1 /* Standard register usage. */
3 /* Number of actual hardware registers.
4 The hardware registers are assigned numbers for the compiler
5 from 0 to just below FIRST_PSEUDO_REGISTER.
6 All registers that the compiler knows about must be given numbers,
7 even those that are not normally considered general registers.
9 HP-PA 1.0 has 32 fullword registers and 16 floating point
10 registers. The floating point registers hold either word or double
13 16 additional registers are reserved.
15 HP-PA 1.1 has 32 fullword registers and 32 floating point
16 registers. However, the floating point registers behave
17 differently: the left and right halves of registers are addressable
18 as 32 bit registers. So, we will set things up like the 68k which
19 has different fp units: define separate register sets for the 1.0
22 #define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs +
25 /* 1 for registers that have pervasive standard uses
26 and are not available for the register allocator.
28 On the HP-PA, these are:
29 Reg 0 = 0 (hardware). However, 0 is used for condition code,
31 Reg 1 = ADDIL target/Temporary (hardware).
32 Reg 2 = Return Pointer
34 Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
35 Reg 4-18 = Preserved Registers
36 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
37 Reg 20-22 = Temporary Registers
38 Reg 23-26 = Temporary/Parameter Registers
39 Reg 27 = Global Data Pointer (hp)
40 Reg 28 = Temporary/Return Value register
41 Reg 29 = Temporary/Static Chain/Return Value register #2
42 Reg 30 = stack pointer
43 Reg 31 = Temporary/Millicode Return Pointer (hp)
45 Freg 0-3 = Status Registers -- Not known to the compiler.
46 Freg 4-7 = Arguments/Return Value
47 Freg 8-11 = Temporary Registers
48 Freg 12-15 = Preserved Registers
52 On the Snake, fp regs are
54 Freg 0-3 = Status Registers -- Not known to the compiler.
55 Freg 4L-7R = Arguments/Return Value
56 Freg 8L-11R = Temporary Registers
57 Freg 12L-21R = Preserved Registers
58 Freg 22L-31R = Temporary Registers
62 #define FIXED_REGISTERS \
63 {0, 0, 0, 0, 0, 0, 0, 0, \
64 0, 0, 0, 0, 0, 0, 0, 0, \
65 0, 0, 0, 0, 0, 0, 0, 0, \
66 0, 0, 0, 1, 0, 0, 1, 0, \
68 0, 0, 0, 0, 0, 0, 0, 0, \
69 0, 0, 0, 0, 0, 0, 0, 0, \
70 0, 0, 0, 0, 0, 0, 0, 0, \
71 0, 0, 0, 0, 0, 0, 0, 0, \
72 0, 0, 0, 0, 0, 0, 0, 0, \
73 0, 0, 0, 0, 0, 0, 0, 0, \
74 0, 0, 0, 0, 0, 0, 0, 0, \
77 /* 1 for registers not available across function calls.
78 These must include the FIXED_REGISTERS and also any
79 registers that can be used without being saved.
80 The latter must include the registers where values are returned
81 and the register where structure-value addresses are passed.
82 Aside from that, you can include as many other registers as you like. */
83 #define CALL_USED_REGISTERS \
84 {1, 1, 1, 0, 0, 0, 0, 0, \
85 0, 0, 0, 0, 0, 0, 0, 0, \
86 0, 0, 0, 1, 1, 1, 1, 1, \
87 1, 1, 1, 1, 1, 1, 1, 1, \
89 1, 1, 1, 1, 1, 1, 1, 1, \
90 1, 1, 1, 1, 1, 1, 1, 1, \
91 0, 0, 0, 0, 0, 0, 0, 0, \
92 0, 0, 0, 0, 0, 0, 0, 0, \
93 0, 0, 0, 0, 1, 1, 1, 1, \
94 1, 1, 1, 1, 1, 1, 1, 1, \
95 1, 1, 1, 1, 1, 1, 1, 1, \
98 #define CONDITIONAL_REGISTER_USAGE \
103 for (i = 56; i < 88; i++) \
104 fixed_regs[i] = call_used_regs[i] = 1; \
105 for (i = 33; i < 88; i += 2) \
106 fixed_regs[i] = call_used_regs[i] = 1; \
108 if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\
110 for (i = 32; i < 88; i++) \
111 fixed_regs[i] = call_used_regs[i] = 1; \
114 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
117 /* Allocate the call used registers first. This should minimize
118 the number of registers that need to be saved (as call used
119 registers will generally not be allocated across a call).
121 Experimentation has shown slightly better results by allocating
122 FP registers first. We allocate the caller-saved registers more
123 or less in reverse order to their allocation as arguments.
125 FP registers are ordered so that all L registers are selected before
126 R registers. This works around a false dependency interlock on the
127 PA8000 when accessing the high and low parts of an FP register
130 #define REG_ALLOC_ORDER \
132 /* caller-saved fp regs. */ \
133 68, 70, 72, 74, 76, 78, 80, 82, \
134 84, 86, 40, 42, 44, 46, 38, 36, \
136 69, 71, 73, 75, 77, 79, 81, 83, \
137 85, 87, 41, 43, 45, 47, 39, 37, \
139 /* caller-saved general regs. */ \
140 28, 19, 20, 21, 22, 31, 27, 29, \
142 /* callee-saved fp regs. */ \
143 48, 50, 52, 54, 56, 58, 60, 62, \
145 49, 51, 53, 55, 57, 59, 61, 63, \
147 /* callee-saved general regs. */ \
148 3, 4, 5, 6, 7, 8, 9, 10, \
149 11, 12, 13, 14, 15, 16, 17, 18, \
150 /* special registers. */ \
154 /* Return number of consecutive hard regs needed starting at reg REGNO
155 to hold something of mode MODE.
156 This is ordinarily the length in words of a value of mode MODE
157 but can be less for certain modes in special long registers.
159 On the HP-PA, general registers are 32 bits wide. The floating
160 point registers are 64 bits wide. Snake fp regs are treated as
161 32 bits wide since the left and right parts are independently
163 #define HARD_REGNO_NREGS(REGNO, MODE) \
164 (FP_REGNO_P (REGNO) \
166 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \
167 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
168 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
170 /* There are no instructions that use DImode in PA 1.0, so we only
171 allow it in PA 1.1 and later. */
172 #define VALID_FP_MODE_P(MODE) \
173 ((MODE) == SFmode || (MODE) == DFmode \
174 || (MODE) == SCmode || (MODE) == DCmode \
175 || (MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
176 || (TARGET_PA_11 && (MODE) == DImode))
178 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
180 On the HP-PA, the cpu registers can hold any mode that fits in 32 bits.
181 For the 64-bit modes, we choose a set of non-overlapping general registers
182 that includes the incoming arguments and the return value. We specify a
183 set with no overlaps so that we don't have to specify that the destination
184 register is an early clobber in patterns using this mode. Except for the
185 return value, the starting registers are odd. For 128 and 256 bit modes,
186 we similarly specify non-overlapping sets of cpu registers. However,
187 there aren't any patterns defined for modes larger than 64 bits at the
190 We limit the modes allowed in the floating point registers to the
191 set of modes used in the machine definition. In addition, we allow
192 the complex modes SCmode and DCmode. The real and imaginary parts
193 of complex modes are allocated to separate registers. This might
194 allow patterns to be defined in the future to operate on these values.
196 The PA 2.0 architecture specifies that quad-precision floating-point
197 values should start on an even floating point register. Thus, we
198 choose non-overlapping sets of registers starting on even register
199 boundaries for large modes. However, there is currently no support
200 in the machine definition for modes larger than 64 bits. TFmode is
201 supported under HP-UX using libcalls. Since TFmode values are passed
202 by reference, they never need to be loaded into the floating-point
204 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
205 ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
206 : !TARGET_PA_11 && FP_REGNO_P (REGNO) \
207 ? (VALID_FP_MODE_P (MODE) \
208 && (GET_MODE_SIZE (MODE) <= 8 \
209 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0))) \
210 : FP_REGNO_P (REGNO) \
211 ? (VALID_FP_MODE_P (MODE) \
212 && (GET_MODE_SIZE (MODE) <= 4 \
213 || (GET_MODE_SIZE (MODE) == 8 && ((REGNO) & 1) == 0) \
214 || (GET_MODE_SIZE (MODE) == 16 && ((REGNO) & 3) == 0) \
215 || (GET_MODE_SIZE (MODE) == 32 && ((REGNO) & 7) == 0))) \
216 : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD \
217 || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD \
218 && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28)) \
219 || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD \
220 && ((REGNO) & 3) == 3 && (REGNO) <= 23) \
221 || (GET_MODE_SIZE (MODE) == 8 * UNITS_PER_WORD \
222 && ((REGNO) & 7) == 3 && (REGNO) <= 19)))
224 /* How to renumber registers for dbx and gdb.
226 Registers 0 - 31 remain unchanged.
228 Registers 32 - 87 are mapped to 72 - 127
230 Register 88 is mapped to 32. */
232 #define DBX_REGISTER_NUMBER(REGNO) \
233 ((REGNO) <= 31 ? (REGNO) : \
234 ((REGNO) <= 87 ? (REGNO) + 40 : 32))
236 /* We must not use the DBX register numbers for the DWARF 2 CFA column
237 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
238 Instead use the identity mapping. */
239 #define DWARF_FRAME_REGNUM(REG) REG
241 /* Define the classes of registers for register constraints in the
242 machine description. Also define ranges of constants.
244 One of the classes must always be named ALL_REGS and include all hard regs.
245 If there is more than one class, another class must be named NO_REGS
246 and contain no registers.
248 The name GENERAL_REGS must be the name of a class (or an alias for
249 another name such as ALL_REGS). This is the class of registers
250 that is allowed by "g" or "r" in a register constraint.
251 Also, registers outside this class are allocated only when
252 instructions express preferences for them.
254 The classes must be numbered in nondecreasing order; that is,
255 a larger-numbered class must never be contained completely
256 in a smaller-numbered class.
258 For any two classes, it is very desirable that there be another
259 class that represents their union. */
261 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
262 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
263 fmpyadd and fmpysub are restricted. */
265 enum reg_class
{ NO_REGS
, R1_REGS
, GENERAL_REGS
, FPUPPER_REGS
, FP_REGS
,
266 GENERAL_OR_FP_REGS
, SHIFT_REGS
, ALL_REGS
, LIM_REG_CLASSES
};
268 #define N_REG_CLASSES (int) LIM_REG_CLASSES
270 /* Give names of register classes as strings for dump file. */
272 #define REG_CLASS_NAMES \
273 {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \
274 "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
276 /* Define which registers fit in which classes.
277 This is an initializer for a vector of HARD_REG_SET
278 of length N_REG_CLASSES. Register 0, the "condition code" register,
281 #define REG_CLASS_CONTENTS \
282 {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
283 {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
284 {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \
285 {0x00000000, 0xff000000, 0x00ffffff}, /* FPUPPER_REGS */ \
286 {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
287 {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \
288 {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
289 {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */
291 /* Return the class number of the smallest class containing
292 reg number REGNO. This could be a conditional expression
293 or could index an array. */
295 #define REGNO_REG_CLASS(REGNO) \
296 ((REGNO) == 0 ? NO_REGS \
297 : (REGNO) == 1 ? R1_REGS \
298 : (REGNO) < 32 ? GENERAL_REGS \
299 : (REGNO) < 56 ? FP_REGS \
300 : (REGNO) < 88 ? FPUPPER_REGS \
303 /* Get reg_class from a letter such as appears in the machine description. */
304 /* Keep 'x' for backward compatibility with user asm. */
305 #define REG_CLASS_FROM_LETTER(C) \
306 ((C) == 'f' ? FP_REGS : \
307 (C) == 'y' ? FPUPPER_REGS : \
308 (C) == 'x' ? FP_REGS : \
309 (C) == 'q' ? SHIFT_REGS : \
310 (C) == 'a' ? R1_REGS : \
311 (C) == 'Z' ? ALL_REGS : NO_REGS)
313 /* Return the maximum number of consecutive registers
314 needed to represent mode MODE in a register of class CLASS. */
315 #define CLASS_MAX_NREGS(CLASS, MODE) \
316 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS \
318 ? COMPLEX_MODE_P (MODE) ? 2 : 1 \
319 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4) \
320 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
322 /* 1 if N is a possible register number for function argument passing. */
324 #define FUNCTION_ARG_REGNO_P(N) \
325 (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
327 /* How to refer to registers in assembler output.
328 This sequence is indexed by compiler's hard-register-number (see above). */
330 #define REGISTER_NAMES \
331 {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
332 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
333 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
334 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
335 "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
336 "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
337 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
338 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
339 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
340 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
341 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
344 #define ADDITIONAL_REGISTER_NAMES \
345 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
346 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
347 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
348 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
349 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
350 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
351 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
354 #define FP_SAVED_REG_LAST 66
355 #define FP_SAVED_REG_FIRST 48
356 #define FP_REG_STEP 2
357 #define FP_REG_FIRST 32
358 #define FP_REG_LAST 87