS
:
9254 case FRV_BUILTIN_MDROTLI
:
9255 case FRV_BUILTIN_MCPLHI
:
9256 case FRV_BUILTIN_MCPLI
:
9257 case FRV_BUILTIN_MDCUTSSI
:
9258 case FRV_BUILTIN_MQSATHS
:
9259 case FRV_BUILTIN_MHSETLOS
:
9260 case FRV_BUILTIN_MHSETLOH
:
9261 case FRV_BUILTIN_MHSETHIS
:
9262 case FRV_BUILTIN_MHSETHIH
:
9263 case FRV_BUILTIN_MHDSETS
:
9264 case FRV_BUILTIN_MHDSETH
:
9265 if (! TARGET_MEDIA_REV2
)
9267 error ("this media function is only available on the fr400"
9273 case FRV_BUILTIN_SMASS
:
9274 case FRV_BUILTIN_SMSSS
:
9275 case FRV_BUILTIN_SMU
:
9276 case FRV_BUILTIN_ADDSS
:
9277 case FRV_BUILTIN_SUBSS
:
9278 case FRV_BUILTIN_SLASS
:
9279 case FRV_BUILTIN_SCUTSS
:
9280 case FRV_BUILTIN_IACCreadll
:
9281 case FRV_BUILTIN_IACCreadl
:
9282 case FRV_BUILTIN_IACCsetll
:
9283 case FRV_BUILTIN_IACCsetl
:
9284 if (!TARGET_FR405_BUILTINS
)
9286 error ("this builtin function is only available"
9287 " on the fr405 and fr450");
9292 case FRV_BUILTIN_PREFETCH
:
9293 if (!TARGET_FR500_FR550_BUILTINS
)
9295 error ("this builtin function is only available on the fr500"
9301 case FRV_BUILTIN_MQLCLRHS
:
9302 case FRV_BUILTIN_MQLMTHS
:
9303 case FRV_BUILTIN_MQSLLHI
:
9304 case FRV_BUILTIN_MQSRAHI
:
9305 if (!TARGET_MEDIA_FR450
)
9307 error ("this builtin function is only available on the fr450");
9316 /* Expand unique builtins. */
9320 case FRV_BUILTIN_MTRAP
:
9321 return frv_expand_noargs_builtin (CODE_FOR_mtrap
);
9323 case FRV_BUILTIN_MCLRACC
:
9324 return frv_expand_mclracc_builtin (arglist
);
9326 case FRV_BUILTIN_MCLRACCA
:
9328 return frv_expand_noargs_builtin (CODE_FOR_mclracca8
);
9330 return frv_expand_noargs_builtin (CODE_FOR_mclracca4
);
9332 case FRV_BUILTIN_MRDACC
:
9333 return frv_expand_mrdacc_builtin (CODE_FOR_mrdacc
, arglist
);
9335 case FRV_BUILTIN_MRDACCG
:
9336 return frv_expand_mrdacc_builtin (CODE_FOR_mrdaccg
, arglist
);
9338 case FRV_BUILTIN_MWTACC
:
9339 return frv_expand_mwtacc_builtin (CODE_FOR_mwtacc
, arglist
);
9341 case FRV_BUILTIN_MWTACCG
:
9342 return frv_expand_mwtacc_builtin (CODE_FOR_mwtaccg
, arglist
);
9344 case FRV_BUILTIN_MDPACKH
:
9345 return frv_expand_mdpackh_builtin (arglist
, target
);
9347 case FRV_BUILTIN_IACCreadll
:
9349 rtx src
= frv_read_iacc_argument (DImode
, &arglist
);
9350 if (target
== 0 || !REG_P (target
))
9351 target
= gen_reg_rtx (DImode
);
9352 frv_split_iacc_move (target
, src
);
9356 case FRV_BUILTIN_IACCreadl
:
9357 return frv_read_iacc_argument (SImode
, &arglist
);
9359 case FRV_BUILTIN_IACCsetll
:
9361 rtx dest
= frv_read_iacc_argument (DImode
, &arglist
);
9362 rtx src
= frv_read_argument (&arglist
);
9363 frv_split_iacc_move (dest
, force_reg (DImode
, src
));
9367 case FRV_BUILTIN_IACCsetl
:
9369 rtx dest
= frv_read_iacc_argument (SImode
, &arglist
);
9370 rtx src
= frv_read_argument (&arglist
);
9371 emit_move_insn (dest
, force_reg (SImode
, src
));
9379 /* Expand groups of builtins. */
9381 for (i
= 0, d
= bdesc_set
; i
< ARRAY_SIZE (bdesc_set
); i
++, d
++)
9382 if (d
->code
== fcode
)
9383 return frv_expand_set_builtin (d
->icode
, arglist
, target
);
9385 for (i
= 0, d
= bdesc_1arg
; i
< ARRAY_SIZE (bdesc_1arg
); i
++, d
++)
9386 if (d
->code
== fcode
)
9387 return frv_expand_unop_builtin (d
->icode
, arglist
, target
);
9389 for (i
= 0, d
= bdesc_2arg
; i
< ARRAY_SIZE (bdesc_2arg
); i
++, d
++)
9390 if (d
->code
== fcode
)
9391 return frv_expand_binop_builtin (d
->icode
, arglist
, target
);
9393 for (i
= 0, d
= bdesc_cut
; i
< ARRAY_SIZE (bdesc_cut
); i
++, d
++)
9394 if (d
->code
== fcode
)
9395 return frv_expand_cut_builtin (d
->icode
, arglist
, target
);
9397 for (i
= 0, d
= bdesc_2argimm
; i
< ARRAY_SIZE (bdesc_2argimm
); i
++, d
++)
9398 if (d
->code
== fcode
)
9399 return frv_expand_binopimm_builtin (d
->icode
, arglist
, target
);
9401 for (i
= 0, d
= bdesc_void2arg
; i
< ARRAY_SIZE (bdesc_void2arg
); i
++, d
++)
9402 if (d
->code
== fcode
)
9403 return frv_expand_voidbinop_builtin (d
->icode
, arglist
);
9405 for (i
= 0, d
= bdesc_void3arg
; i
< ARRAY_SIZE (bdesc_void3arg
); i
++, d
++)
9406 if (d
->code
== fcode
)
9407 return frv_expand_voidtriop_builtin (d
->icode
, arglist
);
9409 for (i
= 0, d
= bdesc_voidacc
; i
< ARRAY_SIZE (bdesc_voidacc
); i
++, d
++)
9410 if (d
->code
== fcode
)
9411 return frv_expand_voidaccop_builtin (d
->icode
, arglist
);
9413 for (i
= 0, d
= bdesc_int_void2arg
;
9414 i
< ARRAY_SIZE (bdesc_int_void2arg
); i
++, d
++)
9415 if (d
->code
== fcode
)
9416 return frv_expand_int_void2arg (d
->icode
, arglist
);
9418 for (i
= 0, d
= bdesc_prefetches
;
9419 i
< ARRAY_SIZE (bdesc_prefetches
); i
++, d
++)
9420 if (d
->code
== fcode
)
9421 return frv_expand_prefetches (d
->icode
, arglist
);
9423 for (i
= 0, d
= bdesc_loads
; i
< ARRAY_SIZE (bdesc_loads
); i
++, d
++)
9424 if (d
->code
== fcode
)
9425 return frv_expand_load_builtin (d
->icode
, TYPE_MODE (TREE_TYPE (exp
)),
9428 for (i
= 0, d
= bdesc_stores
; i
< ARRAY_SIZE (bdesc_stores
); i
++, d
++)
9429 if (d
->code
== fcode
)
9430 return frv_expand_store_builtin (d
->icode
, arglist
);
9436 frv_in_small_data_p (tree decl
)
9441 /* Don't apply the -G flag to internal compiler structures. We
9442 should leave such structures in the main data section, partly
9443 for efficiency and partly because the size of some of them
9444 (such as C++ typeinfos) is not known until later. */
9445 if (TREE_CODE (decl
) != VAR_DECL
|| DECL_ARTIFICIAL (decl
))
9448 /* If we already know which section the decl should be in, see if
9449 it's a small data section. */
9450 section_name
= DECL_SECTION_NAME (decl
);
9453 gcc_assert (TREE_CODE (section_name
) == STRING_CST
);
9454 if (frv_string_begins_with (section_name
, ".sdata"))
9456 if (frv_string_begins_with (section_name
, ".sbss"))
9461 size
= int_size_in_bytes (TREE_TYPE (decl
));
9462 if (size
> 0 && (unsigned HOST_WIDE_INT
) size
<= g_switch_value
)
9469 frv_rtx_costs (rtx x
,
9470 int code ATTRIBUTE_UNUSED
,
9471 int outer_code ATTRIBUTE_UNUSED
,
9474 if (outer_code
== MEM
)
9476 /* Don't differentiate between memory addresses. All the ones
9477 we accept have equal cost. */
9478 *total
= COSTS_N_INSNS (0);
9485 /* Make 12 bit integers really cheap. */
9486 if (IN_RANGE_P (INTVAL (x
), -2048, 2047))
9497 *total
= COSTS_N_INSNS (2);
9511 if (GET_MODE (x
) == SImode
)
9512 *total
= COSTS_N_INSNS (1);
9513 else if (GET_MODE (x
) == DImode
)
9514 *total
= COSTS_N_INSNS (2);
9516 *total
= COSTS_N_INSNS (3);
9520 if (GET_MODE (x
) == SImode
)
9521 *total
= COSTS_N_INSNS (2);
9523 *total
= COSTS_N_INSNS (6); /* guess */
9530 *total
= COSTS_N_INSNS (18);
9534 *total
= COSTS_N_INSNS (3);
9543 frv_asm_out_constructor (rtx symbol
, int priority ATTRIBUTE_UNUSED
)
9546 assemble_align (POINTER_SIZE
);
9549 int ok
= frv_assemble_integer (symbol
, POINTER_SIZE
/ BITS_PER_UNIT
, 1);
9554 assemble_integer_with_op ("\t.picptr\t", symbol
);
9558 frv_asm_out_destructor (rtx symbol
, int priority ATTRIBUTE_UNUSED
)
9561 assemble_align (POINTER_SIZE
);
9564 int ok
= frv_assemble_integer (symbol
, POINTER_SIZE
/ BITS_PER_UNIT
, 1);
9569 assemble_integer_with_op ("\t.picptr\t", symbol
);
9572 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
9575 frv_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED
,
9576 int incoming ATTRIBUTE_UNUSED
)
9578 return gen_rtx_REG (Pmode
, FRV_STRUCT_VALUE_REGNUM
);
9581 #define TLS_BIAS (2048 - 16)
9583 /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL.
9584 We need to emit DTP-relative relocations. */
9587 frv_output_dwarf_dtprel (FILE *file
, int size
, rtx x
)
9589 gcc_assert (size
== 4);
9590 fputs ("\t.picptr\ttlsmoff(", file
);
9591 /* We want the unbiased TLS offset, so add the bias to the
9592 expression, such that the implicit biasing cancels out. */
9593 output_addr_const (file
, plus_constant (x
, TLS_BIAS
));