Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / config / sh / sh.h
bloba4ce09e3610b66b07ea8635757c8c0e078783e37
1 /* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because bconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do { \
37 builtin_define ("__sh__"); \
38 builtin_assert ("cpu=sh"); \
39 builtin_assert ("machine=sh"); \
40 switch ((int) sh_cpu) \
41 { \
42 case PROCESSOR_SH1: \
43 builtin_define ("__sh1__"); \
44 break; \
45 case PROCESSOR_SH2: \
46 builtin_define ("__sh2__"); \
47 break; \
48 case PROCESSOR_SH2E: \
49 builtin_define ("__SH2E__"); \
50 break; \
51 case PROCESSOR_SH2A: \
52 builtin_define ("__SH2A__"); \
53 builtin_define (TARGET_SH2A_DOUBLE \
54 ? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
55 : TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
56 : "__SH2A_NOFPU__"); \
57 break; \
58 case PROCESSOR_SH3: \
59 builtin_define ("__sh3__"); \
60 builtin_define ("__SH3__"); \
61 if (TARGET_HARD_SH4) \
62 builtin_define ("__SH4_NOFPU__"); \
63 break; \
64 case PROCESSOR_SH3E: \
65 builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
66 break; \
67 case PROCESSOR_SH4: \
68 builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
69 break; \
70 case PROCESSOR_SH4A: \
71 builtin_define ("__SH4A__"); \
72 builtin_define (TARGET_SH4 \
73 ? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
74 : TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
75 : "__SH4_NOFPU__"); \
76 break; \
77 case PROCESSOR_SH5: \
78 { \
79 builtin_define_with_value ("__SH5__", \
80 TARGET_SHMEDIA64 ? "64" : "32", 0); \
81 builtin_define_with_value ("__SHMEDIA__", \
82 TARGET_SHMEDIA ? "1" : "0", 0); \
83 if (! TARGET_FPU_DOUBLE) \
84 builtin_define ("__SH4_NOFPU__"); \
85 } \
86 } \
87 if (TARGET_FPU_ANY) \
88 builtin_define ("__SH_FPU_ANY__"); \
89 if (TARGET_FPU_DOUBLE) \
90 builtin_define ("__SH_FPU_DOUBLE__"); \
91 if (TARGET_HITACHI) \
92 builtin_define ("__HITACHI__"); \
93 builtin_define (TARGET_LITTLE_ENDIAN \
94 ? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
95 if (flag_pic) \
96 { \
97 builtin_define ("__pic__"); \
98 builtin_define ("__PIC__"); \
99 } \
100 } while (0)
102 /* We can not debug without a frame pointer. */
103 /* #define CAN_DEBUG_WITHOUT_FP */
105 #define CONDITIONAL_REGISTER_USAGE do \
107 int regno; \
108 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
109 if (! VALID_REGISTER_P (regno)) \
110 fixed_regs[regno] = call_used_regs[regno] = 1; \
111 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
112 if (TARGET_SH5) \
114 call_used_regs[FIRST_GENERAL_REG + 8] \
115 = call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
116 call_really_used_regs[FIRST_GENERAL_REG + 8] \
117 = call_really_used_regs[FIRST_GENERAL_REG + 9] = 1; \
119 if (TARGET_SHMEDIA) \
121 regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
122 CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
123 regno_reg_class[FIRST_FP_REG] = FP_REGS; \
125 if (flag_pic) \
127 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
128 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
130 /* Renesas saves and restores mac registers on call. */ \
131 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
133 call_really_used_regs[MACH_REG] = 0; \
134 call_really_used_regs[MACL_REG] = 0; \
136 for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); \
137 regno <= LAST_FP_REG; regno += 2) \
138 SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); \
139 if (TARGET_SHMEDIA) \
141 for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
142 if (! fixed_regs[regno] && call_really_used_regs[regno]) \
143 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
145 else \
146 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
147 if (! fixed_regs[regno] && call_really_used_regs[regno]) \
148 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
149 } while (0)
151 /* Nonzero if this is an ELF target - compile time only */
152 #define TARGET_ELF 0
154 /* Nonzero if we should generate code using type 2E insns. */
155 #define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
157 /* Nonzero if we should generate code using type 2A insns. */
158 #define TARGET_SH2A TARGET_HARD_SH2A
159 /* Nonzero if we should generate code using type 2A SF insns. */
160 #define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
161 /* Nonzero if we should generate code using type 2A DF insns. */
162 #define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
164 /* Nonzero if we should generate code using type 3E insns. */
165 #define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
167 /* Nonzero if the cache line size is 32. */
168 #define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
170 /* Nonzero if we schedule for a superscalar implementation. */
171 #define TARGET_SUPERSCALAR TARGET_HARD_SH4
173 /* Nonzero if the target has separate instruction and data caches. */
174 #define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
176 /* Nonzero if a double-precision FPU is available. */
177 #define TARGET_FPU_DOUBLE \
178 ((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
180 /* Nonzero if an FPU is available. */
181 #define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
183 /* Nonzero if we should generate code using type 4 insns. */
184 #undef TARGET_SH4
185 #define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
187 /* Nonzero if we're generating code for the common subset of
188 instructions present on both SH4a and SH4al-dsp. */
189 #define TARGET_SH4A_ARCH TARGET_SH4A
191 /* Nonzero if we're generating code for SH4a, unless the use of the
192 FPU is disabled (which makes it compatible with SH4al-dsp). */
193 #define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
195 /* Nonzero if we should generate code using the SHcompact instruction
196 set and 32-bit ABI. */
197 #define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
199 /* Nonzero if we should generate code using the SHmedia instruction
200 set and ABI. */
201 #define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
203 /* Nonzero if we should generate code using the SHmedia ISA and 32-bit
204 ABI. */
205 #define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
207 /* Nonzero if we should generate code using the SHmedia ISA and 64-bit
208 ABI. */
209 #define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
211 /* Nonzero if we should generate code using SHmedia FPU instructions. */
212 #define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
214 /* This is not used by the SH2E calling convention */
215 #define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
216 (TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
217 && ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
219 #ifndef TARGET_CPU_DEFAULT
220 #define TARGET_CPU_DEFAULT SELECT_SH1
221 #define SUPPORT_SH1 1
222 #define SUPPORT_SH2E 1
223 #define SUPPORT_SH4 1
224 #define SUPPORT_SH4_SINGLE 1
225 #define SUPPORT_SH2A 1
226 #define SUPPORT_SH2A_SINGLE 1
227 #endif
229 #define TARGET_DIVIDE_INV \
230 (sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
231 || sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
232 || sh_div_strategy == SH_DIV_INV_CALL \
233 || sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
234 #define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
235 #define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
236 #define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
237 #define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
238 #define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
239 #define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
240 #define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
241 #define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
243 #define SELECT_SH1 (MASK_SH1)
244 #define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
245 #define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
246 | MASK_FPU_SINGLE)
247 #define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
248 | MASK_HARD_SH2A_DOUBLE \
249 | MASK_SH2 | MASK_SH1)
250 #define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
251 #define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
252 | MASK_SH1 | MASK_FPU_SINGLE)
253 #define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
254 | MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
255 | MASK_SH2 | MASK_SH1)
256 #define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
257 #define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
258 #define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
259 #define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E)
260 #define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
261 | SELECT_SH3)
262 #define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
263 #define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
264 #define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
265 #define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
266 #define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
267 #define SELECT_SH5_64MEDIA (MASK_SH5 | MASK_SH4)
268 #define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
269 #define SELECT_SH5_32MEDIA (MASK_SH5 | MASK_SH4 | MASK_SH_E)
270 #define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
271 #define SELECT_SH5_COMPACT (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
272 #define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
274 #if SUPPORT_SH1
275 #define SUPPORT_SH2 1
276 #endif
277 #if SUPPORT_SH2
278 #define SUPPORT_SH3 1
279 #endif
280 #if SUPPORT_SH3
281 #define SUPPORT_SH4_NOFPU 1
282 #endif
283 #if SUPPORT_SH4_NOFPU
284 #define SUPPORT_SH4A_NOFPU 1
285 #define SUPPORT_SH4AL 1
286 #define SUPPORT_SH2A_NOFPU 1
287 #endif
289 #if SUPPORT_SH2E
290 #define SUPPORT_SH3E 1
291 #endif
292 #if SUPPORT_SH3E
293 #define SUPPORT_SH4_SINGLE_ONLY 1
294 #define SUPPORT_SH4A_SINGLE_ONLY 1
295 #define SUPPORT_SH2A_SINGLE_ONLY 1
296 #endif
298 #if SUPPORT_SH4
299 #define SUPPORT_SH4A 1
300 #endif
302 #if SUPPORT_SH4_SINGLE
303 #define SUPPORT_SH4A_SINGLE 1
304 #endif
306 #if SUPPORT_SH5_COMPAT
307 #define SUPPORT_SH5_32MEDIA 1
308 #endif
310 #if SUPPORT_SH5_COMPACT_NOFPU
311 #define SUPPORT_SH5_32MEDIA_NOFPU 1
312 #endif
314 #define SUPPORT_ANY_SH5_32MEDIA \
315 (SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
316 #define SUPPORT_ANY_SH5_64MEDIA \
317 (SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
318 #define SUPPORT_ANY_SH5 \
319 (SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
321 /* Reset all target-selection flags. */
322 #define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
323 | MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
324 | MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
326 /* This defaults us to big-endian. */
327 #ifndef TARGET_ENDIAN_DEFAULT
328 #define TARGET_ENDIAN_DEFAULT 0
329 #endif
331 #ifndef TARGET_OPT_DEFAULT
332 #define TARGET_OPT_DEFAULT MASK_ADJUST_UNROLL
333 #endif
335 #define TARGET_DEFAULT \
336 (TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
338 #ifndef SH_MULTILIB_CPU_DEFAULT
339 #define SH_MULTILIB_CPU_DEFAULT "m1"
340 #endif
342 #if TARGET_ENDIAN_DEFAULT
343 #define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
344 #else
345 #define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
346 #endif
348 #define CPP_SPEC " %(subtarget_cpp_spec) "
350 #ifndef SUBTARGET_CPP_SPEC
351 #define SUBTARGET_CPP_SPEC ""
352 #endif
354 #ifndef SUBTARGET_EXTRA_SPECS
355 #define SUBTARGET_EXTRA_SPECS
356 #endif
358 #define EXTRA_SPECS \
359 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
360 { "link_emul_prefix", LINK_EMUL_PREFIX }, \
361 { "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
362 { "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
363 { "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
364 { "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
365 { "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
366 { "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
367 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
368 SUBTARGET_EXTRA_SPECS
370 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4
371 #define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4}}}}"
372 #else
373 #define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4}"
374 #endif
376 #define SH_ASM_SPEC \
377 "%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
378 %(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
379 %{m2a:--isa=sh2a} \
380 %{m2a-single:--isa=sh2a} \
381 %{m2a-single-only:--isa=sh2a} \
382 %{m2a-nofpu:--isa=sh2a-nofpu} \
383 %{m5-compact*:--isa=SHcompact} \
384 %{m5-32media*:--isa=SHmedia --abi=32} \
385 %{m5-64media*:--isa=SHmedia --abi=64} \
386 %{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
388 #define ASM_SPEC SH_ASM_SPEC
390 #ifndef SUBTARGET_ASM_ENDIAN_SPEC
391 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
392 #define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
393 #else
394 #define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
395 #endif
396 #endif
398 #if STRICT_NOFPU == 1
399 /* Strict nofpu means that the compiler should tell the assembler
400 to reject FPU instructions. E.g. from ASM inserts. */
401 #if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
402 #define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
403 #else
404 /* If there were an -isa option for sh5-nofpu then it would also go here. */
405 #define SUBTARGET_ASM_ISA_SPEC \
406 "%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
407 #endif
408 #else /* ! STRICT_NOFPU */
409 #define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
410 #endif
412 #ifndef SUBTARGET_ASM_SPEC
413 #define SUBTARGET_ASM_SPEC ""
414 #endif
416 #if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
417 #define LINK_EMUL_PREFIX "sh%{!mb:l}"
418 #else
419 #define LINK_EMUL_PREFIX "sh%{ml:l}"
420 #endif
422 #if TARGET_CPU_DEFAULT & MASK_SH5
423 #if TARGET_CPU_DEFAULT & MASK_SH_E
424 #define LINK_DEFAULT_CPU_EMUL "32"
425 #if TARGET_CPU_DEFAULT & MASK_SH1
426 #define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
427 #else
428 #define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
429 #endif /* MASK_SH1 */
430 #else /* !MASK_SH_E */
431 #define LINK_DEFAULT_CPU_EMUL "64"
432 #define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
433 #endif /* MASK_SH_E */
434 #define ASM_ISA_DEFAULT_SPEC \
435 " %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
436 #else /* !MASK_SH5 */
437 #define LINK_DEFAULT_CPU_EMUL ""
438 #define ASM_ISA_DEFAULT_SPEC ""
439 #endif /* MASK_SH5 */
441 #define SUBTARGET_LINK_EMUL_SUFFIX ""
442 #define SUBTARGET_LINK_SPEC ""
444 /* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
445 so that we can undo the damage without code replication. */
446 #define LINK_SPEC SH_LINK_SPEC
448 #define SH_LINK_SPEC "\
449 -m %(link_emul_prefix)\
450 %{m5-compact*|m5-32media*:32}\
451 %{m5-64media*:64}\
452 %{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
453 %(subtarget_link_emul_suffix) \
454 %{mrelax:-relax} %(subtarget_link_spec)"
456 #ifndef SH_DIV_STR_FOR_SIZE
457 #define SH_DIV_STR_FOR_SIZE "call"
458 #endif
460 #define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
461 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
462 do { \
463 if (LEVEL) \
465 flag_omit_frame_pointer = -1; \
466 if (! SIZE) \
467 sh_div_str = "inv:minlat"; \
469 if (SIZE) \
471 target_flags |= MASK_SMALLCODE; \
472 sh_div_str = SH_DIV_STR_FOR_SIZE ; \
474 /* We can't meaningfully test TARGET_SHMEDIA here, because -m options \
475 haven't been parsed yet, hence we';d read only the default. \
476 sh_target_reg_class will return NO_REGS if this is not SHMEDIA, so \
477 it's OK to always set flag_branch_target_load_optimize. */ \
478 if (LEVEL > 1) \
480 flag_branch_target_load_optimize = 1; \
481 if (! (SIZE)) \
482 target_flags |= MASK_SAVE_ALL_TARGET_REGS; \
484 /* Likewise, we can't meaningfully test TARGET_SH2E / TARGET_IEEE \
485 here, so leave it to OVERRIDE_OPTIONS to set \
486 flag_finite_math_only. We set it to 2 here so we know if the user \
487 explicitly requested this to be on or off. */ \
488 flag_finite_math_only = 2; \
489 /* If flag_schedule_insns is 1, we set it to 2 here so we know if \
490 the user explicitly requested this to be on or off. */ \
491 if (flag_schedule_insns > 0) \
492 flag_schedule_insns = 2; \
493 } while (0)
495 #define ASSEMBLER_DIALECT assembler_dialect
497 extern int assembler_dialect;
499 enum sh_divide_strategy_e {
500 SH_DIV_CALL,
501 SH_DIV_CALL2,
502 SH_DIV_FP,
503 SH_DIV_INV,
504 SH_DIV_INV_MINLAT,
505 SH_DIV_INV20U,
506 SH_DIV_INV20L,
507 SH_DIV_INV_CALL,
508 SH_DIV_INV_CALL2,
509 SH_DIV_INV_FP
512 extern enum sh_divide_strategy_e sh_div_strategy;
514 #ifndef SH_DIV_STRATEGY_DEFAULT
515 #define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
516 #endif
518 #define OVERRIDE_OPTIONS \
519 do { \
520 int regno; \
522 if (flag_finite_math_only == 2) \
523 flag_finite_math_only \
524 = !flag_signaling_nans && TARGET_SH2E && ! TARGET_IEEE; \
525 if (TARGET_SH2E && !flag_finite_math_only) \
526 target_flags |= MASK_IEEE; \
527 sh_cpu = CPU_SH1; \
528 assembler_dialect = 0; \
529 if (TARGET_SH2) \
530 sh_cpu = CPU_SH2; \
531 if (TARGET_SH2E) \
532 sh_cpu = CPU_SH2E; \
533 if (TARGET_SH2A) \
535 sh_cpu = CPU_SH2A; \
536 if (TARGET_SH2A_DOUBLE) \
537 target_flags |= MASK_FMOVD; \
539 if (TARGET_SH3) \
540 sh_cpu = CPU_SH3; \
541 if (TARGET_SH3E) \
542 sh_cpu = CPU_SH3E; \
543 if (TARGET_SH4) \
545 assembler_dialect = 1; \
546 sh_cpu = CPU_SH4; \
548 if (TARGET_SH4A_ARCH) \
550 assembler_dialect = 1; \
551 sh_cpu = CPU_SH4A; \
553 if (TARGET_SH5) \
555 sh_cpu = CPU_SH5; \
556 target_flags |= MASK_ALIGN_DOUBLE; \
557 if (TARGET_SHMEDIA_FPU) \
558 target_flags |= MASK_FMOVD; \
559 if (TARGET_SHMEDIA) \
561 /* There are no delay slots on SHmedia. */ \
562 flag_delayed_branch = 0; \
563 /* Relaxation isn't yet supported for SHmedia */ \
564 target_flags &= ~MASK_RELAX; \
565 /* After reload, if conversion does little good but can cause \
566 ICEs: \
567 - find_if_block doesn't do anything for SH because we don't\
568 have conditional execution patterns. (We use conditional\
569 move patterns, which are handled differently, and only \
570 before reload). \
571 - find_cond_trap doesn't do anything for the SH because we \
572 don't have conditional traps. \
573 - find_if_case_1 uses redirect_edge_and_branch_force in \
574 the only path that does an optimization, and this causes \
575 an ICE when branch targets are in registers. \
576 - find_if_case_2 doesn't do anything for the SHmedia after \
577 reload except when it can redirect a tablejump - and \
578 that's rather rare. */ \
579 flag_if_conversion2 = 0; \
580 if (! strcmp (sh_div_str, "call")) \
581 sh_div_strategy = SH_DIV_CALL; \
582 else if (! strcmp (sh_div_str, "call2")) \
583 sh_div_strategy = SH_DIV_CALL2; \
584 if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY) \
585 sh_div_strategy = SH_DIV_FP; \
586 else if (! strcmp (sh_div_str, "inv")) \
587 sh_div_strategy = SH_DIV_INV; \
588 else if (! strcmp (sh_div_str, "inv:minlat")) \
589 sh_div_strategy = SH_DIV_INV_MINLAT; \
590 else if (! strcmp (sh_div_str, "inv20u")) \
591 sh_div_strategy = SH_DIV_INV20U; \
592 else if (! strcmp (sh_div_str, "inv20l")) \
593 sh_div_strategy = SH_DIV_INV20L; \
594 else if (! strcmp (sh_div_str, "inv:call2")) \
595 sh_div_strategy = SH_DIV_INV_CALL2; \
596 else if (! strcmp (sh_div_str, "inv:call")) \
597 sh_div_strategy = SH_DIV_INV_CALL; \
598 else if (! strcmp (sh_div_str, "inv:fp")) \
600 if (TARGET_FPU_ANY) \
601 sh_div_strategy = SH_DIV_INV_FP; \
602 else \
603 sh_div_strategy = SH_DIV_INV; \
606 /* -fprofile-arcs needs a working libgcov . In unified tree \
607 configurations with newlib, this requires to configure with \
608 --with-newlib --with-headers. But there is no way to check \
609 here we have a working libgcov, so just assume that we have. */\
610 if (profile_flag) \
611 warning (0, "profiling is still experimental for this target");\
613 else \
615 /* Only the sh64-elf assembler fully supports .quad properly. */\
616 targetm.asm_out.aligned_op.di = NULL; \
617 targetm.asm_out.unaligned_op.di = NULL; \
619 if (sh_divsi3_libfunc[0]) \
620 ; /* User supplied - leave it alone. */ \
621 else if (TARGET_HARD_SH4 && TARGET_SH2E) \
622 sh_divsi3_libfunc = "__sdivsi3_i4"; \
623 else if (TARGET_SH5) \
625 if (TARGET_FPU_ANY && TARGET_SH1) \
626 sh_divsi3_libfunc = "__sdivsi3_i4"; \
627 else \
628 sh_divsi3_libfunc = "__sdivsi3_1"; \
630 else \
631 sh_divsi3_libfunc = "__sdivsi3"; \
632 if (TARGET_FMOVD) \
633 reg_class_from_letter['e' - 'a'] = NO_REGS; \
635 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
636 if (! VALID_REGISTER_P (regno)) \
637 sh_register_names[regno][0] = '\0'; \
639 for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
640 if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
641 sh_additional_register_names[regno][0] = '\0'; \
643 if (flag_omit_frame_pointer < 0) \
645 /* The debugging information is sufficient, \
646 but gdb doesn't implement this yet */ \
647 if (0) \
648 flag_omit_frame_pointer \
649 = (PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
650 else \
651 flag_omit_frame_pointer = 0; \
654 if ((flag_pic && ! TARGET_PREFERGOT) \
655 || (TARGET_SHMEDIA && !TARGET_PT_FIXED)) \
656 flag_no_function_cse = 1; \
658 if (SMALL_REGISTER_CLASSES) \
660 /* Never run scheduling before reload, since that can \
661 break global alloc, and generates slower code anyway due \
662 to the pressure on R0. */ \
663 /* Enable sched1 for SH4; ready queue will be reordered by \
664 the target hooks when pressure is high. We can not do this for \
665 SH3 and lower as they give spill failures for R0. */ \
666 if (!TARGET_HARD_SH4) \
667 flag_schedule_insns = 0; \
668 /* ??? Current exception handling places basic block boundaries \
669 after call_insns. It causes the high pressure on R0 and gives \
670 spill failures for R0 in reload. See PR 22553 and the thread \
671 on gcc-patches \
672 <http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>. */ \
673 else if (flag_exceptions) \
675 if (flag_schedule_insns == 1) \
676 warning (0, "ignoring -fschedule-insns because of exception handling bug"); \
677 flag_schedule_insns = 0; \
681 if (align_loops == 0) \
682 align_loops = 1 << (TARGET_SH5 ? 3 : 2); \
683 if (align_jumps == 0) \
684 align_jumps = 1 << CACHE_LOG; \
685 else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) \
686 align_jumps = TARGET_SHMEDIA ? 4 : 2; \
688 /* Allocation boundary (in *bytes*) for the code of a function. \
689 SH1: 32 bit alignment is faster, because instructions are always \
690 fetched as a pair from a longword boundary. \
691 SH2 .. SH5 : align to cache line start. */ \
692 if (align_functions == 0) \
693 align_functions \
694 = TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); \
695 /* The linker relaxation code breaks when a function contains \
696 alignments that are larger than that at the start of a \
697 compilation unit. */ \
698 if (TARGET_RELAX) \
700 int min_align \
701 = align_loops > align_jumps ? align_loops : align_jumps; \
703 /* Also take possible .long constants / mova tables int account. */\
704 if (min_align < 4) \
705 min_align = 4; \
706 if (align_functions < min_align) \
707 align_functions = min_align; \
709 } while (0)
711 /* Target machine storage layout. */
713 /* Define this if most significant bit is lowest numbered
714 in instructions that operate on numbered bit-fields. */
716 #define BITS_BIG_ENDIAN 0
718 /* Define this if most significant byte of a word is the lowest numbered. */
719 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
721 /* Define this if most significant word of a multiword number is the lowest
722 numbered. */
723 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
725 /* Define this to set the endianness to use in libgcc2.c, which can
726 not depend on target_flags. */
727 #if defined(__LITTLE_ENDIAN__)
728 #define LIBGCC2_WORDS_BIG_ENDIAN 0
729 #else
730 #define LIBGCC2_WORDS_BIG_ENDIAN 1
731 #endif
733 #define MAX_BITS_PER_WORD 64
735 /* Width in bits of an `int'. We want just 32-bits, even if words are
736 longer. */
737 #define INT_TYPE_SIZE 32
739 /* Width in bits of a `long'. */
740 #define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
742 /* Width in bits of a `long long'. */
743 #define LONG_LONG_TYPE_SIZE 64
745 /* Width in bits of a `long double'. */
746 #define LONG_DOUBLE_TYPE_SIZE 64
748 /* Width of a word, in units (bytes). */
749 #define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
750 #define MIN_UNITS_PER_WORD 4
752 /* Scaling factor for Dwarf data offsets for CFI information.
753 The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
754 SHmedia; however, since we do partial register saves for the registers
755 visible to SHcompact, and for target registers for SHMEDIA32, we have
756 to allow saves that are only 4-byte aligned. */
757 #define DWARF_CIE_DATA_ALIGNMENT -4
759 /* Width in bits of a pointer.
760 See also the macro `Pmode' defined below. */
761 #define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
763 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
764 #define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
766 /* Boundary (in *bits*) on which stack pointer should be aligned. */
767 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
769 /* The log (base 2) of the cache line size, in bytes. Processors prior to
770 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
771 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
772 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
774 /* ABI given & required minimum allocation boundary (in *bits*) for the
775 code of a function. */
776 #define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
778 /* On SH5, the lowest bit is used to indicate SHmedia functions, so
779 the vbit must go into the delta field of
780 pointers-to-member-functions. */
781 #define TARGET_PTRMEMFUNC_VBIT_LOCATION \
782 (TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
784 /* Alignment of field after `int : 0' in a structure. */
785 #define EMPTY_FIELD_BOUNDARY 32
787 /* No data type wants to be aligned rounder than this. */
788 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
790 /* The best alignment to use in cases where we have a choice. */
791 #define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
793 /* Make strings word-aligned so strcpy from constants will be faster. */
794 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
795 ((TREE_CODE (EXP) == STRING_CST \
796 && (ALIGN) < FASTEST_ALIGNMENT) \
797 ? FASTEST_ALIGNMENT : (ALIGN))
799 /* get_mode_alignment assumes complex values are always held in multiple
800 registers, but that is not the case on the SH; CQImode and CHImode are
801 held in a single integer register. SH5 also holds CSImode and SCmode
802 values in integer registers. This is relevant for argument passing on
803 SHcompact as we use a stack temp in order to pass CSImode by reference. */
804 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
805 ((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
806 || GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
807 ? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
808 : (unsigned) ALIGN)
810 /* Make arrays of chars word-aligned for the same reasons. */
811 #define DATA_ALIGNMENT(TYPE, ALIGN) \
812 (TREE_CODE (TYPE) == ARRAY_TYPE \
813 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
814 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
816 /* Number of bits which any structure or union's size must be a
817 multiple of. Each structure or union's size is rounded up to a
818 multiple of this. */
819 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
821 /* Set this nonzero if move instructions will actually fail to work
822 when given unaligned data. */
823 #define STRICT_ALIGNMENT 1
825 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
826 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
827 barrier_align (LABEL_AFTER_BARRIER)
829 #define LOOP_ALIGN(A_LABEL) \
830 ((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
831 ? 0 : sh_loop_align (A_LABEL))
833 #define LABEL_ALIGN(A_LABEL) \
835 (PREV_INSN (A_LABEL) \
836 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
837 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
838 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
839 /* explicit alignment insn in constant tables. */ \
840 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
841 : 0)
843 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
844 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
846 /* The base two logarithm of the known minimum alignment of an insn length. */
847 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
848 (GET_CODE (A_INSN) == INSN \
849 ? 1 << TARGET_SHMEDIA \
850 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
851 ? 1 << TARGET_SHMEDIA \
852 : CACHE_LOG)
854 /* Standard register usage. */
856 /* Register allocation for the Renesas calling convention:
858 r0 arg return
859 r1..r3 scratch
860 r4..r7 args in
861 r8..r13 call saved
862 r14 frame pointer/call saved
863 r15 stack pointer
864 ap arg pointer (doesn't really exist, always eliminated)
865 pr subroutine return address
866 t t bit
867 mach multiply/accumulate result, high part
868 macl multiply/accumulate result, low part.
869 fpul fp/int communication register
870 rap return address pointer register
871 fr0 fp arg return
872 fr1..fr3 scratch floating point registers
873 fr4..fr11 fp args in
874 fr12..fr15 call saved floating point registers */
876 #define MAX_REGISTER_NAME_LENGTH 5
877 extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
879 #define SH_REGISTER_NAMES_INITIALIZER \
881 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
882 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
883 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
884 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
885 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
886 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
887 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
888 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
889 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
890 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
891 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
892 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
893 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
894 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
895 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
896 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
897 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
898 "xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
899 "gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
900 "rap", "sfp" \
903 #define REGNAMES_ARR_INDEX_1(index) \
904 (sh_register_names[index])
905 #define REGNAMES_ARR_INDEX_2(index) \
906 REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
907 #define REGNAMES_ARR_INDEX_4(index) \
908 REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
909 #define REGNAMES_ARR_INDEX_8(index) \
910 REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
911 #define REGNAMES_ARR_INDEX_16(index) \
912 REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
913 #define REGNAMES_ARR_INDEX_32(index) \
914 REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
915 #define REGNAMES_ARR_INDEX_64(index) \
916 REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
918 #define REGISTER_NAMES \
920 REGNAMES_ARR_INDEX_64 (0), \
921 REGNAMES_ARR_INDEX_64 (64), \
922 REGNAMES_ARR_INDEX_8 (128), \
923 REGNAMES_ARR_INDEX_8 (136), \
924 REGNAMES_ARR_INDEX_8 (144), \
925 REGNAMES_ARR_INDEX_2 (152) \
928 #define ADDREGNAMES_SIZE 32
929 #define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
930 extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
931 [MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
933 #define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
935 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
936 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
937 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
938 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
941 #define ADDREGNAMES_REGNO(index) \
942 ((index < 32) ? (FIRST_FP_REG + (index) * 2) \
943 : (-1))
945 #define ADDREGNAMES_ARR_INDEX_1(index) \
946 { (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
947 #define ADDREGNAMES_ARR_INDEX_2(index) \
948 ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
949 #define ADDREGNAMES_ARR_INDEX_4(index) \
950 ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
951 #define ADDREGNAMES_ARR_INDEX_8(index) \
952 ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
953 #define ADDREGNAMES_ARR_INDEX_16(index) \
954 ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
955 #define ADDREGNAMES_ARR_INDEX_32(index) \
956 ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
958 #define ADDITIONAL_REGISTER_NAMES \
960 ADDREGNAMES_ARR_INDEX_32 (0) \
963 /* Number of actual hardware registers.
964 The hardware registers are assigned numbers for the compiler
965 from 0 to just below FIRST_PSEUDO_REGISTER.
966 All registers that the compiler knows about must be given numbers,
967 even those that are not normally considered general registers. */
969 /* There are many other relevant definitions in sh.md's md_constants. */
971 #define FIRST_GENERAL_REG R0_REG
972 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
973 #define FIRST_FP_REG DR0_REG
974 #define LAST_FP_REG (FIRST_FP_REG + \
975 (TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
976 #define FIRST_XD_REG XD0_REG
977 #define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
978 #define FIRST_TARGET_REG TR0_REG
979 #define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
981 #define GENERAL_REGISTER_P(REGNO) \
982 IN_RANGE ((REGNO), \
983 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
984 (unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
986 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
987 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
988 || ((REGNO) == FRAME_POINTER_REGNUM))
990 #define FP_REGISTER_P(REGNO) \
991 ((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
993 #define XD_REGISTER_P(REGNO) \
994 ((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
996 #define FP_OR_XD_REGISTER_P(REGNO) \
997 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
999 #define FP_ANY_REGISTER_P(REGNO) \
1000 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
1002 #define SPECIAL_REGISTER_P(REGNO) \
1003 ((REGNO) == GBR_REG || (REGNO) == T_REG \
1004 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
1006 #define TARGET_REGISTER_P(REGNO) \
1007 ((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
1009 #define SHMEDIA_REGISTER_P(REGNO) \
1010 (GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
1011 || TARGET_REGISTER_P (REGNO))
1013 /* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
1014 that should be fixed. */
1015 #define VALID_REGISTER_P(REGNO) \
1016 (SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
1017 || (REGNO) == AP_REG || (REGNO) == RAP_REG \
1018 || (REGNO) == FRAME_POINTER_REGNUM \
1019 || (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
1020 || (TARGET_SH2E && (REGNO) == FPUL_REG))
1022 /* The mode that should be generally used to store a register by
1023 itself in the stack, or to load it back. */
1024 #define REGISTER_NATURAL_MODE(REGNO) \
1025 (FP_REGISTER_P (REGNO) ? SFmode \
1026 : XD_REGISTER_P (REGNO) ? DFmode \
1027 : TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
1028 ? DImode \
1029 : SImode)
1031 #define FIRST_PSEUDO_REGISTER 154
1033 /* Don't count soft frame pointer. */
1034 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
1036 /* 1 for registers that have pervasive standard uses
1037 and are not available for the register allocator.
1039 Mach register is fixed 'cause it's only 10 bits wide for SH1.
1040 It is 32 bits wide for SH2. */
1042 #define FIXED_REGISTERS \
1044 /* Regular registers. */ \
1045 0, 0, 0, 0, 0, 0, 0, 0, \
1046 0, 0, 0, 0, 0, 0, 0, 1, \
1047 /* r16 is reserved, r18 is the former pr. */ \
1048 1, 0, 0, 0, 0, 0, 0, 0, \
1049 /* r24 is reserved for the OS; r25, for the assembler or linker. */ \
1050 /* r26 is a global variable data pointer; r27 is for constants. */ \
1051 1, 1, 1, 1, 0, 0, 0, 0, \
1052 0, 0, 0, 0, 0, 0, 0, 0, \
1053 0, 0, 0, 0, 0, 0, 0, 0, \
1054 0, 0, 0, 0, 0, 0, 0, 0, \
1055 0, 0, 0, 0, 0, 0, 0, 1, \
1056 /* FP registers. */ \
1057 0, 0, 0, 0, 0, 0, 0, 0, \
1058 0, 0, 0, 0, 0, 0, 0, 0, \
1059 0, 0, 0, 0, 0, 0, 0, 0, \
1060 0, 0, 0, 0, 0, 0, 0, 0, \
1061 0, 0, 0, 0, 0, 0, 0, 0, \
1062 0, 0, 0, 0, 0, 0, 0, 0, \
1063 0, 0, 0, 0, 0, 0, 0, 0, \
1064 0, 0, 0, 0, 0, 0, 0, 0, \
1065 /* Branch target registers. */ \
1066 0, 0, 0, 0, 0, 0, 0, 0, \
1067 /* XD registers. */ \
1068 0, 0, 0, 0, 0, 0, 0, 0, \
1069 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1070 1, 1, 1, 1, 1, 1, 0, 1, \
1071 /*"rap", "sfp" */ \
1072 1, 1, \
1075 /* 1 for registers not available across function calls.
1076 These must include the FIXED_REGISTERS and also any
1077 registers that can be used without being saved.
1078 The latter must include the registers where values are returned
1079 and the register where structure-value addresses are passed.
1080 Aside from that, you can include as many other registers as you like. */
1082 #define CALL_USED_REGISTERS \
1084 /* Regular registers. */ \
1085 1, 1, 1, 1, 1, 1, 1, 1, \
1086 /* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
1087 Only the lower 32bits of R10-R14 are guaranteed to be preserved \
1088 across SH5 function calls. */ \
1089 0, 0, 0, 0, 0, 0, 0, 1, \
1090 1, 1, 1, 1, 1, 1, 1, 1, \
1091 1, 1, 1, 1, 0, 0, 0, 0, \
1092 0, 0, 0, 0, 1, 1, 1, 1, \
1093 1, 1, 1, 1, 0, 0, 0, 0, \
1094 0, 0, 0, 0, 0, 0, 0, 0, \
1095 0, 0, 0, 0, 1, 1, 1, 1, \
1096 /* FP registers. */ \
1097 1, 1, 1, 1, 1, 1, 1, 1, \
1098 1, 1, 1, 1, 0, 0, 0, 0, \
1099 1, 1, 1, 1, 1, 1, 1, 1, \
1100 1, 1, 1, 1, 1, 1, 1, 1, \
1101 1, 1, 1, 1, 0, 0, 0, 0, \
1102 0, 0, 0, 0, 0, 0, 0, 0, \
1103 0, 0, 0, 0, 0, 0, 0, 0, \
1104 0, 0, 0, 0, 0, 0, 0, 0, \
1105 /* Branch target registers. */ \
1106 1, 1, 1, 1, 1, 0, 0, 0, \
1107 /* XD registers. */ \
1108 1, 1, 1, 1, 1, 1, 0, 0, \
1109 /*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
1110 1, 1, 1, 1, 1, 1, 1, 1, \
1111 /*"rap", "sfp" */ \
1112 1, 1, \
1115 /* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
1116 fixed, like PIC_OFFSET_TABLE_REGNUM. */
1117 #define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
1119 /* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
1120 across SHcompact function calls. We can't tell whether a called
1121 function is SHmedia or SHcompact, so we assume it may be when
1122 compiling SHmedia code with the 32-bit ABI, since that's the only
1123 ABI that can be linked with SHcompact code. */
1124 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
1125 (TARGET_SHMEDIA32 \
1126 && GET_MODE_SIZE (MODE) > 4 \
1127 && (((REGNO) >= FIRST_GENERAL_REG + 10 \
1128 && (REGNO) <= FIRST_GENERAL_REG + 15) \
1129 || TARGET_REGISTER_P (REGNO) \
1130 || (REGNO) == PR_MEDIA_REG))
1132 /* Return number of consecutive hard regs needed starting at reg REGNO
1133 to hold something of mode MODE.
1134 This is ordinarily the length in words of a value of mode MODE
1135 but can be less for certain modes in special long registers.
1137 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
1139 #define HARD_REGNO_NREGS(REGNO, MODE) \
1140 (XD_REGISTER_P (REGNO) \
1141 ? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
1142 : (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
1143 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
1144 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1146 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1147 We can allow any mode in any general register. The special registers
1148 only allow SImode. Don't allow any mode in the PR. */
1150 /* We cannot hold DCmode values in the XD registers because alter_reg
1151 handles subregs of them incorrectly. We could work around this by
1152 spacing the XD registers like the DR registers, but this would require
1153 additional memory in every compilation to hold larger register vectors.
1154 We could hold SFmode / SCmode values in XD registers, but that
1155 would require a tertiary reload when reloading from / to memory,
1156 and a secondary reload to reload from / to general regs; that
1157 seems to be a loosing proposition. */
1158 /* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
1159 it won't be ferried through GP registers first. */
1160 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1161 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
1162 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
1163 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
1164 ? 1 \
1165 : (MODE) == V2SFmode \
1166 ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
1167 || GENERAL_REGISTER_P (REGNO)) \
1168 : (MODE) == V4SFmode \
1169 ? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
1170 || GENERAL_REGISTER_P (REGNO)) \
1171 : (MODE) == V16SFmode \
1172 ? (TARGET_SHMEDIA \
1173 ? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
1174 : (REGNO) == FIRST_XD_REG) \
1175 : FP_REGISTER_P (REGNO) \
1176 ? ((MODE) == SFmode || (MODE) == SImode \
1177 || ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \
1178 || ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) || (MODE) == DCmode \
1179 || (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
1180 || (MODE) == V2SFmode || (MODE) == TImode))) \
1181 && (((REGNO) - FIRST_FP_REG) & 1) == 0) \
1182 || ((TARGET_SH4 || TARGET_SHMEDIA) \
1183 && (MODE) == TImode \
1184 && (((REGNO) - FIRST_FP_REG) & 3) == 0)) \
1185 : XD_REGISTER_P (REGNO) \
1186 ? (MODE) == DFmode \
1187 : TARGET_REGISTER_P (REGNO) \
1188 ? ((MODE) == DImode || (MODE) == SImode || (MODE) == PDImode) \
1189 : (REGNO) == PR_REG ? (MODE) == SImode \
1190 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
1191 : 1)
1193 /* Value is 1 if it is a good idea to tie two pseudo registers
1194 when one has mode MODE1 and one has mode MODE2.
1195 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1196 for any hard reg, then this must be 0 for correct output.
1197 That's the case for xd registers: we don't hold SFmode values in
1198 them, so we can't tie an SFmode pseudos with one in another
1199 floating-point mode. */
1201 #define MODES_TIEABLE_P(MODE1, MODE2) \
1202 ((MODE1) == (MODE2) \
1203 || (TARGET_SHMEDIA \
1204 && GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
1205 && INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
1206 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1207 && (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
1208 && (GET_MODE_SIZE (MODE2) <= 4)) \
1209 : ((MODE1) != SFmode && (MODE2) != SFmode))))
1211 /* A C expression that is nonzero if hard register NEW_REG can be
1212 considered for use as a rename register for OLD_REG register */
1214 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
1215 sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
1217 /* Specify the registers used for certain standard purposes.
1218 The values of these macros are register numbers. */
1220 /* Define this if the program counter is overloaded on a register. */
1221 /* #define PC_REGNUM 15*/
1223 /* Register to use for pushing function arguments. */
1224 #define STACK_POINTER_REGNUM SP_REG
1226 /* Base register for access to local variables of the function. */
1227 #define HARD_FRAME_POINTER_REGNUM FP_REG
1229 /* Base register for access to local variables of the function. */
1230 #define FRAME_POINTER_REGNUM 153
1232 /* Fake register that holds the address on the stack of the
1233 current function's return address. */
1234 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
1236 /* Register to hold the addressing base for position independent
1237 code access to data items. */
1238 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
1240 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
1242 /* Value should be nonzero if functions must have frame pointers.
1243 Zero means the frame pointer need not be set up (and parms may be accessed
1244 via the stack pointer) in functions that seem suitable. */
1246 #define FRAME_POINTER_REQUIRED 0
1248 /* Definitions for register eliminations.
1250 We have three registers that can be eliminated on the SH. First, the
1251 frame pointer register can often be eliminated in favor of the stack
1252 pointer register. Secondly, the argument pointer register can always be
1253 eliminated; it is replaced with either the stack or frame pointer.
1254 Third, there is the return address pointer, which can also be replaced
1255 with either the stack or the frame pointer. */
1257 /* This is an array of structures. Each structure initializes one pair
1258 of eliminable registers. The "from" register number is given first,
1259 followed by "to". Eliminations of the same "from" register are listed
1260 in order of preference. */
1262 /* If you add any registers here that are not actually hard registers,
1263 and that have any alternative of elimination that doesn't always
1264 apply, you need to amend calc_live_regs to exclude it, because
1265 reload spills all eliminable registers where it sees an
1266 can_eliminate == 0 entry, thus making them 'live' .
1267 If you add any hard registers that can be eliminated in different
1268 ways, you have to patch reload to spill them only when all alternatives
1269 of elimination fail. */
1271 #define ELIMINABLE_REGS \
1272 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1273 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1274 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1275 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1276 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1277 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1278 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
1280 /* Given FROM and TO register numbers, say whether this elimination
1281 is allowed. */
1282 #define CAN_ELIMINATE(FROM, TO) \
1283 (!((FROM) == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
1285 /* Define the offset between two registers, one to be eliminated, and the other
1286 its replacement, at the start of a routine. */
1288 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1289 OFFSET = initial_elimination_offset ((FROM), (TO))
1291 /* Base register for access to arguments of the function. */
1292 #define ARG_POINTER_REGNUM AP_REG
1294 /* Register in which the static-chain is passed to a function. */
1295 #define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
1297 /* Don't default to pcc-struct-return, because we have already specified
1298 exactly how to return structures in the TARGET_RETURN_IN_MEMORY
1299 target hook. */
1301 #define DEFAULT_PCC_STRUCT_RETURN 0
1303 #define SHMEDIA_REGS_STACK_ADJUST() \
1304 (TARGET_SHCOMPACT && current_function_has_nonlocal_label \
1305 ? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
1306 + (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
1307 : 0)
1310 /* Define the classes of registers for register constraints in the
1311 machine description. Also define ranges of constants.
1313 One of the classes must always be named ALL_REGS and include all hard regs.
1314 If there is more than one class, another class must be named NO_REGS
1315 and contain no registers.
1317 The name GENERAL_REGS must be the name of a class (or an alias for
1318 another name such as ALL_REGS). This is the class of registers
1319 that is allowed by "g" or "r" in a register constraint.
1320 Also, registers outside this class are allocated only when
1321 instructions express preferences for them.
1323 The classes must be numbered in nondecreasing order; that is,
1324 a larger-numbered class must never be contained completely
1325 in a smaller-numbered class.
1327 For any two classes, it is very desirable that there be another
1328 class that represents their union. */
1330 /* The SH has two sorts of general registers, R0 and the rest. R0 can
1331 be used as the destination of some of the arithmetic ops. There are
1332 also some special purpose registers; the T bit register, the
1333 Procedure Return Register and the Multiply Accumulate Registers. */
1334 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
1335 reg_class_subunion. We don't want to have an actual union class
1336 of these, because it would only be used when both classes are calculated
1337 to give the same cost, but there is only one FPUL register.
1338 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
1339 applying to the actual instruction alternative considered. E.g., the
1340 y/r alternative of movsi_ie is considered to have no more cost that
1341 the r/r alternative, which is patently untrue. */
1343 enum reg_class
1345 NO_REGS,
1346 R0_REGS,
1347 PR_REGS,
1348 T_REGS,
1349 MAC_REGS,
1350 FPUL_REGS,
1351 SIBCALL_REGS,
1352 GENERAL_REGS,
1353 FP0_REGS,
1354 FP_REGS,
1355 DF_HI_REGS,
1356 DF_REGS,
1357 FPSCR_REGS,
1358 GENERAL_FP_REGS,
1359 GENERAL_DF_REGS,
1360 TARGET_REGS,
1361 ALL_REGS,
1362 LIM_REG_CLASSES
1365 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1367 /* Give names of register classes as strings for dump file. */
1368 #define REG_CLASS_NAMES \
1370 "NO_REGS", \
1371 "R0_REGS", \
1372 "PR_REGS", \
1373 "T_REGS", \
1374 "MAC_REGS", \
1375 "FPUL_REGS", \
1376 "SIBCALL_REGS", \
1377 "GENERAL_REGS", \
1378 "FP0_REGS", \
1379 "FP_REGS", \
1380 "DF_HI_REGS", \
1381 "DF_REGS", \
1382 "FPSCR_REGS", \
1383 "GENERAL_FP_REGS", \
1384 "GENERAL_DF_REGS", \
1385 "TARGET_REGS", \
1386 "ALL_REGS", \
1389 /* Define which registers fit in which classes.
1390 This is an initializer for a vector of HARD_REG_SET
1391 of length N_REG_CLASSES. */
1393 #define REG_CLASS_CONTENTS \
1395 /* NO_REGS: */ \
1396 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1397 /* R0_REGS: */ \
1398 { 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1399 /* PR_REGS: */ \
1400 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
1401 /* T_REGS: */ \
1402 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
1403 /* MAC_REGS: */ \
1404 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
1405 /* FPUL_REGS: */ \
1406 { 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
1407 /* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1408 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1409 /* GENERAL_REGS: */ \
1410 { 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
1411 /* FP0_REGS: */ \
1412 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
1413 /* FP_REGS: */ \
1414 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1415 /* DF_HI_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
1416 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1417 /* DF_REGS: */ \
1418 { 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
1419 /* FPSCR_REGS: */ \
1420 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
1421 /* GENERAL_FP_REGS: */ \
1422 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
1423 /* GENERAL_DF_REGS: */ \
1424 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
1425 /* TARGET_REGS: */ \
1426 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
1427 /* ALL_REGS: */ \
1428 { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }, \
1431 /* The same information, inverted:
1432 Return the class number of the smallest class containing
1433 reg number REGNO. This could be a conditional expression
1434 or could index an array. */
1436 extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
1437 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
1439 /* When defined, the compiler allows registers explicitly used in the
1440 rtl to be used as spill registers but prevents the compiler from
1441 extending the lifetime of these registers. */
1443 #define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
1445 /* The order in which register should be allocated. */
1446 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
1447 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
1448 spilled or used otherwise, we better have the FP_REGS allocated first. */
1449 #define REG_ALLOC_ORDER \
1450 {/* Caller-saved FPRs */ \
1451 65, 66, 67, 68, 69, 70, 71, 64, \
1452 72, 73, 74, 75, 80, 81, 82, 83, \
1453 84, 85, 86, 87, 88, 89, 90, 91, \
1454 92, 93, 94, 95, 96, 97, 98, 99, \
1455 /* Callee-saved FPRs */ \
1456 76, 77, 78, 79,100,101,102,103, \
1457 104,105,106,107,108,109,110,111, \
1458 112,113,114,115,116,117,118,119, \
1459 120,121,122,123,124,125,126,127, \
1460 136,137,138,139,140,141,142,143, \
1461 /* FPSCR */ 151, \
1462 /* Caller-saved GPRs (except 8/9 on SH1-4) */ \
1463 1, 2, 3, 7, 6, 5, 4, 0, \
1464 8, 9, 17, 19, 20, 21, 22, 23, \
1465 36, 37, 38, 39, 40, 41, 42, 43, \
1466 60, 61, 62, \
1467 /* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
1468 10, 11, 12, 13, 14, 18, \
1469 /* SH5 callee-saved GPRs */ \
1470 28, 29, 30, 31, 32, 33, 34, 35, \
1471 44, 45, 46, 47, 48, 49, 50, 51, \
1472 52, 53, 54, 55, 56, 57, 58, 59, \
1473 /* FPUL */ 150, \
1474 /* SH5 branch target registers */ \
1475 128,129,130,131,132,133,134,135, \
1476 /* Fixed registers */ \
1477 15, 16, 24, 25, 26, 27, 63,144, \
1478 145,146,147,148,149,152,153 }
1480 /* The class value for index registers, and the one for base regs. */
1481 #define INDEX_REG_CLASS \
1482 (!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
1483 #define BASE_REG_CLASS GENERAL_REGS
1485 /* Get reg_class from a letter such as appears in the machine
1486 description. */
1487 extern enum reg_class reg_class_from_letter[];
1489 /* We might use 'Rxx' constraints in the future for exotic reg classes.*/
1490 #define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1491 (ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
1493 /* Overview of uppercase letter constraints:
1494 A: Addresses (constraint len == 3)
1495 Ac4: sh4 cache operations
1496 Ac5: sh5 cache operations
1497 Bxx: miscellaneous constraints
1498 Bsc: SCRATCH - for the scratch register in movsi_ie in the
1499 fldi0 / fldi0 cases
1500 C: Constants other than only CONST_INT (constraint len == 3)
1501 C16: 16 bit constant, literal or symbolic
1502 Csy: label or symbol
1503 Cpg: non-explicit constants that can be directly loaded into a general
1504 purpose register in PIC code. like 's' except we don't allow
1505 PIC_DIRECT_ADDR_P
1506 IJKLMNOP: CONT_INT constants
1507 Ixx: signed xx bit
1508 J16: 0xffffffff00000000 | 0x00000000ffffffff
1509 Kxx: unsigned xx bit
1510 M: 1
1511 N: 0
1512 P27: 1 | 2 | 8 | 16
1513 Q: pc relative load operand
1514 Rxx: reserved for exotic register classes.
1515 S: extra memory (storage) constraints (constraint len == 3)
1516 Sua: unaligned memory operations
1517 W: vector
1518 Z: zero in any mode
1520 unused CONST_INT constraint letters: LO
1521 unused EXTRA_CONSTRAINT letters: D T U Y */
1523 #define CONSTRAINT_LEN(C,STR) \
1524 (((C) == 'A' || (C) == 'B' || (C) == 'C' \
1525 || (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \
1526 || (C) == 'R' || (C) == 'S') \
1527 ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1529 /* The letters I, J, K, L and M in a register constraint string
1530 can be used to stand for particular ranges of immediate operands.
1531 This macro defines what the ranges are.
1532 C is the letter, and VALUE is a constant value.
1533 Return 1 if VALUE is in the range specified by C.
1534 I08: arithmetic operand -127..128, as used in add, sub, etc
1535 I16: arithmetic operand -32768..32767, as used in SHmedia movi and shori
1536 P27: shift operand 1,2,8 or 16
1537 K08: logical operand 0..255, as used in and, or, etc.
1538 M: constant 1
1539 N: constant 0
1540 I06: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
1541 I10: arithmetic operand -512..511, as used in SHmedia andi, ori
1544 #define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
1545 && ((HOST_WIDE_INT)(VALUE)) <= 31)
1546 #define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
1547 && ((HOST_WIDE_INT)(VALUE)) <= 127)
1548 #define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
1549 && ((HOST_WIDE_INT)(VALUE)) <= 511)
1550 #define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
1551 && ((HOST_WIDE_INT)(VALUE)) <= 32767)
1552 #define CONST_OK_FOR_I20(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -524288 \
1553 && ((HOST_WIDE_INT)(VALUE)) <= 524287 \
1554 && TARGET_SH2A)
1555 #define CONST_OK_FOR_I(VALUE, STR) \
1556 ((STR)[1] == '0' && (STR)[2] == '6' ? CONST_OK_FOR_I06 (VALUE) \
1557 : (STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_I08 (VALUE) \
1558 : (STR)[1] == '1' && (STR)[2] == '0' ? CONST_OK_FOR_I10 (VALUE) \
1559 : (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_I16 (VALUE) \
1560 : (STR)[1] == '2' && (STR)[2] == '0' ? CONST_OK_FOR_I20 (VALUE) \
1561 : 0)
1563 #define CONST_OK_FOR_J16(VALUE) \
1564 ((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
1565 || (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
1566 #define CONST_OK_FOR_J(VALUE, STR) \
1567 ((STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_J16 (VALUE) \
1568 : 0)
1570 #define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
1571 && ((HOST_WIDE_INT)(VALUE)) <= 255)
1572 #define CONST_OK_FOR_K(VALUE, STR) \
1573 ((STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_K08 (VALUE) \
1574 : 0)
1575 #define CONST_OK_FOR_P27(VALUE) \
1576 ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
1577 #define CONST_OK_FOR_P(VALUE, STR) \
1578 ((STR)[1] == '2' && (STR)[2] == '7' ? CONST_OK_FOR_P27 (VALUE) \
1579 : 0)
1580 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
1581 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
1582 #define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
1583 ((C) == 'I' ? CONST_OK_FOR_I ((VALUE), (STR)) \
1584 : (C) == 'J' ? CONST_OK_FOR_J ((VALUE), (STR)) \
1585 : (C) == 'K' ? CONST_OK_FOR_K ((VALUE), (STR)) \
1586 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1587 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1588 : (C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR)) \
1589 : 0)
1591 /* Similar, but for floating constants, and defining letters G and H.
1592 Here VALUE is the CONST_DOUBLE rtx itself. */
1594 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1595 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
1596 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
1597 : (C) == 'F')
1599 /* Given an rtx X being reloaded into a reg required to be
1600 in class CLASS, return the class of reg to actually use.
1601 In general this is just CLASS; but on some machines
1602 in some cases it is preferable to use a more restrictive class. */
1604 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1605 ((CLASS) == NO_REGS && TARGET_SHMEDIA \
1606 && (GET_CODE (X) == CONST_DOUBLE \
1607 || GET_CODE (X) == SYMBOL_REF \
1608 || PIC_DIRECT_ADDR_P (X)) \
1609 ? GENERAL_REGS \
1610 : (CLASS)) \
1612 #define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
1613 ((((REGCLASS_HAS_FP_REG (CLASS) \
1614 && (GET_CODE (X) == REG \
1615 && (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
1616 || (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode \
1617 && TARGET_FMOVD)))) \
1618 || (REGCLASS_HAS_GENERAL_REG (CLASS) \
1619 && GET_CODE (X) == REG \
1620 && FP_REGISTER_P (REGNO (X)))) \
1621 && ! TARGET_SHMEDIA \
1622 && ((MODE) == SFmode || (MODE) == SImode)) \
1623 ? FPUL_REGS \
1624 : (((CLASS) == FPUL_REGS \
1625 || (REGCLASS_HAS_FP_REG (CLASS) \
1626 && ! TARGET_SHMEDIA && MODE == SImode)) \
1627 && (GET_CODE (X) == MEM \
1628 || (GET_CODE (X) == REG \
1629 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
1630 || REGNO (X) == T_REG \
1631 || system_reg_operand (X, VOIDmode))))) \
1632 ? GENERAL_REGS \
1633 : (((CLASS) == TARGET_REGS \
1634 || (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
1635 && !EXTRA_CONSTRAINT_Csy (X) \
1636 && (GET_CODE (X) != REG || ! GENERAL_REGISTER_P (REGNO (X)))) \
1637 ? GENERAL_REGS \
1638 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
1639 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
1640 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
1641 ? GENERAL_REGS \
1642 : ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG \
1643 && TARGET_REGISTER_P (REGNO (X))) \
1644 ? GENERAL_REGS : (ELSE))
1646 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
1647 SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
1649 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
1650 ((REGCLASS_HAS_FP_REG (CLASS) \
1651 && ! TARGET_SHMEDIA \
1652 && immediate_operand ((X), (MODE)) \
1653 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
1654 && (MODE) == SFmode && fldi_ok ())) \
1655 ? R0_REGS \
1656 : ((CLASS) == FPUL_REGS \
1657 && ((GET_CODE (X) == REG \
1658 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
1659 || REGNO (X) == T_REG)) \
1660 || GET_CODE (X) == PLUS)) \
1661 ? GENERAL_REGS \
1662 : (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE)) \
1663 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (X)) \
1664 ? GENERAL_REGS \
1665 : R0_REGS) \
1666 : ((CLASS) == FPSCR_REGS \
1667 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1668 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
1669 ? GENERAL_REGS \
1670 : (REGCLASS_HAS_FP_REG (CLASS) \
1671 && TARGET_SHMEDIA \
1672 && immediate_operand ((X), (MODE)) \
1673 && (X) != CONST0_RTX (GET_MODE (X)) \
1674 && GET_MODE (X) != V4SFmode) \
1675 ? GENERAL_REGS \
1676 : (((MODE) == QImode || (MODE) == HImode) \
1677 && TARGET_SHMEDIA && inqhi_operand ((X), (MODE))) \
1678 ? GENERAL_REGS \
1679 : (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS \
1680 && (GET_CODE (X) == LABEL_REF || PIC_DIRECT_ADDR_P (X))) \
1681 ? TARGET_REGS \
1682 : SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
1684 /* Return the maximum number of consecutive registers
1685 needed to represent mode MODE in a register of class CLASS.
1687 If TARGET_SHMEDIA, we need two FP registers per word.
1688 Otherwise we will need at most one register per word. */
1689 #define CLASS_MAX_NREGS(CLASS, MODE) \
1690 (TARGET_SHMEDIA \
1691 && TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
1692 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
1693 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1695 /* If defined, gives a class of registers that cannot be used as the
1696 operand of a SUBREG that changes the mode of the object illegally. */
1697 /* ??? We need to renumber the internal numbers for the frnn registers
1698 when in little endian in order to allow mode size changes. */
1700 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1701 sh_cannot_change_mode_class (FROM, TO, CLASS)
1703 /* Stack layout; function entry, exit and calling. */
1705 /* Define the number of registers that can hold parameters.
1706 These macros are used only in other macro definitions below. */
1708 #define NPARM_REGS(MODE) \
1709 (TARGET_FPU_ANY && (MODE) == SFmode \
1710 ? (TARGET_SH5 ? 12 : 8) \
1711 : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1712 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1713 ? (TARGET_SH5 ? 12 : 8) \
1714 : (TARGET_SH5 ? 8 : 4))
1716 #define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
1717 #define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
1719 #define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
1720 #define FIRST_FP_RET_REG FIRST_FP_REG
1722 /* Define this if pushing a word on the stack
1723 makes the stack pointer a smaller address. */
1724 #define STACK_GROWS_DOWNWARD
1726 /* Define this macro to nonzero if the addresses of local variable slots
1727 are at negative offsets from the frame pointer. */
1728 #define FRAME_GROWS_DOWNWARD 1
1730 /* Offset from the frame pointer to the first local variable slot to
1731 be allocated. */
1732 #define STARTING_FRAME_OFFSET 0
1734 /* If we generate an insn to push BYTES bytes,
1735 this says how many the stack pointer really advances by. */
1736 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
1737 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
1738 do correct alignment. */
1739 #if 0
1740 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
1741 #endif
1743 /* Offset of first parameter from the argument pointer register value. */
1744 #define FIRST_PARM_OFFSET(FNDECL) 0
1746 /* Value is the number of byte of arguments automatically
1747 popped when returning from a subroutine call.
1748 FUNDECL is the declaration node of the function (as a tree),
1749 FUNTYPE is the data type of the function (as a tree),
1750 or for a library call it is an identifier node for the subroutine name.
1751 SIZE is the number of bytes of arguments passed on the stack.
1753 On the SH, the caller does not pop any of its arguments that were passed
1754 on the stack. */
1755 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1757 /* Value is the number of bytes of arguments automatically popped when
1758 calling a subroutine.
1759 CUM is the accumulated argument list.
1761 On SHcompact, the call trampoline pops arguments off the stack. */
1762 #define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
1764 /* Some subroutine macros specific to this machine. */
1766 #define BASE_RETURN_VALUE_REG(MODE) \
1767 ((TARGET_FPU_ANY && ((MODE) == SFmode)) \
1768 ? FIRST_FP_RET_REG \
1769 : TARGET_FPU_ANY && (MODE) == SCmode \
1770 ? FIRST_FP_RET_REG \
1771 : (TARGET_FPU_DOUBLE \
1772 && ((MODE) == DFmode || (MODE) == SFmode \
1773 || (MODE) == DCmode || (MODE) == SCmode )) \
1774 ? FIRST_FP_RET_REG \
1775 : FIRST_RET_REG)
1777 #define BASE_ARG_REG(MODE) \
1778 ((TARGET_SH2E && ((MODE) == SFmode)) \
1779 ? FIRST_FP_PARM_REG \
1780 : (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1781 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1782 ? FIRST_FP_PARM_REG \
1783 : FIRST_PARM_REG)
1785 /* Define how to find the value returned by a function.
1786 VALTYPE is the data type of the value (as a tree).
1787 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1788 otherwise, FUNC is 0.
1789 For the SH, this is like LIBCALL_VALUE, except that we must change the
1790 mode like PROMOTE_MODE does.
1791 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1792 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1794 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1795 gen_rtx_REG ( \
1796 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1797 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < 4 \
1798 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1799 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1800 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1801 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1802 || TREE_CODE (VALTYPE) == REAL_TYPE \
1803 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1804 && sh_promote_prototypes (VALTYPE) \
1805 ? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
1806 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1808 /* Define how to find the value returned by a library function
1809 assuming the value has mode MODE. */
1810 #define LIBCALL_VALUE(MODE) \
1811 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1813 /* 1 if N is a possible register number for a function value. */
1814 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1815 ((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \
1816 || (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
1818 /* 1 if N is a possible register number for function argument passing. */
1819 /* ??? There are some callers that pass REGNO as int, and others that pass
1820 it as unsigned. We get warnings unless we do casts everywhere. */
1821 #define FUNCTION_ARG_REGNO_P(REGNO) \
1822 (((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
1823 && (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
1824 || (TARGET_FPU_ANY \
1825 && (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
1826 && (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
1827 + NPARM_REGS (SFmode))))
1829 /* Define a data type for recording info about an argument list
1830 during the scan of that argument list. This data type should
1831 hold all necessary information about the function itself
1832 and about the args processed so far, enough to enable macros
1833 such as FUNCTION_ARG to determine where the next arg should go.
1835 On SH, this is a single integer, which is a number of words
1836 of arguments scanned so far (including the invisible argument,
1837 if any, which holds the structure-value-address).
1838 Thus NARGREGS or more means all following args should go on the stack. */
1840 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1841 struct sh_args {
1842 int arg_count[2];
1843 int force_mem;
1844 /* Nonzero if a prototype is available for the function. */
1845 int prototype_p;
1846 /* The number of an odd floating-point register, that should be used
1847 for the next argument of type float. */
1848 int free_single_fp_reg;
1849 /* Whether we're processing an outgoing function call. */
1850 int outgoing;
1851 /* The number of general-purpose registers that should have been
1852 used to pass partial arguments, that are passed totally on the
1853 stack. On SHcompact, a call trampoline will pop them off the
1854 stack before calling the actual function, and, if the called
1855 function is implemented in SHcompact mode, the incoming arguments
1856 decoder will push such arguments back onto the stack. For
1857 incoming arguments, STACK_REGS also takes into account other
1858 arguments passed by reference, that the decoder will also push
1859 onto the stack. */
1860 int stack_regs;
1861 /* The number of general-purpose registers that should have been
1862 used to pass arguments, if the arguments didn't have to be passed
1863 by reference. */
1864 int byref_regs;
1865 /* Set as by shcompact_byref if the current argument is to be passed
1866 by reference. */
1867 int byref;
1869 /* call_cookie is a bitmask used by call expanders, as well as
1870 function prologue and epilogues, to allow SHcompact to comply
1871 with the SH5 32-bit ABI, that requires 64-bit registers to be
1872 used even though only the lower 32-bit half is visible in
1873 SHcompact mode. The strategy is to call SHmedia trampolines.
1875 The alternatives for each of the argument-passing registers are
1876 (a) leave it unchanged; (b) pop it off the stack; (c) load its
1877 contents from the address in it; (d) add 8 to it, storing the
1878 result in the next register, then (c); (e) copy it from some
1879 floating-point register,
1881 Regarding copies from floating-point registers, r2 may only be
1882 copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
1883 copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
1884 dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
1885 r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
1886 dr10.
1888 The bit mask is structured as follows:
1890 - 1 bit to tell whether to set up a return trampoline.
1892 - 3 bits to count the number consecutive registers to pop off the
1893 stack.
1895 - 4 bits for each of r9, r8, r7 and r6.
1897 - 3 bits for each of r5, r4, r3 and r2.
1899 - 3 bits set to 0 (the most significant ones)
1901 3 2 1 0
1902 1098 7654 3210 9876 5432 1098 7654 3210
1903 FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
1904 2223 3344 4555 6666 7777 8888 9999 SSS-
1906 - If F is set, the register must be copied from an FP register,
1907 whose number is encoded in the remaining bits.
1909 - Else, if L is set, the register must be loaded from the address
1910 contained in it. If the P bit is *not* set, the address of the
1911 following dword should be computed first, and stored in the
1912 following register.
1914 - Else, if P is set, the register alone should be popped off the
1915 stack.
1917 - After all this processing, the number of registers represented
1918 in SSS will be popped off the stack. This is an optimization
1919 for pushing/popping consecutive registers, typically used for
1920 varargs and large arguments partially passed in registers.
1922 - If T is set, a return trampoline will be set up for 64-bit
1923 return values to be split into 2 32-bit registers. */
1924 #define CALL_COOKIE_RET_TRAMP_SHIFT 0
1925 #define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
1926 #define CALL_COOKIE_STACKSEQ_SHIFT 1
1927 #define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
1928 #define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
1929 (((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
1930 #define CALL_COOKIE_INT_REG_SHIFT(REG) \
1931 (4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
1932 #define CALL_COOKIE_INT_REG(REG, VAL) \
1933 ((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
1934 #define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
1935 (((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
1936 long call_cookie;
1938 /* This is set to nonzero when the call in question must use the Renesas ABI,
1939 even without the -mrenesas option. */
1940 int renesas_abi;
1943 #define CUMULATIVE_ARGS struct sh_args
1945 #define GET_SH_ARG_CLASS(MODE) \
1946 ((TARGET_FPU_ANY && (MODE) == SFmode) \
1947 ? SH_ARG_FLOAT \
1948 /* There's no mention of complex float types in the SH5 ABI, so we
1949 should presumably handle them as aggregate types. */ \
1950 : TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
1951 ? SH_ARG_INT \
1952 : TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1953 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1954 ? SH_ARG_FLOAT : SH_ARG_INT)
1956 #define ROUND_ADVANCE(SIZE) \
1957 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1959 /* Round a register number up to a proper boundary for an arg of mode
1960 MODE.
1962 The SH doesn't care about double alignment, so we only
1963 round doubles to even regs when asked to explicitly. */
1965 #define ROUND_REG(CUM, MODE) \
1966 (((TARGET_ALIGN_DOUBLE \
1967 || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode) \
1968 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1969 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1970 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1971 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1972 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1974 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1975 for a call to a function whose data type is FNTYPE.
1976 For a library call, FNTYPE is 0.
1978 On SH, the offset always starts at 0: the first parm reg is always
1979 the same reg for a given argument class.
1981 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1983 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1984 sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
1986 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1987 sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
1989 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1990 sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1991 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1992 sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1994 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1995 This macro is only used in this file. */
1997 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1998 (((TYPE) == 0 \
1999 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
2000 && (! (TARGET_HITACHI || (CUM).renesas_abi) \
2001 || ! (AGGREGATE_TYPE_P (TYPE) \
2002 || (!TARGET_FPU_ANY \
2003 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
2004 && GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
2005 && ! (CUM).force_mem \
2006 && (TARGET_SH2E \
2007 ? ((MODE) == BLKmode \
2008 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
2009 + int_size_in_bytes (TYPE)) \
2010 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
2011 : ((ROUND_REG((CUM), (MODE)) \
2012 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
2013 <= NPARM_REGS (MODE))) \
2014 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
2016 /* By accident we got stuck with passing SCmode on SH4 little endian
2017 in two registers that are nominally successive - which is different from
2018 two single SFmode values, where we take endianness translation into
2019 account. That does not work at all if an odd number of registers is
2020 already in use, so that got fixed, but library functions are still more
2021 likely to use complex numbers without mixing them with SFmode arguments
2022 (which in C would have to be structures), so for the sake of ABI
2023 compatibility the way SCmode values are passed when an even number of
2024 FP registers is in use remains different from a pair of SFmode values for
2025 now.
2026 I.e.:
2027 foo (double); a: fr5,fr4
2028 foo (float a, float b); a: fr5 b: fr4
2029 foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
2030 this should be the other way round...
2031 foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
2032 #define FUNCTION_ARG_SCmode_WART 1
2034 /* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
2035 register in SHcompact mode, it must be padded in the most
2036 significant end. This means that passing it by reference wouldn't
2037 pad properly on a big-endian machine. In this particular case, we
2038 pass this argument on the stack, in a way that the call trampoline
2039 will load its value into the appropriate register. */
2040 #define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
2041 ((MODE) == BLKmode \
2042 && TARGET_SHCOMPACT \
2043 && ! TARGET_LITTLE_ENDIAN \
2044 && int_size_in_bytes (TYPE) > 4 \
2045 && int_size_in_bytes (TYPE) < 8)
2047 /* Minimum alignment for an argument to be passed by callee-copy
2048 reference. We need such arguments to be aligned to 8 byte
2049 boundaries, because they'll be loaded using quad loads. */
2050 #define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
2052 /* The SH5 ABI requires floating-point arguments to be passed to
2053 functions without a prototype in both an FP register and a regular
2054 register or the stack. When passing the argument in both FP and
2055 general-purpose registers, list the FP register first. */
2056 #define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
2057 (gen_rtx_PARALLEL \
2058 ((MODE), \
2059 gen_rtvec (2, \
2060 gen_rtx_EXPR_LIST \
2061 (VOIDmode, \
2062 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2063 ? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
2064 + (CUM).arg_count[(int) SH_ARG_FLOAT]) \
2065 : NULL_RTX), \
2066 const0_rtx), \
2067 gen_rtx_EXPR_LIST \
2068 (VOIDmode, \
2069 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2070 ? gen_rtx_REG ((MODE), FIRST_PARM_REG \
2071 + (CUM).arg_count[(int) SH_ARG_INT]) \
2072 : gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
2073 + (CUM).arg_count[(int) SH_ARG_FLOAT])), \
2074 const0_rtx))))
2076 /* The SH5 ABI requires regular registers or stack slots to be
2077 reserved for floating-point arguments. Registers are taken care of
2078 in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
2079 Unfortunately, there's no way to just reserve a stack slot, so
2080 we'll end up needlessly storing a copy of the argument in the
2081 stack. For incoming arguments, however, the PARALLEL will be
2082 optimized to the register-only form, and the value in the stack
2083 slot won't be used at all. */
2084 #define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
2085 ((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
2086 ? gen_rtx_REG ((MODE), (REG)) \
2087 : gen_rtx_PARALLEL ((MODE), \
2088 gen_rtvec (2, \
2089 gen_rtx_EXPR_LIST \
2090 (VOIDmode, NULL_RTX, \
2091 const0_rtx), \
2092 gen_rtx_EXPR_LIST \
2093 (VOIDmode, gen_rtx_REG ((MODE), \
2094 (REG)), \
2095 const0_rtx))))
2097 #define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2098 (TARGET_SH5 \
2099 && ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
2100 || (MODE) == DCmode) \
2101 && ((CUM).arg_count[(int) SH_ARG_INT] \
2102 + (int_size_in_bytes (TYPE) + 7) / 8) > NPARM_REGS (SImode))
2104 /* Perform any needed actions needed for a function that is receiving a
2105 variable number of arguments. */
2107 /* Implement `va_start' for varargs and stdarg. */
2108 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
2109 sh_va_start (valist, nextarg)
2111 /* Call the function profiler with a given profile label.
2112 We use two .aligns, so as to make sure that both the .long is aligned
2113 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
2114 from the trapa instruction. */
2116 #define FUNCTION_PROFILER(STREAM,LABELNO) \
2118 if (TARGET_SHMEDIA) \
2120 fprintf((STREAM), "\tmovi\t33,r0\n"); \
2121 fprintf((STREAM), "\ttrapa\tr0\n"); \
2122 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2124 else \
2126 fprintf((STREAM), "\t.align\t2\n"); \
2127 fprintf((STREAM), "\ttrapa\t#33\n"); \
2128 fprintf((STREAM), "\t.align\t2\n"); \
2129 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
2133 /* Define this macro if the code for function profiling should come
2134 before the function prologue. Normally, the profiling code comes
2135 after. */
2137 #define PROFILE_BEFORE_PROLOGUE
2139 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2140 the stack pointer does not matter. The value is tested only in
2141 functions that have frame pointers.
2142 No definition is equivalent to always zero. */
2144 #define EXIT_IGNORE_STACK 1
2147 On the SH, the trampoline looks like
2148 2 0002 D202 mov.l l2,r2
2149 1 0000 D301 mov.l l1,r3
2150 3 0004 422B jmp @r2
2151 4 0006 0009 nop
2152 5 0008 00000000 l1: .long area
2153 6 000c 00000000 l2: .long function */
2155 /* Length in units of the trampoline for entering a nested function. */
2156 #define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
2158 /* Alignment required for a trampoline in bits . */
2159 #define TRAMPOLINE_ALIGNMENT \
2160 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
2161 : TARGET_SHMEDIA ? 256 : 64)
2163 /* Emit RTL insns to initialize the variable parts of a trampoline.
2164 FNADDR is an RTX for the address of the function's pure code.
2165 CXT is an RTX for the static chain value for the function. */
2167 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2168 sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
2170 /* On SH5, trampolines are SHmedia code, so add 1 to the address. */
2172 #define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
2174 if (TARGET_SHMEDIA) \
2175 (TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), const1_rtx, \
2176 gen_reg_rtx (Pmode), 0, \
2177 OPTAB_LIB_WIDEN); \
2178 } while (0)
2180 /* A C expression whose value is RTL representing the value of the return
2181 address for the frame COUNT steps up from the current frame.
2182 FRAMEADDR is already the frame pointer of the COUNT frame, so we
2183 can ignore COUNT. */
2185 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2186 (((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
2188 /* A C expression whose value is RTL representing the location of the
2189 incoming return address at the beginning of any function, before the
2190 prologue. This RTL is either a REG, indicating that the return
2191 value is saved in REG, or a MEM representing a location in
2192 the stack. */
2193 #define INCOMING_RETURN_ADDR_RTX \
2194 gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
2196 /* Addressing modes, and classification of registers for them. */
2197 #define HAVE_POST_INCREMENT TARGET_SH1
2198 #define HAVE_PRE_DECREMENT TARGET_SH1
2200 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
2201 ? 0 : TARGET_SH1)
2202 #define USE_LOAD_PRE_DECREMENT(mode) 0
2203 #define USE_STORE_POST_INCREMENT(mode) 0
2204 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
2205 ? 0 : TARGET_SH1)
2207 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
2208 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
2209 < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2211 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
2212 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
2213 < (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
2215 /* Macros to check register numbers against specific register classes. */
2217 /* These assume that REGNO is a hard or pseudo reg number.
2218 They give nonzero only if REGNO is a hard reg of the suitable class
2219 or a pseudo reg currently allocated to a suitable hard reg.
2220 Since they use reg_renumber, they are safe only once reg_renumber
2221 has been allocated, which happens in local-alloc.c. */
2223 #define REGNO_OK_FOR_BASE_P(REGNO) \
2224 (GENERAL_OR_AP_REGISTER_P (REGNO) \
2225 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
2226 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2227 (TARGET_SHMEDIA \
2228 ? (GENERAL_REGISTER_P (REGNO) \
2229 || GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
2230 : (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
2232 /* Maximum number of registers that can appear in a valid memory
2233 address. */
2235 #define MAX_REGS_PER_ADDRESS 2
2237 /* Recognize any constant value that is a valid address. */
2239 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
2241 /* Nonzero if the constant value X is a legitimate general operand. */
2243 #define LEGITIMATE_CONSTANT_P(X) \
2244 (TARGET_SHMEDIA \
2245 ? ((GET_MODE (X) != DFmode \
2246 && GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT) \
2247 || (X) == CONST0_RTX (GET_MODE (X)) \
2248 || ! TARGET_SHMEDIA_FPU \
2249 || TARGET_SHMEDIA64) \
2250 : (GET_CODE (X) != CONST_DOUBLE \
2251 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
2252 || (TARGET_SH2E && (fp_zero_operand (X) || fp_one_operand (X)))))
2254 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2255 and check its validity for a certain class.
2256 We have two alternate definitions for each of them.
2257 The usual definition accepts all pseudo regs; the other rejects
2258 them unless they have been allocated suitable hard regs.
2259 The symbol REG_OK_STRICT causes the latter definition to be used. */
2261 #ifndef REG_OK_STRICT
2263 /* Nonzero if X is a hard reg that can be used as a base reg
2264 or if it is a pseudo reg. */
2265 #define REG_OK_FOR_BASE_P(X) \
2266 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2268 /* Nonzero if X is a hard reg that can be used as an index
2269 or if it is a pseudo reg. */
2270 #define REG_OK_FOR_INDEX_P(X) \
2271 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2272 : REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2274 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
2275 or if X is a pseudo reg. */
2276 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2277 ((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
2278 : REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2280 #else
2282 /* Nonzero if X is a hard reg that can be used as a base reg. */
2283 #define REG_OK_FOR_BASE_P(X) \
2284 REGNO_OK_FOR_BASE_P (REGNO (X))
2286 /* Nonzero if X is a hard reg that can be used as an index. */
2287 #define REG_OK_FOR_INDEX_P(X) \
2288 REGNO_OK_FOR_INDEX_P (REGNO (X))
2290 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
2291 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
2292 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
2294 #endif
2296 /* The 'Q' constraint is a pc relative load operand. */
2297 #define EXTRA_CONSTRAINT_Q(OP) \
2298 (GET_CODE (OP) == MEM \
2299 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
2300 || (GET_CODE (XEXP ((OP), 0)) == CONST \
2301 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
2302 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
2303 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
2305 /* Extra address constraints. */
2306 #define EXTRA_CONSTRAINT_A(OP, STR) 0
2308 /* Constraint for selecting FLDI0 or FLDI1 instruction. If the clobber
2309 operand is not SCRATCH (i.e. REG) then R0 is probably being
2310 used, hence mova is being used, hence do not select this pattern */
2311 #define EXTRA_CONSTRAINT_Bsc(OP) (GET_CODE(OP) == SCRATCH)
2312 #define EXTRA_CONSTRAINT_B(OP, STR) \
2313 ((STR)[1] == 's' && (STR)[2] == 'c' ? EXTRA_CONSTRAINT_Bsc (OP) \
2314 : 0)
2316 /* The `C16' constraint is a 16-bit constant, literal or symbolic. */
2317 #define EXTRA_CONSTRAINT_C16(OP) \
2318 (GET_CODE (OP) == CONST \
2319 && GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
2320 && (GET_MODE (XEXP ((OP), 0)) == DImode \
2321 || GET_MODE (XEXP ((OP), 0)) == SImode) \
2322 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
2323 && GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
2324 && (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
2325 || (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
2326 && (MOVI_SHORI_BASE_OPERAND_P \
2327 (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
2328 && GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
2329 1)) == CONST_INT)))
2331 /* Check whether OP is a datalabel unspec. */
2332 #define DATALABEL_REF_NO_CONST_P(OP) \
2333 (GET_CODE (OP) == UNSPEC \
2334 && XINT ((OP), 1) == UNSPEC_DATALABEL \
2335 && XVECLEN ((OP), 0) == 1 \
2336 && GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
2338 #define GOT_ENTRY_P(OP) \
2339 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2340 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
2342 #define GOTPLT_ENTRY_P(OP) \
2343 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2344 && XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
2346 #define UNSPEC_GOTOFF_P(OP) \
2347 (GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
2349 #define GOTOFF_P(OP) \
2350 (GET_CODE (OP) == CONST \
2351 && (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
2352 || (GET_CODE (XEXP ((OP), 0)) == PLUS \
2353 && UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
2354 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
2356 #define PIC_ADDR_P(OP) \
2357 (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
2358 && XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
2360 #define PIC_OFFSET_P(OP) \
2361 (PIC_ADDR_P (OP) \
2362 && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \
2363 && reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1)))
2365 #define PIC_DIRECT_ADDR_P(OP) \
2366 (PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS)
2368 #define NON_PIC_REFERENCE_P(OP) \
2369 (GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
2370 || (GET_CODE (OP) == CONST \
2371 && (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
2372 || GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
2373 || DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
2374 || (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
2375 && (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
2376 || GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
2377 || DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
2378 && GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
2380 #define PIC_REFERENCE_P(OP) \
2381 (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
2382 || GOTOFF_P (OP) || PIC_ADDR_P (OP))
2384 #define MOVI_SHORI_BASE_OPERAND_P(OP) \
2385 (flag_pic \
2386 ? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) || GOTOFF_P (OP) \
2387 || PIC_OFFSET_P (OP)) \
2388 : NON_PIC_REFERENCE_P (OP))
2390 /* The `Csy' constraint is a label or a symbol. */
2391 #define EXTRA_CONSTRAINT_Csy(OP) \
2392 (NON_PIC_REFERENCE_P (OP) || PIC_DIRECT_ADDR_P (OP))
2394 /* A zero in any shape or form. */
2395 #define EXTRA_CONSTRAINT_Z(OP) \
2396 ((OP) == CONST0_RTX (GET_MODE (OP)))
2398 /* Any vector constant we can handle. */
2399 #define EXTRA_CONSTRAINT_W(OP) \
2400 (GET_CODE (OP) == CONST_VECTOR \
2401 && (sh_rep_vec ((OP), VOIDmode) \
2402 || (HOST_BITS_PER_WIDE_INT >= 64 \
2403 ? sh_const_vec ((OP), VOIDmode) \
2404 : sh_1el_vec ((OP), VOIDmode))))
2406 /* A non-explicit constant that can be loaded directly into a general purpose
2407 register. This is like 's' except we don't allow PIC_DIRECT_ADDR_P. */
2408 #define EXTRA_CONSTRAINT_Cpg(OP) \
2409 (CONSTANT_P (OP) \
2410 && GET_CODE (OP) != CONST_INT \
2411 && GET_CODE (OP) != CONST_DOUBLE \
2412 && (!flag_pic \
2413 || (LEGITIMATE_PIC_OPERAND_P (OP) \
2414 && (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \
2415 && GET_CODE (OP) != LABEL_REF)))
2416 #define EXTRA_CONSTRAINT_C(OP, STR) \
2417 ((STR)[1] == '1' && (STR)[2] == '6' ? EXTRA_CONSTRAINT_C16 (OP) \
2418 : (STR)[1] == 's' && (STR)[2] == 'y' ? EXTRA_CONSTRAINT_Csy (OP) \
2419 : (STR)[1] == 'p' && (STR)[2] == 'g' ? EXTRA_CONSTRAINT_Cpg (OP) \
2420 : 0)
2422 #define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'S')
2423 #define EXTRA_CONSTRAINT_Sr0(OP) \
2424 (memory_operand((OP), GET_MODE (OP)) \
2425 && ! refers_to_regno_p (R0_REG, R0_REG + 1, OP, (rtx *)0))
2426 #define EXTRA_CONSTRAINT_Sua(OP) \
2427 (memory_operand((OP), GET_MODE (OP)) \
2428 && GET_CODE (XEXP (OP, 0)) != PLUS)
2429 #define EXTRA_CONSTRAINT_S(OP, STR) \
2430 ((STR)[1] == 'r' && (STR)[2] == '0' ? EXTRA_CONSTRAINT_Sr0 (OP) \
2431 : (STR)[1] == 'u' && (STR)[2] == 'a' ? EXTRA_CONSTRAINT_Sua (OP) \
2432 : 0)
2434 #define EXTRA_CONSTRAINT_STR(OP, C, STR) \
2435 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
2436 : (C) == 'A' ? EXTRA_CONSTRAINT_A ((OP), (STR)) \
2437 : (C) == 'B' ? EXTRA_CONSTRAINT_B ((OP), (STR)) \
2438 : (C) == 'C' ? EXTRA_CONSTRAINT_C ((OP), (STR)) \
2439 : (C) == 'S' ? EXTRA_CONSTRAINT_S ((OP), (STR)) \
2440 : (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
2441 : (C) == 'Z' ? EXTRA_CONSTRAINT_Z (OP) \
2442 : 0)
2444 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2445 that is a valid memory address for an instruction.
2446 The MODE argument is the machine mode for the MEM expression
2447 that wants to use this address. */
2449 #define MODE_DISP_OK_4(X,MODE) \
2450 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2451 && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode))
2453 #define MODE_DISP_OK_8(X,MODE) \
2454 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2455 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
2457 #undef MODE_DISP_OK_4
2458 #define MODE_DISP_OK_4(X,MODE) \
2459 ((GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
2460 && ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) \
2461 || ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<16383) \
2462 && ! (INTVAL(X) & 3) && TARGET_SH2A))
2464 #undef MODE_DISP_OK_8
2465 #define MODE_DISP_OK_8(X,MODE) \
2466 (((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
2467 && ! (INTVAL(X) & 3) && ! ((TARGET_SH4 || TARGET_SH2A) && (MODE) == DFmode)) \
2468 || ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<8192) \
2469 && ! (INTVAL(X) & (TARGET_SH2A_DOUBLE ? 7 : 3)) && (TARGET_SH2A && (MODE) == DFmode)))
2471 #define BASE_REGISTER_RTX_P(X) \
2472 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2473 || (GET_CODE (X) == SUBREG \
2474 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2475 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2476 && GET_CODE (SUBREG_REG (X)) == REG \
2477 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2479 /* Since this must be r0, which is a single register class, we must check
2480 SUBREGs more carefully, to be sure that we don't accept one that extends
2481 outside the class. */
2482 #define INDEX_REGISTER_RTX_P(X) \
2483 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2484 || (GET_CODE (X) == SUBREG \
2485 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
2486 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
2487 && GET_CODE (SUBREG_REG (X)) == REG \
2488 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
2490 /* Jump to LABEL if X is a valid address RTX. This must also take
2491 REG_OK_STRICT into account when deciding about valid registers, but it uses
2492 the above macros so we are in luck.
2494 Allow REG
2495 REG+disp
2496 REG+r0
2497 REG++
2498 --REG */
2500 /* ??? The SH2e does not have the REG+disp addressing mode when loading values
2501 into the FRx registers. We implement this by setting the maximum offset
2502 to zero when the value is SFmode. This also restricts loading of SFmode
2503 values into the integer registers, but that can't be helped. */
2505 /* The SH allows a displacement in a QI or HI amode, but only when the
2506 other operand is R0. GCC doesn't handle this very well, so we forgo
2507 all of that.
2509 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
2510 DI can be any number 0..60. */
2512 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
2513 do { \
2514 if (GET_CODE (OP) == CONST_INT) \
2516 if (TARGET_SHMEDIA) \
2518 int MODE_SIZE; \
2519 /* Check if this the address of an unaligned load / store. */\
2520 if ((MODE) == VOIDmode) \
2522 if (CONST_OK_FOR_I06 (INTVAL (OP))) \
2523 goto LABEL; \
2524 break; \
2526 MODE_SIZE = GET_MODE_SIZE (MODE); \
2527 if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
2528 && INTVAL (OP) >= -512 * MODE_SIZE \
2529 && INTVAL (OP) < 512 * MODE_SIZE) \
2530 goto LABEL; \
2531 else \
2532 break; \
2534 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
2535 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
2537 } while(0)
2539 #define ALLOW_INDEXED_ADDRESS \
2540 ((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
2542 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2544 if (BASE_REGISTER_RTX_P (X)) \
2545 goto LABEL; \
2546 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
2547 && ! TARGET_SHMEDIA \
2548 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
2549 goto LABEL; \
2550 else if (GET_CODE (X) == PLUS \
2551 && ((MODE) != PSImode || reload_completed)) \
2553 rtx xop0 = XEXP ((X), 0); \
2554 rtx xop1 = XEXP ((X), 1); \
2555 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
2556 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
2557 if ((ALLOW_INDEXED_ADDRESS || GET_MODE (X) == DImode \
2558 || ((xop0 == stack_pointer_rtx \
2559 || xop0 == hard_frame_pointer_rtx) \
2560 && REG_P (xop1) && REGNO (xop1) == R0_REG) \
2561 || ((xop1 == stack_pointer_rtx \
2562 || xop1 == hard_frame_pointer_rtx) \
2563 && REG_P (xop0) && REGNO (xop0) == R0_REG)) \
2564 && ((!TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 4) \
2565 || (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
2566 || ((TARGET_SH4 || TARGET_SH2A_DOUBLE) \
2567 && TARGET_FMOVD && MODE == DFmode))) \
2569 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
2570 goto LABEL; \
2571 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
2572 goto LABEL; \
2577 /* Try machine-dependent ways of modifying an illegitimate address
2578 to be legitimate. If we find one, return the new, valid address.
2579 This macro is used in only one place: `memory_address' in explow.c.
2581 OLDX is the address as it was before break_out_memory_refs was called.
2582 In some cases it is useful to look at this to decide what needs to be done.
2584 MODE and WIN are passed so that this macro can use
2585 GO_IF_LEGITIMATE_ADDRESS.
2587 It is always safe for this macro to do nothing. It exists to recognize
2588 opportunities to optimize the output.
2590 For the SH, if X is almost suitable for indexing, but the offset is
2591 out of range, convert it into a normal form so that cse has a chance
2592 of reducing the number of address registers used. */
2594 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2596 if (flag_pic) \
2597 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
2598 if (GET_CODE (X) == PLUS \
2599 && (GET_MODE_SIZE (MODE) == 4 \
2600 || GET_MODE_SIZE (MODE) == 8) \
2601 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
2602 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
2603 && ! TARGET_SHMEDIA \
2604 && ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) \
2605 && ! (TARGET_SH2E && (MODE) == SFmode)) \
2607 rtx index_rtx = XEXP ((X), 1); \
2608 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2609 rtx sum; \
2611 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
2612 /* On rare occasions, we might get an unaligned pointer \
2613 that is indexed in a way to give an aligned address. \
2614 Therefore, keep the lower two bits in offset_base. */ \
2615 /* Instead of offset_base 128..131 use 124..127, so that \
2616 simple add suffices. */ \
2617 if (offset > 127) \
2619 offset_base = ((offset + 4) & ~60) - 4; \
2621 else \
2622 offset_base = offset & ~60; \
2623 /* Sometimes the normal form does not suit DImode. We \
2624 could avoid that by using smaller ranges, but that \
2625 would give less optimized code when SImode is \
2626 prevalent. */ \
2627 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2629 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
2630 GEN_INT (offset_base), NULL_RTX, 0, \
2631 OPTAB_LIB_WIDEN); \
2633 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
2634 goto WIN; \
2639 /* A C compound statement that attempts to replace X, which is an address
2640 that needs reloading, with a valid memory address for an operand of
2641 mode MODE. WIN is a C statement label elsewhere in the code.
2643 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
2644 of the address. That will allow inheritance of the address reloads. */
2646 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2648 if (GET_CODE (X) == PLUS \
2649 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2650 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2651 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
2652 && ! TARGET_SHMEDIA \
2653 && ! (TARGET_SH4 && (MODE) == DFmode) \
2654 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS) \
2655 && (ALLOW_INDEXED_ADDRESS \
2656 || XEXP ((X), 0) == stack_pointer_rtx \
2657 || XEXP ((X), 0) == hard_frame_pointer_rtx)) \
2659 rtx index_rtx = XEXP (X, 1); \
2660 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
2661 rtx sum; \
2663 if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7)) \
2665 push_reload (X, NULL_RTX, &X, NULL, \
2666 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2667 (TYPE)); \
2668 goto WIN; \
2670 if (TARGET_SH2E && MODE == SFmode) \
2672 X = copy_rtx (X); \
2673 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
2674 R0_REGS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2675 (TYPE)); \
2676 goto WIN; \
2678 /* Instead of offset_base 128..131 use 124..127, so that \
2679 simple add suffices. */ \
2680 if (offset > 127) \
2682 offset_base = ((offset + 4) & ~60) - 4; \
2684 else \
2685 offset_base = offset & ~60; \
2686 /* Sometimes the normal form does not suit DImode. We \
2687 could avoid that by using smaller ranges, but that \
2688 would give less optimized code when SImode is \
2689 prevalent. */ \
2690 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
2692 sum = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2693 GEN_INT (offset_base)); \
2694 X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
2695 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
2696 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
2697 (TYPE)); \
2698 goto WIN; \
2701 /* We must re-recognize what we created before. */ \
2702 else if (GET_CODE (X) == PLUS \
2703 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
2704 && GET_CODE (XEXP (X, 0)) == PLUS \
2705 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
2706 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
2707 && GET_CODE (XEXP (X, 1)) == CONST_INT \
2708 && ! TARGET_SHMEDIA \
2709 && ! (TARGET_SH2E && MODE == SFmode)) \
2711 /* Because this address is so complex, we know it must have \
2712 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
2713 it is already unshared, and needs no further unsharing. */ \
2714 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
2715 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
2716 goto WIN; \
2720 /* Go to LABEL if ADDR (a legitimate address expression)
2721 has an effect that depends on the machine mode it is used for.
2723 ??? Strictly speaking, we should also include all indexed addressing,
2724 because the index scale factor is the length of the operand.
2725 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
2726 high if we did that. So we rely on reload to fix things up. */
2728 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2730 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
2731 goto LABEL; \
2734 /* Specify the machine mode that this machine uses
2735 for the index in the tablejump instruction. */
2736 #define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
2738 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
2739 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
2740 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
2741 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
2742 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
2743 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
2744 : SImode)
2746 /* Define as C expression which evaluates to nonzero if the tablejump
2747 instruction expects the table to contain offsets from the address of the
2748 table.
2749 Do not define this if the table should contain absolute addresses. */
2750 #define CASE_VECTOR_PC_RELATIVE 1
2752 /* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
2753 #define FLOAT_TYPE_SIZE 32
2755 /* Since the SH2e has only `float' support, it is desirable to make all
2756 floating point types equivalent to `float'. */
2757 #define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
2759 /* 'char' is signed by default. */
2760 #define DEFAULT_SIGNED_CHAR 1
2762 /* The type of size_t unsigned int. */
2763 #define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
2765 #undef PTRDIFF_TYPE
2766 #define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
2768 #define WCHAR_TYPE "short unsigned int"
2769 #define WCHAR_TYPE_SIZE 16
2771 #define SH_ELF_WCHAR_TYPE "long int"
2773 /* Max number of bytes we can move from memory to memory
2774 in one reasonably fast instruction. */
2775 #define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
2777 /* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
2778 MOVE_MAX is not a compile-time constant. */
2779 #define MAX_MOVE_MAX 8
2781 /* Max number of bytes we want move_by_pieces to be able to copy
2782 efficiently. */
2783 #define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
2785 /* Define if operations between registers always perform the operation
2786 on the full register even if a narrower mode is specified. */
2787 #define WORD_REGISTER_OPERATIONS
2789 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2790 will either zero-extend or sign-extend. The value of this macro should
2791 be the code that says which one of the two operations is implicitly
2792 done, UNKNOWN if none. */
2793 /* For SHmedia, we can truncate to QImode easier using zero extension. */
2794 /* FP registers can load SImode values, but don't implicitly sign-extend
2795 them to DImode. */
2796 #define LOAD_EXTEND_OP(MODE) \
2797 (((MODE) == QImode && TARGET_SHMEDIA) ? ZERO_EXTEND \
2798 : (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
2800 /* Define if loading short immediate values into registers sign extends. */
2801 #define SHORT_IMMEDIATES_SIGN_EXTEND
2803 /* Nonzero if access to memory by bytes is no faster than for words. */
2804 #define SLOW_BYTE_ACCESS 1
2806 /* Immediate shift counts are truncated by the output routines (or was it
2807 the assembler?). Shift counts in a register are truncated by SH. Note
2808 that the native compiler puts too large (> 32) immediate shift counts
2809 into a register and shifts by the register, letting the SH decide what
2810 to do instead of doing that itself. */
2811 /* ??? The library routines in lib1funcs.asm truncate the shift count.
2812 However, the SH3 has hardware shifts that do not truncate exactly as gcc
2813 expects - the sign bit is significant - so it appears that we need to
2814 leave this zero for correct SH3 code. */
2815 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
2817 /* All integers have the same format so truncation is easy. */
2818 /* But SHmedia must sign-extend DImode when truncating to SImode. */
2819 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
2820 (!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
2822 /* Define this if addresses of constant functions
2823 shouldn't be put through pseudo regs where they can be cse'd.
2824 Desirable on machines where ordinary constants are expensive
2825 but a CALL with constant address is cheap. */
2826 /*#define NO_FUNCTION_CSE 1*/
2828 /* The machine modes of pointers and functions. */
2829 #define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
2830 #define FUNCTION_MODE Pmode
2832 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
2833 are actually function calls with some special constraints on arguments
2834 and register usage.
2836 These macros tell reorg that the references to arguments and
2837 register clobbers for insns of type sfunc do not appear to happen
2838 until after the millicode call. This allows reorg to put insns
2839 which set the argument registers into the delay slot of the millicode
2840 call -- thus they act more like traditional CALL_INSNs.
2842 get_attr_is_sfunc will try to recognize the given insn, so make sure to
2843 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
2844 in particular. */
2846 #define INSN_SETS_ARE_DELAYED(X) \
2847 ((GET_CODE (X) == INSN \
2848 && GET_CODE (PATTERN (X)) != SEQUENCE \
2849 && GET_CODE (PATTERN (X)) != USE \
2850 && GET_CODE (PATTERN (X)) != CLOBBER \
2851 && get_attr_is_sfunc (X)))
2853 #define INSN_REFERENCES_ARE_DELAYED(X) \
2854 ((GET_CODE (X) == INSN \
2855 && GET_CODE (PATTERN (X)) != SEQUENCE \
2856 && GET_CODE (PATTERN (X)) != USE \
2857 && GET_CODE (PATTERN (X)) != CLOBBER \
2858 && get_attr_is_sfunc (X)))
2861 /* Position Independent Code. */
2863 /* We can't directly access anything that contains a symbol,
2864 nor can we indirect via the constant pool. */
2865 #define LEGITIMATE_PIC_OPERAND_P(X) \
2866 ((! nonpic_symbol_mentioned_p (X) \
2867 && (GET_CODE (X) != SYMBOL_REF \
2868 || ! CONSTANT_POOL_ADDRESS_P (X) \
2869 || ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
2870 || (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
2872 #define SYMBOLIC_CONST_P(X) \
2873 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
2874 && nonpic_symbol_mentioned_p (X))
2876 /* Compute extra cost of moving data between one register class
2877 and another. */
2879 /* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
2880 uses this information. Hence, the general register <-> floating point
2881 register information here is not used for SFmode. */
2883 #define REGCLASS_HAS_GENERAL_REG(CLASS) \
2884 ((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
2885 || (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
2887 #define REGCLASS_HAS_FP_REG(CLASS) \
2888 ((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
2889 || (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
2891 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
2892 sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
2894 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
2895 would be so that people with slow memory systems could generate
2896 different code that does fewer memory accesses. */
2898 /* A C expression for the cost of a branch instruction. A value of 1
2899 is the default; other values are interpreted relative to that.
2900 The SH1 does not have delay slots, hence we get a pipeline stall
2901 at every branch. The SH4 is superscalar, so the single delay slot
2902 is not sufficient to keep both pipelines filled. */
2903 #define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
2905 /* Assembler output control. */
2907 /* A C string constant describing how to begin a comment in the target
2908 assembler language. The compiler assumes that the comment will end at
2909 the end of the line. */
2910 #define ASM_COMMENT_START "!"
2912 #define ASM_APP_ON ""
2913 #define ASM_APP_OFF ""
2914 #define FILE_ASM_OP "\t.file\n"
2915 #define SET_ASM_OP "\t.set\t"
2917 /* How to change between sections. */
2919 #define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
2920 #define DATA_SECTION_ASM_OP "\t.data"
2922 #if defined CRT_BEGIN || defined CRT_END
2923 /* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
2924 # undef TEXT_SECTION_ASM_OP
2925 # if __SHMEDIA__ == 1 && __SH5__ == 32
2926 # define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
2927 # else
2928 # define TEXT_SECTION_ASM_OP "\t.text"
2929 # endif
2930 #endif
2933 /* If defined, a C expression whose value is a string containing the
2934 assembler operation to identify the following data as
2935 uninitialized global data. If not defined, and neither
2936 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2937 uninitialized global data will be output in the data section if
2938 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2939 used. */
2940 #ifndef BSS_SECTION_ASM_OP
2941 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
2942 #endif
2944 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
2945 separate, explicit argument. If you define this macro, it is used
2946 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
2947 handling the required alignment of the variable. The alignment is
2948 specified as the number of bits.
2950 Try to use function `asm_output_aligned_bss' defined in file
2951 `varasm.c' when defining this macro. */
2952 #ifndef ASM_OUTPUT_ALIGNED_BSS
2953 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2954 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
2955 #endif
2957 /* Define this so that jump tables go in same section as the current function,
2958 which could be text or it could be a user defined section. */
2959 #define JUMP_TABLES_IN_TEXT_SECTION 1
2961 #undef DO_GLOBAL_CTORS_BODY
2962 #define DO_GLOBAL_CTORS_BODY \
2964 typedef (*pfunc)(); \
2965 extern pfunc __ctors[]; \
2966 extern pfunc __ctors_end[]; \
2967 pfunc *p; \
2968 for (p = __ctors_end; p > __ctors; ) \
2970 (*--p)(); \
2974 #undef DO_GLOBAL_DTORS_BODY
2975 #define DO_GLOBAL_DTORS_BODY \
2977 typedef (*pfunc)(); \
2978 extern pfunc __dtors[]; \
2979 extern pfunc __dtors_end[]; \
2980 pfunc *p; \
2981 for (p = __dtors; p < __dtors_end; p++) \
2983 (*p)(); \
2987 #define ASM_OUTPUT_REG_PUSH(file, v) \
2989 if (TARGET_SHMEDIA) \
2991 fprintf ((file), "\taddi.l\tr15,-8,r15\n"); \
2992 fprintf ((file), "\tst.q\tr15,0,r%d\n", (v)); \
2994 else \
2995 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
2998 #define ASM_OUTPUT_REG_POP(file, v) \
3000 if (TARGET_SHMEDIA) \
3002 fprintf ((file), "\tld.q\tr15,0,r%d\n", (v)); \
3003 fprintf ((file), "\taddi.l\tr15,8,r15\n"); \
3005 else \
3006 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
3009 /* DBX register number for a given compiler register number. */
3010 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
3011 to match gdb. */
3012 /* svr4.h undefines this macro, yet we really want to use the same numbers
3013 for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
3014 /* expand_builtin_init_dwarf_reg_sizes uses this to test if a
3015 register exists, so we should return -1 for invalid register numbers. */
3016 #define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
3018 /* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
3019 used to use the encodings 245..260, but that doesn't make sense:
3020 PR_REG and PR_MEDIA_REG are actually the same register, and likewise
3021 the FP registers stay the same when switching between compact and media
3022 mode. Hence, we also need to use the same dwarf frame columns.
3023 Likewise, we need to support unwind information for SHmedia registers
3024 even in compact code. */
3025 #define SH_DBX_REGISTER_NUMBER(REGNO) \
3026 (IN_RANGE ((REGNO), \
3027 (unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
3028 FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
3029 ? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
3030 : ((int) (REGNO) >= FIRST_FP_REG \
3031 && ((int) (REGNO) \
3032 <= (FIRST_FP_REG + \
3033 ((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
3034 ? ((unsigned) (REGNO) - FIRST_FP_REG \
3035 + (TARGET_SH5 ? 77 : 25)) \
3036 : XD_REGISTER_P (REGNO) \
3037 ? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
3038 : TARGET_REGISTER_P (REGNO) \
3039 ? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
3040 : (REGNO) == PR_REG \
3041 ? (TARGET_SH5 ? 18 : 17) \
3042 : (REGNO) == PR_MEDIA_REG \
3043 ? (TARGET_SH5 ? 18 : (unsigned) -1) \
3044 : (REGNO) == T_REG \
3045 ? (TARGET_SH5 ? 242 : 18) \
3046 : (REGNO) == GBR_REG \
3047 ? (TARGET_SH5 ? 238 : 19) \
3048 : (REGNO) == MACH_REG \
3049 ? (TARGET_SH5 ? 239 : 20) \
3050 : (REGNO) == MACL_REG \
3051 ? (TARGET_SH5 ? 240 : 21) \
3052 : (REGNO) == FPUL_REG \
3053 ? (TARGET_SH5 ? 244 : 23) \
3054 : (unsigned) -1)
3056 /* This is how to output a reference to a symbol_ref. On SH5,
3057 references to non-code symbols must be preceded by `datalabel'. */
3058 #define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
3059 do \
3061 if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM)) \
3062 fputs ("datalabel ", (FILE)); \
3063 assemble_name ((FILE), XSTR ((SYM), 0)); \
3065 while (0)
3067 /* This is how to output an assembler line
3068 that says to advance the location counter
3069 to a multiple of 2**LOG bytes. */
3071 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3072 if ((LOG) != 0) \
3073 fprintf ((FILE), "\t.align %d\n", (LOG))
3075 /* Globalizing directive for a label. */
3076 #define GLOBAL_ASM_OP "\t.global\t"
3078 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
3080 /* Output a relative address table. */
3082 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
3083 switch (GET_MODE (BODY)) \
3085 case SImode: \
3086 if (TARGET_SH5) \
3088 asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
3089 (VALUE), (REL)); \
3090 break; \
3092 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3093 break; \
3094 case HImode: \
3095 if (TARGET_SH5) \
3097 asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
3098 (VALUE), (REL)); \
3099 break; \
3101 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3102 break; \
3103 case QImode: \
3104 if (TARGET_SH5) \
3106 asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
3107 (VALUE), (REL)); \
3108 break; \
3110 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
3111 break; \
3112 default: \
3113 break; \
3116 /* Output an absolute table element. */
3118 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
3119 if (! optimize || TARGET_BIGTABLE) \
3120 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
3121 else \
3122 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
3125 /* A C statement to be executed just prior to the output of
3126 assembler code for INSN, to modify the extracted operands so
3127 they will be output differently.
3129 Here the argument OPVEC is the vector containing the operands
3130 extracted from INSN, and NOPERANDS is the number of elements of
3131 the vector which contain meaningful data for this insn.
3132 The contents of this vector are what will be used to convert the insn
3133 template into assembler code, so you can change the assembler output
3134 by changing the contents of the vector. */
3136 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3137 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
3139 /* Print operand X (an rtx) in assembler syntax to file FILE.
3140 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3141 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3143 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
3145 /* Print a memory address as an operand to reference that memory location. */
3147 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
3149 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3150 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
3151 || (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
3153 /* Recognize machine-specific patterns that may appear within
3154 constants. Used for PIC-specific UNSPECs. */
3155 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
3156 do \
3157 if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
3159 switch (XINT ((X), 1)) \
3161 case UNSPEC_DATALABEL: \
3162 fputs ("datalabel ", (STREAM)); \
3163 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3164 break; \
3165 case UNSPEC_PIC: \
3166 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
3167 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3168 break; \
3169 case UNSPEC_GOT: \
3170 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3171 fputs ("@GOT", (STREAM)); \
3172 break; \
3173 case UNSPEC_GOTOFF: \
3174 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3175 fputs ("@GOTOFF", (STREAM)); \
3176 break; \
3177 case UNSPEC_PLT: \
3178 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3179 fputs ("@PLT", (STREAM)); \
3180 break; \
3181 case UNSPEC_GOTPLT: \
3182 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3183 fputs ("@GOTPLT", (STREAM)); \
3184 break; \
3185 case UNSPEC_DTPOFF: \
3186 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3187 fputs ("@DTPOFF", (STREAM)); \
3188 break; \
3189 case UNSPEC_GOTTPOFF: \
3190 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3191 fputs ("@GOTTPOFF", (STREAM)); \
3192 break; \
3193 case UNSPEC_TPOFF: \
3194 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
3195 fputs ("@TPOFF", (STREAM)); \
3196 break; \
3197 case UNSPEC_CALLER: \
3199 char name[32]; \
3200 /* LPCS stands for Label for PIC Call Site. */ \
3201 ASM_GENERATE_INTERNAL_LABEL \
3202 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
3203 assemble_name ((STREAM), name); \
3205 break; \
3206 default: \
3207 goto FAIL; \
3209 break; \
3211 else \
3212 goto FAIL; \
3213 while (0)
3216 extern struct rtx_def *sh_compare_op0;
3217 extern struct rtx_def *sh_compare_op1;
3219 /* Which processor to schedule for. The elements of the enumeration must
3220 match exactly the cpu attribute in the sh.md file. */
3222 enum processor_type {
3223 PROCESSOR_SH1,
3224 PROCESSOR_SH2,
3225 PROCESSOR_SH2E,
3226 PROCESSOR_SH2A,
3227 PROCESSOR_SH3,
3228 PROCESSOR_SH3E,
3229 PROCESSOR_SH4,
3230 PROCESSOR_SH4A,
3231 PROCESSOR_SH5
3234 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
3235 extern enum processor_type sh_cpu;
3237 extern int optimize; /* needed for gen_casesi. */
3239 enum mdep_reorg_phase_e
3241 SH_BEFORE_MDEP_REORG,
3242 SH_INSERT_USES_LABELS,
3243 SH_SHORTEN_BRANCHES0,
3244 SH_FIXUP_PCLOAD,
3245 SH_SHORTEN_BRANCHES1,
3246 SH_AFTER_MDEP_REORG
3249 extern enum mdep_reorg_phase_e mdep_reorg_phase;
3251 /* Handle Renesas compiler's pragmas. */
3252 #define REGISTER_TARGET_PRAGMAS() do { \
3253 c_register_pragma (0, "interrupt", sh_pr_interrupt); \
3254 c_register_pragma (0, "trapa", sh_pr_trapa); \
3255 c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
3256 } while (0)
3258 extern tree sh_deferred_function_attributes;
3259 extern tree *sh_deferred_function_attributes_tail;
3261 /* Set when processing a function with interrupt attribute. */
3263 extern int current_function_interrupt;
3266 /* Instructions with unfilled delay slots take up an
3267 extra two bytes for the nop in the delay slot.
3268 sh-dsp parallel processing insns are four bytes long. */
3270 #define ADJUST_INSN_LENGTH(X, LENGTH) \
3271 (LENGTH) += sh_insn_length_adjustment (X);
3273 /* Define this macro if it is advisable to hold scalars in registers
3274 in a wider mode than that declared by the program. In such cases,
3275 the value is constrained to be within the bounds of the declared
3276 type, but kept valid in the wider mode. The signedness of the
3277 extension may differ from that of the type.
3279 Leaving the unsignedp unchanged gives better code than always setting it
3280 to 0. This is despite the fact that we have only signed char and short
3281 load instructions. */
3282 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
3283 if (GET_MODE_CLASS (MODE) == MODE_INT \
3284 && GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
3285 (UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
3286 (MODE) = (TARGET_SH1 ? SImode \
3287 : TARGET_SHMEDIA32 ? SImode : DImode);
3289 #define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
3291 #define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
3293 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
3294 and popping arguments. However, we do have push/pop instructions, and
3295 rather limited offsets (4 bits) in load/store instructions, so it isn't
3296 clear if this would give better code. If implemented, should check for
3297 compatibility problems. */
3299 #define SH_DYNAMIC_SHIFT_COST \
3300 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
3303 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
3305 #define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
3307 #define ACTUAL_NORMAL_MODE(ENTITY) \
3308 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3310 #define NORMAL_MODE(ENTITY) \
3311 (sh_cfun_interrupt_handler_p () \
3312 ? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
3313 : ACTUAL_NORMAL_MODE (ENTITY))
3315 #define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
3317 #define MODE_EXIT(ENTITY) \
3318 (sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
3320 #define EPILOGUE_USES(REGNO) ((TARGET_SH2E || TARGET_SH4) \
3321 && (REGNO) == FPSCR_REG)
3323 #define MODE_NEEDED(ENTITY, INSN) \
3324 (recog_memoized (INSN) >= 0 \
3325 ? get_attr_fp_mode (INSN) \
3326 : FP_MODE_NONE)
3328 #define MODE_AFTER(MODE, INSN) \
3329 (TARGET_HITACHI \
3330 && recog_memoized (INSN) >= 0 \
3331 && get_attr_fp_set (INSN) != FP_SET_NONE \
3332 ? (int) get_attr_fp_set (INSN) \
3333 : (MODE))
3335 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
3336 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
3338 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3339 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
3341 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
3342 sh_can_redirect_branch ((INSN), (SEQ))
3344 #define DWARF_FRAME_RETURN_COLUMN \
3345 (TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
3347 #define EH_RETURN_DATA_REGNO(N) \
3348 ((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
3350 #define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
3351 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
3353 /* We have to distinguish between code and data, so that we apply
3354 datalabel where and only where appropriate. Use sdataN for data. */
3355 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
3356 ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
3357 | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
3358 | ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
3360 /* Handle special EH pointer encodings. Absolute, pc-relative, and
3361 indirect are handled automatically. */
3362 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
3363 do { \
3364 if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
3365 && ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
3367 gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
3368 SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
3369 if (0) goto DONE; \
3371 } while (0)
3373 #if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
3374 /* SH constant pool breaks the devices in crtstuff.c to control section
3375 in where code resides. We have to write it as asm code. */
3376 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3377 asm (SECTION_OP "\n\
3378 mov.l 1f,r1\n\
3379 mova 2f,r0\n\
3380 braf r1\n\
3381 lds r0,pr\n\
3382 0: .p2align 2\n\
3383 1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
3384 2:\n" TEXT_SECTION_ASM_OP);
3385 #endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
3387 #define SIMULTANEOUS_PREFETCHES 2
3389 /* FIXME: middle-end support for highpart optimizations is missing. */
3390 #define high_life_started reload_in_progress
3392 #endif /* ! GCC_SH_H */