1 /* Target Code for R8C/M16C/M32C
3 Free Software Foundation, Inc.
4 Contributed by Red Hat.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
29 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-flags.h"
35 #include "insn-attr.h"
48 #include "target-def.h"
50 #include "langhooks.h"
51 #include "tree-gimple.h"
55 /* Used by m32c_pushm_popm. */
63 static tree
interrupt_handler (tree
*, tree
, tree
, int, bool *);
64 static int interrupt_p (tree node
);
65 static bool m32c_asm_integer (rtx
, unsigned int, int);
66 static int m32c_comp_type_attributes (tree
, tree
);
67 static bool m32c_fixed_condition_code_regs (unsigned int *, unsigned int *);
68 static struct machine_function
*m32c_init_machine_status (void);
69 static void m32c_insert_attributes (tree
, tree
*);
70 static bool m32c_pass_by_reference (CUMULATIVE_ARGS
*, enum machine_mode
,
72 static bool m32c_promote_prototypes (tree
);
73 static int m32c_pushm_popm (Push_Pop_Type
);
74 static bool m32c_strict_argument_naming (CUMULATIVE_ARGS
*);
75 static rtx
m32c_struct_value_rtx (tree
, int);
76 static rtx
m32c_subreg (enum machine_mode
, rtx
, enum machine_mode
, int);
77 static int need_to_save (int);
79 #define streq(a,b) (strcmp ((a), (b)) == 0)
81 /* Internal support routines */
83 /* Debugging statements are tagged with DEBUG0 only so that they can
84 be easily enabled individually, by replacing the '0' with '1' as
90 /* This is needed by some of the commented-out debug statements
92 static char const *class_names
[LIM_REG_CLASSES
] = REG_CLASS_NAMES
;
94 static int class_contents
[LIM_REG_CLASSES
][1] = REG_CLASS_CONTENTS
;
96 /* These are all to support encode_pattern(). */
97 static char pattern
[30], *patternp
;
98 static GTY(()) rtx patternr
[30];
99 #define RTX_IS(x) (streq (pattern, x))
101 /* Some macros to simplify the logic throughout this file. */
102 #define IS_MEM_REGNO(regno) ((regno) >= MEM0_REGNO && (regno) <= MEM7_REGNO)
103 #define IS_MEM_REG(rtx) (GET_CODE (rtx) == REG && IS_MEM_REGNO (REGNO (rtx)))
105 #define IS_CR_REGNO(regno) ((regno) >= SB_REGNO && (regno) <= PC_REGNO)
106 #define IS_CR_REG(rtx) (GET_CODE (rtx) == REG && IS_CR_REGNO (REGNO (rtx)))
108 /* We do most RTX matching by converting the RTX into a string, and
109 using string compares. This vastly simplifies the logic in many of
110 the functions in this file.
112 On exit, pattern[] has the encoded string (use RTX_IS("...") to
113 compare it) and patternr[] has pointers to the nodes in the RTX
114 corresponding to each character in the encoded string. The latter
115 is mostly used by print_operand().
117 Unrecognized patterns have '?' in them; this shows up when the
118 assembler complains about syntax errors.
122 encode_pattern_1 (rtx x
)
126 if (patternp
== pattern
+ sizeof (pattern
) - 2)
132 patternr
[patternp
- pattern
] = x
;
134 switch (GET_CODE (x
))
140 if (GET_MODE_SIZE (GET_MODE (x
)) !=
141 GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
143 encode_pattern_1 (XEXP (x
, 0));
148 encode_pattern_1 (XEXP (x
, 0));
152 encode_pattern_1 (XEXP (x
, 0));
153 encode_pattern_1 (XEXP (x
, 1));
157 encode_pattern_1 (XEXP (x
, 0));
161 encode_pattern_1 (XEXP (x
, 0));
165 encode_pattern_1 (XEXP (x
, 0));
166 encode_pattern_1 (XEXP (x
, 1));
170 encode_pattern_1 (XEXP (x
, 0));
187 *patternp
++ = '0' + XCINT (x
, 1, UNSPEC
);
188 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
189 encode_pattern_1 (XVECEXP (x
, 0, i
));
196 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
197 encode_pattern_1 (XVECEXP (x
, 0, i
));
201 encode_pattern_1 (XEXP (x
, 0));
203 encode_pattern_1 (XEXP (x
, 1));
208 fprintf (stderr
, "can't encode pattern %s\n",
209 GET_RTX_NAME (GET_CODE (x
)));
218 encode_pattern (rtx x
)
221 encode_pattern_1 (x
);
225 /* Since register names indicate the mode they're used in, we need a
226 way to determine which name to refer to the register with. Called
227 by print_operand(). */
230 reg_name_with_mode (int regno
, enum machine_mode mode
)
232 int mlen
= GET_MODE_SIZE (mode
);
233 if (regno
== R0_REGNO
&& mlen
== 1)
235 if (regno
== R0_REGNO
&& (mlen
== 3 || mlen
== 4))
237 if (regno
== R0_REGNO
&& mlen
== 6)
239 if (regno
== R0_REGNO
&& mlen
== 8)
241 if (regno
== R1_REGNO
&& mlen
== 1)
243 if (regno
== R1_REGNO
&& (mlen
== 3 || mlen
== 4))
245 if (regno
== A0_REGNO
&& TARGET_A16
&& (mlen
== 3 || mlen
== 4))
247 return reg_names
[regno
];
250 /* How many bytes a register uses on stack when it's pushed. We need
251 to know this because the push opcode needs to explicitly indicate
252 the size of the register, even though the name of the register
253 already tells it that. Used by m32c_output_reg_{push,pop}, which
254 is only used through calls to ASM_OUTPUT_REG_{PUSH,POP}. */
257 reg_push_size (int regno
)
282 static int *class_sizes
= 0;
284 /* Given two register classes, find the largest intersection between
285 them. If there is no intersection, return RETURNED_IF_EMPTY
288 reduce_class (int original_class
, int limiting_class
, int returned_if_empty
)
290 int cc
= class_contents
[original_class
][0];
291 int i
, best
= NO_REGS
;
294 if (original_class
== limiting_class
)
295 return original_class
;
300 class_sizes
= (int *) xmalloc (LIM_REG_CLASSES
* sizeof (int));
301 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
304 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
305 if (class_contents
[i
][0] & (1 << r
))
310 cc
&= class_contents
[limiting_class
][0];
311 for (i
= 0; i
< LIM_REG_CLASSES
; i
++)
313 int ic
= class_contents
[i
][0];
316 if (best_size
< class_sizes
[i
])
319 best_size
= class_sizes
[i
];
324 return returned_if_empty
;
328 /* Returns TRUE If there are any registers that exist in both register
331 classes_intersect (int class1
, int class2
)
333 return class_contents
[class1
][0] & class_contents
[class2
][0];
336 /* Used by m32c_register_move_cost to determine if a move is
337 impossibly expensive. */
339 class_can_hold_mode (int class, enum machine_mode mode
)
341 /* Cache the results: 0=untested 1=no 2=yes */
342 static char results
[LIM_REG_CLASSES
][MAX_MACHINE_MODE
];
343 if (results
[class][mode
] == 0)
346 results
[class][mode
] = 1;
347 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
348 if (class_contents
[class][0] & (1 << r
)
349 && HARD_REGNO_MODE_OK (r
, mode
))
352 n
= HARD_REGNO_NREGS (r
, mode
);
353 for (i
= 1; i
< n
; i
++)
354 if (!(class_contents
[class][0] & (1 << (r
+ i
))))
358 results
[class][mode
] = 2;
364 fprintf (stderr
, "class %s can hold %s? %s\n",
365 class_names
[class], mode_name
[mode
],
366 (results
[class][mode
] == 2) ? "yes" : "no");
368 return results
[class][mode
] == 2;
371 /* Run-time Target Specification. */
373 /* Memregs are memory locations that gcc treats like general
374 registers, as there are a limited number of true registers and the
375 m32c families can use memory in most places that registers can be
378 However, since memory accesses are more expensive than registers,
379 we allow the user to limit the number of memregs available, in
380 order to try to persuade gcc to try harder to use real registers.
382 Memregs are provided by m32c-lib1.S.
385 int target_memregs
= 16;
386 static bool target_memregs_set
= FALSE
;
387 int ok_to_change_target_memregs
= TRUE
;
389 #undef TARGET_HANDLE_OPTION
390 #define TARGET_HANDLE_OPTION m32c_handle_option
392 m32c_handle_option (size_t code
,
393 const char *arg ATTRIBUTE_UNUSED
,
394 int value ATTRIBUTE_UNUSED
)
396 if (code
== OPT_memregs_
)
398 target_memregs_set
= TRUE
;
399 target_memregs
= atoi (arg
);
404 /* Implements OVERRIDE_OPTIONS. We limit memregs to 0..16, and
405 provide a default. */
407 m32c_override_options (void)
409 if (target_memregs_set
)
411 if (target_memregs
< 0 || target_memregs
> 16)
412 error ("invalid target memregs value '%d'", target_memregs
);
415 target_memregs
= "16";
418 /* Defining data structures for per-function information */
420 /* The usual; we set up our machine_function data. */
421 static struct machine_function
*
422 m32c_init_machine_status (void)
424 struct machine_function
*machine
;
426 (machine_function
*) ggc_alloc_cleared (sizeof (machine_function
));
431 /* Implements INIT_EXPANDERS. We just set up to call the above
434 m32c_init_expanders (void)
436 init_machine_status
= m32c_init_machine_status
;
441 #undef TARGET_PROMOTE_FUNCTION_RETURN
442 #define TARGET_PROMOTE_FUNCTION_RETURN m32c_promote_function_return
444 m32c_promote_function_return (tree fntype ATTRIBUTE_UNUSED
)
449 /* Register Basics */
451 /* Basic Characteristics of Registers */
453 /* Whether a mode fits in a register is complex enough to warrant a
462 } nregs_table
[FIRST_PSEUDO_REGISTER
] =
464 { 1, 1, 2, 2, 4 }, /* r0 */
465 { 0, 1, 0, 0, 0 }, /* r2 */
466 { 1, 1, 2, 2, 0 }, /* r1 */
467 { 0, 1, 0, 0, 0 }, /* r3 */
468 { 0, 1, 1, 0, 0 }, /* a0 */
469 { 0, 1, 1, 0, 0 }, /* a1 */
470 { 0, 1, 1, 0, 0 }, /* sb */
471 { 0, 1, 1, 0, 0 }, /* fb */
472 { 0, 1, 1, 0, 0 }, /* sp */
473 { 1, 1, 1, 0, 0 }, /* pc */
474 { 0, 0, 0, 0, 0 }, /* fl */
475 { 1, 1, 1, 0, 0 }, /* ap */
476 { 1, 1, 2, 2, 4 }, /* mem0 */
477 { 1, 1, 2, 2, 4 }, /* mem1 */
478 { 1, 1, 2, 2, 4 }, /* mem2 */
479 { 1, 1, 2, 2, 4 }, /* mem3 */
480 { 1, 1, 2, 2, 4 }, /* mem4 */
481 { 1, 1, 2, 2, 0 }, /* mem5 */
482 { 1, 1, 2, 2, 0 }, /* mem6 */
483 { 1, 1, 0, 0, 0 }, /* mem7 */
486 /* Implements CONDITIONAL_REGISTER_USAGE. We adjust the number of
487 available memregs, and select which registers need to be preserved
488 across calls based on the chip family. */
491 m32c_conditional_register_usage (void)
496 if (0 <= target_memregs
&& target_memregs
<= 16)
498 /* The command line option is bytes, but our "registers" are
500 for (i
= target_memregs
/2; i
< 8; i
++)
502 fixed_regs
[MEM0_REGNO
+ i
] = 1;
503 CLEAR_HARD_REG_BIT (reg_class_contents
[MEM_REGS
], MEM0_REGNO
+ i
);
507 /* M32CM and M32C preserve more registers across function calls. */
510 call_used_regs
[R1_REGNO
] = 0;
511 call_used_regs
[R2_REGNO
] = 0;
512 call_used_regs
[R3_REGNO
] = 0;
513 call_used_regs
[A0_REGNO
] = 0;
514 call_used_regs
[A1_REGNO
] = 0;
518 /* How Values Fit in Registers */
520 /* Implements HARD_REGNO_NREGS. This is complicated by the fact that
521 different registers are different sizes from each other, *and* may
522 be different sizes in different chip families. */
524 m32c_hard_regno_nregs (int regno
, enum machine_mode mode
)
526 if (regno
== FLG_REGNO
&& mode
== CCmode
)
528 if (regno
>= FIRST_PSEUDO_REGISTER
)
529 return ((GET_MODE_SIZE (mode
) + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
);
531 if (regno
>= MEM0_REGNO
&& regno
<= MEM7_REGNO
)
532 return (GET_MODE_SIZE (mode
) + 1) / 2;
534 if (GET_MODE_SIZE (mode
) <= 1)
535 return nregs_table
[regno
].qi_regs
;
536 if (GET_MODE_SIZE (mode
) <= 2)
537 return nregs_table
[regno
].hi_regs
;
538 if (regno
== A0_REGNO
&& mode
== PSImode
&& TARGET_A16
)
540 if ((GET_MODE_SIZE (mode
) <= 3 || mode
== PSImode
) && TARGET_A24
)
541 return nregs_table
[regno
].pi_regs
;
542 if (GET_MODE_SIZE (mode
) <= 4)
543 return nregs_table
[regno
].si_regs
;
544 if (GET_MODE_SIZE (mode
) <= 8)
545 return nregs_table
[regno
].di_regs
;
549 /* Implements HARD_REGNO_MODE_OK. The above function does the work
550 already; just test its return value. */
552 m32c_hard_regno_ok (int regno
, enum machine_mode mode
)
554 return m32c_hard_regno_nregs (regno
, mode
) != 0;
557 /* Implements MODES_TIEABLE_P. In general, modes aren't tieable since
558 registers are all different sizes. However, since most modes are
559 bigger than our registers anyway, it's easier to implement this
560 function that way, leaving QImode as the only unique case. */
562 m32c_modes_tieable_p (enum machine_mode m1
, enum machine_mode m2
)
564 if (GET_MODE_SIZE (m1
) == GET_MODE_SIZE (m2
))
567 if (m1
== QImode
|| m2
== QImode
)
573 /* Register Classes */
575 /* Implements REGNO_REG_CLASS. */
577 m32c_regno_reg_class (int regno
)
601 if (IS_MEM_REGNO (regno
))
607 /* Implements REG_CLASS_FROM_CONSTRAINT. Note that some constraints only match
608 for certain chip families. */
610 m32c_reg_class_from_constraint (char c ATTRIBUTE_UNUSED
, const char *s
)
612 if (memcmp (s
, "Rsp", 3) == 0)
614 if (memcmp (s
, "Rfb", 3) == 0)
616 if (memcmp (s
, "Rsb", 3) == 0)
618 if (memcmp (s
, "Rcr", 3) == 0 && TARGET_A16
)
620 if (memcmp (s
, "Rcl", 3) == 0 && TARGET_A24
)
622 if (memcmp (s
, "R0w", 3) == 0)
624 if (memcmp (s
, "R1w", 3) == 0)
626 if (memcmp (s
, "R2w", 3) == 0)
628 if (memcmp (s
, "R3w", 3) == 0)
630 if (memcmp (s
, "R02", 3) == 0)
632 if (memcmp (s
, "R03", 3) == 0)
634 if (memcmp (s
, "Rdi", 3) == 0)
636 if (memcmp (s
, "Rhl", 3) == 0)
638 if (memcmp (s
, "R23", 3) == 0)
640 if (memcmp (s
, "Raa", 3) == 0)
642 if (memcmp (s
, "Raw", 3) == 0 && TARGET_A16
)
644 if (memcmp (s
, "Ral", 3) == 0 && TARGET_A24
)
646 if (memcmp (s
, "Rqi", 3) == 0)
648 if (memcmp (s
, "Rad", 3) == 0)
650 if (memcmp (s
, "Rsi", 3) == 0)
652 if (memcmp (s
, "Rhi", 3) == 0)
654 if (memcmp (s
, "Rhc", 3) == 0)
656 if (memcmp (s
, "Rra", 3) == 0)
658 if (memcmp (s
, "Rfl", 3) == 0)
660 if (memcmp (s
, "Rmm", 3) == 0)
662 if (fixed_regs
[MEM0_REGNO
])
667 /* PSImode registers - i.e. whatever can hold a pointer. */
668 if (memcmp (s
, "Rpi", 3) == 0)
673 return RA_REGS
; /* r2r0 and r3r1 can hold pointers. */
676 /* We handle this one as an EXTRA_CONSTRAINT. */
677 if (memcmp (s
, "Rpa", 3) == 0)
683 /* Implements REGNO_OK_FOR_BASE_P. */
685 m32c_regno_ok_for_base_p (int regno
)
687 if (regno
== A0_REGNO
688 || regno
== A1_REGNO
|| regno
>= FIRST_PSEUDO_REGISTER
)
693 #define DEBUG_RELOAD 0
695 /* Implements PREFERRED_RELOAD_CLASS. In general, prefer general
696 registers of the appropriate size. */
698 m32c_preferred_reload_class (rtx x
, int rclass
)
700 int newclass
= rclass
;
703 fprintf (stderr
, "\npreferred_reload_class for %s is ",
704 class_names
[rclass
]);
706 if (rclass
== NO_REGS
)
707 rclass
= GET_MODE (x
) == QImode
? HL_REGS
: R03_REGS
;
709 if (classes_intersect (rclass
, CR_REGS
))
711 switch (GET_MODE (x
))
717 /* newclass = HI_REGS; */
722 else if (newclass
== QI_REGS
&& GET_MODE_SIZE (GET_MODE (x
)) > 2)
724 else if (GET_MODE_SIZE (GET_MODE (x
)) > 4
725 && ~class_contents
[rclass
][0] & 0x000f)
728 rclass
= reduce_class (rclass
, newclass
, rclass
);
730 if (GET_MODE (x
) == QImode
)
731 rclass
= reduce_class (rclass
, HL_REGS
, rclass
);
734 fprintf (stderr
, "%s\n", class_names
[rclass
]);
737 if (GET_CODE (x
) == MEM
738 && GET_CODE (XEXP (x
, 0)) == PLUS
739 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
)
740 fprintf (stderr
, "Glorm!\n");
745 /* Implements PREFERRED_OUTPUT_RELOAD_CLASS. */
747 m32c_preferred_output_reload_class (rtx x
, int rclass
)
749 return m32c_preferred_reload_class (x
, rclass
);
752 /* Implements LIMIT_RELOAD_CLASS. We basically want to avoid using
753 address registers for reloads since they're needed for address
756 m32c_limit_reload_class (enum machine_mode mode
, int rclass
)
759 fprintf (stderr
, "limit_reload_class for %s: %s ->",
760 mode_name
[mode
], class_names
[rclass
]);
764 rclass
= reduce_class (rclass
, HL_REGS
, rclass
);
765 else if (mode
== HImode
)
766 rclass
= reduce_class (rclass
, HI_REGS
, rclass
);
767 else if (mode
== SImode
)
768 rclass
= reduce_class (rclass
, SI_REGS
, rclass
);
770 if (rclass
!= A_REGS
)
771 rclass
= reduce_class (rclass
, DI_REGS
, rclass
);
774 fprintf (stderr
, " %s\n", class_names
[rclass
]);
779 /* Implements SECONDARY_RELOAD_CLASS. QImode have to be reloaded in
780 r0 or r1, as those are the only real QImode registers. CR regs get
781 reloaded through appropriately sized general or address
784 m32c_secondary_reload_class (int rclass
, enum machine_mode mode
, rtx x
)
786 int cc
= class_contents
[rclass
][0];
788 fprintf (stderr
, "\nsecondary reload class %s %s\n",
789 class_names
[rclass
], mode_name
[mode
]);
793 && GET_CODE (x
) == MEM
&& (cc
& ~class_contents
[R23_REGS
][0]) == 0)
795 if (classes_intersect (rclass
, CR_REGS
)
796 && GET_CODE (x
) == REG
797 && REGNO (x
) >= SB_REGNO
&& REGNO (x
) <= SP_REGNO
)
798 return TARGET_A16
? HI_REGS
: A_REGS
;
802 /* Implements CLASS_LIKELY_SPILLED_P. A_REGS is needed for address
805 m32c_class_likely_spilled_p (int regclass
)
807 if (regclass
== A_REGS
)
809 return reg_class_size
[regclass
] == 1;
812 /* Implements CLASS_MAX_NREGS. We calculate this according to its
813 documented meaning, to avoid potential inconsistencies with actual
814 class definitions. */
816 m32c_class_max_nregs (int regclass
, enum machine_mode mode
)
820 for (rn
= 0; rn
< FIRST_PSEUDO_REGISTER
; rn
++)
821 if (class_contents
[regclass
][0] & (1 << rn
))
823 int n
= m32c_hard_regno_nregs (rn
, mode
);
830 /* Implements CANNOT_CHANGE_MODE_CLASS. Only r0 and r1 can change to
831 QI (r0l, r1l) because the chip doesn't support QI ops on other
832 registers (well, it does on a0/a1 but if we let gcc do that, reload
833 suffers). Otherwise, we allow changes to larger modes. */
835 m32c_cannot_change_mode_class (enum machine_mode from
,
836 enum machine_mode to
, int rclass
)
839 fprintf (stderr
, "cannot change from %s to %s in %s\n",
840 mode_name
[from
], mode_name
[to
], class_names
[rclass
]);
844 return (class_contents
[rclass
][0] & 0x1ffa);
846 if (class_contents
[rclass
][0] & 0x0005 /* r0, r1 */
847 && GET_MODE_SIZE (from
) > 1)
849 if (GET_MODE_SIZE (from
) > 2) /* all other regs */
855 /* Helpers for the rest of the file. */
856 /* TRUE if the rtx is a REG rtx for the given register. */
857 #define IS_REG(rtx,regno) (GET_CODE (rtx) == REG \
858 && REGNO (rtx) == regno)
859 /* TRUE if the rtx is a pseudo - specifically, one we can use as a
860 base register in address calculations (hence the "strict"
862 #define IS_PSEUDO(rtx,strict) (!strict && GET_CODE (rtx) == REG \
863 && (REGNO (rtx) == AP_REGNO \
864 || REGNO (rtx) >= FIRST_PSEUDO_REGISTER))
866 /* Implements CONST_OK_FOR_CONSTRAINT_P. Currently, all constant
867 constraints start with 'I', with the next two characters indicating
868 the type and size of the range allowed. */
870 m32c_const_ok_for_constraint_p (HOST_WIDE_INT value
,
871 char c ATTRIBUTE_UNUSED
, const char *str
)
873 /* s=signed u=unsigned n=nonzero m=minus l=log2able,
874 [sun] bits [SUN] bytes, p=pointer size
875 I[-0-9][0-9] matches that number */
876 if (memcmp (str
, "Is3", 3) == 0)
878 return (-8 <= value
&& value
<= 7);
880 if (memcmp (str
, "IS1", 3) == 0)
882 return (-128 <= value
&& value
<= 127);
884 if (memcmp (str
, "IS2", 3) == 0)
886 return (-32768 <= value
&& value
<= 32767);
888 if (memcmp (str
, "IU2", 3) == 0)
890 return (0 <= value
&& value
<= 65535);
892 if (memcmp (str
, "IU3", 3) == 0)
894 return (0 <= value
&& value
<= 0x00ffffff);
896 if (memcmp (str
, "In4", 3) == 0)
898 return (-8 <= value
&& value
&& value
<= 8);
900 if (memcmp (str
, "In5", 3) == 0)
902 return (-16 <= value
&& value
&& value
<= 16);
904 if (memcmp (str
, "IM2", 3) == 0)
906 return (-65536 <= value
&& value
&& value
<= -1);
908 if (memcmp (str
, "Ilb", 3) == 0)
910 int b
= exact_log2 (value
);
911 return (b
>= 1 && b
<= 8);
913 if (memcmp (str
, "Ilw", 3) == 0)
915 int b
= exact_log2 (value
);
916 return (b
>= 1 && b
<= 16);
921 /* Implements EXTRA_CONSTRAINT_STR (see next function too). 'S' is
922 for memory constraints, plus "Rpa" for PARALLEL rtx's we use for
923 call return values. */
925 m32c_extra_constraint_p2 (rtx value
, char c ATTRIBUTE_UNUSED
, const char *str
)
927 encode_pattern (value
);
928 if (memcmp (str
, "Sd", 2) == 0)
930 /* This is the common "src/dest" address */
932 if (GET_CODE (value
) == MEM
&& CONSTANT_P (XEXP (value
, 0)))
934 if (RTX_IS ("ms") || RTX_IS ("m+si"))
938 else if (RTX_IS ("m+ri") || RTX_IS ("m+rs") || RTX_IS ("m+r+si"))
942 if (REGNO (r
) == SP_REGNO
)
944 return m32c_legitimate_address_p (GET_MODE (value
), XEXP (value
, 0), 1);
946 else if (memcmp (str
, "Sa", 2) == 0)
951 else if (RTX_IS ("m+ri"))
955 return (IS_REG (r
, A0_REGNO
) || IS_REG (r
, A1_REGNO
));
957 else if (memcmp (str
, "Si", 2) == 0)
959 return (RTX_IS ("mi") || RTX_IS ("ms") || RTX_IS ("m+si"));
961 else if (memcmp (str
, "Ss", 2) == 0)
963 return ((RTX_IS ("mr")
964 && (IS_REG (patternr
[1], SP_REGNO
)))
965 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], SP_REGNO
))));
967 else if (memcmp (str
, "Sf", 2) == 0)
969 return ((RTX_IS ("mr")
970 && (IS_REG (patternr
[1], FB_REGNO
)))
971 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], FB_REGNO
))));
973 else if (memcmp (str
, "Sb", 2) == 0)
975 return ((RTX_IS ("mr")
976 && (IS_REG (patternr
[1], SB_REGNO
)))
977 || (RTX_IS ("m+ri") && (IS_REG (patternr
[2], SB_REGNO
))));
979 else if (memcmp (str
, "S1", 2) == 0)
981 return r1h_operand (value
, QImode
);
984 gcc_assert (str
[0] != 'S');
986 if (memcmp (str
, "Rpa", 2) == 0)
987 return GET_CODE (value
) == PARALLEL
;
992 /* This is for when we're debugging the above. */
994 m32c_extra_constraint_p (rtx value
, char c
, const char *str
)
996 int rv
= m32c_extra_constraint_p2 (value
, c
, str
);
998 fprintf (stderr
, "\nconstraint %.*s: %d\n", CONSTRAINT_LEN (c
, str
), str
,
1005 /* Implements EXTRA_MEMORY_CONSTRAINT. Currently, we only use strings
1006 starting with 'S'. */
1008 m32c_extra_memory_constraint (char c
, const char *str ATTRIBUTE_UNUSED
)
1013 /* Implements EXTRA_ADDRESS_CONSTRAINT. We reserve 'A' strings for these,
1014 but don't currently define any. */
1016 m32c_extra_address_constraint (char c
, const char *str ATTRIBUTE_UNUSED
)
1021 /* STACK AND CALLING */
1025 /* Implements RETURN_ADDR_RTX. Note that R8C and M16C push 24 bits
1026 (yes, THREE bytes) onto the stack for the return address, but we
1027 don't support pointers bigger than 16 bits on those chips. This
1028 will likely wreak havoc with exception unwinding. FIXME. */
1030 m32c_return_addr_rtx (int count
)
1032 enum machine_mode mode
;
1038 /* we want 2[$fb] */
1047 /* FIXME: it's really 3 bytes */
1053 gen_rtx_MEM (mode
, plus_constant (gen_rtx_REG (Pmode
, FP_REGNO
), offset
));
1054 return copy_to_mode_reg (mode
, ra_mem
);
1057 /* Implements INCOMING_RETURN_ADDR_RTX. See comment above. */
1059 m32c_incoming_return_addr_rtx (void)
1062 return gen_rtx_MEM (PSImode
, gen_rtx_REG (PSImode
, SP_REGNO
));
1065 /* Exception Handling Support */
1067 /* Implements EH_RETURN_DATA_REGNO. Choose registers able to hold
1070 m32c_eh_return_data_regno (int n
)
1079 return INVALID_REGNUM
;
1083 /* Implements EH_RETURN_STACKADJ_RTX. Saved and used later in
1084 m32c_emit_eh_epilogue. */
1086 m32c_eh_return_stackadj_rtx (void)
1088 if (!cfun
->machine
->eh_stack_adjust
)
1092 sa
= gen_reg_rtx (Pmode
);
1093 cfun
->machine
->eh_stack_adjust
= sa
;
1095 return cfun
->machine
->eh_stack_adjust
;
1098 /* Registers That Address the Stack Frame */
1100 /* Implements DWARF_FRAME_REGNUM and DBX_REGISTER_NUMBER. Note that
1101 the original spec called for dwarf numbers to vary with register
1102 width as well, for example, r0l, r0, and r2r0 would each have
1103 different dwarf numbers. GCC doesn't support this, and we don't do
1104 it, and gdb seems to like it this way anyway. */
1106 m32c_dwarf_frame_regnum (int n
)
1132 return DWARF_FRAME_REGISTERS
+ 1;
1136 /* The frame looks like this:
1138 ap -> +------------------------------
1139 | Return address (3 or 4 bytes)
1140 | Saved FB (2 or 4 bytes)
1141 fb -> +------------------------------
1144 | through r0 as needed
1145 sp -> +------------------------------
1148 /* We use this to wrap all emitted insns in the prologue. */
1152 RTX_FRAME_RELATED_P (x
) = 1;
1156 /* This maps register numbers to the PUSHM/POPM bitfield, and tells us
1157 how much the stack pointer moves for each, for each cpu family. */
1166 /* These are in push order. */
1167 { FB_REGNO
, 0x01, 2, 4 },
1168 { SB_REGNO
, 0x02, 2, 4 },
1169 { A1_REGNO
, 0x04, 2, 4 },
1170 { A0_REGNO
, 0x08, 2, 4 },
1171 { R3_REGNO
, 0x10, 2, 2 },
1172 { R2_REGNO
, 0x20, 2, 2 },
1173 { R1_REGNO
, 0x40, 2, 2 },
1174 { R0_REGNO
, 0x80, 2, 2 }
1177 #define PUSHM_N (sizeof(pushm_info)/sizeof(pushm_info[0]))
1179 /* Returns TRUE if we need to save/restore the given register. We
1180 save everything for exception handlers, so that any register can be
1181 unwound. For interrupt handlers, we save everything if the handler
1182 calls something else (because we don't know what *that* function
1183 might do), but try to be a bit smarter if the handler is a leaf
1184 function. We always save $a0, though, because we use that in the
1185 epilog to copy $fb to $sp. */
1187 need_to_save (int regno
)
1189 if (fixed_regs
[regno
])
1191 if (cfun
->calls_eh_return
)
1193 if (regno
== FP_REGNO
)
1195 if (cfun
->machine
->is_interrupt
1196 && (!cfun
->machine
->is_leaf
|| regno
== A0_REGNO
))
1198 if (regs_ever_live
[regno
]
1199 && (!call_used_regs
[regno
] || cfun
->machine
->is_interrupt
))
1204 /* This function contains all the intelligence about saving and
1205 restoring registers. It always figures out the register save set.
1206 When called with PP_justcount, it merely returns the size of the
1207 save set (for eliminating the frame pointer, for example). When
1208 called with PP_pushm or PP_popm, it emits the appropriate
1209 instructions for saving (pushm) or restoring (popm) the
1212 m32c_pushm_popm (Push_Pop_Type ppt
)
1215 int byte_count
= 0, bytes
;
1217 rtx dwarf_set
[PUSHM_N
];
1219 int nosave_mask
= 0;
1221 if (cfun
->return_rtx
1222 && GET_CODE (cfun
->return_rtx
) == PARALLEL
1223 && !(cfun
->calls_eh_return
|| cfun
->machine
->is_interrupt
))
1225 rtx exp
= XVECEXP (cfun
->return_rtx
, 0, 0);
1226 rtx rv
= XEXP (exp
, 0);
1227 int rv_bytes
= GET_MODE_SIZE (GET_MODE (rv
));
1230 nosave_mask
|= 0x20; /* PSI, SI */
1232 nosave_mask
|= 0xf0; /* DF */
1234 nosave_mask
|= 0x50; /* DI */
1237 for (i
= 0; i
< (int) PUSHM_N
; i
++)
1239 /* Skip if neither register needs saving. */
1240 if (!need_to_save (pushm_info
[i
].reg1
))
1243 if (pushm_info
[i
].bit
& nosave_mask
)
1246 reg_mask
|= pushm_info
[i
].bit
;
1247 bytes
= TARGET_A16
? pushm_info
[i
].a16_bytes
: pushm_info
[i
].a24_bytes
;
1249 if (ppt
== PP_pushm
)
1251 enum machine_mode mode
= (bytes
== 2) ? HImode
: SImode
;
1254 /* Always use stack_pointer_rtx instead of calling
1255 rtx_gen_REG ourselves. Code elsewhere in GCC assumes
1256 that there is a single rtx representing the stack pointer,
1257 namely stack_pointer_rtx, and uses == to recognize it. */
1258 addr
= stack_pointer_rtx
;
1260 if (byte_count
!= 0)
1261 addr
= gen_rtx_PLUS (GET_MODE (addr
), addr
, GEN_INT (byte_count
));
1263 dwarf_set
[n_dwarfs
++] =
1264 gen_rtx_SET (VOIDmode
,
1265 gen_rtx_MEM (mode
, addr
),
1266 gen_rtx_REG (mode
, pushm_info
[i
].reg1
));
1267 F (dwarf_set
[n_dwarfs
- 1]);
1270 byte_count
+= bytes
;
1273 if (cfun
->machine
->is_interrupt
)
1275 cfun
->machine
->intr_pushm
= reg_mask
& 0xfe;
1280 if (cfun
->machine
->is_interrupt
)
1281 for (i
= MEM0_REGNO
; i
<= MEM7_REGNO
; i
++)
1282 if (need_to_save (i
))
1285 cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
] = 1;
1288 if (ppt
== PP_pushm
&& byte_count
)
1290 rtx note
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (n_dwarfs
+ 1));
1295 XVECEXP (note
, 0, 0)
1296 = gen_rtx_SET (VOIDmode
,
1298 gen_rtx_PLUS (GET_MODE (stack_pointer_rtx
),
1300 GEN_INT (-byte_count
)));
1301 F (XVECEXP (note
, 0, 0));
1303 for (i
= 0; i
< n_dwarfs
; i
++)
1304 XVECEXP (note
, 0, i
+ 1) = dwarf_set
[i
];
1306 pushm
= F (emit_insn (gen_pushm (GEN_INT (reg_mask
))));
1308 REG_NOTES (pushm
) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
, note
,
1312 if (cfun
->machine
->is_interrupt
)
1313 for (i
= MEM0_REGNO
; i
<= MEM7_REGNO
; i
++)
1314 if (cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
])
1317 pushm
= emit_insn (gen_pushhi_16 (gen_rtx_REG (HImode
, i
)));
1319 pushm
= emit_insn (gen_pushhi_24 (gen_rtx_REG (HImode
, i
)));
1323 if (ppt
== PP_popm
&& byte_count
)
1325 if (cfun
->machine
->is_interrupt
)
1326 for (i
= MEM7_REGNO
; i
>= MEM0_REGNO
; i
--)
1327 if (cfun
->machine
->intr_pushmem
[i
- MEM0_REGNO
])
1330 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode
, i
)));
1332 emit_insn (gen_pophi_24 (gen_rtx_REG (HImode
, i
)));
1335 emit_insn (gen_popm (GEN_INT (reg_mask
)));
1341 /* Implements INITIAL_ELIMINATION_OFFSET. See the comment above that
1342 diagrams our call frame. */
1344 m32c_initial_elimination_offset (int from
, int to
)
1348 if (from
== AP_REGNO
)
1358 ofs
+= m32c_pushm_popm (PP_justcount
);
1359 ofs
+= get_frame_size ();
1362 /* Account for push rounding. */
1364 ofs
= (ofs
+ 1) & ~1;
1366 fprintf (stderr
, "initial_elimination_offset from=%d to=%d, ofs=%d\n", from
,
1372 /* Passing Function Arguments on the Stack */
1374 #undef TARGET_PROMOTE_PROTOTYPES
1375 #define TARGET_PROMOTE_PROTOTYPES m32c_promote_prototypes
1377 m32c_promote_prototypes (tree fntype ATTRIBUTE_UNUSED
)
1382 /* Implements PUSH_ROUNDING. The R8C and M16C have byte stacks, the
1383 M32C has word stacks. */
1385 m32c_push_rounding (int n
)
1387 if (TARGET_R8C
|| TARGET_M16C
)
1389 return (n
+ 1) & ~1;
1392 /* Passing Arguments in Registers */
1394 /* Implements FUNCTION_ARG. Arguments are passed partly in registers,
1395 partly on stack. If our function returns a struct, a pointer to a
1396 buffer for it is at the top of the stack (last thing pushed). The
1397 first few real arguments may be in registers as follows:
1399 R8C/M16C: arg1 in r1 if it's QI or HI (else it's pushed on stack)
1400 arg2 in r2 if it's HI (else pushed on stack)
1402 M32C: arg1 in r0 if it's QI or HI (else it's pushed on stack)
1405 Structs are not passed in registers, even if they fit. Only
1406 integer and pointer types are passed in registers.
1408 Note that when arg1 doesn't fit in r1, arg2 may still be passed in
1411 m32c_function_arg (CUMULATIVE_ARGS
* ca
,
1412 enum machine_mode mode
, tree type
, int named
)
1414 /* Can return a reg, parallel, or 0 for stack */
1417 fprintf (stderr
, "func_arg %d (%s, %d)\n",
1418 ca
->parm_num
, mode_name
[mode
], named
);
1422 if (mode
== VOIDmode
)
1425 if (ca
->force_mem
|| !named
)
1428 fprintf (stderr
, "func arg: force %d named %d, mem\n", ca
->force_mem
,
1434 if (type
&& INTEGRAL_TYPE_P (type
) && POINTER_TYPE_P (type
))
1437 switch (ca
->parm_num
)
1440 if (GET_MODE_SIZE (mode
) == 1 || GET_MODE_SIZE (mode
) == 2)
1441 rv
= gen_rtx_REG (mode
, TARGET_A16
? R1_REGNO
: R0_REGNO
);
1445 if (TARGET_A16
&& GET_MODE_SIZE (mode
) == 2)
1446 rv
= gen_rtx_REG (mode
, R2_REGNO
);
1456 #undef TARGET_PASS_BY_REFERENCE
1457 #define TARGET_PASS_BY_REFERENCE m32c_pass_by_reference
1459 m32c_pass_by_reference (CUMULATIVE_ARGS
* ca ATTRIBUTE_UNUSED
,
1460 enum machine_mode mode ATTRIBUTE_UNUSED
,
1461 tree type ATTRIBUTE_UNUSED
,
1462 bool named ATTRIBUTE_UNUSED
)
1467 /* Implements INIT_CUMULATIVE_ARGS. */
1469 m32c_init_cumulative_args (CUMULATIVE_ARGS
* ca
,
1470 tree fntype ATTRIBUTE_UNUSED
,
1471 rtx libname ATTRIBUTE_UNUSED
,
1472 tree fndecl ATTRIBUTE_UNUSED
,
1473 int n_named_args ATTRIBUTE_UNUSED
)
1479 /* Implements FUNCTION_ARG_ADVANCE. force_mem is set for functions
1480 returning structures, so we always reset that. Otherwise, we only
1481 need to know the sequence number of the argument to know what to do
1484 m32c_function_arg_advance (CUMULATIVE_ARGS
* ca
,
1485 enum machine_mode mode ATTRIBUTE_UNUSED
,
1486 tree type ATTRIBUTE_UNUSED
,
1487 int named ATTRIBUTE_UNUSED
)
1494 /* Implements FUNCTION_ARG_REGNO_P. */
1496 m32c_function_arg_regno_p (int r
)
1499 return (r
== R0_REGNO
);
1500 return (r
== R1_REGNO
|| r
== R2_REGNO
);
1503 /* HImode and PSImode are the two "native" modes as far as GCC is
1504 concerned, but the chips also support a 32 bit mode which is used
1505 for some opcodes in R8C/M16C and for reset vectors and such. */
1506 #undef TARGET_VALID_POINTER_MODE
1507 #define TARGET_VALID_POINTER_MODE m32c_valid_pointer_mode
1509 m32c_valid_pointer_mode (enum machine_mode mode
)
1519 /* How Scalar Function Values Are Returned */
1521 /* Implements LIBCALL_VALUE. Most values are returned in $r0, or some
1522 combination of registers starting there (r2r0 for longs, r3r1r2r0
1523 for long long, r3r2r1r0 for doubles), except that that ABI
1524 currently doesn't work because it ends up using all available
1525 general registers and gcc often can't compile it. So, instead, we
1526 return anything bigger than 16 bits in "mem0" (effectively, a
1527 memory location). */
1529 m32c_libcall_value (enum machine_mode mode
)
1531 /* return reg or parallel */
1533 /* FIXME: GCC has difficulty returning large values in registers,
1534 because that ties up most of the general registers and gives the
1535 register allocator little to work with. Until we can resolve
1536 this, large values are returned in memory. */
1541 rv
= gen_rtx_PARALLEL (mode
, rtvec_alloc (4));
1542 XVECEXP (rv
, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode
,
1543 gen_rtx_REG (HImode
,
1546 XVECEXP (rv
, 0, 1) = gen_rtx_EXPR_LIST (VOIDmode
,
1547 gen_rtx_REG (HImode
,
1550 XVECEXP (rv
, 0, 2) = gen_rtx_EXPR_LIST (VOIDmode
,
1551 gen_rtx_REG (HImode
,
1554 XVECEXP (rv
, 0, 3) = gen_rtx_EXPR_LIST (VOIDmode
,
1555 gen_rtx_REG (HImode
,
1561 if (TARGET_A24
&& GET_MODE_SIZE (mode
) > 2)
1565 rv
= gen_rtx_PARALLEL (mode
, rtvec_alloc (1));
1566 XVECEXP (rv
, 0, 0) = gen_rtx_EXPR_LIST (VOIDmode
,
1574 if (GET_MODE_SIZE (mode
) > 2)
1575 return gen_rtx_REG (mode
, MEM0_REGNO
);
1576 return gen_rtx_REG (mode
, R0_REGNO
);
1579 /* Implements FUNCTION_VALUE. Functions and libcalls have the same
1582 m32c_function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
)
1584 /* return reg or parallel */
1585 enum machine_mode mode
= TYPE_MODE (valtype
);
1586 return m32c_libcall_value (mode
);
1589 /* How Large Values Are Returned */
1591 /* We return structures by pushing the address on the stack, even if
1592 we use registers for the first few "real" arguments. */
1593 #undef TARGET_STRUCT_VALUE_RTX
1594 #define TARGET_STRUCT_VALUE_RTX m32c_struct_value_rtx
1596 m32c_struct_value_rtx (tree fndecl ATTRIBUTE_UNUSED
,
1597 int incoming ATTRIBUTE_UNUSED
)
1602 /* Function Entry and Exit */
1604 /* Implements EPILOGUE_USES. Interrupts restore all registers. */
1606 m32c_epilogue_uses (int regno ATTRIBUTE_UNUSED
)
1608 if (cfun
->machine
->is_interrupt
)
1613 /* Implementing the Varargs Macros */
1615 #undef TARGET_STRICT_ARGUMENT_NAMING
1616 #define TARGET_STRICT_ARGUMENT_NAMING m32c_strict_argument_naming
1618 m32c_strict_argument_naming (CUMULATIVE_ARGS
* ca ATTRIBUTE_UNUSED
)
1623 /* Trampolines for Nested Functions */
1627 1 0000 75C43412 mov.w #0x1234,a0
1628 2 0004 FC000000 jmp.a label
1631 1 0000 BC563412 mov.l:s #0x123456,a0
1632 2 0004 CC000000 jmp.a label
1635 /* Implements TRAMPOLINE_SIZE. */
1637 m32c_trampoline_size (void)
1639 /* Allocate extra space so we can avoid the messy shifts when we
1640 initialize the trampoline; we just write past the end of the
1642 return TARGET_A16
? 8 : 10;
1645 /* Implements TRAMPOLINE_ALIGNMENT. */
1647 m32c_trampoline_alignment (void)
1652 /* Implements INITIALIZE_TRAMPOLINE. */
1654 m32c_initialize_trampoline (rtx tramp
, rtx function
, rtx chainval
)
1656 #define A0(m,i) gen_rtx_MEM (m, plus_constant (tramp, i))
1659 /* Note: we subtract a "word" because the moves want signed
1660 constants, not unsigned constants. */
1661 emit_move_insn (A0 (HImode
, 0), GEN_INT (0xc475 - 0x10000));
1662 emit_move_insn (A0 (HImode
, 2), chainval
);
1663 emit_move_insn (A0 (QImode
, 4), GEN_INT (0xfc - 0x100));
1664 /* We use 16 bit addresses here, but store the zero to turn it
1665 into a 24 bit offset. */
1666 emit_move_insn (A0 (HImode
, 5), function
);
1667 emit_move_insn (A0 (QImode
, 7), GEN_INT (0x00));
1671 /* Note that the PSI moves actually write 4 bytes. Make sure we
1672 write stuff out in the right order, and leave room for the
1673 extra byte at the end. */
1674 emit_move_insn (A0 (QImode
, 0), GEN_INT (0xbc - 0x100));
1675 emit_move_insn (A0 (PSImode
, 1), chainval
);
1676 emit_move_insn (A0 (QImode
, 4), GEN_INT (0xcc - 0x100));
1677 emit_move_insn (A0 (PSImode
, 5), function
);
1682 /* Addressing Modes */
1684 /* Used by GO_IF_LEGITIMATE_ADDRESS. The r8c/m32c family supports a
1685 wide range of non-orthogonal addressing modes, including the
1686 ability to double-indirect on *some* of them. Not all insns
1687 support all modes, either, but we rely on predicates and
1688 constraints to deal with that. */
1690 m32c_legitimate_address_p (enum machine_mode mode
, rtx x
, int strict
)
1696 /* Wide references to memory will be split after reload, so we must
1697 ensure that all parts of such splits remain legitimate
1699 mode_adjust
= GET_MODE_SIZE (mode
) - 1;
1701 /* allowing PLUS yields mem:HI(plus:SI(mem:SI(plus:SI in m32c_split_move */
1702 if (GET_CODE (x
) == PRE_DEC
1703 || GET_CODE (x
) == POST_INC
|| GET_CODE (x
) == PRE_MODIFY
)
1705 return (GET_CODE (XEXP (x
, 0)) == REG
1706 && REGNO (XEXP (x
, 0)) == SP_REGNO
);
1710 /* This is the double indirection detection, but it currently
1711 doesn't work as cleanly as this code implies, so until we've had
1712 a chance to debug it, leave it disabled. */
1713 if (TARGET_A24
&& GET_CODE (x
) == MEM
&& GET_CODE (XEXP (x
, 0)) != PLUS
)
1716 fprintf (stderr
, "double indirect\n");
1725 /* Most indexable registers can be used without displacements,
1726 although some of them will be emitted with an explicit zero
1727 to please the assembler. */
1728 switch (REGNO (patternr
[0]))
1738 if (IS_PSEUDO (patternr
[0], strict
))
1745 /* This is more interesting, because different base registers
1746 allow for different displacements - both range and signedness
1747 - and it differs from chip series to chip series too. */
1748 int rn
= REGNO (patternr
[1]);
1749 HOST_WIDE_INT offs
= INTVAL (patternr
[2]);
1755 /* The syntax only allows positive offsets, but when the
1756 offsets span the entire memory range, we can simulate
1757 negative offsets by wrapping. */
1759 return (offs
>= -65536 && offs
<= 65535 - mode_adjust
);
1761 return (offs
>= 0 && offs
<= 65535 - mode_adjust
);
1763 return (offs
>= -16777216 && offs
<= 16777215);
1767 return (offs
>= -128 && offs
<= 127 - mode_adjust
);
1768 return (offs
>= -65536 && offs
<= 65535 - mode_adjust
);
1771 return (offs
>= -128 && offs
<= 127 - mode_adjust
);
1774 if (IS_PSEUDO (patternr
[1], strict
))
1779 if (RTX_IS ("+rs") || RTX_IS ("+r+si"))
1781 rtx reg
= patternr
[1];
1783 /* We don't know where the symbol is, so only allow base
1784 registers which support displacements spanning the whole
1786 switch (REGNO (reg
))
1790 /* $sb needs a secondary reload, but since it's involved in
1791 memory address reloads too, we don't deal with it very
1793 /* case SB_REGNO: */
1796 if (IS_PSEUDO (reg
, strict
))
1804 /* Implements REG_OK_FOR_BASE_P. */
1806 m32c_reg_ok_for_base_p (rtx x
, int strict
)
1808 if (GET_CODE (x
) != REG
)
1819 if (IS_PSEUDO (x
, strict
))
1825 /* Implements LEGITIMIZE_ADDRESS. The only address we really have to
1826 worry about is frame base offsets, as $fb has a limited
1827 displacement range. We deal with this by attempting to reload $fb
1828 itself into an address register; that seems to result in the best
1831 m32c_legitimize_address (rtx
* x ATTRIBUTE_UNUSED
,
1832 rtx oldx ATTRIBUTE_UNUSED
,
1833 enum machine_mode mode ATTRIBUTE_UNUSED
)
1836 fprintf (stderr
, "m32c_legitimize_address for mode %s\n", mode_name
[mode
]);
1838 fprintf (stderr
, "\n");
1841 if (GET_CODE (*x
) == PLUS
1842 && GET_CODE (XEXP (*x
, 0)) == REG
1843 && REGNO (XEXP (*x
, 0)) == FB_REGNO
1844 && GET_CODE (XEXP (*x
, 1)) == CONST_INT
1845 && (INTVAL (XEXP (*x
, 1)) < -128
1846 || INTVAL (XEXP (*x
, 1)) > (128 - GET_MODE_SIZE (mode
))))
1848 /* reload FB to A_REGS */
1850 rtx temp
= gen_reg_rtx (Pmode
);
1852 foo
= emit_insn (gen_rtx_SET (VOIDmode
, temp
, XEXP (*x
, 0)));
1853 XEXP (*x
, 0) = temp
;
1860 /* Implements LEGITIMIZE_RELOAD_ADDRESS. See comment above. */
1862 m32c_legitimize_reload_address (rtx
* x
,
1863 enum machine_mode mode
,
1865 int type
, int ind_levels ATTRIBUTE_UNUSED
)
1868 fprintf (stderr
, "\nm32c_legitimize_reload_address for mode %s\n",
1873 /* At one point, this function tried to get $fb copied to an address
1874 register, which in theory would maximize sharing, but gcc was
1875 *also* still trying to reload the whole address, and we'd run out
1876 of address registers. So we let gcc do the naive (but safe)
1877 reload instead, when the above function doesn't handle it for
1883 /* Used in GO_IF_MODE_DEPENDENT_ADDRESS. */
1885 m32c_mode_dependent_address (rtx addr
)
1887 if (GET_CODE (addr
) == POST_INC
|| GET_CODE (addr
) == PRE_DEC
)
1892 /* Implements LEGITIMATE_CONSTANT_P. We split large constants anyway,
1893 so we can allow anything. */
1895 m32c_legitimate_constant_p (rtx x ATTRIBUTE_UNUSED
)
1901 /* Condition Code Status */
1903 #undef TARGET_FIXED_CONDITION_CODE_REGS
1904 #define TARGET_FIXED_CONDITION_CODE_REGS m32c_fixed_condition_code_regs
1906 m32c_fixed_condition_code_regs (unsigned int *p1
, unsigned int *p2
)
1909 *p2
= INVALID_REGNUM
;
1913 /* Describing Relative Costs of Operations */
1915 /* Implements REGISTER_MOVE_COST. We make impossible moves
1916 prohibitively expensive, like trying to put QIs in r2/r3 (there are
1917 no opcodes to do that). We also discourage use of mem* registers
1918 since they're really memory. */
1920 m32c_register_move_cost (enum machine_mode mode
, int from
, int to
)
1922 int cost
= COSTS_N_INSNS (3);
1923 int cc
= class_contents
[from
][0] | class_contents
[to
][0];
1924 /* FIXME: pick real values, but not 2 for now. */
1925 if (mode
== QImode
&& (cc
& class_contents
[R23_REGS
][0]))
1927 if (!(cc
& ~class_contents
[R23_REGS
][0]))
1928 cost
= COSTS_N_INSNS (1000);
1930 cost
= COSTS_N_INSNS (80);
1933 if (!class_can_hold_mode (from
, mode
) || !class_can_hold_mode (to
, mode
))
1934 cost
= COSTS_N_INSNS (1000);
1936 if (classes_intersect (from
, CR_REGS
))
1937 cost
+= COSTS_N_INSNS (5);
1939 if (classes_intersect (to
, CR_REGS
))
1940 cost
+= COSTS_N_INSNS (5);
1942 if (from
== MEM_REGS
|| to
== MEM_REGS
)
1943 cost
+= COSTS_N_INSNS (50);
1944 else if (classes_intersect (from
, MEM_REGS
)
1945 || classes_intersect (to
, MEM_REGS
))
1946 cost
+= COSTS_N_INSNS (10);
1949 fprintf (stderr
, "register_move_cost %s from %s to %s = %d\n",
1950 mode_name
[mode
], class_names
[from
], class_names
[to
], cost
);
1955 /* Implements MEMORY_MOVE_COST. */
1957 m32c_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED
,
1958 int reg_class ATTRIBUTE_UNUSED
,
1959 int in ATTRIBUTE_UNUSED
)
1961 /* FIXME: pick real values. */
1962 return COSTS_N_INSNS (10);
1965 /* Defining the Output Assembler Language */
1967 /* The Overall Framework of an Assembler File */
1969 #undef TARGET_HAVE_NAMED_SECTIONS
1970 #define TARGET_HAVE_NAMED_SECTIONS true
1972 /* Output of Data */
1974 /* We may have 24 bit sizes, which is the native address size.
1975 Currently unused, but provided for completeness. */
1976 #undef TARGET_ASM_INTEGER
1977 #define TARGET_ASM_INTEGER m32c_asm_integer
1979 m32c_asm_integer (rtx x
, unsigned int size
, int aligned_p
)
1984 fprintf (asm_out_file
, "\t.3byte\t");
1985 output_addr_const (asm_out_file
, x
);
1986 fputc ('\n', asm_out_file
);
1989 if (GET_CODE (x
) == SYMBOL_REF
)
1991 fprintf (asm_out_file
, "\t.long\t");
1992 output_addr_const (asm_out_file
, x
);
1993 fputc ('\n', asm_out_file
);
1998 return default_assemble_integer (x
, size
, aligned_p
);
2001 /* Output of Assembler Instructions */
2003 /* We use a lookup table because the addressing modes are non-orthogonal. */
2008 char const *pattern
;
2011 const conversions
[] = {
2014 { 0, "mr", "z[1]" },
2015 { 0, "m+ri", "3[2]" },
2016 { 0, "m+rs", "3[2]" },
2017 { 0, "m+r+si", "4+5[2]" },
2020 { 0, "m+si", "2+3" },
2022 { 0, "mmr", "[z[2]]" },
2023 { 0, "mm+ri", "[4[3]]" },
2024 { 0, "mm+rs", "[4[3]]" },
2025 { 0, "mm+r+si", "[5+6[3]]" },
2026 { 0, "mms", "[[2]]" },
2027 { 0, "mmi", "[[2]]" },
2028 { 0, "mm+si", "[4[3]]" },
2032 { 0, "+si", "#1+2" },
2038 { 'd', "+si", "1+2" },
2041 { 'D', "+si", "1+2" },
2051 /* This is in order according to the bitfield that pushm/popm use. */
2052 static char const *pushm_regs
[] = {
2053 "fb", "sb", "a1", "a0", "r3", "r2", "r1", "r0"
2056 /* Implements PRINT_OPERAND. */
2058 m32c_print_operand (FILE * file
, rtx x
, int code
)
2063 int unsigned_const
= 0;
2065 /* Multiplies; constants are converted to sign-extended format but
2066 we need unsigned, so 'u' and 'U' tell us what size unsigned we
2078 /* This one is only for debugging; you can put it in a pattern to
2079 force this error. */
2082 fprintf (stderr
, "dj: unreviewed pattern:");
2083 if (current_output_insn
)
2084 debug_rtx (current_output_insn
);
2087 /* PSImode operations are either .w or .l depending on the target. */
2091 fprintf (file
, "w");
2093 fprintf (file
, "l");
2096 /* Inverted conditionals. */
2099 switch (GET_CODE (x
))
2105 fputs ("gtu", file
);
2111 fputs ("geu", file
);
2117 fputs ("leu", file
);
2123 fputs ("ltu", file
);
2136 /* Regular conditionals. */
2139 switch (GET_CODE (x
))
2145 fputs ("leu", file
);
2151 fputs ("ltu", file
);
2157 fputs ("gtu", file
);
2163 fputs ("geu", file
);
2176 /* Used in negsi2 to do HImode ops on the two parts of an SImode
2178 if (code
== 'h' && GET_MODE (x
) == SImode
)
2180 x
= m32c_subreg (HImode
, x
, SImode
, 0);
2183 if (code
== 'H' && GET_MODE (x
) == SImode
)
2185 x
= m32c_subreg (HImode
, x
, SImode
, 2);
2188 /* 'x' and 'X' need to be ignored for non-immediates. */
2189 if ((code
== 'x' || code
== 'X') && GET_CODE (x
) != CONST_INT
)
2193 for (i
= 0; conversions
[i
].pattern
; i
++)
2194 if (conversions
[i
].code
== code
2195 && streq (conversions
[i
].pattern
, pattern
))
2197 for (j
= 0; conversions
[i
].format
[j
]; j
++)
2198 /* backslash quotes the next character in the output pattern. */
2199 if (conversions
[i
].format
[j
] == '\\')
2201 fputc (conversions
[i
].format
[j
+ 1], file
);
2204 /* Digits in the output pattern indicate that the
2205 corresponding RTX is to be output at that point. */
2206 else if (ISDIGIT (conversions
[i
].format
[j
]))
2208 rtx r
= patternr
[conversions
[i
].format
[j
] - '0'];
2209 switch (GET_CODE (r
))
2212 fprintf (file
, "%s",
2213 reg_name_with_mode (REGNO (r
), GET_MODE (r
)));
2220 fprintf (file
, "%d", (int) exact_log2 (INTVAL (r
)));
2223 /* Unsigned byte. */
2224 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
2228 /* Unsigned word. */
2229 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
2230 INTVAL (r
) & 0xffff);
2233 /* pushm and popm encode a register set into a single byte. */
2235 for (b
= 7; b
>= 0; b
--)
2236 if (INTVAL (r
) & (1 << b
))
2238 fprintf (file
, "%s%s", comma
, pushm_regs
[b
]);
2243 /* "Minus". Output -X */
2244 ival
= (-INTVAL (r
) & 0xffff);
2246 ival
= ival
- 0x10000;
2247 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ival
);
2251 if (conversions
[i
].format
[j
+ 1] == '[' && ival
< 0)
2253 /* We can simulate negative displacements by
2254 taking advantage of address space
2255 wrapping when the offset can span the
2256 entire address range. */
2258 patternr
[conversions
[i
].format
[j
+ 2] - '0'];
2259 if (GET_CODE (base
) == REG
)
2260 switch (REGNO (base
))
2265 ival
= 0x1000000 + ival
;
2267 ival
= 0x10000 + ival
;
2271 ival
= 0x10000 + ival
;
2275 else if (code
== 'd' && ival
< 0 && j
== 0)
2276 /* The "mova" opcode is used to do addition by
2277 computing displacements, but again, we need
2278 displacements to be unsigned *if* they're
2279 the only component of the displacement
2280 (i.e. no "symbol-4" type displacement). */
2281 ival
= (TARGET_A24
? 0x1000000 : 0x10000) + ival
;
2283 if (conversions
[i
].format
[j
] == '0')
2285 /* More conversions to unsigned. */
2286 if (unsigned_const
== 2)
2288 if (unsigned_const
== 1)
2291 if (streq (conversions
[i
].pattern
, "mi")
2292 || streq (conversions
[i
].pattern
, "mmi"))
2294 /* Integers used as addresses are unsigned. */
2295 ival
&= (TARGET_A24
? 0xffffff : 0xffff);
2297 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ival
);
2302 /* We don't have const_double constants. If it
2303 happens, make it obvious. */
2304 fprintf (file
, "[const_double 0x%lx]",
2305 (unsigned long) CONST_DOUBLE_HIGH (r
));
2308 assemble_name (file
, XSTR (r
, 0));
2311 output_asm_label (r
);
2314 fprintf (stderr
, "don't know how to print this operand:");
2321 if (conversions
[i
].format
[j
] == 'z')
2323 /* Some addressing modes *must* have a displacement,
2324 so insert a zero here if needed. */
2326 for (k
= j
+ 1; conversions
[i
].format
[k
]; k
++)
2327 if (ISDIGIT (conversions
[i
].format
[k
]))
2329 rtx reg
= patternr
[conversions
[i
].format
[k
] - '0'];
2330 if (GET_CODE (reg
) == REG
2331 && (REGNO (reg
) == SB_REGNO
2332 || REGNO (reg
) == FB_REGNO
2333 || REGNO (reg
) == SP_REGNO
))
2338 /* Signed displacements off symbols need to have signs
2340 if (conversions
[i
].format
[j
] == '+'
2341 && (!code
|| code
== 'I')
2342 && ISDIGIT (conversions
[i
].format
[j
+ 1])
2343 && GET_CODE (patternr
[conversions
[i
].format
[j
+ 1] - '0'])
2345 && INTVAL (patternr
[conversions
[i
].format
[j
+ 1] - '0']) <
2348 fputc (conversions
[i
].format
[j
], file
);
2352 if (!conversions
[i
].pattern
)
2354 fprintf (stderr
, "unconvertible operand %c `%s'", code
? code
: '-',
2357 fprintf (file
, "[%c.%s]", code
? code
: '-', pattern
);
2363 /* Implements PRINT_OPERAND_PUNCT_VALID_P. See m32c_print_operand
2364 above for descriptions of what these do. */
2366 m32c_print_operand_punct_valid_p (int c
)
2368 if (c
== '&' || c
== '!')
2373 /* Implements PRINT_OPERAND_ADDRESS. Nothing unusual here. */
2375 m32c_print_operand_address (FILE * stream
, rtx address
)
2377 gcc_assert (GET_CODE (address
) == MEM
);
2378 m32c_print_operand (stream
, XEXP (address
, 0), 0);
2381 /* Implements ASM_OUTPUT_REG_PUSH. Control registers are pushed
2382 differently than general registers. */
2384 m32c_output_reg_push (FILE * s
, int regno
)
2386 if (regno
== FLG_REGNO
)
2387 fprintf (s
, "\tpushc\tflg\n");
2389 fprintf (s
, "\tpush.%c\t%s",
2390 " bwll"[reg_push_size (regno
)], reg_names
[regno
]);
2393 /* Likewise for ASM_OUTPUT_REG_POP. */
2395 m32c_output_reg_pop (FILE * s
, int regno
)
2397 if (regno
== FLG_REGNO
)
2398 fprintf (s
, "\tpopc\tflg\n");
2400 fprintf (s
, "\tpop.%c\t%s",
2401 " bwll"[reg_push_size (regno
)], reg_names
[regno
]);
2404 /* Defining target-specific uses of `__attribute__' */
2406 /* Used to simplify the logic below. Find the attributes wherever
2408 #define M32C_ATTRIBUTES(decl) \
2409 (TYPE_P (decl)) ? TYPE_ATTRIBUTES (decl) \
2410 : DECL_ATTRIBUTES (decl) \
2411 ? (DECL_ATTRIBUTES (decl)) \
2412 : TYPE_ATTRIBUTES (TREE_TYPE (decl))
2414 /* Returns TRUE if the given tree has the "interrupt" attribute. */
2416 interrupt_p (tree node ATTRIBUTE_UNUSED
)
2418 tree list
= M32C_ATTRIBUTES (node
);
2421 if (is_attribute_p ("interrupt", TREE_PURPOSE (list
)))
2423 list
= TREE_CHAIN (list
);
2429 interrupt_handler (tree
* node ATTRIBUTE_UNUSED
,
2430 tree name ATTRIBUTE_UNUSED
,
2431 tree args ATTRIBUTE_UNUSED
,
2432 int flags ATTRIBUTE_UNUSED
,
2433 bool * no_add_attrs ATTRIBUTE_UNUSED
)
2438 #undef TARGET_ATTRIBUTE_TABLE
2439 #define TARGET_ATTRIBUTE_TABLE m32c_attribute_table
2440 static const struct attribute_spec m32c_attribute_table
[] = {
2441 {"interrupt", 0, 0, false, false, false, interrupt_handler
},
2442 {0, 0, 0, 0, 0, 0, 0}
2445 #undef TARGET_COMP_TYPE_ATTRIBUTES
2446 #define TARGET_COMP_TYPE_ATTRIBUTES m32c_comp_type_attributes
2448 m32c_comp_type_attributes (tree type1 ATTRIBUTE_UNUSED
,
2449 tree type2 ATTRIBUTE_UNUSED
)
2451 /* 0=incompatible 1=compatible 2=warning */
2455 #undef TARGET_INSERT_ATTRIBUTES
2456 #define TARGET_INSERT_ATTRIBUTES m32c_insert_attributes
2458 m32c_insert_attributes (tree node ATTRIBUTE_UNUSED
,
2459 tree
* attr_ptr ATTRIBUTE_UNUSED
)
2461 /* Nothing to do here. */
2466 /* Returns TRUE if we support a move between the first two operands.
2467 At the moment, we just want to discourage mem to mem moves until
2468 after reload, because reload has a hard time with our limited
2469 number of address registers, and we can get into a situation where
2470 we need three of them when we only have two. */
2472 m32c_mov_ok (rtx
* operands
, enum machine_mode mode ATTRIBUTE_UNUSED
)
2474 rtx op0
= operands
[0];
2475 rtx op1
= operands
[1];
2480 #define DEBUG_MOV_OK 0
2482 fprintf (stderr
, "m32c_mov_ok %s\n", mode_name
[mode
]);
2487 if (GET_CODE (op0
) == SUBREG
)
2488 op0
= XEXP (op0
, 0);
2489 if (GET_CODE (op1
) == SUBREG
)
2490 op1
= XEXP (op1
, 0);
2492 if (GET_CODE (op0
) == MEM
2493 && GET_CODE (op1
) == MEM
2494 && ! reload_completed
)
2497 fprintf (stderr
, " - no, mem to mem\n");
2503 fprintf (stderr
, " - ok\n");
2510 /* Subregs are non-orthogonal for us, because our registers are all
2513 m32c_subreg (enum machine_mode outer
,
2514 rtx x
, enum machine_mode inner
, int byte
)
2518 /* Converting MEMs to different types that are the same size, we
2519 just rewrite them. */
2520 if (GET_CODE (x
) == SUBREG
2521 && SUBREG_BYTE (x
) == 0
2522 && GET_CODE (SUBREG_REG (x
)) == MEM
2523 && (GET_MODE_SIZE (GET_MODE (x
))
2524 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
2527 x
= gen_rtx_MEM (GET_MODE (x
), XEXP (SUBREG_REG (x
), 0));
2528 MEM_COPY_ATTRIBUTES (x
, SUBREG_REG (oldx
));
2531 /* Push/pop get done as smaller push/pops. */
2532 if (GET_CODE (x
) == MEM
2533 && (GET_CODE (XEXP (x
, 0)) == PRE_DEC
2534 || GET_CODE (XEXP (x
, 0)) == POST_INC
))
2535 return gen_rtx_MEM (outer
, XEXP (x
, 0));
2536 if (GET_CODE (x
) == SUBREG
2537 && GET_CODE (XEXP (x
, 0)) == MEM
2538 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PRE_DEC
2539 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == POST_INC
))
2540 return gen_rtx_MEM (outer
, XEXP (XEXP (x
, 0), 0));
2542 if (GET_CODE (x
) != REG
)
2543 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2546 if (r
>= FIRST_PSEUDO_REGISTER
|| r
== AP_REGNO
)
2547 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2549 if (IS_MEM_REGNO (r
))
2550 return simplify_gen_subreg (outer
, x
, inner
, byte
);
2552 /* This is where the complexities of our register layout are
2556 else if (outer
== HImode
)
2558 if (r
== R0_REGNO
&& byte
== 2)
2560 else if (r
== R0_REGNO
&& byte
== 4)
2562 else if (r
== R0_REGNO
&& byte
== 6)
2564 else if (r
== R1_REGNO
&& byte
== 2)
2566 else if (r
== A0_REGNO
&& byte
== 2)
2569 else if (outer
== SImode
)
2571 if (r
== R0_REGNO
&& byte
== 0)
2573 else if (r
== R0_REGNO
&& byte
== 4)
2578 fprintf (stderr
, "m32c_subreg %s %s %d\n",
2579 mode_name
[outer
], mode_name
[inner
], byte
);
2583 return gen_rtx_REG (outer
, nr
);
2586 /* Used to emit move instructions. We split some moves,
2587 and avoid mem-mem moves. */
2589 m32c_prepare_move (rtx
* operands
, enum machine_mode mode
)
2591 if (TARGET_A16
&& mode
== PSImode
)
2592 return m32c_split_move (operands
, mode
, 1);
2593 if ((GET_CODE (operands
[0]) == MEM
)
2594 && (GET_CODE (XEXP (operands
[0], 0)) == PRE_MODIFY
))
2596 rtx pmv
= XEXP (operands
[0], 0);
2597 rtx dest_reg
= XEXP (pmv
, 0);
2598 rtx dest_mod
= XEXP (pmv
, 1);
2600 emit_insn (gen_rtx_SET (Pmode
, dest_reg
, dest_mod
));
2601 operands
[0] = gen_rtx_MEM (mode
, dest_reg
);
2603 if (!no_new_pseudos
&& MEM_P (operands
[0]) && MEM_P (operands
[1]))
2604 operands
[1] = copy_to_mode_reg (mode
, operands
[1]);
2608 #define DEBUG_SPLIT 0
2610 /* Returns TRUE if the given PSImode move should be split. We split
2611 for all r8c/m16c moves, since it doesn't support them, and for
2612 POP.L as we can only *push* SImode. */
2614 m32c_split_psi_p (rtx
* operands
)
2617 fprintf (stderr
, "\nm32c_split_psi_p\n");
2618 debug_rtx (operands
[0]);
2619 debug_rtx (operands
[1]);
2624 fprintf (stderr
, "yes, A16\n");
2628 if (GET_CODE (operands
[1]) == MEM
2629 && GET_CODE (XEXP (operands
[1], 0)) == POST_INC
)
2632 fprintf (stderr
, "yes, pop.l\n");
2637 fprintf (stderr
, "no, default\n");
2642 /* Split the given move. SPLIT_ALL is 0 if splitting is optional
2643 (define_expand), 1 if it is not optional (define_insn_and_split),
2644 and 3 for define_split (alternate api). */
2646 m32c_split_move (rtx
* operands
, enum machine_mode mode
, int split_all
)
2649 int parts
, si
, di
, rev
= 0;
2650 int rv
= 0, opi
= 2;
2651 enum machine_mode submode
= HImode
;
2652 rtx
*ops
, local_ops
[10];
2654 /* define_split modifies the existing operands, but the other two
2655 emit new insns. OPS is where we store the operand pairs, which
2666 /* Before splitting mem-mem moves, force one operand into a
2668 if (!no_new_pseudos
&& MEM_P (operands
[0]) && MEM_P (operands
[1]))
2671 fprintf (stderr
, "force_reg...\n");
2672 debug_rtx (operands
[1]);
2674 operands
[1] = force_reg (mode
, operands
[1]);
2676 debug_rtx (operands
[1]);
2683 fprintf (stderr
, "\nsplit_move %d all=%d\n", no_new_pseudos
, split_all
);
2684 debug_rtx (operands
[0]);
2685 debug_rtx (operands
[1]);
2688 /* Note that split_all is not used to select the api after this
2689 point, so it's safe to set it to 3 even with define_insn. */
2690 /* None of the chips can move SI operands to sp-relative addresses,
2691 so we always split those. */
2692 if (m32c_extra_constraint_p (operands
[0], 'S', "Ss"))
2695 /* We don't need to split these. */
2698 && (mode
== SImode
|| mode
== PSImode
)
2699 && !(GET_CODE (operands
[1]) == MEM
2700 && GET_CODE (XEXP (operands
[1], 0)) == POST_INC
))
2703 /* First, enumerate the subregs we'll be dealing with. */
2704 for (si
= 0; si
< parts
; si
++)
2707 m32c_subreg (submode
, operands
[0], mode
,
2708 si
* GET_MODE_SIZE (submode
));
2710 m32c_subreg (submode
, operands
[1], mode
,
2711 si
* GET_MODE_SIZE (submode
));
2714 /* Split pushes by emitting a sequence of smaller pushes. */
2715 if (GET_CODE (d
[0]) == MEM
&& GET_CODE (XEXP (d
[0], 0)) == PRE_DEC
)
2717 for (si
= parts
- 1; si
>= 0; si
--)
2719 ops
[opi
++] = gen_rtx_MEM (submode
,
2720 gen_rtx_PRE_DEC (Pmode
,
2728 /* Likewise for pops. */
2729 else if (GET_CODE (s
[0]) == MEM
&& GET_CODE (XEXP (s
[0], 0)) == POST_INC
)
2731 for (di
= 0; di
< parts
; di
++)
2734 ops
[opi
++] = gen_rtx_MEM (submode
,
2735 gen_rtx_POST_INC (Pmode
,
2743 /* if d[di] == s[si] for any di < si, we'll early clobber. */
2744 for (di
= 0; di
< parts
- 1; di
++)
2745 for (si
= di
+ 1; si
< parts
; si
++)
2746 if (reg_mentioned_p (d
[di
], s
[si
]))
2750 for (si
= 0; si
< parts
; si
++)
2756 for (si
= parts
- 1; si
>= 0; si
--)
2763 /* Now emit any moves we may have accumulated. */
2764 if (rv
&& split_all
!= 3)
2767 for (i
= 2; i
< opi
; i
+= 2)
2768 emit_move_insn (ops
[i
], ops
[i
+ 1]);
2773 /* The m32c only has one shift, but it takes a signed count. GCC
2774 doesn't want this, so we fake it by negating any shift count when
2775 we're pretending to shift the other way. */
2777 m32c_prepare_shift (rtx
* operands
, int scale
, int bits
)
2780 if (GET_CODE (operands
[2]) == CONST_INT
2781 && INTVAL (operands
[2]) <= (1 << (bits
- 1))
2782 && INTVAL (operands
[2]) >= -(1 << (bits
- 1)))
2784 operands
[2] = GEN_INT (scale
* INTVAL (operands
[2]));
2789 temp
= gen_reg_rtx (QImode
);
2790 if (GET_CODE (operands
[2]) == CONST_INT
)
2791 temp
= GEN_INT (-INTVAL (operands
[2]));
2793 emit_move_insn (temp
, gen_rtx_NEG (QImode
, operands
[2]));
2801 /* Pattern Output Functions */
2803 /* Returns TRUE if the current function is a leaf, and thus we can
2804 determine which registers an interrupt function really needs to
2805 save. The logic below is mostly about finding the insn sequence
2806 that's the function, versus any sequence that might be open for the
2809 m32c_leaf_function_p (void)
2811 rtx saved_first
, saved_last
;
2812 struct sequence_stack
*seq
;
2815 saved_first
= cfun
->emit
->x_first_insn
;
2816 saved_last
= cfun
->emit
->x_last_insn
;
2817 for (seq
= cfun
->emit
->sequence_stack
; seq
&& seq
->next
; seq
= seq
->next
)
2821 cfun
->emit
->x_first_insn
= seq
->first
;
2822 cfun
->emit
->x_last_insn
= seq
->last
;
2825 rv
= leaf_function_p ();
2827 cfun
->emit
->x_first_insn
= saved_first
;
2828 cfun
->emit
->x_last_insn
= saved_last
;
2832 /* Returns TRUE if the current function needs to use the ENTER/EXIT
2833 opcodes. If the function doesn't need the frame base or stack
2834 pointer, it can use the simpler RTS opcode. */
2836 m32c_function_needs_enter (void)
2839 struct sequence_stack
*seq
;
2840 rtx sp
= gen_rtx_REG (Pmode
, SP_REGNO
);
2841 rtx fb
= gen_rtx_REG (Pmode
, FB_REGNO
);
2843 insn
= get_insns ();
2844 for (seq
= cfun
->emit
->sequence_stack
;
2846 insn
= seq
->first
, seq
= seq
->next
);
2850 if (reg_mentioned_p (sp
, insn
))
2852 if (reg_mentioned_p (fb
, insn
))
2854 insn
= NEXT_INSN (insn
);
2859 /* Mark all the subexpressions of the PARALLEL rtx PAR as
2860 frame-related. Return PAR.
2862 dwarf2out.c:dwarf2out_frame_debug_expr ignores sub-expressions of a
2863 PARALLEL rtx other than the first if they do not have the
2864 FRAME_RELATED flag set on them. So this function is handy for
2865 marking up 'enter' instructions. */
2867 m32c_all_frame_related (rtx par
)
2869 int len
= XVECLEN (par
, 0);
2872 for (i
= 0; i
< len
; i
++)
2873 F (XVECEXP (par
, 0, i
));
2878 /* Emits the prologue. See the frame layout comment earlier in this
2879 file. We can reserve up to 256 bytes with the ENTER opcode, beyond
2880 that we manually update sp. */
2882 m32c_emit_prologue (void)
2884 int frame_size
, extra_frame_size
= 0, reg_save_size
;
2885 int complex_prologue
= 0;
2887 cfun
->machine
->is_leaf
= m32c_leaf_function_p ();
2888 if (interrupt_p (cfun
->decl
))
2890 cfun
->machine
->is_interrupt
= 1;
2891 complex_prologue
= 1;
2894 reg_save_size
= m32c_pushm_popm (PP_justcount
);
2896 if (interrupt_p (cfun
->decl
))
2897 emit_insn (gen_pushm (GEN_INT (cfun
->machine
->intr_pushm
)));
2900 m32c_initial_elimination_offset (FB_REGNO
, SP_REGNO
) - reg_save_size
;
2902 && !cfun
->machine
->is_interrupt
2903 && !m32c_function_needs_enter ())
2904 cfun
->machine
->use_rts
= 1;
2906 if (frame_size
> 254)
2908 extra_frame_size
= frame_size
- 254;
2911 if (cfun
->machine
->use_rts
== 0)
2912 F (emit_insn (m32c_all_frame_related
2914 ? gen_prologue_enter_16 (GEN_INT (frame_size
))
2915 : gen_prologue_enter_24 (GEN_INT (frame_size
)))));
2917 if (extra_frame_size
)
2919 complex_prologue
= 1;
2921 F (emit_insn (gen_addhi3 (gen_rtx_REG (HImode
, SP_REGNO
),
2922 gen_rtx_REG (HImode
, SP_REGNO
),
2923 GEN_INT (-extra_frame_size
))));
2925 F (emit_insn (gen_addpsi3 (gen_rtx_REG (PSImode
, SP_REGNO
),
2926 gen_rtx_REG (PSImode
, SP_REGNO
),
2927 GEN_INT (-extra_frame_size
))));
2930 complex_prologue
+= m32c_pushm_popm (PP_pushm
);
2932 /* This just emits a comment into the .s file for debugging. */
2933 if (complex_prologue
)
2934 emit_insn (gen_prologue_end ());
2937 /* Likewise, for the epilogue. The only exception is that, for
2938 interrupts, we must manually unwind the frame as the REIT opcode
2941 m32c_emit_epilogue (void)
2943 /* This just emits a comment into the .s file for debugging. */
2944 if (m32c_pushm_popm (PP_justcount
) > 0 || cfun
->machine
->is_interrupt
)
2945 emit_insn (gen_epilogue_start ());
2947 m32c_pushm_popm (PP_popm
);
2949 if (cfun
->machine
->is_interrupt
)
2951 enum machine_mode spmode
= TARGET_A16
? HImode
: PSImode
;
2953 emit_move_insn (gen_rtx_REG (spmode
, A0_REGNO
),
2954 gen_rtx_REG (spmode
, FP_REGNO
));
2955 emit_move_insn (gen_rtx_REG (spmode
, SP_REGNO
),
2956 gen_rtx_REG (spmode
, A0_REGNO
));
2958 emit_insn (gen_pophi_16 (gen_rtx_REG (HImode
, FP_REGNO
)));
2960 emit_insn (gen_poppsi (gen_rtx_REG (PSImode
, FP_REGNO
)));
2961 emit_insn (gen_popm (GEN_INT (cfun
->machine
->intr_pushm
)));
2962 emit_jump_insn (gen_epilogue_reit (GEN_INT (TARGET_A16
? 4 : 6)));
2964 else if (cfun
->machine
->use_rts
)
2965 emit_jump_insn (gen_epilogue_rts ());
2967 emit_jump_insn (gen_epilogue_exitd (GEN_INT (TARGET_A16
? 2 : 4)));
2972 m32c_emit_eh_epilogue (rtx ret_addr
)
2974 /* R0[R2] has the stack adjustment. R1[R3] has the address to
2975 return to. We have to fudge the stack, pop everything, pop SP
2976 (fudged), and return (fudged). This is actually easier to do in
2977 assembler, so punt to libgcc. */
2978 emit_jump_insn (gen_eh_epilogue (ret_addr
, cfun
->machine
->eh_stack_adjust
));
2979 /* emit_insn (gen_rtx_CLOBBER (HImode, gen_rtx_REG (HImode, R0L_REGNO))); */
2983 /* The Global `targetm' Variable. */
2985 struct gcc_target targetm
= TARGET_INITIALIZER
;
2987 #include "gt-m32c.h"