Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / mips / mips.h
blob0696001a9938d0f1726fb3006975fc27c146cb05
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by A. Lichnewsky (lich@inria.inria.fr).
5 Changed by Michael Meissner (meissner@osf.org).
6 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7 Brendan Eich (brendan@microunity.com).
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING. If not, write to
23 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
27 /* MIPS external variables defined in mips.c. */
29 /* Which processor to schedule for. Since there is no difference between
30 a R2000 and R3000 in terms of the scheduler, we collapse them into
31 just an R3000. The elements of the enumeration must match exactly
32 the cpu attribute in the mips.md machine description. */
34 enum processor_type {
35 PROCESSOR_R3000,
36 PROCESSOR_4KC,
37 PROCESSOR_4KP,
38 PROCESSOR_5KC,
39 PROCESSOR_5KF,
40 PROCESSOR_20KC,
41 PROCESSOR_24K,
42 PROCESSOR_24KX,
43 PROCESSOR_M4K,
44 PROCESSOR_R3900,
45 PROCESSOR_R6000,
46 PROCESSOR_R4000,
47 PROCESSOR_R4100,
48 PROCESSOR_R4111,
49 PROCESSOR_R4120,
50 PROCESSOR_R4130,
51 PROCESSOR_R4300,
52 PROCESSOR_R4600,
53 PROCESSOR_R4650,
54 PROCESSOR_R5000,
55 PROCESSOR_R5400,
56 PROCESSOR_R5500,
57 PROCESSOR_R7000,
58 PROCESSOR_R8000,
59 PROCESSOR_R9000,
60 PROCESSOR_SB1,
61 PROCESSOR_SR71000,
62 PROCESSOR_MAX
65 /* Costs of various operations on the different architectures. */
67 struct mips_rtx_cost_data
69 unsigned short fp_add;
70 unsigned short fp_mult_sf;
71 unsigned short fp_mult_df;
72 unsigned short fp_div_sf;
73 unsigned short fp_div_df;
74 unsigned short int_mult_si;
75 unsigned short int_mult_di;
76 unsigned short int_div_si;
77 unsigned short int_div_di;
78 unsigned short branch_cost;
79 unsigned short memory_latency;
82 /* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
83 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
84 to work on a 64 bit machine. */
86 #define ABI_32 0
87 #define ABI_N32 1
88 #define ABI_64 2
89 #define ABI_EABI 3
90 #define ABI_O64 4
92 /* Information about one recognized processor. Defined here for the
93 benefit of TARGET_CPU_CPP_BUILTINS. */
94 struct mips_cpu_info {
95 /* The 'canonical' name of the processor as far as GCC is concerned.
96 It's typically a manufacturer's prefix followed by a numerical
97 designation. It should be lower case. */
98 const char *name;
100 /* The internal processor number that most closely matches this
101 entry. Several processors can have the same value, if there's no
102 difference between them from GCC's point of view. */
103 enum processor_type cpu;
105 /* The ISA level that the processor implements. */
106 int isa;
109 extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
110 extern const char *current_function_file; /* filename current function is in */
111 extern int num_source_filenames; /* current .file # */
112 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
113 extern int sym_lineno; /* sgi next label # for each stmt */
114 extern int set_noreorder; /* # of nested .set noreorder's */
115 extern int set_nomacro; /* # of nested .set nomacro's */
116 extern int set_noat; /* # of nested .set noat's */
117 extern int set_volatile; /* # of nested .set volatile's */
118 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
119 extern int mips_dbx_regno[]; /* Map register # to debug register # */
120 extern GTY(()) rtx cmp_operands[2];
121 extern enum processor_type mips_arch; /* which cpu to codegen for */
122 extern enum processor_type mips_tune; /* which cpu to schedule for */
123 extern int mips_isa; /* architectural level */
124 extern int mips_abi; /* which ABI to use */
125 extern int mips16_hard_float; /* mips16 without -msoft-float */
126 extern const struct mips_cpu_info mips_cpu_info_table[];
127 extern const struct mips_cpu_info *mips_arch_info;
128 extern const struct mips_cpu_info *mips_tune_info;
129 extern const struct mips_rtx_cost_data *mips_cost;
131 /* Macros to silence warnings about numbers being signed in traditional
132 C and unsigned in ISO C when compiled on 32-bit hosts. */
134 #define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
135 #define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
136 #define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
139 /* Run-time compilation parameters selecting different hardware subsets. */
141 /* True if the call patterns should be split into a jalr followed by
142 an instruction to restore $gp. This is only ever true for SVR4 PIC,
143 in which $gp is call-clobbered. It is only safe to split the load
144 from the call when every use of $gp is explicit. */
146 #define TARGET_SPLIT_CALLS \
147 (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
149 /* True if we can optimize sibling calls. For simplicity, we only
150 handle cases in which call_insn_operand will reject invalid
151 sibcall addresses. There are two cases in which this isn't true:
153 - TARGET_MIPS16. call_insn_operand accepts constant addresses
154 but there is no direct jump instruction. It isn't worth
155 using sibling calls in this case anyway; they would usually
156 be longer than normal calls.
158 - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS. call_insn_operand
159 accepts global constants, but "jr $25" is the only allowed
160 sibcall. */
162 #define TARGET_SIBCALLS \
163 (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
165 /* True if .gpword or .gpdword should be used for switch tables.
167 Although GAS does understand .gpdword, the SGI linker mishandles
168 the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
169 We therefore disable GP-relative switch tables for n64 on IRIX targets. */
170 #define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
172 /* Generate mips16 code */
173 #define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
174 /* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64/mips64r2 */
175 #define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= 32)
177 /* Generic ISA defines. */
178 #define ISA_MIPS1 (mips_isa == 1)
179 #define ISA_MIPS2 (mips_isa == 2)
180 #define ISA_MIPS3 (mips_isa == 3)
181 #define ISA_MIPS4 (mips_isa == 4)
182 #define ISA_MIPS32 (mips_isa == 32)
183 #define ISA_MIPS32R2 (mips_isa == 33)
184 #define ISA_MIPS64 (mips_isa == 64)
185 #define ISA_MIPS64R2 (mips_isa == 65)
187 /* Architecture target defines. */
188 #define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
189 #define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
190 #define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
191 #define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
192 #define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
193 #define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
194 #define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
195 #define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
196 #define TARGET_SB1 (mips_arch == PROCESSOR_SB1)
197 #define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
199 /* Scheduling target defines. */
200 #define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
201 #define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
202 #define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
203 #define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
204 #define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
205 #define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
206 #define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
207 #define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
208 #define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
209 #define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
210 #define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
211 #define TUNE_SB1 (mips_tune == PROCESSOR_SB1)
213 /* True if the pre-reload scheduler should try to create chains of
214 multiply-add or multiply-subtract instructions. For example,
215 suppose we have:
217 t1 = a * b
218 t2 = t1 + c * d
219 t3 = e * f
220 t4 = t3 - g * h
222 t1 will have a higher priority than t2 and t3 will have a higher
223 priority than t4. However, before reload, there is no dependence
224 between t1 and t3, and they can often have similar priorities.
225 The scheduler will then tend to prefer:
227 t1 = a * b
228 t3 = e * f
229 t2 = t1 + c * d
230 t4 = t3 - g * h
232 which stops us from making full use of macc/madd-style instructions.
233 This sort of situation occurs frequently in Fourier transforms and
234 in unrolled loops.
236 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
237 queue so that chained multiply-add and multiply-subtract instructions
238 appear ahead of any other instruction that is likely to clobber lo.
239 In the example above, if t2 and t3 become ready at the same time,
240 the code ensures that t2 is scheduled first.
242 Multiply-accumulate instructions are a bigger win for some targets
243 than others, so this macro is defined on an opt-in basis. */
244 #define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
245 || TUNE_MIPS4120 \
246 || TUNE_MIPS4130)
248 #define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
249 #define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
251 /* IRIX specific stuff. */
252 #define TARGET_IRIX 0
253 #define TARGET_IRIX6 0
255 /* Define preprocessor macros for the -march and -mtune options.
256 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
257 processor. If INFO's canonical name is "foo", define PREFIX to
258 be "foo", and define an additional macro PREFIX_FOO. */
259 #define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
260 do \
262 char *macro, *p; \
264 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
265 for (p = macro; *p != 0; p++) \
266 *p = TOUPPER (*p); \
268 builtin_define (macro); \
269 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
270 free (macro); \
272 while (0)
274 /* Target CPU builtins. */
275 #define TARGET_CPU_CPP_BUILTINS() \
276 do \
278 /* Everyone but IRIX defines this to mips. */ \
279 if (!TARGET_IRIX) \
280 builtin_assert ("machine=mips"); \
282 builtin_assert ("cpu=mips"); \
283 builtin_define ("__mips__"); \
284 builtin_define ("_mips"); \
286 /* We do this here because __mips is defined below \
287 and so we can't use builtin_define_std. */ \
288 if (!flag_iso) \
289 builtin_define ("mips"); \
291 if (TARGET_64BIT) \
292 builtin_define ("__mips64"); \
294 if (!TARGET_IRIX) \
296 /* Treat _R3000 and _R4000 like register-size \
297 defines, which is how they've historically \
298 been used. */ \
299 if (TARGET_64BIT) \
301 builtin_define_std ("R4000"); \
302 builtin_define ("_R4000"); \
304 else \
306 builtin_define_std ("R3000"); \
307 builtin_define ("_R3000"); \
310 if (TARGET_FLOAT64) \
311 builtin_define ("__mips_fpr=64"); \
312 else \
313 builtin_define ("__mips_fpr=32"); \
315 if (TARGET_MIPS16) \
316 builtin_define ("__mips16"); \
318 if (TARGET_MIPS3D) \
319 builtin_define ("__mips3d"); \
321 if (TARGET_DSP) \
322 builtin_define ("__mips_dsp"); \
324 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
325 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
327 if (ISA_MIPS1) \
329 builtin_define ("__mips=1"); \
330 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
332 else if (ISA_MIPS2) \
334 builtin_define ("__mips=2"); \
335 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
337 else if (ISA_MIPS3) \
339 builtin_define ("__mips=3"); \
340 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
342 else if (ISA_MIPS4) \
344 builtin_define ("__mips=4"); \
345 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
347 else if (ISA_MIPS32) \
349 builtin_define ("__mips=32"); \
350 builtin_define ("__mips_isa_rev=1"); \
351 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
353 else if (ISA_MIPS32R2) \
355 builtin_define ("__mips=32"); \
356 builtin_define ("__mips_isa_rev=2"); \
357 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
359 else if (ISA_MIPS64) \
361 builtin_define ("__mips=64"); \
362 builtin_define ("__mips_isa_rev=1"); \
363 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
365 else if (ISA_MIPS64R2) \
367 builtin_define ("__mips=64"); \
368 builtin_define ("__mips_isa_rev=2"); \
369 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
372 if (TARGET_HARD_FLOAT) \
373 builtin_define ("__mips_hard_float"); \
374 else if (TARGET_SOFT_FLOAT) \
375 builtin_define ("__mips_soft_float"); \
377 if (TARGET_SINGLE_FLOAT) \
378 builtin_define ("__mips_single_float"); \
380 if (TARGET_PAIRED_SINGLE_FLOAT) \
381 builtin_define ("__mips_paired_single_float"); \
383 if (TARGET_BIG_ENDIAN) \
385 builtin_define_std ("MIPSEB"); \
386 builtin_define ("_MIPSEB"); \
388 else \
390 builtin_define_std ("MIPSEL"); \
391 builtin_define ("_MIPSEL"); \
394 /* Macros dependent on the C dialect. */ \
395 if (preprocessing_asm_p ()) \
397 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
398 builtin_define ("_LANGUAGE_ASSEMBLY"); \
400 else if (c_dialect_cxx ()) \
402 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
403 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
404 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
406 else \
408 builtin_define_std ("LANGUAGE_C"); \
409 builtin_define ("_LANGUAGE_C"); \
411 if (c_dialect_objc ()) \
413 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
414 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
415 /* Bizarre, but needed at least for Irix. */ \
416 builtin_define_std ("LANGUAGE_C"); \
417 builtin_define ("_LANGUAGE_C"); \
420 if (mips_abi == ABI_EABI) \
421 builtin_define ("__mips_eabi"); \
423 } while (0)
425 /* Default target_flags if no switches are specified */
427 #ifndef TARGET_DEFAULT
428 #define TARGET_DEFAULT 0
429 #endif
431 #ifndef TARGET_CPU_DEFAULT
432 #define TARGET_CPU_DEFAULT 0
433 #endif
435 #ifndef TARGET_ENDIAN_DEFAULT
436 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
437 #endif
439 #ifndef TARGET_FP_EXCEPTIONS_DEFAULT
440 #define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
441 #endif
443 /* 'from-abi' makes a good default: you get whatever the ABI requires. */
444 #ifndef MIPS_ISA_DEFAULT
445 #ifndef MIPS_CPU_STRING_DEFAULT
446 #define MIPS_CPU_STRING_DEFAULT "from-abi"
447 #endif
448 #endif
450 #ifdef IN_LIBGCC2
451 #undef TARGET_64BIT
452 /* Make this compile time constant for libgcc2 */
453 #ifdef __mips64
454 #define TARGET_64BIT 1
455 #else
456 #define TARGET_64BIT 0
457 #endif
458 #endif /* IN_LIBGCC2 */
460 #ifndef MULTILIB_ENDIAN_DEFAULT
461 #if TARGET_ENDIAN_DEFAULT == 0
462 #define MULTILIB_ENDIAN_DEFAULT "EL"
463 #else
464 #define MULTILIB_ENDIAN_DEFAULT "EB"
465 #endif
466 #endif
468 #ifndef MULTILIB_ISA_DEFAULT
469 # if MIPS_ISA_DEFAULT == 1
470 # define MULTILIB_ISA_DEFAULT "mips1"
471 # else
472 # if MIPS_ISA_DEFAULT == 2
473 # define MULTILIB_ISA_DEFAULT "mips2"
474 # else
475 # if MIPS_ISA_DEFAULT == 3
476 # define MULTILIB_ISA_DEFAULT "mips3"
477 # else
478 # if MIPS_ISA_DEFAULT == 4
479 # define MULTILIB_ISA_DEFAULT "mips4"
480 # else
481 # if MIPS_ISA_DEFAULT == 32
482 # define MULTILIB_ISA_DEFAULT "mips32"
483 # else
484 # if MIPS_ISA_DEFAULT == 33
485 # define MULTILIB_ISA_DEFAULT "mips32r2"
486 # else
487 # if MIPS_ISA_DEFAULT == 64
488 # define MULTILIB_ISA_DEFAULT "mips64"
489 # else
490 # if MIPS_ISA_DEFAULT == 65
491 # define MULTILIB_ISA_DEFAULT "mips64r2"
492 # else
493 # define MULTILIB_ISA_DEFAULT "mips1"
494 # endif
495 # endif
496 # endif
497 # endif
498 # endif
499 # endif
500 # endif
501 # endif
502 #endif
504 #ifndef MULTILIB_DEFAULTS
505 #define MULTILIB_DEFAULTS \
506 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
507 #endif
509 /* We must pass -EL to the linker by default for little endian embedded
510 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
511 linker will default to using big-endian output files. The OUTPUT_FORMAT
512 line must be in the linker script, otherwise -EB/-EL will not work. */
514 #ifndef ENDIAN_SPEC
515 #if TARGET_ENDIAN_DEFAULT == 0
516 #define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
517 #else
518 #define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
519 #endif
520 #endif
522 /* Support for a compile-time default CPU, et cetera. The rules are:
523 --with-arch is ignored if -march is specified or a -mips is specified
524 (other than -mips16).
525 --with-tune is ignored if -mtune is specified.
526 --with-abi is ignored if -mabi is specified.
527 --with-float is ignored if -mhard-float or -msoft-float are
528 specified.
529 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
530 specified. */
531 #define OPTION_DEFAULT_SPECS \
532 {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
533 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
534 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
535 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
536 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
539 #define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
540 && ISA_HAS_COND_TRAP)
542 #define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY \
543 && !TARGET_SR71K \
544 && !TARGET_MIPS16)
546 /* Generate three-operand multiply instructions for SImode. */
547 #define GENERATE_MULT3_SI ((TARGET_MIPS3900 \
548 || TARGET_MIPS5400 \
549 || TARGET_MIPS5500 \
550 || TARGET_MIPS7000 \
551 || TARGET_MIPS9000 \
552 || TARGET_MAD \
553 || ISA_MIPS32 \
554 || ISA_MIPS32R2 \
555 || ISA_MIPS64 \
556 || ISA_MIPS64R2 \
557 ) && !TARGET_MIPS16)
559 /* Generate three-operand multiply instructions for DImode. */
560 #define GENERATE_MULT3_DI ((TARGET_MIPS3900) \
561 && !TARGET_MIPS16)
563 /* True if the ABI can only work with 64-bit integer registers. We
564 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
565 otherwise floating-point registers must also be 64-bit. */
566 #define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
568 /* Likewise for 32-bit regs. */
569 #define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
571 /* True if symbols are 64 bits wide. At present, n64 is the only
572 ABI for which this is true. */
573 #define ABI_HAS_64BIT_SYMBOLS (mips_abi == ABI_64 && !TARGET_SYM32)
575 /* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3). */
576 #define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
577 || ISA_MIPS4 \
578 || ISA_MIPS64 \
579 || ISA_MIPS64R2)
581 /* ISA has branch likely instructions (e.g. mips2). */
582 /* Disable branchlikely for tx39 until compare rewrite. They haven't
583 been generated up to this point. */
584 #define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1)
586 /* ISA has the conditional move instructions introduced in mips4. */
587 #define ISA_HAS_CONDMOVE ((ISA_MIPS4 \
588 || ISA_MIPS32 \
589 || ISA_MIPS32R2 \
590 || ISA_MIPS64 \
591 || ISA_MIPS64R2 \
592 ) && !TARGET_MIPS5500 \
593 && !TARGET_MIPS16)
595 /* ISA has the mips4 FP condition code instructions: FP-compare to CC,
596 branch on CC, and move (both FP and non-FP) on CC. */
597 #define ISA_HAS_8CC (ISA_MIPS4 \
598 || ISA_MIPS32 \
599 || ISA_MIPS32R2 \
600 || ISA_MIPS64 \
601 || ISA_MIPS64R2)
603 /* This is a catch all for other mips4 instructions: indexed load, the
604 FP madd and msub instructions, and the FP recip and recip sqrt
605 instructions. */
606 #define ISA_HAS_FP4 ((ISA_MIPS4 \
607 || ISA_MIPS64 \
608 || ISA_MIPS64R2 \
609 ) && !TARGET_MIPS16)
611 /* ISA has conditional trap instructions. */
612 #define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
613 && !TARGET_MIPS16)
615 /* ISA has integer multiply-accumulate instructions, madd and msub. */
616 #define ISA_HAS_MADD_MSUB ((ISA_MIPS32 \
617 || ISA_MIPS32R2 \
618 || ISA_MIPS64 \
619 || ISA_MIPS64R2 \
620 ) && !TARGET_MIPS16)
622 /* ISA has floating-point nmadd and nmsub instructions. */
623 #define ISA_HAS_NMADD_NMSUB ((ISA_MIPS4 \
624 || ISA_MIPS64 \
625 || ISA_MIPS64R2 \
626 ) && (!TARGET_MIPS5400 || TARGET_MAD) \
627 && ! TARGET_MIPS16)
629 /* ISA has count leading zeroes/ones instruction (not implemented). */
630 #define ISA_HAS_CLZ_CLO ((ISA_MIPS32 \
631 || ISA_MIPS32R2 \
632 || ISA_MIPS64 \
633 || ISA_MIPS64R2 \
634 ) && !TARGET_MIPS16)
636 /* ISA has double-word count leading zeroes/ones instruction (not
637 implemented). */
638 #define ISA_HAS_DCLZ_DCLO ((ISA_MIPS64 \
639 || ISA_MIPS64R2 \
640 ) && !TARGET_MIPS16)
642 /* ISA has three operand multiply instructions that put
643 the high part in an accumulator: mulhi or mulhiu. */
644 #define ISA_HAS_MULHI (TARGET_MIPS5400 \
645 || TARGET_MIPS5500 \
646 || TARGET_SR71K \
649 /* ISA has three operand multiply instructions that
650 negates the result and puts the result in an accumulator. */
651 #define ISA_HAS_MULS (TARGET_MIPS5400 \
652 || TARGET_MIPS5500 \
653 || TARGET_SR71K \
656 /* ISA has three operand multiply instructions that subtracts the
657 result from a 4th operand and puts the result in an accumulator. */
658 #define ISA_HAS_MSAC (TARGET_MIPS5400 \
659 || TARGET_MIPS5500 \
660 || TARGET_SR71K \
662 /* ISA has three operand multiply instructions that the result
663 from a 4th operand and puts the result in an accumulator. */
664 #define ISA_HAS_MACC ((TARGET_MIPS4120 && !TARGET_MIPS16) \
665 || (TARGET_MIPS4130 && !TARGET_MIPS16) \
666 || TARGET_MIPS5400 \
667 || TARGET_MIPS5500 \
668 || TARGET_SR71K \
671 /* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
672 #define ISA_HAS_MACCHI (!TARGET_MIPS16 \
673 && (TARGET_MIPS4120 \
674 || TARGET_MIPS4130))
676 /* ISA has 32-bit rotate right instruction. */
677 #define ISA_HAS_ROTR_SI (!TARGET_MIPS16 \
678 && (ISA_MIPS32R2 \
679 || ISA_MIPS64R2 \
680 || TARGET_MIPS5400 \
681 || TARGET_MIPS5500 \
682 || TARGET_SR71K \
685 /* ISA has 64-bit rotate right instruction. */
686 #define ISA_HAS_ROTR_DI (TARGET_64BIT \
687 && !TARGET_MIPS16 \
688 && (TARGET_MIPS5400 \
689 || TARGET_MIPS5500 \
690 || TARGET_SR71K \
691 || ISA_MIPS64R2 \
694 /* ISA has data prefetch instructions. This controls use of 'pref'. */
695 #define ISA_HAS_PREFETCH ((ISA_MIPS4 \
696 || ISA_MIPS32 \
697 || ISA_MIPS32R2 \
698 || ISA_MIPS64 \
699 || ISA_MIPS64R2 \
700 ) && !TARGET_MIPS16)
702 /* ISA has data indexed prefetch instructions. This controls use of
703 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
704 (prefx is a cop1x instruction, so can only be used if FP is
705 enabled.) */
706 #define ISA_HAS_PREFETCHX ((ISA_MIPS4 \
707 || ISA_MIPS64 \
708 || ISA_MIPS64R2 \
709 ) && !TARGET_MIPS16)
711 /* True if trunc.w.s and trunc.w.d are real (not synthetic)
712 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
713 also requires TARGET_DOUBLE_FLOAT. */
714 #define ISA_HAS_TRUNC_W (!ISA_MIPS1)
716 /* ISA includes the MIPS32/64 rev2 seb and seh instructions. */
717 #define ISA_HAS_SEB_SEH (!TARGET_MIPS16 \
718 && (ISA_MIPS32R2 \
719 || ISA_MIPS64R2 \
722 /* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
723 #define ISA_HAS_EXT_INS (!TARGET_MIPS16 \
724 && (ISA_MIPS32R2 \
725 || ISA_MIPS64R2 \
728 /* True if the result of a load is not available to the next instruction.
729 A nop will then be needed between instructions like "lw $4,..."
730 and "addiu $4,$4,1". */
731 #define ISA_HAS_LOAD_DELAY (mips_isa == 1 \
732 && !TARGET_MIPS3900 \
733 && !TARGET_MIPS16)
735 /* Likewise mtc1 and mfc1. */
736 #define ISA_HAS_XFER_DELAY (mips_isa <= 3)
738 /* Likewise floating-point comparisons. */
739 #define ISA_HAS_FCMP_DELAY (mips_isa <= 3)
741 /* True if mflo and mfhi can be immediately followed by instructions
742 which write to the HI and LO registers.
744 According to MIPS specifications, MIPS ISAs I, II, and III need
745 (at least) two instructions between the reads of HI/LO and
746 instructions which write them, and later ISAs do not. Contradicting
747 the MIPS specifications, some MIPS IV processor user manuals (e.g.
748 the UM for the NEC Vr5000) document needing the instructions between
749 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
750 MIPS64 and later ISAs to have the interlocks, plus any specific
751 earlier-ISA CPUs for which CPU documentation declares that the
752 instructions are really interlocked. */
753 #define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32 \
754 || ISA_MIPS32R2 \
755 || ISA_MIPS64 \
756 || ISA_MIPS64R2 \
757 || TARGET_MIPS5500)
759 /* Add -G xx support. */
761 #undef SWITCH_TAKES_ARG
762 #define SWITCH_TAKES_ARG(CHAR) \
763 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
765 #define OVERRIDE_OPTIONS override_options ()
767 #define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
769 /* Show we can debug even without a frame pointer. */
770 #define CAN_DEBUG_WITHOUT_FP
772 /* Tell collect what flags to pass to nm. */
773 #ifndef NM_FLAGS
774 #define NM_FLAGS "-Bn"
775 #endif
778 #ifndef MIPS_ABI_DEFAULT
779 #define MIPS_ABI_DEFAULT ABI_32
780 #endif
782 /* Use the most portable ABI flag for the ASM specs. */
784 #if MIPS_ABI_DEFAULT == ABI_32
785 #define MULTILIB_ABI_DEFAULT "mabi=32"
786 #endif
788 #if MIPS_ABI_DEFAULT == ABI_O64
789 #define MULTILIB_ABI_DEFAULT "mabi=o64"
790 #endif
792 #if MIPS_ABI_DEFAULT == ABI_N32
793 #define MULTILIB_ABI_DEFAULT "mabi=n32"
794 #endif
796 #if MIPS_ABI_DEFAULT == ABI_64
797 #define MULTILIB_ABI_DEFAULT "mabi=64"
798 #endif
800 #if MIPS_ABI_DEFAULT == ABI_EABI
801 #define MULTILIB_ABI_DEFAULT "mabi=eabi"
802 #endif
804 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
805 to the assembler. It may be overridden by subtargets. */
806 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
807 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
808 %{noasmopt:-O0} \
809 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
810 #endif
812 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
813 the assembler. It may be overridden by subtargets.
815 Beginning with gas 2.13, -mdebug must be passed to correctly handle
816 COFF debugging info. */
818 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
819 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
820 %{g} %{g0} %{g1} %{g2} %{g3} \
821 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
822 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
823 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
824 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
825 %{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
826 #endif
828 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
829 overridden by subtargets. */
831 #ifndef SUBTARGET_ASM_SPEC
832 #define SUBTARGET_ASM_SPEC ""
833 #endif
835 #undef ASM_SPEC
836 #define ASM_SPEC "\
837 %{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
838 %{mips32} %{mips32r2} %{mips64} %{mips64r2} \
839 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
840 %{mips3d:-mips3d} \
841 %{mdsp} \
842 %{mfix-vr4120} %{mfix-vr4130} \
843 %(subtarget_asm_optimizing_spec) \
844 %(subtarget_asm_debugging_spec) \
845 %{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
846 %{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
847 %{msym32} %{mno-sym32} \
848 %{mtune=*} %{v} \
849 %(subtarget_asm_spec)"
851 /* Extra switches sometimes passed to the linker. */
852 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
853 will interpret it as a -b option. */
855 #ifndef LINK_SPEC
856 #define LINK_SPEC "\
857 %(endian_spec) \
858 %{G*} %{mips1} %{mips2} %{mips3} %{mips4} \
859 %{mips32} %{mips32r2} %{mips64} %{mips64r2} \
860 %{bestGnum} %{shared} %{non_shared}"
861 #endif /* LINK_SPEC defined */
864 /* Specs for the compiler proper */
866 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
867 overridden by subtargets. */
868 #ifndef SUBTARGET_CC1_SPEC
869 #define SUBTARGET_CC1_SPEC ""
870 #endif
872 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
874 #ifndef CC1_SPEC
875 #define CC1_SPEC "\
876 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
877 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
878 %{save-temps: } \
879 %(subtarget_cc1_spec)"
880 #endif
882 /* Preprocessor specs. */
884 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
885 overridden by subtargets. */
886 #ifndef SUBTARGET_CPP_SPEC
887 #define SUBTARGET_CPP_SPEC ""
888 #endif
890 #define CPP_SPEC "%(subtarget_cpp_spec)"
892 /* This macro defines names of additional specifications to put in the specs
893 that can be used in various specifications like CC1_SPEC. Its definition
894 is an initializer with a subgrouping for each command option.
896 Each subgrouping contains a string constant, that defines the
897 specification name, and a string constant that used by the GCC driver
898 program.
900 Do not define this macro if it does not need to do anything. */
902 #define EXTRA_SPECS \
903 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
904 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
905 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
906 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
907 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
908 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
909 { "endian_spec", ENDIAN_SPEC }, \
910 SUBTARGET_EXTRA_SPECS
912 #ifndef SUBTARGET_EXTRA_SPECS
913 #define SUBTARGET_EXTRA_SPECS
914 #endif
916 #define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
917 #define MIPS_DEBUGGING_INFO 1 /* MIPS specific debugging info */
918 #define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
920 #ifndef PREFERRED_DEBUGGING_TYPE
921 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
922 #endif
924 #define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
926 /* By default, turn on GDB extensions. */
927 #define DEFAULT_GDB_EXTENSIONS 1
929 /* Local compiler-generated symbols must have a prefix that the assembler
930 understands. By default, this is $, although some targets (e.g.,
931 NetBSD-ELF) need to override this. */
933 #ifndef LOCAL_LABEL_PREFIX
934 #define LOCAL_LABEL_PREFIX "$"
935 #endif
937 /* By default on the mips, external symbols do not have an underscore
938 prepended, but some targets (e.g., NetBSD) require this. */
940 #ifndef USER_LABEL_PREFIX
941 #define USER_LABEL_PREFIX ""
942 #endif
944 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
945 since the length can run past this up to a continuation point. */
946 #undef DBX_CONTIN_LENGTH
947 #define DBX_CONTIN_LENGTH 1500
949 /* How to renumber registers for dbx and gdb. */
950 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
952 /* The mapping from gcc register number to DWARF 2 CFA column number. */
953 #define DWARF_FRAME_REGNUM(REG) (REG)
955 /* The DWARF 2 CFA column which tracks the return address. */
956 #define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
958 /* The DWARF 2 CFA column which tracks the return address from a
959 signal handler context. */
960 #define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
962 /* Before the prologue, RA lives in r31. */
963 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
965 /* Describe how we implement __builtin_eh_return. */
966 #define EH_RETURN_DATA_REGNO(N) \
967 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
969 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
971 /* Offsets recorded in opcodes are a multiple of this alignment factor.
972 The default for this in 64-bit mode is 8, which causes problems with
973 SFmode register saves. */
974 #define DWARF_CIE_DATA_ALIGNMENT -4
976 /* Correct the offset of automatic variables and arguments. Note that
977 the MIPS debug format wants all automatic variables and arguments
978 to be in terms of the virtual frame pointer (stack pointer before
979 any adjustment in the function), while the MIPS 3.0 linker wants
980 the frame pointer to be the stack pointer after the initial
981 adjustment. */
983 #define DEBUGGER_AUTO_OFFSET(X) \
984 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
985 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
986 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
988 /* Target machine storage layout */
990 #define BITS_BIG_ENDIAN 0
991 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
992 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
994 /* Define this to set the endianness to use in libgcc2.c, which can
995 not depend on target_flags. */
996 #if !defined(MIPSEL) && !defined(__MIPSEL__)
997 #define LIBGCC2_WORDS_BIG_ENDIAN 1
998 #else
999 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1000 #endif
1002 #define MAX_BITS_PER_WORD 64
1004 /* Width of a word, in units (bytes). */
1005 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1006 #ifndef IN_LIBGCC2
1007 #define MIN_UNITS_PER_WORD 4
1008 #endif
1010 /* For MIPS, width of a floating point register. */
1011 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1013 /* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1014 the next available register. */
1015 #define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1017 /* The largest size of value that can be held in floating-point
1018 registers and moved with a single instruction. */
1019 #define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1021 /* The largest size of value that can be held in floating-point
1022 registers. */
1023 #define UNITS_PER_FPVALUE \
1024 (TARGET_SOFT_FLOAT ? 0 \
1025 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1026 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1028 /* The number of bytes in a double. */
1029 #define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1031 #define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1033 /* Set the sizes of the core types. */
1034 #define SHORT_TYPE_SIZE 16
1035 #define INT_TYPE_SIZE 32
1036 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1037 #define LONG_LONG_TYPE_SIZE 64
1039 #define FLOAT_TYPE_SIZE 32
1040 #define DOUBLE_TYPE_SIZE 64
1041 #define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1043 /* long double is not a fixed mode, but the idea is that, if we
1044 support long double, we also want a 128-bit integer type. */
1045 #define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1047 #ifdef IN_LIBGCC2
1048 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1049 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1050 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1051 # else
1052 # define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1053 # endif
1054 #endif
1056 /* Width in bits of a pointer. */
1057 #ifndef POINTER_SIZE
1058 #define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1059 #endif
1061 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1062 #define PARM_BOUNDARY BITS_PER_WORD
1064 /* Allocation boundary (in *bits*) for the code of a function. */
1065 #define FUNCTION_BOUNDARY 32
1067 /* Alignment of field after `int : 0' in a structure. */
1068 #define EMPTY_FIELD_BOUNDARY 32
1070 /* Every structure's size must be a multiple of this. */
1071 /* 8 is observed right on a DECstation and on riscos 4.02. */
1072 #define STRUCTURE_SIZE_BOUNDARY 8
1074 /* There is no point aligning anything to a rounder boundary than this. */
1075 #define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1077 /* All accesses must be aligned. */
1078 #define STRICT_ALIGNMENT 1
1080 /* Define this if you wish to imitate the way many other C compilers
1081 handle alignment of bitfields and the structures that contain
1082 them.
1084 The behavior is that the type written for a bit-field (`int',
1085 `short', or other integer type) imposes an alignment for the
1086 entire structure, as if the structure really did contain an
1087 ordinary field of that type. In addition, the bit-field is placed
1088 within the structure so that it would fit within such a field,
1089 not crossing a boundary for it.
1091 Thus, on most machines, a bit-field whose type is written as `int'
1092 would not cross a four-byte boundary, and would force four-byte
1093 alignment for the whole structure. (The alignment used may not
1094 be four bytes; it is controlled by the other alignment
1095 parameters.)
1097 If the macro is defined, its definition should be a C expression;
1098 a nonzero value for the expression enables this behavior. */
1100 #define PCC_BITFIELD_TYPE_MATTERS 1
1102 /* If defined, a C expression to compute the alignment given to a
1103 constant that is being placed in memory. CONSTANT is the constant
1104 and ALIGN is the alignment that the object would ordinarily have.
1105 The value of this macro is used instead of that alignment to align
1106 the object.
1108 If this macro is not defined, then ALIGN is used.
1110 The typical use of this macro is to increase alignment for string
1111 constants to be word aligned so that `strcpy' calls that copy
1112 constants can be done inline. */
1114 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1115 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1116 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1118 /* If defined, a C expression to compute the alignment for a static
1119 variable. TYPE is the data type, and ALIGN is the alignment that
1120 the object would ordinarily have. The value of this macro is used
1121 instead of that alignment to align the object.
1123 If this macro is not defined, then ALIGN is used.
1125 One use of this macro is to increase alignment of medium-size
1126 data to make it all fit in fewer cache lines. Another is to
1127 cause character arrays to be word-aligned so that `strcpy' calls
1128 that copy constants to character arrays can be done inline. */
1130 #undef DATA_ALIGNMENT
1131 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1132 ((((ALIGN) < BITS_PER_WORD) \
1133 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1134 || TREE_CODE (TYPE) == UNION_TYPE \
1135 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1138 #define PAD_VARARGS_DOWN \
1139 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1141 /* Define if operations between registers always perform the operation
1142 on the full register even if a narrower mode is specified. */
1143 #define WORD_REGISTER_OPERATIONS
1145 /* When in 64 bit mode, move insns will sign extend SImode and CCmode
1146 moves. All other references are zero extended. */
1147 #define LOAD_EXTEND_OP(MODE) \
1148 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1149 ? SIGN_EXTEND : ZERO_EXTEND)
1151 /* Define this macro if it is advisable to hold scalars in registers
1152 in a wider mode than that declared by the program. In such cases,
1153 the value is constrained to be within the bounds of the declared
1154 type, but kept valid in the wider mode. The signedness of the
1155 extension may differ from that of the type. */
1157 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1158 if (GET_MODE_CLASS (MODE) == MODE_INT \
1159 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1161 if ((MODE) == SImode) \
1162 (UNSIGNEDP) = 0; \
1163 (MODE) = Pmode; \
1166 /* Define if loading short immediate values into registers sign extends. */
1167 #define SHORT_IMMEDIATES_SIGN_EXTEND
1169 /* The [d]clz instructions have the natural values at 0. */
1171 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1172 ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1174 /* Standard register usage. */
1176 /* Number of hardware registers. We have:
1178 - 32 integer registers
1179 - 32 floating point registers
1180 - 8 condition code registers
1181 - 2 accumulator registers (hi and lo)
1182 - 32 registers each for coprocessors 0, 2 and 3
1183 - 3 fake registers:
1184 - ARG_POINTER_REGNUM
1185 - FRAME_POINTER_REGNUM
1186 - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1187 - 3 dummy entries that were used at various times in the past.
1188 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1189 - 6 DSP control registers */
1191 #define FIRST_PSEUDO_REGISTER 188
1193 /* By default, fix the kernel registers ($26 and $27), the global
1194 pointer ($28) and the stack pointer ($29). This can change
1195 depending on the command-line options.
1197 Regarding coprocessor registers: without evidence to the contrary,
1198 it's best to assume that each coprocessor register has a unique
1199 use. This can be overridden, in, e.g., override_options() or
1200 CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1201 for a particular target. */
1203 #define FIXED_REGISTERS \
1205 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1206 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
1207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1209 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
1210 /* COP0 registers */ \
1211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1213 /* COP2 registers */ \
1214 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1215 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1216 /* COP3 registers */ \
1217 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1218 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1219 /* 6 DSP accumulator registers & 6 control registers */ \
1220 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
1224 /* Set up this array for o32 by default.
1226 Note that we don't mark $31 as a call-clobbered register. The idea is
1227 that it's really the call instructions themselves which clobber $31.
1228 We don't care what the called function does with it afterwards.
1230 This approach makes it easier to implement sibcalls. Unlike normal
1231 calls, sibcalls don't clobber $31, so the register reaches the
1232 called function in tact. EPILOGUE_USES says that $31 is useful
1233 to the called function. */
1235 #define CALL_USED_REGISTERS \
1237 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1238 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, \
1239 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1240 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1241 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1242 /* COP0 registers */ \
1243 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1244 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1245 /* COP2 registers */ \
1246 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1247 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1248 /* COP3 registers */ \
1249 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1250 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1251 /* 6 DSP accumulator registers & 6 control registers */ \
1252 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1256 /* Define this since $28, though fixed, is call-saved in many ABIs. */
1258 #define CALL_REALLY_USED_REGISTERS \
1259 { /* General registers. */ \
1260 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1261 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
1262 /* Floating-point registers. */ \
1263 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1264 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1265 /* Others. */ \
1266 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1267 /* COP0 registers */ \
1268 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1269 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1270 /* COP2 registers */ \
1271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1273 /* COP3 registers */ \
1274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1276 /* 6 DSP accumulator registers & 6 control registers */ \
1277 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
1280 /* Internal macros to classify a register number as to whether it's a
1281 general purpose register, a floating point register, a
1282 multiply/divide register, or a status register. */
1284 #define GP_REG_FIRST 0
1285 #define GP_REG_LAST 31
1286 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1287 #define GP_DBX_FIRST 0
1289 #define FP_REG_FIRST 32
1290 #define FP_REG_LAST 63
1291 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1292 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1294 #define MD_REG_FIRST 64
1295 #define MD_REG_LAST 65
1296 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1297 #define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1299 #define ST_REG_FIRST 67
1300 #define ST_REG_LAST 74
1301 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1304 /* FIXME: renumber. */
1305 #define COP0_REG_FIRST 80
1306 #define COP0_REG_LAST 111
1307 #define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1309 #define COP2_REG_FIRST 112
1310 #define COP2_REG_LAST 143
1311 #define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1313 #define COP3_REG_FIRST 144
1314 #define COP3_REG_LAST 175
1315 #define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1316 /* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively. */
1317 #define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1319 #define DSP_ACC_REG_FIRST 176
1320 #define DSP_ACC_REG_LAST 181
1321 #define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1323 #define AT_REGNUM (GP_REG_FIRST + 1)
1324 #define HI_REGNUM (MD_REG_FIRST + 0)
1325 #define LO_REGNUM (MD_REG_FIRST + 1)
1326 #define AC1HI_REGNUM (DSP_ACC_REG_FIRST + 0)
1327 #define AC1LO_REGNUM (DSP_ACC_REG_FIRST + 1)
1328 #define AC2HI_REGNUM (DSP_ACC_REG_FIRST + 2)
1329 #define AC2LO_REGNUM (DSP_ACC_REG_FIRST + 3)
1330 #define AC3HI_REGNUM (DSP_ACC_REG_FIRST + 4)
1331 #define AC3LO_REGNUM (DSP_ACC_REG_FIRST + 5)
1333 /* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1334 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1335 should be used instead. */
1336 #define FPSW_REGNUM ST_REG_FIRST
1338 #define GP_REG_P(REGNO) \
1339 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1340 #define M16_REG_P(REGNO) \
1341 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1342 #define FP_REG_P(REGNO) \
1343 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1344 #define MD_REG_P(REGNO) \
1345 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1346 #define ST_REG_P(REGNO) \
1347 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1348 #define COP0_REG_P(REGNO) \
1349 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1350 #define COP2_REG_P(REGNO) \
1351 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1352 #define COP3_REG_P(REGNO) \
1353 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1354 #define ALL_COP_REG_P(REGNO) \
1355 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1356 /* Test if REGNO is one of the 6 new DSP accumulators. */
1357 #define DSP_ACC_REG_P(REGNO) \
1358 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1359 /* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1360 #define ACC_REG_P(REGNO) \
1361 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1362 /* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs. */
1363 #define ACC_HI_REG_P(REGNO) \
1364 ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1365 || (REGNO) == AC3HI_REGNUM)
1367 #define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1369 /* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1370 to initialize the mips16 gp pseudo register. */
1371 #define CONST_GP_P(X) \
1372 (GET_CODE (X) == CONST \
1373 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1374 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1376 /* Return coprocessor number from register number. */
1378 #define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1379 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1380 : COP3_REG_P (REGNO) ? '3' : '?')
1383 #define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1385 /* To make the code simpler, HARD_REGNO_MODE_OK just references an
1386 array built in override_options. Because machmodes.h is not yet
1387 included before this file is processed, the MODE bound can't be
1388 expressed here. */
1390 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1392 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1393 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1395 /* Value is 1 if it is a good idea to tie two pseudo registers
1396 when one has mode MODE1 and one has mode MODE2.
1397 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1398 for any hard reg, then this must be 0 for correct output. */
1399 #define MODES_TIEABLE_P(MODE1, MODE2) \
1400 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1401 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1402 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1403 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1405 /* Register to use for pushing function arguments. */
1406 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1408 /* These two registers don't really exist: they get eliminated to either
1409 the stack or hard frame pointer. */
1410 #define ARG_POINTER_REGNUM 77
1411 #define FRAME_POINTER_REGNUM 78
1413 /* $30 is not available on the mips16, so we use $17 as the frame
1414 pointer. */
1415 #define HARD_FRAME_POINTER_REGNUM \
1416 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1418 /* Value should be nonzero if functions must have frame pointers.
1419 Zero means the frame pointer need not be set up (and parms
1420 may be accessed via the stack pointer) in functions that seem suitable.
1421 This is computed in `reload', in reload1.c. */
1422 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1424 /* Register in which static-chain is passed to a function. */
1425 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1427 /* Registers used as temporaries in prologue/epilogue code. If we're
1428 generating mips16 code, these registers must come from the core set
1429 of 8. The prologue register mustn't conflict with any incoming
1430 arguments, the static chain pointer, or the frame pointer. The
1431 epilogue temporary mustn't conflict with the return registers, the
1432 frame pointer, the EH stack adjustment, or the EH data registers. */
1434 #define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1435 #define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1437 #define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1438 #define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1440 /* Define this macro if it is as good or better to call a constant
1441 function address than to call an address kept in a register. */
1442 #define NO_FUNCTION_CSE 1
1444 /* The ABI-defined global pointer. Sometimes we use a different
1445 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
1446 #define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1448 /* We normally use $28 as the global pointer. However, when generating
1449 n32/64 PIC, it is better for leaf functions to use a call-clobbered
1450 register instead. They can then avoid saving and restoring $28
1451 and perhaps avoid using a frame at all.
1453 When a leaf function uses something other than $28, mips_expand_prologue
1454 will modify pic_offset_table_rtx in place. Take the register number
1455 from there after reload. */
1456 #define PIC_OFFSET_TABLE_REGNUM \
1457 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1459 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1461 /* Define the classes of registers for register constraints in the
1462 machine description. Also define ranges of constants.
1464 One of the classes must always be named ALL_REGS and include all hard regs.
1465 If there is more than one class, another class must be named NO_REGS
1466 and contain no registers.
1468 The name GENERAL_REGS must be the name of a class (or an alias for
1469 another name such as ALL_REGS). This is the class of registers
1470 that is allowed by "g" or "r" in a register constraint.
1471 Also, registers outside this class are allocated only when
1472 instructions express preferences for them.
1474 The classes must be numbered in nondecreasing order; that is,
1475 a larger-numbered class must never be contained completely
1476 in a smaller-numbered class.
1478 For any two classes, it is very desirable that there be another
1479 class that represents their union. */
1481 enum reg_class
1483 NO_REGS, /* no registers in set */
1484 M16_NA_REGS, /* mips16 regs not used to pass args */
1485 M16_REGS, /* mips16 directly accessible registers */
1486 T_REG, /* mips16 T register ($24) */
1487 M16_T_REGS, /* mips16 registers plus T register */
1488 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
1489 V1_REG, /* Register $v1 ($3) used for TLS access. */
1490 LEA_REGS, /* Every GPR except $25 */
1491 GR_REGS, /* integer registers */
1492 FP_REGS, /* floating point registers */
1493 HI_REG, /* hi register */
1494 LO_REG, /* lo register */
1495 MD_REGS, /* multiply/divide registers (hi/lo) */
1496 COP0_REGS, /* generic coprocessor classes */
1497 COP2_REGS,
1498 COP3_REGS,
1499 HI_AND_GR_REGS, /* union classes */
1500 LO_AND_GR_REGS,
1501 HI_AND_FP_REGS,
1502 COP0_AND_GR_REGS,
1503 COP2_AND_GR_REGS,
1504 COP3_AND_GR_REGS,
1505 ALL_COP_REGS,
1506 ALL_COP_AND_GR_REGS,
1507 ST_REGS, /* status registers (fp status) */
1508 DSP_ACC_REGS, /* DSP accumulator registers */
1509 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
1510 ALL_REGS, /* all registers */
1511 LIM_REG_CLASSES /* max value + 1 */
1514 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1516 #define GENERAL_REGS GR_REGS
1518 /* An initializer containing the names of the register classes as C
1519 string constants. These names are used in writing some of the
1520 debugging dumps. */
1522 #define REG_CLASS_NAMES \
1524 "NO_REGS", \
1525 "M16_NA_REGS", \
1526 "M16_REGS", \
1527 "T_REG", \
1528 "M16_T_REGS", \
1529 "PIC_FN_ADDR_REG", \
1530 "V1_REG", \
1531 "LEA_REGS", \
1532 "GR_REGS", \
1533 "FP_REGS", \
1534 "HI_REG", \
1535 "LO_REG", \
1536 "MD_REGS", \
1537 /* coprocessor registers */ \
1538 "COP0_REGS", \
1539 "COP2_REGS", \
1540 "COP3_REGS", \
1541 "HI_AND_GR_REGS", \
1542 "LO_AND_GR_REGS", \
1543 "HI_AND_FP_REGS", \
1544 "COP0_AND_GR_REGS", \
1545 "COP2_AND_GR_REGS", \
1546 "COP3_AND_GR_REGS", \
1547 "ALL_COP_REGS", \
1548 "ALL_COP_AND_GR_REGS", \
1549 "ST_REGS", \
1550 "DSP_ACC_REGS", \
1551 "ACC_REGS", \
1552 "ALL_REGS" \
1555 /* An initializer containing the contents of the register classes,
1556 as integers which are bit masks. The Nth integer specifies the
1557 contents of class N. The way the integer MASK is interpreted is
1558 that register R is in the class if `MASK & (1 << R)' is 1.
1560 When the machine has more than 32 registers, an integer does not
1561 suffice. Then the integers are replaced by sub-initializers,
1562 braced groupings containing several integers. Each
1563 sub-initializer must be suitable as an initializer for the type
1564 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1566 #define REG_CLASS_CONTENTS \
1568 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1569 { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1570 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1571 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1572 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1573 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SVR4 PIC function address register */ \
1574 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* only $v1 */ \
1575 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* Every other GPR except $25 */ \
1576 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* integer registers */ \
1577 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* floating registers*/ \
1578 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* hi register */ \
1579 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* lo register */ \
1580 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* mul/div registers */ \
1581 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* cop0 registers */ \
1582 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* cop2 registers */ \
1583 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* cop3 registers */ \
1584 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* union classes */ \
1585 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, \
1586 { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, \
1587 { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, \
1588 { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, \
1589 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, \
1590 { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1591 { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff }, \
1592 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* status registers */ \
1593 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* dsp accumulator registers */ \
1594 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* hi/lo and dsp accumulator registers */ \
1595 { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* all registers */ \
1599 /* A C expression whose value is a register class containing hard
1600 register REGNO. In general there is more that one such class;
1601 choose a class which is "minimal", meaning that no smaller class
1602 also contains the register. */
1604 extern const enum reg_class mips_regno_to_class[];
1606 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1608 /* A macro whose definition is the name of the class to which a
1609 valid base register must belong. A base register is one used in
1610 an address which is the register value plus a displacement. */
1612 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1614 /* A macro whose definition is the name of the class to which a
1615 valid index register must belong. An index register is one used
1616 in an address where its value is either multiplied by a scale
1617 factor or added to another register (as well as added to a
1618 displacement). */
1620 #define INDEX_REG_CLASS NO_REGS
1622 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1623 registers explicitly used in the rtl to be used as spill registers
1624 but prevents the compiler from extending the lifetime of these
1625 registers. */
1627 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1629 /* This macro is used later on in the file. */
1630 #define GR_REG_CLASS_P(CLASS) \
1631 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
1632 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS \
1633 || (CLASS) == V1_REG \
1634 || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1636 /* This macro is also used later on in the file. */
1637 #define COP_REG_CLASS_P(CLASS) \
1638 ((CLASS) == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1640 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
1641 is the default value (allocate the registers in numeric order). We
1642 define it just so that we can override it for the mips16 target in
1643 ORDER_REGS_FOR_LOCAL_ALLOC. */
1645 #define REG_ALLOC_ORDER \
1646 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1647 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1648 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1649 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1650 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
1651 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
1652 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
1653 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
1654 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
1655 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
1656 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
1657 176,177,178,179,180,181,182,183,184,185,186,187 \
1660 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1661 to be rearranged based on a particular function. On the mips16, we
1662 want to allocate $24 (T_REG) before other registers for
1663 instructions for which it is possible. */
1665 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1667 /* REGISTER AND CONSTANT CLASSES */
1669 /* Get reg_class from a letter such as appears in the machine
1670 description.
1672 DEFINED REGISTER CLASSES:
1674 'd' General (aka integer) registers
1675 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1676 'y' General registers (in both mips16 and non mips16 mode)
1677 'e' Effective address registers (general registers except $25)
1678 't' mips16 temporary register ($24)
1679 'f' Floating point registers
1680 'h' Hi register
1681 'l' Lo register
1682 'v' $v1 only
1683 'x' Multiply/divide registers
1684 'z' FP Status register
1685 'B' Cop0 register
1686 'C' Cop2 register
1687 'D' Cop3 register
1688 'A' DSP accumulator registers
1689 'a' MD registers and DSP accumulator registers
1690 'b' All registers */
1692 extern enum reg_class mips_char_to_class[256];
1694 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[(unsigned char)(C)]
1696 /* True if VALUE is an unsigned 6-bit number. */
1698 #define UIMM6_OPERAND(VALUE) \
1699 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1701 /* True if VALUE is a signed 10-bit number. */
1703 #define IMM10_OPERAND(VALUE) \
1704 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1706 /* True if VALUE is a signed 16-bit number. */
1708 #define SMALL_OPERAND(VALUE) \
1709 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1711 /* True if VALUE is an unsigned 16-bit number. */
1713 #define SMALL_OPERAND_UNSIGNED(VALUE) \
1714 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1716 /* True if VALUE can be loaded into a register using LUI. */
1718 #define LUI_OPERAND(VALUE) \
1719 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
1720 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1722 /* Return a value X with the low 16 bits clear, and such that
1723 VALUE - X is a signed 16-bit value. */
1725 #define CONST_HIGH_PART(VALUE) \
1726 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1728 #define CONST_LOW_PART(VALUE) \
1729 ((VALUE) - CONST_HIGH_PART (VALUE))
1731 #define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1732 #define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1733 #define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1735 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1736 string can be used to stand for particular ranges of immediate
1737 operands. This macro defines what the ranges are. C is the
1738 letter, and VALUE is a constant value. Return 1 if VALUE is
1739 in the range specified by C. */
1741 /* For MIPS:
1743 `I' is used for the range of constants an arithmetic insn can
1744 actually contain (16 bits signed integers).
1746 `J' is used for the range which is just zero (i.e., $r0).
1748 `K' is used for the range of constants a logical insn can actually
1749 contain (16 bit zero-extended integers).
1751 `L' is used for the range of constants that be loaded with lui
1752 (i.e., the bottom 16 bits are zero).
1754 `M' is used for the range of constants that take two words to load
1755 (i.e., not matched by `I', `K', and `L').
1757 `N' is used for negative 16 bit constants other than -65536.
1759 `O' is a 15 bit signed integer.
1761 `P' is used for positive 16 bit constants. */
1763 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1764 ((C) == 'I' ? SMALL_OPERAND (VALUE) \
1765 : (C) == 'J' ? ((VALUE) == 0) \
1766 : (C) == 'K' ? SMALL_OPERAND_UNSIGNED (VALUE) \
1767 : (C) == 'L' ? LUI_OPERAND (VALUE) \
1768 : (C) == 'M' ? (!SMALL_OPERAND (VALUE) \
1769 && !SMALL_OPERAND_UNSIGNED (VALUE) \
1770 && !LUI_OPERAND (VALUE)) \
1771 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
1772 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
1773 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1774 : 0)
1776 /* Similar, but for floating constants, and defining letters G and H.
1777 Here VALUE is the CONST_DOUBLE rtx itself. */
1779 /* For MIPS
1781 'G' : Floating point 0 */
1783 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1784 ((C) == 'G' \
1785 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1787 /* Letters in the range `Q' through `U' may be defined in a
1788 machine-dependent fashion to stand for arbitrary operand types.
1789 The machine description macro `EXTRA_CONSTRAINT' is passed the
1790 operand as its first argument and the constraint letter as its
1791 second operand.
1793 `Q' is for signed 16-bit constants.
1794 `R' is for single-instruction memory references. Note that this
1795 constraint has often been used in linux and glibc code.
1796 `S' is for legitimate constant call addresses.
1797 `T' is for constant move_operands that cannot be safely loaded into $25.
1798 `U' is for constant move_operands that can be safely loaded into $25.
1799 `W' is for memory references that are based on a member of BASE_REG_CLASS.
1800 This is true for all non-mips16 references (although it can sometimes
1801 be indirect if !TARGET_EXPLICIT_RELOCS). For mips16, it excludes
1802 stack and constant-pool references.
1803 `YG' is for 0 valued vector constants.
1804 `YA' is for unsigned 6-bit constants.
1805 `YB' is for signed 10-bit constants. */
1807 #define EXTRA_CONSTRAINT_Y(OP,STR) \
1808 (((STR)[1] == 'G') ? (GET_CODE (OP) == CONST_VECTOR \
1809 && (OP) == CONST0_RTX (GET_MODE (OP))) \
1810 : ((STR)[1] == 'A') ? (GET_CODE (OP) == CONST_INT \
1811 && UIMM6_OPERAND (INTVAL (OP))) \
1812 : ((STR)[1] == 'B') ? (GET_CODE (OP) == CONST_INT \
1813 && IMM10_OPERAND (INTVAL (OP))) \
1814 : FALSE)
1817 #define EXTRA_CONSTRAINT_STR(OP,CODE,STR) \
1818 (((CODE) == 'Q') ? const_arith_operand (OP, VOIDmode) \
1819 : ((CODE) == 'R') ? (MEM_P (OP) \
1820 && mips_fetch_insns (OP) == 1) \
1821 : ((CODE) == 'S') ? (CONSTANT_P (OP) \
1822 && call_insn_operand (OP, VOIDmode)) \
1823 : ((CODE) == 'T') ? (CONSTANT_P (OP) \
1824 && move_operand (OP, VOIDmode) \
1825 && mips_dangerous_for_la25_p (OP)) \
1826 : ((CODE) == 'U') ? (CONSTANT_P (OP) \
1827 && move_operand (OP, VOIDmode) \
1828 && !mips_dangerous_for_la25_p (OP)) \
1829 : ((CODE) == 'W') ? (MEM_P (OP) \
1830 && memory_operand (OP, VOIDmode) \
1831 && (!TARGET_MIPS16 \
1832 || (!stack_operand (OP, VOIDmode) \
1833 && !CONSTANT_P (XEXP (OP, 0))))) \
1834 : ((CODE) == 'Y') ? EXTRA_CONSTRAINT_Y (OP, STR) \
1835 : FALSE)
1837 /* Y is the only multi-letter constraint, and has length 2. */
1839 #define CONSTRAINT_LEN(C,STR) \
1840 (((C) == 'Y') ? 2 \
1841 : DEFAULT_CONSTRAINT_LEN (C, STR))
1843 /* Say which of the above are memory constraints. */
1844 #define EXTRA_MEMORY_CONSTRAINT(C, STR) ((C) == 'R' || (C) == 'W')
1846 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1847 mips_preferred_reload_class (X, CLASS)
1849 /* Certain machines have the property that some registers cannot be
1850 copied to some other registers without using memory. Define this
1851 macro on those machines to be a C expression that is nonzero if
1852 objects of mode MODE in registers of CLASS1 can only be copied to
1853 registers of class CLASS2 by storing a register of CLASS1 into
1854 memory and loading that memory location into a register of CLASS2.
1856 Do not define this macro if its value would always be zero. */
1857 #if 0
1858 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1859 ((!TARGET_DEBUG_H_MODE \
1860 && GET_MODE_CLASS (MODE) == MODE_INT \
1861 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
1862 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
1863 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1864 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
1865 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1866 #endif
1867 /* The HI and LO registers can only be reloaded via the general
1868 registers. Condition code registers can only be loaded to the
1869 general registers, and from the floating point registers. */
1871 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1872 mips_secondary_reload_class (CLASS, MODE, X, 1)
1873 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1874 mips_secondary_reload_class (CLASS, MODE, X, 0)
1876 /* Return the maximum number of consecutive registers
1877 needed to represent mode MODE in a register of class CLASS. */
1879 #define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1881 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1882 mips_cannot_change_mode_class (FROM, TO, CLASS)
1884 /* Stack layout; function entry, exit and calling. */
1886 #define STACK_GROWS_DOWNWARD
1888 /* The offset of the first local variable from the beginning of the frame.
1889 See compute_frame_size for details about the frame layout.
1891 ??? If flag_profile_values is true, and we are generating 32-bit code, then
1892 we assume that we will need 16 bytes of argument space. This is because
1893 the value profiling code may emit calls to cmpdi2 in leaf functions.
1894 Without this hack, the local variables will start at sp+8 and the gp save
1895 area will be at sp+16, and thus they will overlap. compute_frame_size is
1896 OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1897 will end up as 24 instead of 8. This won't be needed if profiling code is
1898 inserted before virtual register instantiation. */
1900 #define STARTING_FRAME_OFFSET \
1901 ((flag_profile_values && ! TARGET_64BIT \
1902 ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1903 : current_function_outgoing_args_size) \
1904 + (TARGET_ABICALLS && !TARGET_NEWABI \
1905 ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1907 #define RETURN_ADDR_RTX mips_return_addr
1909 /* Since the mips16 ISA mode is encoded in the least-significant bit
1910 of the address, mask it off return addresses for purposes of
1911 finding exception handling regions. */
1913 #define MASK_RETURN_ADDR GEN_INT (-2)
1916 /* Similarly, don't use the least-significant bit to tell pointers to
1917 code from vtable index. */
1919 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1921 /* The eliminations to $17 are only used for mips16 code. See the
1922 definition of HARD_FRAME_POINTER_REGNUM. */
1924 #define ELIMINABLE_REGS \
1925 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1926 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1927 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
1928 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1929 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
1930 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1932 /* We can always eliminate to the hard frame pointer. We can eliminate
1933 to the stack pointer unless a frame pointer is needed.
1935 In mips16 mode, we need a frame pointer for a large frame; otherwise,
1936 reload may be unable to compute the address of a local variable,
1937 since there is no way to add a large constant to the stack pointer
1938 without using a temporary register. */
1939 #define CAN_ELIMINATE(FROM, TO) \
1940 ((TO) == HARD_FRAME_POINTER_REGNUM \
1941 || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed \
1942 && (!TARGET_MIPS16 \
1943 || compute_frame_size (get_frame_size ()) < 32768)))
1945 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1946 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1948 /* Allocate stack space for arguments at the beginning of each function. */
1949 #define ACCUMULATE_OUTGOING_ARGS 1
1951 /* The argument pointer always points to the first argument. */
1952 #define FIRST_PARM_OFFSET(FNDECL) 0
1954 /* o32 and o64 reserve stack space for all argument registers. */
1955 #define REG_PARM_STACK_SPACE(FNDECL) \
1956 (TARGET_OLDABI \
1957 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
1958 : 0)
1960 /* Define this if it is the responsibility of the caller to
1961 allocate the area reserved for arguments passed in registers.
1962 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1963 of this macro is to determine whether the space is included in
1964 `current_function_outgoing_args_size'. */
1965 #define OUTGOING_REG_PARM_STACK_SPACE
1967 #define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1969 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1971 /* Symbolic macros for the registers used to return integer and floating
1972 point values. */
1974 #define GP_RETURN (GP_REG_FIRST + 2)
1975 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1977 #define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1979 /* Symbolic macros for the first/last argument registers. */
1981 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1982 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1983 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1984 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1986 #define LIBCALL_VALUE(MODE) \
1987 mips_function_value (NULL_TREE, NULL, (MODE))
1989 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1990 mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1992 /* 1 if N is a possible register number for a function value.
1993 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1994 Currently, R2 and F0 are only implemented here (C has no complex type) */
1996 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1997 || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1998 && (N) == FP_RETURN + 2))
2000 /* 1 if N is a possible register number for function argument passing.
2001 We have no FP argument registers when soft-float. When FP registers
2002 are 32 bits, we can't directly reference the odd numbered ones. */
2004 #define FUNCTION_ARG_REGNO_P(N) \
2005 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
2006 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))) \
2007 && !fixed_regs[N])
2009 /* This structure has to cope with two different argument allocation
2010 schemes. Most MIPS ABIs view the arguments as a structure, of which
2011 the first N words go in registers and the rest go on the stack. If I
2012 < N, the Ith word might go in Ith integer argument register or in a
2013 floating-point register. For these ABIs, we only need to remember
2014 the offset of the current argument into the structure.
2016 The EABI instead allocates the integer and floating-point arguments
2017 separately. The first N words of FP arguments go in FP registers,
2018 the rest go on the stack. Likewise, the first N words of the other
2019 arguments go in integer registers, and the rest go on the stack. We
2020 need to maintain three counts: the number of integer registers used,
2021 the number of floating-point registers used, and the number of words
2022 passed on the stack.
2024 We could keep separate information for the two ABIs (a word count for
2025 the standard ABIs, and three separate counts for the EABI). But it
2026 seems simpler to view the standard ABIs as forms of EABI that do not
2027 allocate floating-point registers.
2029 So for the standard ABIs, the first N words are allocated to integer
2030 registers, and function_arg decides on an argument-by-argument basis
2031 whether that argument should really go in an integer register, or in
2032 a floating-point one. */
2034 typedef struct mips_args {
2035 /* Always true for varargs functions. Otherwise true if at least
2036 one argument has been passed in an integer register. */
2037 int gp_reg_found;
2039 /* The number of arguments seen so far. */
2040 unsigned int arg_number;
2042 /* The number of integer registers used so far. For all ABIs except
2043 EABI, this is the number of words that have been added to the
2044 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
2045 unsigned int num_gprs;
2047 /* For EABI, the number of floating-point registers used so far. */
2048 unsigned int num_fprs;
2050 /* The number of words passed on the stack. */
2051 unsigned int stack_words;
2053 /* On the mips16, we need to keep track of which floating point
2054 arguments were passed in general registers, but would have been
2055 passed in the FP regs if this were a 32 bit function, so that we
2056 can move them to the FP regs if we wind up calling a 32 bit
2057 function. We record this information in fp_code, encoded in base
2058 four. A zero digit means no floating point argument, a one digit
2059 means an SFmode argument, and a two digit means a DFmode argument,
2060 and a three digit is not used. The low order digit is the first
2061 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2062 an SFmode argument. ??? A more sophisticated approach will be
2063 needed if MIPS_ABI != ABI_32. */
2064 int fp_code;
2066 /* True if the function has a prototype. */
2067 int prototype;
2068 } CUMULATIVE_ARGS;
2070 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2071 for a call to a function whose data type is FNTYPE.
2072 For a library call, FNTYPE is 0. */
2074 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
2075 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2077 /* Update the data in CUM to advance over an argument
2078 of mode MODE and data type TYPE.
2079 (TYPE is null for libcalls where that information may not be available.) */
2081 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2082 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2084 /* Determine where to put an argument to a function.
2085 Value is zero to push the argument on the stack,
2086 or a hard register in which to store the argument.
2088 MODE is the argument's machine mode.
2089 TYPE is the data type of the argument (as a tree).
2090 This is null for libcalls where that information may
2091 not be available.
2092 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2093 the preceding args and about the function being called.
2094 NAMED is nonzero if this argument is a named parameter
2095 (otherwise it is an extra parameter matching an ellipsis). */
2097 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2098 function_arg( &CUM, MODE, TYPE, NAMED)
2100 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
2102 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
2103 (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
2105 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
2106 (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
2108 /* True if using EABI and varargs can be passed in floating-point
2109 registers. Under these conditions, we need a more complex form
2110 of va_list, which tracks GPR, FPR and stack arguments separately. */
2111 #define EABI_FLOAT_VARARGS_P \
2112 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2115 /* Say that the epilogue uses the return address register. Note that
2116 in the case of sibcalls, the values "used by the epilogue" are
2117 considered live at the start of the called function. */
2118 #define EPILOGUE_USES(REGNO) ((REGNO) == 31)
2120 /* Treat LOC as a byte offset from the stack pointer and round it up
2121 to the next fully-aligned offset. */
2122 #define MIPS_STACK_ALIGN(LOC) \
2123 (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
2126 /* Implement `va_start' for varargs and stdarg. */
2127 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2128 mips_va_start (valist, nextarg)
2130 /* Output assembler code to FILE to increment profiler label # LABELNO
2131 for profiling a function entry. */
2133 #define FUNCTION_PROFILER(FILE, LABELNO) \
2135 if (TARGET_MIPS16) \
2136 sorry ("mips16 function profiling"); \
2137 fprintf (FILE, "\t.set\tnoat\n"); \
2138 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2139 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2140 if (!TARGET_NEWABI) \
2142 fprintf (FILE, \
2143 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2144 TARGET_64BIT ? "dsubu" : "subu", \
2145 reg_names[STACK_POINTER_REGNUM], \
2146 reg_names[STACK_POINTER_REGNUM], \
2147 Pmode == DImode ? 16 : 8); \
2149 fprintf (FILE, "\tjal\t_mcount\n"); \
2150 fprintf (FILE, "\t.set\tat\n"); \
2153 /* No mips port has ever used the profiler counter word, so don't emit it
2154 or the label for it. */
2156 #define NO_PROFILE_COUNTERS 1
2158 /* Define this macro if the code for function profiling should come
2159 before the function prologue. Normally, the profiling code comes
2160 after. */
2162 /* #define PROFILE_BEFORE_PROLOGUE */
2164 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2165 the stack pointer does not matter. The value is tested only in
2166 functions that have frame pointers.
2167 No definition is equivalent to always zero. */
2169 #define EXIT_IGNORE_STACK 1
2172 /* A C statement to output, on the stream FILE, assembler code for a
2173 block of data that contains the constant parts of a trampoline.
2174 This code should not include a label--the label is taken care of
2175 automatically. */
2177 #define TRAMPOLINE_TEMPLATE(STREAM) \
2179 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2180 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2181 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2182 if (ptr_mode == DImode) \
2184 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2185 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2187 else \
2189 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2190 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2192 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2193 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2194 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2195 if (ptr_mode == DImode) \
2197 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2198 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2200 else \
2202 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2203 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2207 /* A C expression for the size in bytes of the trampoline, as an
2208 integer. */
2210 #define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2212 /* Alignment required for trampolines, in bits. */
2214 #define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2216 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2217 program and data caches. */
2219 #ifndef CACHE_FLUSH_FUNC
2220 #define CACHE_FLUSH_FUNC "_flush_cache"
2221 #endif
2223 /* A C statement to initialize the variable parts of a trampoline.
2224 ADDR is an RTX for the address of the trampoline; FNADDR is an
2225 RTX for the address of the nested function; STATIC_CHAIN is an
2226 RTX for the static chain value that should be passed to the
2227 function when it is called. */
2229 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2231 rtx func_addr, chain_addr; \
2233 func_addr = plus_constant (ADDR, 32); \
2234 chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode)); \
2235 emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC); \
2236 emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN); \
2238 /* Flush both caches. We need to flush the data cache in case \
2239 the system has a write-back cache. */ \
2240 /* ??? Should check the return value for errors. */ \
2241 if (mips_cache_flush_func && mips_cache_flush_func[0]) \
2242 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
2243 0, VOIDmode, 3, ADDR, Pmode, \
2244 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2245 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2248 /* Addressing modes, and classification of registers for them. */
2250 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
2251 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2252 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2254 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2255 and check its validity for a certain class.
2256 We have two alternate definitions for each of them.
2257 The usual definition accepts all pseudo regs; the other rejects them all.
2258 The symbol REG_OK_STRICT causes the latter definition to be used.
2260 Most source files want to accept pseudo regs in the hope that
2261 they will get allocated to the class that the insn wants them to be in.
2262 Some source files that are used after register allocation
2263 need to be strict. */
2265 #ifndef REG_OK_STRICT
2266 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2267 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2268 #else
2269 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2270 mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2271 #endif
2273 #define REG_OK_FOR_INDEX_P(X) 0
2276 /* Maximum number of registers that can appear in a valid memory address. */
2278 #define MAX_REGS_PER_ADDRESS 1
2280 #ifdef REG_OK_STRICT
2281 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2283 if (mips_legitimate_address_p (MODE, X, 1)) \
2284 goto ADDR; \
2286 #else
2287 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2289 if (mips_legitimate_address_p (MODE, X, 0)) \
2290 goto ADDR; \
2292 #endif
2294 /* Check for constness inline but use mips_legitimate_address_p
2295 to check whether a constant really is an address. */
2297 #define CONSTANT_ADDRESS_P(X) \
2298 (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2300 #define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2302 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2303 do { \
2304 if (mips_legitimize_address (&(X), MODE)) \
2305 goto WIN; \
2306 } while (0)
2309 /* A C statement or compound statement with a conditional `goto
2310 LABEL;' executed if memory address X (an RTX) can have different
2311 meanings depending on the machine mode of the memory reference it
2312 is used for.
2314 Autoincrement and autodecrement addresses typically have
2315 mode-dependent effects because the amount of the increment or
2316 decrement is the size of the operand being addressed. Some
2317 machines have other mode-dependent addresses. Many RISC machines
2318 have no mode-dependent addresses.
2320 You may assume that ADDR is a valid address for the machine. */
2322 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2324 /* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2325 'the start of the function that this code is output in'. */
2327 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2328 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2329 asm_fprintf ((FILE), "%U%s", \
2330 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
2331 else \
2332 asm_fprintf ((FILE), "%U%s", (NAME))
2334 /* Flag to mark a function decl symbol that requires a long call. */
2335 #define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2336 #define SYMBOL_REF_LONG_CALL_P(X) \
2337 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2339 /* Specify the machine mode that this machine uses
2340 for the index in the tablejump instruction.
2341 ??? Using HImode in mips16 mode can cause overflow. */
2342 #define CASE_VECTOR_MODE \
2343 (TARGET_MIPS16 ? HImode : ptr_mode)
2345 /* Define as C expression which evaluates to nonzero if the tablejump
2346 instruction expects the table to contain offsets from the address of the
2347 table.
2348 Do not define this if the table should contain absolute addresses. */
2349 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2351 /* Define this as 1 if `char' should by default be signed; else as 0. */
2352 #ifndef DEFAULT_SIGNED_CHAR
2353 #define DEFAULT_SIGNED_CHAR 1
2354 #endif
2356 /* Max number of bytes we can move from memory to memory
2357 in one reasonably fast instruction. */
2358 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2359 #define MAX_MOVE_MAX 8
2361 /* Define this macro as a C expression which is nonzero if
2362 accessing less than a word of memory (i.e. a `char' or a
2363 `short') is no faster than accessing a word of memory, i.e., if
2364 such access require more than one instruction or if there is no
2365 difference in cost between byte and (aligned) word loads.
2367 On RISC machines, it tends to generate better code to define
2368 this as 1, since it avoids making a QI or HI mode register. */
2369 #define SLOW_BYTE_ACCESS 1
2371 /* Define this to be nonzero if shift instructions ignore all but the low-order
2372 few bits. */
2373 #define SHIFT_COUNT_TRUNCATED 1
2375 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2376 is done just by pretending it is already truncated. */
2377 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2378 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2381 /* Specify the machine mode that pointers have.
2382 After generation of rtl, the compiler makes no further distinction
2383 between pointers and any other objects of this machine mode. */
2385 #ifndef Pmode
2386 #define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2387 #endif
2389 /* Give call MEMs SImode since it is the "most permissive" mode
2390 for both 32-bit and 64-bit targets. */
2392 #define FUNCTION_MODE SImode
2395 /* The cost of loading values from the constant pool. It should be
2396 larger than the cost of any constant we want to synthesize in-line. */
2398 #define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2400 /* A C expression for the cost of moving data from a register in
2401 class FROM to one in class TO. The classes are expressed using
2402 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2403 the default; other values are interpreted relative to that.
2405 It is not required that the cost always equal 2 when FROM is the
2406 same as TO; on some machines it is expensive to move between
2407 registers if they are not general registers.
2409 If reload sees an insn consisting of a single `set' between two
2410 hard registers, and if `REGISTER_MOVE_COST' applied to their
2411 classes returns a value of 2, reload does not check to ensure
2412 that the constraints of the insn are met. Setting a cost of
2413 other than 2 will allow reload to verify that the constraints are
2414 met. You should do this if the `movM' pattern's constraints do
2415 not allow such copying. */
2417 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
2418 mips_register_move_cost (MODE, FROM, TO)
2420 #define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2421 (mips_cost->memory_latency \
2422 + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2424 /* Define if copies to/from condition code registers should be avoided.
2426 This is needed for the MIPS because reload_outcc is not complete;
2427 it needs to handle cases where the source is a general or another
2428 condition code register. */
2429 #define AVOID_CCMODE_COPIES
2431 /* A C expression for the cost of a branch instruction. A value of
2432 1 is the default; other values are interpreted relative to that. */
2434 #define BRANCH_COST mips_cost->branch_cost
2435 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2437 /* If defined, modifies the length assigned to instruction INSN as a
2438 function of the context in which it is used. LENGTH is an lvalue
2439 that contains the initially computed length of the insn and should
2440 be updated with the correct length of the insn. */
2441 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2442 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2444 /* Control the assembler format that we output. */
2446 /* Output to assembler file text saying following lines
2447 may contain character constants, extra white space, comments, etc. */
2449 #ifndef ASM_APP_ON
2450 #define ASM_APP_ON " #APP\n"
2451 #endif
2453 /* Output to assembler file text saying following lines
2454 no longer contain unusual constructs. */
2456 #ifndef ASM_APP_OFF
2457 #define ASM_APP_OFF " #NO_APP\n"
2458 #endif
2460 #define REGISTER_NAMES \
2461 { "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2462 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2463 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2464 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2465 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2466 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2467 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2468 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2469 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
2470 "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec", \
2471 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2472 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2473 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2474 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2475 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2476 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2477 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2478 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2479 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2480 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2481 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2482 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2483 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2484 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2486 /* List the "software" names for each register. Also list the numerical
2487 names for $fp and $sp. */
2489 #define ADDITIONAL_REGISTER_NAMES \
2491 { "$29", 29 + GP_REG_FIRST }, \
2492 { "$30", 30 + GP_REG_FIRST }, \
2493 { "at", 1 + GP_REG_FIRST }, \
2494 { "v0", 2 + GP_REG_FIRST }, \
2495 { "v1", 3 + GP_REG_FIRST }, \
2496 { "a0", 4 + GP_REG_FIRST }, \
2497 { "a1", 5 + GP_REG_FIRST }, \
2498 { "a2", 6 + GP_REG_FIRST }, \
2499 { "a3", 7 + GP_REG_FIRST }, \
2500 { "t0", 8 + GP_REG_FIRST }, \
2501 { "t1", 9 + GP_REG_FIRST }, \
2502 { "t2", 10 + GP_REG_FIRST }, \
2503 { "t3", 11 + GP_REG_FIRST }, \
2504 { "t4", 12 + GP_REG_FIRST }, \
2505 { "t5", 13 + GP_REG_FIRST }, \
2506 { "t6", 14 + GP_REG_FIRST }, \
2507 { "t7", 15 + GP_REG_FIRST }, \
2508 { "s0", 16 + GP_REG_FIRST }, \
2509 { "s1", 17 + GP_REG_FIRST }, \
2510 { "s2", 18 + GP_REG_FIRST }, \
2511 { "s3", 19 + GP_REG_FIRST }, \
2512 { "s4", 20 + GP_REG_FIRST }, \
2513 { "s5", 21 + GP_REG_FIRST }, \
2514 { "s6", 22 + GP_REG_FIRST }, \
2515 { "s7", 23 + GP_REG_FIRST }, \
2516 { "t8", 24 + GP_REG_FIRST }, \
2517 { "t9", 25 + GP_REG_FIRST }, \
2518 { "k0", 26 + GP_REG_FIRST }, \
2519 { "k1", 27 + GP_REG_FIRST }, \
2520 { "gp", 28 + GP_REG_FIRST }, \
2521 { "sp", 29 + GP_REG_FIRST }, \
2522 { "fp", 30 + GP_REG_FIRST }, \
2523 { "ra", 31 + GP_REG_FIRST }, \
2524 ALL_COP_ADDITIONAL_REGISTER_NAMES \
2527 /* This is meant to be redefined in the host dependent files. It is a
2528 set of alternative names and regnums for mips coprocessors. */
2530 #define ALL_COP_ADDITIONAL_REGISTER_NAMES
2532 /* A C compound statement to output to stdio stream STREAM the
2533 assembler syntax for an instruction operand X. X is an RTL
2534 expression.
2536 CODE is a value that can be used to specify one of several ways
2537 of printing the operand. It is used when identical operands
2538 must be printed differently depending on the context. CODE
2539 comes from the `%' specification that was used to request
2540 printing of the operand. If the specification was just `%DIGIT'
2541 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2542 is the ASCII code for LTR.
2544 If X is a register, this macro should print the register's name.
2545 The names can be found in an array `reg_names' whose type is
2546 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2548 When the machine description has a specification `%PUNCT' (a `%'
2549 followed by a punctuation character), this macro is called with
2550 a null pointer for X and the punctuation character for CODE.
2552 See mips.c for the MIPS specific codes. */
2554 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2556 /* A C expression which evaluates to true if CODE is a valid
2557 punctuation character for use in the `PRINT_OPERAND' macro. If
2558 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2559 punctuation characters (except for the standard one, `%') are
2560 used in this way. */
2562 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2564 /* A C compound statement to output to stdio stream STREAM the
2565 assembler syntax for an instruction operand that is a memory
2566 reference whose address is ADDR. ADDR is an RTL expression. */
2568 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2571 /* A C statement, to be executed after all slot-filler instructions
2572 have been output. If necessary, call `dbr_sequence_length' to
2573 determine the number of slots filled in a sequence (zero if not
2574 currently outputting a sequence), to decide how many no-ops to
2575 output, or whatever.
2577 Don't define this macro if it has nothing to do, but it is
2578 helpful in reading assembly output if the extent of the delay
2579 sequence is made explicit (e.g. with white space).
2581 Note that output routines for instructions with delay slots must
2582 be prepared to deal with not being output as part of a sequence
2583 (i.e. when the scheduling pass is not run, or when no slot
2584 fillers could be found.) The variable `final_sequence' is null
2585 when not processing a sequence, otherwise it contains the
2586 `sequence' rtx being output. */
2588 #define DBR_OUTPUT_SEQEND(STREAM) \
2589 do \
2591 if (set_nomacro > 0 && --set_nomacro == 0) \
2592 fputs ("\t.set\tmacro\n", STREAM); \
2594 if (set_noreorder > 0 && --set_noreorder == 0) \
2595 fputs ("\t.set\treorder\n", STREAM); \
2597 fputs ("\n", STREAM); \
2599 while (0)
2602 /* How to tell the debugger about changes of source files. */
2603 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
2604 mips_output_filename (STREAM, NAME)
2606 /* mips-tfile does not understand .stabd directives. */
2607 #define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do { \
2608 dbxout_begin_stabn_sline (LINE); \
2609 dbxout_stab_value_internal_label ("LM", &COUNTER); \
2610 } while (0)
2612 /* Use .loc directives for SDB line numbers. */
2613 #define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE) \
2614 fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2616 /* The MIPS implementation uses some labels for its own purpose. The
2617 following lists what labels are created, and are all formed by the
2618 pattern $L[a-z].*. The machine independent portion of GCC creates
2619 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2621 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
2622 $Lb[0-9]+ Begin blocks for MIPS debug support
2623 $Lc[0-9]+ Label for use in s<xx> operation.
2624 $Le[0-9]+ End blocks for MIPS debug support */
2626 #undef ASM_DECLARE_OBJECT_NAME
2627 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2628 mips_declare_object (STREAM, NAME, "", ":\n", 0)
2630 /* Globalizing directive for a label. */
2631 #define GLOBAL_ASM_OP "\t.globl\t"
2633 /* This says how to define a global common symbol. */
2635 #define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2637 /* This says how to define a local common symbol (i.e., not visible to
2638 linker). */
2640 #ifndef ASM_OUTPUT_ALIGNED_LOCAL
2641 #define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2642 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2643 #endif
2645 /* This says how to output an external. It would be possible not to
2646 output anything and let undefined symbol become external. However
2647 the assembler uses length information on externals to allocate in
2648 data/sdata bss/sbss, thereby saving exec time. */
2650 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2651 mips_output_external(STREAM,DECL,NAME)
2653 /* This is how to declare a function name. The actual work of
2654 emitting the label is moved to function_prologue, so that we can
2655 get the line number correctly emitted before the .ent directive,
2656 and after any .file directives. Define as empty so that the function
2657 is not declared before the .ent directive elsewhere. */
2659 #undef ASM_DECLARE_FUNCTION_NAME
2660 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2662 #ifndef FUNCTION_NAME_ALREADY_DECLARED
2663 #define FUNCTION_NAME_ALREADY_DECLARED 0
2664 #endif
2666 /* This is how to store into the string LABEL
2667 the symbol_ref name of an internal numbered label where
2668 PREFIX is the class of label and NUM is the number within the class.
2669 This is suitable for output with `assemble_name'. */
2671 #undef ASM_GENERATE_INTERNAL_LABEL
2672 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2673 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2675 /* This is how to output an element of a case-vector that is absolute. */
2677 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2678 fprintf (STREAM, "\t%s\t%sL%d\n", \
2679 ptr_mode == DImode ? ".dword" : ".word", \
2680 LOCAL_LABEL_PREFIX, \
2681 VALUE)
2683 /* This is how to output an element of a case-vector. We can make the
2684 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2685 is supported. */
2687 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2688 do { \
2689 if (TARGET_MIPS16) \
2690 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2691 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2692 else if (TARGET_GPWORD) \
2693 fprintf (STREAM, "\t%s\t%sL%d\n", \
2694 ptr_mode == DImode ? ".gpdword" : ".gpword", \
2695 LOCAL_LABEL_PREFIX, VALUE); \
2696 else \
2697 fprintf (STREAM, "\t%s\t%sL%d\n", \
2698 ptr_mode == DImode ? ".dword" : ".word", \
2699 LOCAL_LABEL_PREFIX, VALUE); \
2700 } while (0)
2702 /* When generating MIPS16 code, we want the jump table to be in the text
2703 section so that we can load its address using a PC-relative addition. */
2704 #define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2706 /* This is how to output an assembler line
2707 that says to advance the location counter
2708 to a multiple of 2**LOG bytes. */
2710 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
2711 fprintf (STREAM, "\t.align\t%d\n", (LOG))
2713 /* This is how to output an assembler line to advance the location
2714 counter by SIZE bytes. */
2716 #undef ASM_OUTPUT_SKIP
2717 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
2718 fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2720 /* This is how to output a string. */
2721 #undef ASM_OUTPUT_ASCII
2722 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
2723 mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2725 /* Output #ident as a in the read-only data section. */
2726 #undef ASM_OUTPUT_IDENT
2727 #define ASM_OUTPUT_IDENT(FILE, STRING) \
2729 const char *p = STRING; \
2730 int size = strlen (p) + 1; \
2731 readonly_data_section (); \
2732 assemble_string (p, size); \
2735 /* Default to -G 8 */
2736 #ifndef MIPS_DEFAULT_GVALUE
2737 #define MIPS_DEFAULT_GVALUE 8
2738 #endif
2740 /* Define the strings to put out for each section in the object file. */
2741 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
2742 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
2743 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
2745 #undef READONLY_DATA_SECTION_ASM_OP
2746 #define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
2748 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
2749 do \
2751 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
2752 TARGET_64BIT ? "dsubu" : "subu", \
2753 reg_names[STACK_POINTER_REGNUM], \
2754 reg_names[STACK_POINTER_REGNUM], \
2755 TARGET_64BIT ? "sd" : "sw", \
2756 reg_names[REGNO], \
2757 reg_names[STACK_POINTER_REGNUM]); \
2759 while (0)
2761 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
2762 do \
2764 if (! set_noreorder) \
2765 fprintf (STREAM, "\t.set\tnoreorder\n"); \
2767 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
2768 TARGET_64BIT ? "ld" : "lw", \
2769 reg_names[REGNO], \
2770 reg_names[STACK_POINTER_REGNUM], \
2771 TARGET_64BIT ? "daddu" : "addu", \
2772 reg_names[STACK_POINTER_REGNUM], \
2773 reg_names[STACK_POINTER_REGNUM]); \
2775 if (! set_noreorder) \
2776 fprintf (STREAM, "\t.set\treorder\n"); \
2778 while (0)
2780 /* How to start an assembler comment.
2781 The leading space is important (the mips native assembler requires it). */
2782 #ifndef ASM_COMMENT_START
2783 #define ASM_COMMENT_START " #"
2784 #endif
2786 /* Default definitions for size_t and ptrdiff_t. We must override the
2787 definitions from ../svr4.h on mips-*-linux-gnu. */
2789 #undef SIZE_TYPE
2790 #define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2792 #undef PTRDIFF_TYPE
2793 #define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2795 #ifndef __mips16
2796 /* Since the bits of the _init and _fini function is spread across
2797 many object files, each potentially with its own GP, we must assume
2798 we need to load our GP. We don't preserve $gp or $ra, since each
2799 init/fini chunk is supposed to initialize $gp, and crti/crtn
2800 already take care of preserving $ra and, when appropriate, $gp. */
2801 #if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2802 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2803 asm (SECTION_OP "\n\
2804 .set noreorder\n\
2805 bal 1f\n\
2806 nop\n\
2807 1: .cpload $31\n\
2808 .set reorder\n\
2809 jal " USER_LABEL_PREFIX #FUNC "\n\
2810 " TEXT_SECTION_ASM_OP);
2811 #endif /* Switch to #elif when we're no longer limited by K&R C. */
2812 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2813 || (defined _ABI64 && _MIPS_SIM == _ABI64)
2814 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
2815 asm (SECTION_OP "\n\
2816 .set noreorder\n\
2817 bal 1f\n\
2818 nop\n\
2819 1: .set reorder\n\
2820 .cpsetup $31, $2, 1b\n\
2821 jal " USER_LABEL_PREFIX #FUNC "\n\
2822 " TEXT_SECTION_ASM_OP);
2823 #endif
2824 #endif
2826 #ifndef HAVE_AS_TLS
2827 #define HAVE_AS_TLS 0
2828 #endif