1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 /* High-level class interface. */
28 #include "coretypes.h"
39 #include "tree-dump.h"
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
44 int current_class_depth
;
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
50 typedef struct class_stack_node
{
51 /* The name of the class. */
54 /* The _TYPE node for the class. */
57 /* The access specifier pending for new declarations in the scope of
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used
;
64 /* Nonzero if this class is no longer open, because of a call to
67 }* class_stack_node_t
;
69 typedef struct vtbl_init_data_s
71 /* The base for which we're building initializers. */
73 /* The type of the most-derived type. */
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
81 /* The last (i.e., most negative) entry in INITS. */
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
86 /* The functions in vbase for which we have already provided vcall
89 /* The vtable index of the next vcall or vbase offset. */
91 /* Nonzero if we are building the initializer for the primary
94 /* Nonzero if we are building the initializer for a construction
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries
;
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn
) (tree
, tree
, splay_tree
);
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size
;
108 static class_stack_node_t current_class_stack
;
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class
;
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree
,gc
) *local_classes
;
117 static tree
get_vfield_name (tree
);
118 static void finish_struct_anon (tree
);
119 static tree
get_vtable_name (tree
);
120 static tree
get_basefndecls (tree
, tree
);
121 static int build_primary_vtable (tree
, tree
);
122 static int build_secondary_vtable (tree
);
123 static void finish_vtbls (tree
);
124 static void modify_vtable_entry (tree
, tree
, tree
, tree
, tree
*);
125 static void finish_struct_bits (tree
);
126 static int alter_access (tree
, tree
, tree
);
127 static void handle_using_decl (tree
, tree
);
128 static tree
dfs_modify_vtables (tree
, void *);
129 static tree
modify_all_vtables (tree
, tree
);
130 static void determine_primary_bases (tree
);
131 static void finish_struct_methods (tree
);
132 static void maybe_warn_about_overly_private_class (tree
);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree
, int, int);
136 static tree
fixed_type_or_null (tree
, int *, int *);
137 static tree
resolve_address_of_overloaded_function (tree
, tree
, tsubst_flags_t
,
139 static tree
build_simple_base_path (tree expr
, tree binfo
);
140 static tree
build_vtbl_ref_1 (tree
, tree
);
141 static tree
build_vtbl_initializer (tree
, tree
, tree
, tree
, int *);
142 static int count_fields (tree
);
143 static int add_fields_to_record_type (tree
, struct sorted_fields_type
*, int);
144 static void check_bitfield_decl (tree
);
145 static void check_field_decl (tree
, tree
, int *, int *, int *);
146 static void check_field_decls (tree
, tree
*, int *, int *);
147 static tree
*build_base_field (record_layout_info
, tree
, splay_tree
, tree
*);
148 static void build_base_fields (record_layout_info
, splay_tree
, tree
*);
149 static void check_methods (tree
);
150 static void remove_zero_width_bit_fields (tree
);
151 static void check_bases (tree
, int *, int *);
152 static void check_bases_and_members (tree
);
153 static tree
create_vtable_ptr (tree
, tree
*);
154 static void include_empty_classes (record_layout_info
);
155 static void layout_class_type (tree
, tree
*);
156 static void fixup_pending_inline (tree
);
157 static void fixup_inline_methods (tree
);
158 static void propagate_binfo_offsets (tree
, tree
);
159 static void layout_virtual_bases (record_layout_info
, splay_tree
);
160 static void build_vbase_offset_vtbl_entries (tree
, vtbl_init_data
*);
161 static void add_vcall_offset_vtbl_entries_r (tree
, vtbl_init_data
*);
162 static void add_vcall_offset_vtbl_entries_1 (tree
, vtbl_init_data
*);
163 static void build_vcall_offset_vtbl_entries (tree
, vtbl_init_data
*);
164 static void add_vcall_offset (tree
, tree
, vtbl_init_data
*);
165 static void layout_vtable_decl (tree
, int);
166 static tree
dfs_find_final_overrider_pre (tree
, void *);
167 static tree
dfs_find_final_overrider_post (tree
, void *);
168 static tree
find_final_overrider (tree
, tree
, tree
);
169 static int make_new_vtable (tree
, tree
);
170 static int maybe_indent_hierarchy (FILE *, int, int);
171 static tree
dump_class_hierarchy_r (FILE *, int, tree
, tree
, int);
172 static void dump_class_hierarchy (tree
);
173 static void dump_class_hierarchy_1 (FILE *, int, tree
);
174 static void dump_array (FILE *, tree
);
175 static void dump_vtable (tree
, tree
, tree
);
176 static void dump_vtt (tree
, tree
);
177 static void dump_thunk (FILE *, int, tree
);
178 static tree
build_vtable (tree
, tree
, tree
);
179 static void initialize_vtable (tree
, tree
);
180 static void layout_nonempty_base_or_field (record_layout_info
,
181 tree
, tree
, splay_tree
);
182 static tree
end_of_class (tree
, int);
183 static bool layout_empty_base (tree
, tree
, splay_tree
);
184 static void accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
);
185 static tree
dfs_accumulate_vtbl_inits (tree
, tree
, tree
, tree
,
187 static void build_rtti_vtbl_entries (tree
, vtbl_init_data
*);
188 static void build_vcall_and_vbase_vtbl_entries (tree
, vtbl_init_data
*);
189 static void clone_constructors_and_destructors (tree
);
190 static tree
build_clone (tree
, tree
);
191 static void update_vtable_entry_for_fn (tree
, tree
, tree
, tree
*, unsigned);
192 static void build_ctor_vtbl_group (tree
, tree
);
193 static void build_vtt (tree
);
194 static tree
binfo_ctor_vtable (tree
);
195 static tree
*build_vtt_inits (tree
, tree
, tree
*, tree
*);
196 static tree
dfs_build_secondary_vptr_vtt_inits (tree
, void *);
197 static tree
dfs_fixup_binfo_vtbls (tree
, void *);
198 static int record_subobject_offset (tree
, tree
, splay_tree
);
199 static int check_subobject_offset (tree
, tree
, splay_tree
);
200 static int walk_subobject_offsets (tree
, subobject_offset_fn
,
201 tree
, splay_tree
, tree
, int);
202 static void record_subobject_offsets (tree
, tree
, splay_tree
, bool);
203 static int layout_conflict_p (tree
, tree
, splay_tree
, int);
204 static int splay_tree_compare_integer_csts (splay_tree_key k1
,
206 static void warn_about_ambiguous_bases (tree
);
207 static bool type_requires_array_cookie (tree
);
208 static bool contains_empty_class_p (tree
);
209 static bool base_derived_from (tree
, tree
);
210 static int empty_base_at_nonzero_offset_p (tree
, tree
, splay_tree
);
211 static tree
end_of_base (tree
);
212 static tree
get_vcall_index (tree
, tree
);
214 /* Variables shared between class.c and call.c. */
216 #ifdef GATHER_STATISTICS
218 int n_vtable_entries
= 0;
219 int n_vtable_searches
= 0;
220 int n_vtable_elems
= 0;
221 int n_convert_harshness
= 0;
222 int n_compute_conversion_costs
= 0;
223 int n_inner_fields_searched
= 0;
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
237 build_base_path (enum tree_code code
,
242 tree v_binfo
= NULL_TREE
;
243 tree d_binfo
= NULL_TREE
;
247 tree null_test
= NULL
;
248 tree ptr_target_type
;
250 int want_pointer
= TREE_CODE (TREE_TYPE (expr
)) == POINTER_TYPE
;
251 bool has_empty
= false;
254 if (expr
== error_mark_node
|| binfo
== error_mark_node
|| !binfo
)
255 return error_mark_node
;
257 for (probe
= binfo
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
260 if (is_empty_class (BINFO_TYPE (probe
)))
262 if (!v_binfo
&& BINFO_VIRTUAL_P (probe
))
266 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (expr
));
268 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (probe
));
270 gcc_assert ((code
== MINUS_EXPR
271 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), probe
))
272 || (code
== PLUS_EXPR
273 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo
), probe
)));
275 if (binfo
== d_binfo
)
279 if (code
== MINUS_EXPR
&& v_binfo
)
281 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
282 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
), BINFO_TYPE (v_binfo
));
283 return error_mark_node
;
287 /* This must happen before the call to save_expr. */
288 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
290 offset
= BINFO_OFFSET (binfo
);
291 fixed_type_p
= resolves_to_fixed_type_p (expr
, &nonnull
);
292 target_type
= code
== PLUS_EXPR
? BINFO_TYPE (binfo
) : BINFO_TYPE (d_binfo
);
294 /* Do we need to look in the vtable for the real offset? */
295 virtual_access
= (v_binfo
&& fixed_type_p
<= 0);
297 /* Don't bother with the calculations inside sizeof; they'll ICE if the
298 source type is incomplete and the pointer value doesn't matter. */
301 expr
= build_nop (build_pointer_type (target_type
), expr
);
303 expr
= build_indirect_ref (expr
, NULL
);
307 /* Do we need to check for a null pointer? */
308 if (want_pointer
&& !nonnull
)
310 /* If we know the conversion will not actually change the value
311 of EXPR, then we can avoid testing the expression for NULL.
312 We have to avoid generating a COMPONENT_REF for a base class
313 field, because other parts of the compiler know that such
314 expressions are always non-NULL. */
315 if (!virtual_access
&& integer_zerop (offset
))
318 /* TARGET_TYPE has been extracted from BINFO, and, is
319 therefore always cv-unqualified. Extract the
320 cv-qualifiers from EXPR so that the expression returned
321 matches the input. */
322 class_type
= TREE_TYPE (TREE_TYPE (expr
));
324 = cp_build_qualified_type (target_type
,
325 cp_type_quals (class_type
));
326 return build_nop (build_pointer_type (target_type
), expr
);
328 null_test
= error_mark_node
;
331 /* Protect against multiple evaluation if necessary. */
332 if (TREE_SIDE_EFFECTS (expr
) && (null_test
|| virtual_access
))
333 expr
= save_expr (expr
);
335 /* Now that we've saved expr, build the real null test. */
338 tree zero
= cp_convert (TREE_TYPE (expr
), integer_zero_node
);
339 null_test
= fold_build2 (NE_EXPR
, boolean_type_node
,
343 /* If this is a simple base reference, express it as a COMPONENT_REF. */
344 if (code
== PLUS_EXPR
&& !virtual_access
345 /* We don't build base fields for empty bases, and they aren't very
346 interesting to the optimizers anyway. */
349 expr
= build_indirect_ref (expr
, NULL
);
350 expr
= build_simple_base_path (expr
, binfo
);
352 expr
= build_address (expr
);
353 target_type
= TREE_TYPE (expr
);
359 /* Going via virtual base V_BINFO. We need the static offset
360 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
361 V_BINFO. That offset is an entry in D_BINFO's vtable. */
364 if (fixed_type_p
< 0 && in_base_initializer
)
366 /* In a base member initializer, we cannot rely on the
367 vtable being set up. We have to indirect via the
371 t
= TREE_TYPE (TYPE_VFIELD (current_class_type
));
372 t
= build_pointer_type (t
);
373 v_offset
= convert (t
, current_vtt_parm
);
374 v_offset
= build_indirect_ref (v_offset
, NULL
);
377 v_offset
= build_vfield_ref (build_indirect_ref (expr
, NULL
),
378 TREE_TYPE (TREE_TYPE (expr
)));
380 v_offset
= build2 (PLUS_EXPR
, TREE_TYPE (v_offset
),
381 v_offset
, BINFO_VPTR_FIELD (v_binfo
));
382 v_offset
= build1 (NOP_EXPR
,
383 build_pointer_type (ptrdiff_type_node
),
385 v_offset
= build_indirect_ref (v_offset
, NULL
);
386 TREE_CONSTANT (v_offset
) = 1;
387 TREE_INVARIANT (v_offset
) = 1;
389 offset
= convert_to_integer (ptrdiff_type_node
,
391 BINFO_OFFSET (v_binfo
)));
393 if (!integer_zerop (offset
))
394 v_offset
= build2 (code
, ptrdiff_type_node
, v_offset
, offset
);
396 if (fixed_type_p
< 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
400 offset
= build3 (COND_EXPR
, ptrdiff_type_node
,
401 build2 (EQ_EXPR
, boolean_type_node
,
402 current_in_charge_parm
, integer_zero_node
),
404 convert_to_integer (ptrdiff_type_node
,
405 BINFO_OFFSET (binfo
)));
410 target_type
= cp_build_qualified_type
411 (target_type
, cp_type_quals (TREE_TYPE (TREE_TYPE (expr
))));
412 ptr_target_type
= build_pointer_type (target_type
);
414 target_type
= ptr_target_type
;
416 expr
= build1 (NOP_EXPR
, ptr_target_type
, expr
);
418 if (!integer_zerop (offset
))
419 expr
= build2 (code
, ptr_target_type
, expr
, offset
);
424 expr
= build_indirect_ref (expr
, NULL
);
428 expr
= fold_build3 (COND_EXPR
, target_type
, null_test
, expr
,
429 fold_build1 (NOP_EXPR
, target_type
,
435 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
436 Perform a derived-to-base conversion by recursively building up a
437 sequence of COMPONENT_REFs to the appropriate base fields. */
440 build_simple_base_path (tree expr
, tree binfo
)
442 tree type
= BINFO_TYPE (binfo
);
443 tree d_binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
446 if (d_binfo
== NULL_TREE
)
450 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr
)) == type
);
452 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
453 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
454 an lvalue in the frontend; only _DECLs and _REFs are lvalues
456 temp
= unary_complex_lvalue (ADDR_EXPR
, expr
);
458 expr
= build_indirect_ref (temp
, NULL
);
464 expr
= build_simple_base_path (expr
, d_binfo
);
466 for (field
= TYPE_FIELDS (BINFO_TYPE (d_binfo
));
467 field
; field
= TREE_CHAIN (field
))
468 /* Is this the base field created by build_base_field? */
469 if (TREE_CODE (field
) == FIELD_DECL
470 && DECL_FIELD_IS_BASE (field
)
471 && TREE_TYPE (field
) == type
)
473 /* We don't use build_class_member_access_expr here, as that
474 has unnecessary checks, and more importantly results in
475 recursive calls to dfs_walk_once. */
476 int type_quals
= cp_type_quals (TREE_TYPE (expr
));
478 expr
= build3 (COMPONENT_REF
,
479 cp_build_qualified_type (type
, type_quals
),
480 expr
, field
, NULL_TREE
);
481 expr
= fold_if_not_in_template (expr
);
483 /* Mark the expression const or volatile, as appropriate.
484 Even though we've dealt with the type above, we still have
485 to mark the expression itself. */
486 if (type_quals
& TYPE_QUAL_CONST
)
487 TREE_READONLY (expr
) = 1;
488 if (type_quals
& TYPE_QUAL_VOLATILE
)
489 TREE_THIS_VOLATILE (expr
) = 1;
494 /* Didn't find the base field?!? */
498 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
499 type is a class type or a pointer to a class type. In the former
500 case, TYPE is also a class type; in the latter it is another
501 pointer type. If CHECK_ACCESS is true, an error message is emitted
502 if TYPE is inaccessible. If OBJECT has pointer type, the value is
503 assumed to be non-NULL. */
506 convert_to_base (tree object
, tree type
, bool check_access
, bool nonnull
)
511 if (TYPE_PTR_P (TREE_TYPE (object
)))
513 object_type
= TREE_TYPE (TREE_TYPE (object
));
514 type
= TREE_TYPE (type
);
517 object_type
= TREE_TYPE (object
);
519 binfo
= lookup_base (object_type
, type
,
520 check_access
? ba_check
: ba_unique
,
522 if (!binfo
|| binfo
== error_mark_node
)
523 return error_mark_node
;
525 return build_base_path (PLUS_EXPR
, object
, binfo
, nonnull
);
528 /* EXPR is an expression with unqualified class type. BASE is a base
529 binfo of that class type. Returns EXPR, converted to the BASE
530 type. This function assumes that EXPR is the most derived class;
531 therefore virtual bases can be found at their static offsets. */
534 convert_to_base_statically (tree expr
, tree base
)
538 expr_type
= TREE_TYPE (expr
);
539 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base
), expr_type
))
543 pointer_type
= build_pointer_type (expr_type
);
544 expr
= build_unary_op (ADDR_EXPR
, expr
, /*noconvert=*/1);
545 if (!integer_zerop (BINFO_OFFSET (base
)))
546 expr
= build2 (PLUS_EXPR
, pointer_type
, expr
,
547 build_nop (pointer_type
, BINFO_OFFSET (base
)));
548 expr
= build_nop (build_pointer_type (BINFO_TYPE (base
)), expr
);
549 expr
= build1 (INDIRECT_REF
, BINFO_TYPE (base
), expr
);
557 build_vfield_ref (tree datum
, tree type
)
559 tree vfield
, vcontext
;
561 if (datum
== error_mark_node
)
562 return error_mark_node
;
564 /* First, convert to the requested type. */
565 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
566 datum
= convert_to_base (datum
, type
, /*check_access=*/false,
569 /* Second, the requested type may not be the owner of its own vptr.
570 If not, convert to the base class that owns it. We cannot use
571 convert_to_base here, because VCONTEXT may appear more than once
572 in the inheritance hierarchy of TYPE, and thus direct conversion
573 between the types may be ambiguous. Following the path back up
574 one step at a time via primary bases avoids the problem. */
575 vfield
= TYPE_VFIELD (type
);
576 vcontext
= DECL_CONTEXT (vfield
);
577 while (!same_type_ignoring_top_level_qualifiers_p (vcontext
, type
))
579 datum
= build_simple_base_path (datum
, CLASSTYPE_PRIMARY_BINFO (type
));
580 type
= TREE_TYPE (datum
);
583 return build3 (COMPONENT_REF
, TREE_TYPE (vfield
), datum
, vfield
, NULL_TREE
);
586 /* Given an object INSTANCE, return an expression which yields the
587 vtable element corresponding to INDEX. There are many special
588 cases for INSTANCE which we take care of here, mainly to avoid
589 creating extra tree nodes when we don't have to. */
592 build_vtbl_ref_1 (tree instance
, tree idx
)
595 tree vtbl
= NULL_TREE
;
597 /* Try to figure out what a reference refers to, and
598 access its virtual function table directly. */
601 tree fixed_type
= fixed_type_or_null (instance
, NULL
, &cdtorp
);
603 tree basetype
= non_reference (TREE_TYPE (instance
));
605 if (fixed_type
&& !cdtorp
)
607 tree binfo
= lookup_base (fixed_type
, basetype
,
608 ba_unique
| ba_quiet
, NULL
);
610 vtbl
= unshare_expr (BINFO_VTABLE (binfo
));
614 vtbl
= build_vfield_ref (instance
, basetype
);
616 assemble_external (vtbl
);
618 aref
= build_array_ref (vtbl
, idx
);
619 TREE_CONSTANT (aref
) |= TREE_CONSTANT (vtbl
) && TREE_CONSTANT (idx
);
620 TREE_INVARIANT (aref
) = TREE_CONSTANT (aref
);
626 build_vtbl_ref (tree instance
, tree idx
)
628 tree aref
= build_vtbl_ref_1 (instance
, idx
);
633 /* Given a stable object pointer INSTANCE_PTR, return an expression which
634 yields a function pointer corresponding to vtable element INDEX. */
637 build_vfn_ref (tree instance_ptr
, tree idx
)
641 aref
= build_vtbl_ref_1 (build_indirect_ref (instance_ptr
, 0), idx
);
643 /* When using function descriptors, the address of the
644 vtable entry is treated as a function pointer. */
645 if (TARGET_VTABLE_USES_DESCRIPTORS
)
646 aref
= build1 (NOP_EXPR
, TREE_TYPE (aref
),
647 build_unary_op (ADDR_EXPR
, aref
, /*noconvert=*/1));
649 /* Remember this as a method reference, for later devirtualization. */
650 aref
= build3 (OBJ_TYPE_REF
, TREE_TYPE (aref
), aref
, instance_ptr
, idx
);
655 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
656 for the given TYPE. */
659 get_vtable_name (tree type
)
661 return mangle_vtbl_for_type (type
);
664 /* Return an IDENTIFIER_NODE for the name of the virtual table table
668 get_vtt_name (tree type
)
670 return mangle_vtt_for_type (type
);
673 /* DECL is an entity associated with TYPE, like a virtual table or an
674 implicitly generated constructor. Determine whether or not DECL
675 should have external or internal linkage at the object file
676 level. This routine does not deal with COMDAT linkage and other
677 similar complexities; it simply sets TREE_PUBLIC if it possible for
678 entities in other translation units to contain copies of DECL, in
682 set_linkage_according_to_type (tree type
, tree decl
)
684 /* If TYPE involves a local class in a function with internal
685 linkage, then DECL should have internal linkage too. Other local
686 classes have no linkage -- but if their containing functions
687 have external linkage, it makes sense for DECL to have external
688 linkage too. That will allow template definitions to be merged,
690 if (no_linkage_check (type
, /*relaxed_p=*/true))
692 TREE_PUBLIC (decl
) = 0;
693 DECL_INTERFACE_KNOWN (decl
) = 1;
696 TREE_PUBLIC (decl
) = 1;
699 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
700 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
701 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
704 build_vtable (tree class_type
, tree name
, tree vtable_type
)
708 decl
= build_lang_decl (VAR_DECL
, name
, vtable_type
);
709 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
710 now to avoid confusion in mangle_decl. */
711 SET_DECL_ASSEMBLER_NAME (decl
, name
);
712 DECL_CONTEXT (decl
) = class_type
;
713 DECL_ARTIFICIAL (decl
) = 1;
714 TREE_STATIC (decl
) = 1;
715 TREE_READONLY (decl
) = 1;
716 DECL_VIRTUAL_P (decl
) = 1;
717 DECL_ALIGN (decl
) = TARGET_VTABLE_ENTRY_ALIGN
;
718 DECL_VTABLE_OR_VTT_P (decl
) = 1;
719 /* At one time the vtable info was grabbed 2 words at a time. This
720 fails on sparc unless you have 8-byte alignment. (tiemann) */
721 DECL_ALIGN (decl
) = MAX (TYPE_ALIGN (double_type_node
),
723 set_linkage_according_to_type (class_type
, decl
);
724 /* The vtable has not been defined -- yet. */
725 DECL_EXTERNAL (decl
) = 1;
726 DECL_NOT_REALLY_EXTERN (decl
) = 1;
728 /* Mark the VAR_DECL node representing the vtable itself as a
729 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
730 is rather important that such things be ignored because any
731 effort to actually generate DWARF for them will run into
732 trouble when/if we encounter code like:
735 struct S { virtual void member (); };
737 because the artificial declaration of the vtable itself (as
738 manufactured by the g++ front end) will say that the vtable is
739 a static member of `S' but only *after* the debug output for
740 the definition of `S' has already been output. This causes
741 grief because the DWARF entry for the definition of the vtable
742 will try to refer back to an earlier *declaration* of the
743 vtable as a static member of `S' and there won't be one. We
744 might be able to arrange to have the "vtable static member"
745 attached to the member list for `S' before the debug info for
746 `S' get written (which would solve the problem) but that would
747 require more intrusive changes to the g++ front end. */
748 DECL_IGNORED_P (decl
) = 1;
753 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
754 or even complete. If this does not exist, create it. If COMPLETE is
755 nonzero, then complete the definition of it -- that will render it
756 impossible to actually build the vtable, but is useful to get at those
757 which are known to exist in the runtime. */
760 get_vtable_decl (tree type
, int complete
)
764 if (CLASSTYPE_VTABLES (type
))
765 return CLASSTYPE_VTABLES (type
);
767 decl
= build_vtable (type
, get_vtable_name (type
), vtbl_type_node
);
768 CLASSTYPE_VTABLES (type
) = decl
;
772 DECL_EXTERNAL (decl
) = 1;
773 finish_decl (decl
, NULL_TREE
, NULL_TREE
);
779 /* Build the primary virtual function table for TYPE. If BINFO is
780 non-NULL, build the vtable starting with the initial approximation
781 that it is the same as the one which is the head of the association
782 list. Returns a nonzero value if a new vtable is actually
786 build_primary_vtable (tree binfo
, tree type
)
791 decl
= get_vtable_decl (type
, /*complete=*/0);
795 if (BINFO_NEW_VTABLE_MARKED (binfo
))
796 /* We have already created a vtable for this base, so there's
797 no need to do it again. */
800 virtuals
= copy_list (BINFO_VIRTUALS (binfo
));
801 TREE_TYPE (decl
) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo
));
802 DECL_SIZE (decl
) = TYPE_SIZE (TREE_TYPE (decl
));
803 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (TREE_TYPE (decl
));
807 gcc_assert (TREE_TYPE (decl
) == vtbl_type_node
);
808 virtuals
= NULL_TREE
;
811 #ifdef GATHER_STATISTICS
813 n_vtable_elems
+= list_length (virtuals
);
816 /* Initialize the association list for this type, based
817 on our first approximation. */
818 BINFO_VTABLE (TYPE_BINFO (type
)) = decl
;
819 BINFO_VIRTUALS (TYPE_BINFO (type
)) = virtuals
;
820 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type
));
824 /* Give BINFO a new virtual function table which is initialized
825 with a skeleton-copy of its original initialization. The only
826 entry that changes is the `delta' entry, so we can really
827 share a lot of structure.
829 FOR_TYPE is the most derived type which caused this table to
832 Returns nonzero if we haven't met BINFO before.
834 The order in which vtables are built (by calling this function) for
835 an object must remain the same, otherwise a binary incompatibility
839 build_secondary_vtable (tree binfo
)
841 if (BINFO_NEW_VTABLE_MARKED (binfo
))
842 /* We already created a vtable for this base. There's no need to
846 /* Remember that we've created a vtable for this BINFO, so that we
847 don't try to do so again. */
848 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
850 /* Make fresh virtual list, so we can smash it later. */
851 BINFO_VIRTUALS (binfo
) = copy_list (BINFO_VIRTUALS (binfo
));
853 /* Secondary vtables are laid out as part of the same structure as
854 the primary vtable. */
855 BINFO_VTABLE (binfo
) = NULL_TREE
;
859 /* Create a new vtable for BINFO which is the hierarchy dominated by
860 T. Return nonzero if we actually created a new vtable. */
863 make_new_vtable (tree t
, tree binfo
)
865 if (binfo
== TYPE_BINFO (t
))
866 /* In this case, it is *type*'s vtable we are modifying. We start
867 with the approximation that its vtable is that of the
868 immediate base class. */
869 return build_primary_vtable (binfo
, t
);
871 /* This is our very own copy of `basetype' to play with. Later,
872 we will fill in all the virtual functions that override the
873 virtual functions in these base classes which are not defined
874 by the current type. */
875 return build_secondary_vtable (binfo
);
878 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
879 (which is in the hierarchy dominated by T) list FNDECL as its
880 BV_FN. DELTA is the required constant adjustment from the `this'
881 pointer where the vtable entry appears to the `this' required when
882 the function is actually called. */
885 modify_vtable_entry (tree t
,
895 if (fndecl
!= BV_FN (v
)
896 || !tree_int_cst_equal (delta
, BV_DELTA (v
)))
898 /* We need a new vtable for BINFO. */
899 if (make_new_vtable (t
, binfo
))
901 /* If we really did make a new vtable, we also made a copy
902 of the BINFO_VIRTUALS list. Now, we have to find the
903 corresponding entry in that list. */
904 *virtuals
= BINFO_VIRTUALS (binfo
);
905 while (BV_FN (*virtuals
) != BV_FN (v
))
906 *virtuals
= TREE_CHAIN (*virtuals
);
910 BV_DELTA (v
) = delta
;
911 BV_VCALL_INDEX (v
) = NULL_TREE
;
917 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
918 the USING_DECL naming METHOD. Returns true if the method could be
919 added to the method vec. */
922 add_method (tree type
, tree method
, tree using_decl
)
926 bool template_conv_p
= false;
928 VEC(tree
,gc
) *method_vec
;
930 bool insert_p
= false;
933 if (method
== error_mark_node
)
936 complete_p
= COMPLETE_TYPE_P (type
);
937 conv_p
= DECL_CONV_FN_P (method
);
939 template_conv_p
= (TREE_CODE (method
) == TEMPLATE_DECL
940 && DECL_TEMPLATE_CONV_FN_P (method
));
942 method_vec
= CLASSTYPE_METHOD_VEC (type
);
945 /* Make a new method vector. We start with 8 entries. We must
946 allocate at least two (for constructors and destructors), and
947 we're going to end up with an assignment operator at some
949 method_vec
= VEC_alloc (tree
, gc
, 8);
950 /* Create slots for constructors and destructors. */
951 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
952 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
953 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
956 /* Constructors and destructors go in special slots. */
957 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method
))
958 slot
= CLASSTYPE_CONSTRUCTOR_SLOT
;
959 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
961 slot
= CLASSTYPE_DESTRUCTOR_SLOT
;
963 if (TYPE_FOR_JAVA (type
))
965 if (!DECL_ARTIFICIAL (method
))
966 error ("Java class %qT cannot have a destructor", type
);
967 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
968 error ("Java class %qT cannot have an implicit non-trivial "
978 /* See if we already have an entry with this name. */
979 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
980 VEC_iterate (tree
, method_vec
, slot
, m
);
986 if (TREE_CODE (m
) == TEMPLATE_DECL
987 && DECL_TEMPLATE_CONV_FN_P (m
))
991 if (conv_p
&& !DECL_CONV_FN_P (m
))
993 if (DECL_NAME (m
) == DECL_NAME (method
))
999 && !DECL_CONV_FN_P (m
)
1000 && DECL_NAME (m
) > DECL_NAME (method
))
1004 current_fns
= insert_p
? NULL_TREE
: VEC_index (tree
, method_vec
, slot
);
1006 if (processing_template_decl
)
1007 /* TYPE is a template class. Don't issue any errors now; wait
1008 until instantiation time to complain. */
1014 /* Check to see if we've already got this method. */
1015 for (fns
= current_fns
; fns
; fns
= OVL_NEXT (fns
))
1017 tree fn
= OVL_CURRENT (fns
);
1023 if (TREE_CODE (fn
) != TREE_CODE (method
))
1026 /* [over.load] Member function declarations with the
1027 same name and the same parameter types cannot be
1028 overloaded if any of them is a static member
1029 function declaration.
1031 [namespace.udecl] When a using-declaration brings names
1032 from a base class into a derived class scope, member
1033 functions in the derived class override and/or hide member
1034 functions with the same name and parameter types in a base
1035 class (rather than conflicting). */
1036 fn_type
= TREE_TYPE (fn
);
1037 method_type
= TREE_TYPE (method
);
1038 parms1
= TYPE_ARG_TYPES (fn_type
);
1039 parms2
= TYPE_ARG_TYPES (method_type
);
1041 /* Compare the quals on the 'this' parm. Don't compare
1042 the whole types, as used functions are treated as
1043 coming from the using class in overload resolution. */
1044 if (! DECL_STATIC_FUNCTION_P (fn
)
1045 && ! DECL_STATIC_FUNCTION_P (method
)
1046 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1
)))
1047 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2
)))))
1050 /* For templates, the return type and template parameters
1051 must be identical. */
1052 if (TREE_CODE (fn
) == TEMPLATE_DECL
1053 && (!same_type_p (TREE_TYPE (fn_type
),
1054 TREE_TYPE (method_type
))
1055 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn
),
1056 DECL_TEMPLATE_PARMS (method
))))
1059 if (! DECL_STATIC_FUNCTION_P (fn
))
1060 parms1
= TREE_CHAIN (parms1
);
1061 if (! DECL_STATIC_FUNCTION_P (method
))
1062 parms2
= TREE_CHAIN (parms2
);
1064 if (compparms (parms1
, parms2
)
1065 && (!DECL_CONV_FN_P (fn
)
1066 || same_type_p (TREE_TYPE (fn_type
),
1067 TREE_TYPE (method_type
))))
1071 if (DECL_CONTEXT (fn
) == type
)
1072 /* Defer to the local function. */
1074 if (DECL_CONTEXT (fn
) == DECL_CONTEXT (method
))
1075 error ("repeated using declaration %q+D", using_decl
);
1077 error ("using declaration %q+D conflicts with a previous using declaration",
1082 error ("%q+#D cannot be overloaded", method
);
1083 error ("with %q+#D", fn
);
1086 /* We don't call duplicate_decls here to merge the
1087 declarations because that will confuse things if the
1088 methods have inline definitions. In particular, we
1089 will crash while processing the definitions. */
1095 /* A class should never have more than one destructor. */
1096 if (current_fns
&& DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1099 /* Add the new binding. */
1100 overload
= build_overload (method
, current_fns
);
1103 TYPE_HAS_CONVERSION (type
) = 1;
1104 else if (slot
>= CLASSTYPE_FIRST_CONVERSION_SLOT
&& !complete_p
)
1105 push_class_level_binding (DECL_NAME (method
), overload
);
1109 /* We only expect to add few methods in the COMPLETE_P case, so
1110 just make room for one more method in that case. */
1111 if (VEC_reserve (tree
, gc
, method_vec
, complete_p
? -1 : 1))
1112 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1113 if (slot
== VEC_length (tree
, method_vec
))
1114 VEC_quick_push (tree
, method_vec
, overload
);
1116 VEC_quick_insert (tree
, method_vec
, slot
, overload
);
1119 /* Replace the current slot. */
1120 VEC_replace (tree
, method_vec
, slot
, overload
);
1124 /* Subroutines of finish_struct. */
1126 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1127 legit, otherwise return 0. */
1130 alter_access (tree t
, tree fdecl
, tree access
)
1134 if (!DECL_LANG_SPECIFIC (fdecl
))
1135 retrofit_lang_decl (fdecl
);
1137 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl
));
1139 elem
= purpose_member (t
, DECL_ACCESS (fdecl
));
1142 if (TREE_VALUE (elem
) != access
)
1144 if (TREE_CODE (TREE_TYPE (fdecl
)) == FUNCTION_DECL
)
1145 error ("conflicting access specifications for method"
1146 " %q+D, ignored", TREE_TYPE (fdecl
));
1148 error ("conflicting access specifications for field %qE, ignored",
1153 /* They're changing the access to the same thing they changed
1154 it to before. That's OK. */
1160 perform_or_defer_access_check (TYPE_BINFO (t
), fdecl
);
1161 DECL_ACCESS (fdecl
) = tree_cons (t
, access
, DECL_ACCESS (fdecl
));
1167 /* Process the USING_DECL, which is a member of T. */
1170 handle_using_decl (tree using_decl
, tree t
)
1172 tree decl
= USING_DECL_DECLS (using_decl
);
1173 tree name
= DECL_NAME (using_decl
);
1175 = TREE_PRIVATE (using_decl
) ? access_private_node
1176 : TREE_PROTECTED (using_decl
) ? access_protected_node
1177 : access_public_node
;
1178 tree flist
= NULL_TREE
;
1181 gcc_assert (!processing_template_decl
&& decl
);
1183 old_value
= lookup_member (t
, name
, /*protect=*/0, /*want_type=*/false);
1186 if (is_overloaded_fn (old_value
))
1187 old_value
= OVL_CURRENT (old_value
);
1189 if (DECL_P (old_value
) && DECL_CONTEXT (old_value
) == t
)
1192 old_value
= NULL_TREE
;
1195 cp_emit_debug_info_for_using (decl
, USING_DECL_SCOPE (using_decl
));
1197 if (is_overloaded_fn (decl
))
1202 else if (is_overloaded_fn (old_value
))
1205 /* It's OK to use functions from a base when there are functions with
1206 the same name already present in the current class. */;
1209 error ("%q+D invalid in %q#T", using_decl
, t
);
1210 error (" because of local method %q+#D with same name",
1211 OVL_CURRENT (old_value
));
1215 else if (!DECL_ARTIFICIAL (old_value
))
1217 error ("%q+D invalid in %q#T", using_decl
, t
);
1218 error (" because of local member %q+#D with same name", old_value
);
1222 /* Make type T see field decl FDECL with access ACCESS. */
1224 for (; flist
; flist
= OVL_NEXT (flist
))
1226 add_method (t
, OVL_CURRENT (flist
), using_decl
);
1227 alter_access (t
, OVL_CURRENT (flist
), access
);
1230 alter_access (t
, decl
, access
);
1233 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1234 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1235 properties of the bases. */
1238 check_bases (tree t
,
1239 int* cant_have_const_ctor_p
,
1240 int* no_const_asn_ref_p
)
1243 int seen_non_virtual_nearly_empty_base_p
;
1247 seen_non_virtual_nearly_empty_base_p
= 0;
1249 for (binfo
= TYPE_BINFO (t
), i
= 0;
1250 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1252 tree basetype
= TREE_TYPE (base_binfo
);
1254 gcc_assert (COMPLETE_TYPE_P (basetype
));
1256 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1257 here because the case of virtual functions but non-virtual
1258 dtor is handled in finish_struct_1. */
1259 if (warn_ecpp
&& ! TYPE_POLYMORPHIC_P (basetype
))
1260 warning (0, "base class %q#T has a non-virtual destructor", basetype
);
1262 /* If the base class doesn't have copy constructors or
1263 assignment operators that take const references, then the
1264 derived class cannot have such a member automatically
1266 if (! TYPE_HAS_CONST_INIT_REF (basetype
))
1267 *cant_have_const_ctor_p
= 1;
1268 if (TYPE_HAS_ASSIGN_REF (basetype
)
1269 && !TYPE_HAS_CONST_ASSIGN_REF (basetype
))
1270 *no_const_asn_ref_p
= 1;
1272 if (BINFO_VIRTUAL_P (base_binfo
))
1273 /* A virtual base does not effect nearly emptiness. */
1275 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype
))
1277 if (seen_non_virtual_nearly_empty_base_p
)
1278 /* And if there is more than one nearly empty base, then the
1279 derived class is not nearly empty either. */
1280 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1282 /* Remember we've seen one. */
1283 seen_non_virtual_nearly_empty_base_p
= 1;
1285 else if (!is_empty_class (basetype
))
1286 /* If the base class is not empty or nearly empty, then this
1287 class cannot be nearly empty. */
1288 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1290 /* A lot of properties from the bases also apply to the derived
1292 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (basetype
);
1293 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
1294 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype
);
1295 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
1296 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype
);
1297 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (basetype
);
1298 TYPE_POLYMORPHIC_P (t
) |= TYPE_POLYMORPHIC_P (basetype
);
1299 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
)
1300 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype
);
1304 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1305 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1306 that have had a nearly-empty virtual primary base stolen by some
1307 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1311 determine_primary_bases (tree t
)
1314 tree primary
= NULL_TREE
;
1315 tree type_binfo
= TYPE_BINFO (t
);
1318 /* Determine the primary bases of our bases. */
1319 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1320 base_binfo
= TREE_CHAIN (base_binfo
))
1322 tree primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo
));
1324 /* See if we're the non-virtual primary of our inheritance
1326 if (!BINFO_VIRTUAL_P (base_binfo
))
1328 tree parent
= BINFO_INHERITANCE_CHAIN (base_binfo
);
1329 tree parent_primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent
));
1332 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
1333 BINFO_TYPE (parent_primary
)))
1334 /* We are the primary binfo. */
1335 BINFO_PRIMARY_P (base_binfo
) = 1;
1337 /* Determine if we have a virtual primary base, and mark it so.
1339 if (primary
&& BINFO_VIRTUAL_P (primary
))
1341 tree this_primary
= copied_binfo (primary
, base_binfo
);
1343 if (BINFO_PRIMARY_P (this_primary
))
1344 /* Someone already claimed this base. */
1345 BINFO_LOST_PRIMARY_P (base_binfo
) = 1;
1350 BINFO_PRIMARY_P (this_primary
) = 1;
1351 BINFO_INHERITANCE_CHAIN (this_primary
) = base_binfo
;
1353 /* A virtual binfo might have been copied from within
1354 another hierarchy. As we're about to use it as a
1355 primary base, make sure the offsets match. */
1356 delta
= size_diffop (convert (ssizetype
,
1357 BINFO_OFFSET (base_binfo
)),
1359 BINFO_OFFSET (this_primary
)));
1361 propagate_binfo_offsets (this_primary
, delta
);
1366 /* First look for a dynamic direct non-virtual base. */
1367 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, base_binfo
); i
++)
1369 tree basetype
= BINFO_TYPE (base_binfo
);
1371 if (TYPE_CONTAINS_VPTR_P (basetype
) && !BINFO_VIRTUAL_P (base_binfo
))
1373 primary
= base_binfo
;
1378 /* A "nearly-empty" virtual base class can be the primary base
1379 class, if no non-virtual polymorphic base can be found. Look for
1380 a nearly-empty virtual dynamic base that is not already a primary
1381 base of something in the hierarchy. If there is no such base,
1382 just pick the first nearly-empty virtual base. */
1384 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1385 base_binfo
= TREE_CHAIN (base_binfo
))
1386 if (BINFO_VIRTUAL_P (base_binfo
)
1387 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo
)))
1389 if (!BINFO_PRIMARY_P (base_binfo
))
1391 /* Found one that is not primary. */
1392 primary
= base_binfo
;
1396 /* Remember the first candidate. */
1397 primary
= base_binfo
;
1401 /* If we've got a primary base, use it. */
1404 tree basetype
= BINFO_TYPE (primary
);
1406 CLASSTYPE_PRIMARY_BINFO (t
) = primary
;
1407 if (BINFO_PRIMARY_P (primary
))
1408 /* We are stealing a primary base. */
1409 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary
)) = 1;
1410 BINFO_PRIMARY_P (primary
) = 1;
1411 if (BINFO_VIRTUAL_P (primary
))
1415 BINFO_INHERITANCE_CHAIN (primary
) = type_binfo
;
1416 /* A virtual binfo might have been copied from within
1417 another hierarchy. As we're about to use it as a primary
1418 base, make sure the offsets match. */
1419 delta
= size_diffop (ssize_int (0),
1420 convert (ssizetype
, BINFO_OFFSET (primary
)));
1422 propagate_binfo_offsets (primary
, delta
);
1425 primary
= TYPE_BINFO (basetype
);
1427 TYPE_VFIELD (t
) = TYPE_VFIELD (basetype
);
1428 BINFO_VTABLE (type_binfo
) = BINFO_VTABLE (primary
);
1429 BINFO_VIRTUALS (type_binfo
) = BINFO_VIRTUALS (primary
);
1433 /* Set memoizing fields and bits of T (and its variants) for later
1437 finish_struct_bits (tree t
)
1441 /* Fix up variants (if any). */
1442 for (variants
= TYPE_NEXT_VARIANT (t
);
1444 variants
= TYPE_NEXT_VARIANT (variants
))
1446 /* These fields are in the _TYPE part of the node, not in
1447 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1448 TYPE_HAS_CONSTRUCTOR (variants
) = TYPE_HAS_CONSTRUCTOR (t
);
1449 TYPE_NEEDS_CONSTRUCTING (variants
) = TYPE_NEEDS_CONSTRUCTING (t
);
1450 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants
)
1451 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
1453 TYPE_POLYMORPHIC_P (variants
) = TYPE_POLYMORPHIC_P (t
);
1455 TYPE_BINFO (variants
) = TYPE_BINFO (t
);
1457 /* Copy whatever these are holding today. */
1458 TYPE_VFIELD (variants
) = TYPE_VFIELD (t
);
1459 TYPE_METHODS (variants
) = TYPE_METHODS (t
);
1460 TYPE_FIELDS (variants
) = TYPE_FIELDS (t
);
1461 TYPE_SIZE (variants
) = TYPE_SIZE (t
);
1462 TYPE_SIZE_UNIT (variants
) = TYPE_SIZE_UNIT (t
);
1465 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) && TYPE_POLYMORPHIC_P (t
))
1466 /* For a class w/o baseclasses, 'finish_struct' has set
1467 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1468 Similarly for a class whose base classes do not have vtables.
1469 When neither of these is true, we might have removed abstract
1470 virtuals (by providing a definition), added some (by declaring
1471 new ones), or redeclared ones from a base class. We need to
1472 recalculate what's really an abstract virtual at this point (by
1473 looking in the vtables). */
1474 get_pure_virtuals (t
);
1476 /* If this type has a copy constructor or a destructor, force its
1477 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1478 nonzero. This will cause it to be passed by invisible reference
1479 and prevent it from being returned in a register. */
1480 if (! TYPE_HAS_TRIVIAL_INIT_REF (t
) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
1483 DECL_MODE (TYPE_MAIN_DECL (t
)) = BLKmode
;
1484 for (variants
= t
; variants
; variants
= TYPE_NEXT_VARIANT (variants
))
1486 TYPE_MODE (variants
) = BLKmode
;
1487 TREE_ADDRESSABLE (variants
) = 1;
1492 /* Issue warnings about T having private constructors, but no friends,
1495 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1496 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1497 non-private static member functions. */
1500 maybe_warn_about_overly_private_class (tree t
)
1502 int has_member_fn
= 0;
1503 int has_nonprivate_method
= 0;
1506 if (!warn_ctor_dtor_privacy
1507 /* If the class has friends, those entities might create and
1508 access instances, so we should not warn. */
1509 || (CLASSTYPE_FRIEND_CLASSES (t
)
1510 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
1511 /* We will have warned when the template was declared; there's
1512 no need to warn on every instantiation. */
1513 || CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
1514 /* There's no reason to even consider warning about this
1518 /* We only issue one warning, if more than one applies, because
1519 otherwise, on code like:
1522 // Oops - forgot `public:'
1528 we warn several times about essentially the same problem. */
1530 /* Check to see if all (non-constructor, non-destructor) member
1531 functions are private. (Since there are no friends or
1532 non-private statics, we can't ever call any of the private member
1534 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
1535 /* We're not interested in compiler-generated methods; they don't
1536 provide any way to call private members. */
1537 if (!DECL_ARTIFICIAL (fn
))
1539 if (!TREE_PRIVATE (fn
))
1541 if (DECL_STATIC_FUNCTION_P (fn
))
1542 /* A non-private static member function is just like a
1543 friend; it can create and invoke private member
1544 functions, and be accessed without a class
1548 has_nonprivate_method
= 1;
1549 /* Keep searching for a static member function. */
1551 else if (!DECL_CONSTRUCTOR_P (fn
) && !DECL_DESTRUCTOR_P (fn
))
1555 if (!has_nonprivate_method
&& has_member_fn
)
1557 /* There are no non-private methods, and there's at least one
1558 private member function that isn't a constructor or
1559 destructor. (If all the private members are
1560 constructors/destructors we want to use the code below that
1561 issues error messages specifically referring to
1562 constructors/destructors.) */
1564 tree binfo
= TYPE_BINFO (t
);
1566 for (i
= 0; i
!= BINFO_N_BASE_BINFOS (binfo
); i
++)
1567 if (BINFO_BASE_ACCESS (binfo
, i
) != access_private_node
)
1569 has_nonprivate_method
= 1;
1572 if (!has_nonprivate_method
)
1574 warning (0, "all member functions in class %qT are private", t
);
1579 /* Even if some of the member functions are non-private, the class
1580 won't be useful for much if all the constructors or destructors
1581 are private: such an object can never be created or destroyed. */
1582 fn
= CLASSTYPE_DESTRUCTORS (t
);
1583 if (fn
&& TREE_PRIVATE (fn
))
1585 warning (0, "%q#T only defines a private destructor and has no friends",
1590 if (TYPE_HAS_CONSTRUCTOR (t
)
1591 /* Implicitly generated constructors are always public. */
1592 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t
)
1593 || !CLASSTYPE_LAZY_COPY_CTOR (t
)))
1595 int nonprivate_ctor
= 0;
1597 /* If a non-template class does not define a copy
1598 constructor, one is defined for it, enabling it to avoid
1599 this warning. For a template class, this does not
1600 happen, and so we would normally get a warning on:
1602 template <class T> class C { private: C(); };
1604 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1605 complete non-template or fully instantiated classes have this
1607 if (!TYPE_HAS_INIT_REF (t
))
1608 nonprivate_ctor
= 1;
1610 for (fn
= CLASSTYPE_CONSTRUCTORS (t
); fn
; fn
= OVL_NEXT (fn
))
1612 tree ctor
= OVL_CURRENT (fn
);
1613 /* Ideally, we wouldn't count copy constructors (or, in
1614 fact, any constructor that takes an argument of the
1615 class type as a parameter) because such things cannot
1616 be used to construct an instance of the class unless
1617 you already have one. But, for now at least, we're
1619 if (! TREE_PRIVATE (ctor
))
1621 nonprivate_ctor
= 1;
1626 if (nonprivate_ctor
== 0)
1628 warning (0, "%q#T only defines private constructors and has no friends",
1636 gt_pointer_operator new_value
;
1640 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1643 method_name_cmp (const void* m1_p
, const void* m2_p
)
1645 const tree
*const m1
= m1_p
;
1646 const tree
*const m2
= m2_p
;
1648 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1650 if (*m1
== NULL_TREE
)
1652 if (*m2
== NULL_TREE
)
1654 if (DECL_NAME (OVL_CURRENT (*m1
)) < DECL_NAME (OVL_CURRENT (*m2
)))
1659 /* This routine compares two fields like method_name_cmp but using the
1660 pointer operator in resort_field_decl_data. */
1663 resort_method_name_cmp (const void* m1_p
, const void* m2_p
)
1665 const tree
*const m1
= m1_p
;
1666 const tree
*const m2
= m2_p
;
1667 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1669 if (*m1
== NULL_TREE
)
1671 if (*m2
== NULL_TREE
)
1674 tree d1
= DECL_NAME (OVL_CURRENT (*m1
));
1675 tree d2
= DECL_NAME (OVL_CURRENT (*m2
));
1676 resort_data
.new_value (&d1
, resort_data
.cookie
);
1677 resort_data
.new_value (&d2
, resort_data
.cookie
);
1684 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1687 resort_type_method_vec (void* obj
,
1688 void* orig_obj ATTRIBUTE_UNUSED
,
1689 gt_pointer_operator new_value
,
1692 VEC(tree
,gc
) *method_vec
= (VEC(tree
,gc
) *) obj
;
1693 int len
= VEC_length (tree
, method_vec
);
1697 /* The type conversion ops have to live at the front of the vec, so we
1699 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1700 VEC_iterate (tree
, method_vec
, slot
, fn
);
1702 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1707 resort_data
.new_value
= new_value
;
1708 resort_data
.cookie
= cookie
;
1709 qsort (VEC_address (tree
, method_vec
) + slot
, len
- slot
, sizeof (tree
),
1710 resort_method_name_cmp
);
1714 /* Warn about duplicate methods in fn_fields.
1716 Sort methods that are not special (i.e., constructors, destructors,
1717 and type conversion operators) so that we can find them faster in
1721 finish_struct_methods (tree t
)
1724 VEC(tree
,gc
) *method_vec
;
1727 method_vec
= CLASSTYPE_METHOD_VEC (t
);
1731 len
= VEC_length (tree
, method_vec
);
1733 /* Clear DECL_IN_AGGR_P for all functions. */
1734 for (fn_fields
= TYPE_METHODS (t
); fn_fields
;
1735 fn_fields
= TREE_CHAIN (fn_fields
))
1736 DECL_IN_AGGR_P (fn_fields
) = 0;
1738 /* Issue warnings about private constructors and such. If there are
1739 no methods, then some public defaults are generated. */
1740 maybe_warn_about_overly_private_class (t
);
1742 /* The type conversion ops have to live at the front of the vec, so we
1744 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1745 VEC_iterate (tree
, method_vec
, slot
, fn_fields
);
1747 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields
)))
1750 qsort (VEC_address (tree
, method_vec
) + slot
,
1751 len
-slot
, sizeof (tree
), method_name_cmp
);
1754 /* Make BINFO's vtable have N entries, including RTTI entries,
1755 vbase and vcall offsets, etc. Set its type and call the backend
1759 layout_vtable_decl (tree binfo
, int n
)
1764 atype
= build_cplus_array_type (vtable_entry_type
,
1765 build_index_type (size_int (n
- 1)));
1766 layout_type (atype
);
1768 /* We may have to grow the vtable. */
1769 vtable
= get_vtbl_decl_for_binfo (binfo
);
1770 if (!same_type_p (TREE_TYPE (vtable
), atype
))
1772 TREE_TYPE (vtable
) = atype
;
1773 DECL_SIZE (vtable
) = DECL_SIZE_UNIT (vtable
) = NULL_TREE
;
1774 layout_decl (vtable
, 0);
1778 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1779 have the same signature. */
1782 same_signature_p (tree fndecl
, tree base_fndecl
)
1784 /* One destructor overrides another if they are the same kind of
1786 if (DECL_DESTRUCTOR_P (base_fndecl
) && DECL_DESTRUCTOR_P (fndecl
)
1787 && special_function_p (base_fndecl
) == special_function_p (fndecl
))
1789 /* But a non-destructor never overrides a destructor, nor vice
1790 versa, nor do different kinds of destructors override
1791 one-another. For example, a complete object destructor does not
1792 override a deleting destructor. */
1793 if (DECL_DESTRUCTOR_P (base_fndecl
) || DECL_DESTRUCTOR_P (fndecl
))
1796 if (DECL_NAME (fndecl
) == DECL_NAME (base_fndecl
)
1797 || (DECL_CONV_FN_P (fndecl
)
1798 && DECL_CONV_FN_P (base_fndecl
)
1799 && same_type_p (DECL_CONV_FN_TYPE (fndecl
),
1800 DECL_CONV_FN_TYPE (base_fndecl
))))
1802 tree types
, base_types
;
1803 types
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1804 base_types
= TYPE_ARG_TYPES (TREE_TYPE (base_fndecl
));
1805 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types
)))
1806 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types
))))
1807 && compparms (TREE_CHAIN (base_types
), TREE_CHAIN (types
)))
1813 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1817 base_derived_from (tree derived
, tree base
)
1821 for (probe
= base
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1823 if (probe
== derived
)
1825 else if (BINFO_VIRTUAL_P (probe
))
1826 /* If we meet a virtual base, we can't follow the inheritance
1827 any more. See if the complete type of DERIVED contains
1828 such a virtual base. */
1829 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (derived
))
1835 typedef struct find_final_overrider_data_s
{
1836 /* The function for which we are trying to find a final overrider. */
1838 /* The base class in which the function was declared. */
1839 tree declaring_base
;
1840 /* The candidate overriders. */
1842 /* Path to most derived. */
1843 VEC(tree
,heap
) *path
;
1844 } find_final_overrider_data
;
1846 /* Add the overrider along the current path to FFOD->CANDIDATES.
1847 Returns true if an overrider was found; false otherwise. */
1850 dfs_find_final_overrider_1 (tree binfo
,
1851 find_final_overrider_data
*ffod
,
1856 /* If BINFO is not the most derived type, try a more derived class.
1857 A definition there will overrider a definition here. */
1861 if (dfs_find_final_overrider_1
1862 (VEC_index (tree
, ffod
->path
, depth
), ffod
, depth
))
1866 method
= look_for_overrides_here (BINFO_TYPE (binfo
), ffod
->fn
);
1869 tree
*candidate
= &ffod
->candidates
;
1871 /* Remove any candidates overridden by this new function. */
1874 /* If *CANDIDATE overrides METHOD, then METHOD
1875 cannot override anything else on the list. */
1876 if (base_derived_from (TREE_VALUE (*candidate
), binfo
))
1878 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1879 if (base_derived_from (binfo
, TREE_VALUE (*candidate
)))
1880 *candidate
= TREE_CHAIN (*candidate
);
1882 candidate
= &TREE_CHAIN (*candidate
);
1885 /* Add the new function. */
1886 ffod
->candidates
= tree_cons (method
, binfo
, ffod
->candidates
);
1893 /* Called from find_final_overrider via dfs_walk. */
1896 dfs_find_final_overrider_pre (tree binfo
, void *data
)
1898 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1900 if (binfo
== ffod
->declaring_base
)
1901 dfs_find_final_overrider_1 (binfo
, ffod
, VEC_length (tree
, ffod
->path
));
1902 VEC_safe_push (tree
, heap
, ffod
->path
, binfo
);
1908 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED
, void *data
)
1910 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1911 VEC_pop (tree
, ffod
->path
);
1916 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1917 FN and whose TREE_VALUE is the binfo for the base where the
1918 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1919 DERIVED) is the base object in which FN is declared. */
1922 find_final_overrider (tree derived
, tree binfo
, tree fn
)
1924 find_final_overrider_data ffod
;
1926 /* Getting this right is a little tricky. This is valid:
1928 struct S { virtual void f (); };
1929 struct T { virtual void f (); };
1930 struct U : public S, public T { };
1932 even though calling `f' in `U' is ambiguous. But,
1934 struct R { virtual void f(); };
1935 struct S : virtual public R { virtual void f (); };
1936 struct T : virtual public R { virtual void f (); };
1937 struct U : public S, public T { };
1939 is not -- there's no way to decide whether to put `S::f' or
1940 `T::f' in the vtable for `R'.
1942 The solution is to look at all paths to BINFO. If we find
1943 different overriders along any two, then there is a problem. */
1944 if (DECL_THUNK_P (fn
))
1945 fn
= THUNK_TARGET (fn
);
1947 /* Determine the depth of the hierarchy. */
1949 ffod
.declaring_base
= binfo
;
1950 ffod
.candidates
= NULL_TREE
;
1951 ffod
.path
= VEC_alloc (tree
, heap
, 30);
1953 dfs_walk_all (derived
, dfs_find_final_overrider_pre
,
1954 dfs_find_final_overrider_post
, &ffod
);
1956 VEC_free (tree
, heap
, ffod
.path
);
1958 /* If there was no winner, issue an error message. */
1959 if (!ffod
.candidates
|| TREE_CHAIN (ffod
.candidates
))
1960 return error_mark_node
;
1962 return ffod
.candidates
;
1965 /* Return the index of the vcall offset for FN when TYPE is used as a
1969 get_vcall_index (tree fn
, tree type
)
1971 VEC(tree_pair_s
,gc
) *indices
= CLASSTYPE_VCALL_INDICES (type
);
1975 for (ix
= 0; VEC_iterate (tree_pair_s
, indices
, ix
, p
); ix
++)
1976 if ((DECL_DESTRUCTOR_P (fn
) && DECL_DESTRUCTOR_P (p
->purpose
))
1977 || same_signature_p (fn
, p
->purpose
))
1980 /* There should always be an appropriate index. */
1984 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1985 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1986 corresponding position in the BINFO_VIRTUALS list. */
1989 update_vtable_entry_for_fn (tree t
, tree binfo
, tree fn
, tree
* virtuals
,
1997 tree overrider_fn
, overrider_target
;
1998 tree target_fn
= DECL_THUNK_P (fn
) ? THUNK_TARGET (fn
) : fn
;
1999 tree over_return
, base_return
;
2002 /* Find the nearest primary base (possibly binfo itself) which defines
2003 this function; this is the class the caller will convert to when
2004 calling FN through BINFO. */
2005 for (b
= binfo
; ; b
= get_primary_binfo (b
))
2008 if (look_for_overrides_here (BINFO_TYPE (b
), target_fn
))
2011 /* The nearest definition is from a lost primary. */
2012 if (BINFO_LOST_PRIMARY_P (b
))
2017 /* Find the final overrider. */
2018 overrider
= find_final_overrider (TYPE_BINFO (t
), b
, target_fn
);
2019 if (overrider
== error_mark_node
)
2021 error ("no unique final overrider for %qD in %qT", target_fn
, t
);
2024 overrider_target
= overrider_fn
= TREE_PURPOSE (overrider
);
2026 /* Check for adjusting covariant return types. */
2027 over_return
= TREE_TYPE (TREE_TYPE (overrider_target
));
2028 base_return
= TREE_TYPE (TREE_TYPE (target_fn
));
2030 if (POINTER_TYPE_P (over_return
)
2031 && TREE_CODE (over_return
) == TREE_CODE (base_return
)
2032 && CLASS_TYPE_P (TREE_TYPE (over_return
))
2033 && CLASS_TYPE_P (TREE_TYPE (base_return
))
2034 /* If the overrider is invalid, don't even try. */
2035 && !DECL_INVALID_OVERRIDER_P (overrider_target
))
2037 /* If FN is a covariant thunk, we must figure out the adjustment
2038 to the final base FN was converting to. As OVERRIDER_TARGET might
2039 also be converting to the return type of FN, we have to
2040 combine the two conversions here. */
2041 tree fixed_offset
, virtual_offset
;
2043 over_return
= TREE_TYPE (over_return
);
2044 base_return
= TREE_TYPE (base_return
);
2046 if (DECL_THUNK_P (fn
))
2048 gcc_assert (DECL_RESULT_THUNK_P (fn
));
2049 fixed_offset
= ssize_int (THUNK_FIXED_OFFSET (fn
));
2050 virtual_offset
= THUNK_VIRTUAL_OFFSET (fn
);
2053 fixed_offset
= virtual_offset
= NULL_TREE
;
2056 /* Find the equivalent binfo within the return type of the
2057 overriding function. We will want the vbase offset from
2059 virtual_offset
= binfo_for_vbase (BINFO_TYPE (virtual_offset
),
2061 else if (!same_type_ignoring_top_level_qualifiers_p
2062 (over_return
, base_return
))
2064 /* There was no existing virtual thunk (which takes
2065 precedence). So find the binfo of the base function's
2066 return type within the overriding function's return type.
2067 We cannot call lookup base here, because we're inside a
2068 dfs_walk, and will therefore clobber the BINFO_MARKED
2069 flags. Fortunately we know the covariancy is valid (it
2070 has already been checked), so we can just iterate along
2071 the binfos, which have been chained in inheritance graph
2072 order. Of course it is lame that we have to repeat the
2073 search here anyway -- we should really be caching pieces
2074 of the vtable and avoiding this repeated work. */
2075 tree thunk_binfo
, base_binfo
;
2077 /* Find the base binfo within the overriding function's
2078 return type. We will always find a thunk_binfo, except
2079 when the covariancy is invalid (which we will have
2080 already diagnosed). */
2081 for (base_binfo
= TYPE_BINFO (base_return
),
2082 thunk_binfo
= TYPE_BINFO (over_return
);
2084 thunk_binfo
= TREE_CHAIN (thunk_binfo
))
2085 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo
),
2086 BINFO_TYPE (base_binfo
)))
2089 /* See if virtual inheritance is involved. */
2090 for (virtual_offset
= thunk_binfo
;
2092 virtual_offset
= BINFO_INHERITANCE_CHAIN (virtual_offset
))
2093 if (BINFO_VIRTUAL_P (virtual_offset
))
2097 || (thunk_binfo
&& !BINFO_OFFSET_ZEROP (thunk_binfo
)))
2099 tree offset
= convert (ssizetype
, BINFO_OFFSET (thunk_binfo
));
2103 /* We convert via virtual base. Adjust the fixed
2104 offset to be from there. */
2105 offset
= size_diffop
2107 (ssizetype
, BINFO_OFFSET (virtual_offset
)));
2110 /* There was an existing fixed offset, this must be
2111 from the base just converted to, and the base the
2112 FN was thunking to. */
2113 fixed_offset
= size_binop (PLUS_EXPR
, fixed_offset
, offset
);
2115 fixed_offset
= offset
;
2119 if (fixed_offset
|| virtual_offset
)
2120 /* Replace the overriding function with a covariant thunk. We
2121 will emit the overriding function in its own slot as
2123 overrider_fn
= make_thunk (overrider_target
, /*this_adjusting=*/0,
2124 fixed_offset
, virtual_offset
);
2127 gcc_assert (!DECL_THUNK_P (fn
));
2129 /* Assume that we will produce a thunk that convert all the way to
2130 the final overrider, and not to an intermediate virtual base. */
2131 virtual_base
= NULL_TREE
;
2133 /* See if we can convert to an intermediate virtual base first, and then
2134 use the vcall offset located there to finish the conversion. */
2135 for (; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
2137 /* If we find the final overrider, then we can stop
2139 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b
),
2140 BINFO_TYPE (TREE_VALUE (overrider
))))
2143 /* If we find a virtual base, and we haven't yet found the
2144 overrider, then there is a virtual base between the
2145 declaring base (first_defn) and the final overrider. */
2146 if (BINFO_VIRTUAL_P (b
))
2153 if (overrider_fn
!= overrider_target
&& !virtual_base
)
2155 /* The ABI specifies that a covariant thunk includes a mangling
2156 for a this pointer adjustment. This-adjusting thunks that
2157 override a function from a virtual base have a vcall
2158 adjustment. When the virtual base in question is a primary
2159 virtual base, we know the adjustments are zero, (and in the
2160 non-covariant case, we would not use the thunk).
2161 Unfortunately we didn't notice this could happen, when
2162 designing the ABI and so never mandated that such a covariant
2163 thunk should be emitted. Because we must use the ABI mandated
2164 name, we must continue searching from the binfo where we
2165 found the most recent definition of the function, towards the
2166 primary binfo which first introduced the function into the
2167 vtable. If that enters a virtual base, we must use a vcall
2168 this-adjusting thunk. Bleah! */
2169 tree probe
= first_defn
;
2171 while ((probe
= get_primary_binfo (probe
))
2172 && (unsigned) list_length (BINFO_VIRTUALS (probe
)) > ix
)
2173 if (BINFO_VIRTUAL_P (probe
))
2174 virtual_base
= probe
;
2177 /* Even if we find a virtual base, the correct delta is
2178 between the overrider and the binfo we're building a vtable
2180 goto virtual_covariant
;
2183 /* Compute the constant adjustment to the `this' pointer. The
2184 `this' pointer, when this function is called, will point at BINFO
2185 (or one of its primary bases, which are at the same offset). */
2187 /* The `this' pointer needs to be adjusted from the declaration to
2188 the nearest virtual base. */
2189 delta
= size_diffop (convert (ssizetype
, BINFO_OFFSET (virtual_base
)),
2190 convert (ssizetype
, BINFO_OFFSET (first_defn
)));
2192 /* If the nearest definition is in a lost primary, we don't need an
2193 entry in our vtable. Except possibly in a constructor vtable,
2194 if we happen to get our primary back. In that case, the offset
2195 will be zero, as it will be a primary base. */
2196 delta
= size_zero_node
;
2198 /* The `this' pointer needs to be adjusted from pointing to
2199 BINFO to pointing at the base where the final overrider
2202 delta
= size_diffop (convert (ssizetype
,
2203 BINFO_OFFSET (TREE_VALUE (overrider
))),
2204 convert (ssizetype
, BINFO_OFFSET (binfo
)));
2206 modify_vtable_entry (t
, binfo
, overrider_fn
, delta
, virtuals
);
2209 BV_VCALL_INDEX (*virtuals
)
2210 = get_vcall_index (overrider_target
, BINFO_TYPE (virtual_base
));
2212 BV_VCALL_INDEX (*virtuals
) = NULL_TREE
;
2215 /* Called from modify_all_vtables via dfs_walk. */
2218 dfs_modify_vtables (tree binfo
, void* data
)
2220 tree t
= (tree
) data
;
2225 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2226 /* A base without a vtable needs no modification, and its bases
2227 are uninteresting. */
2228 return dfs_skip_bases
;
2230 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
)
2231 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
2232 /* Don't do the primary vtable, if it's new. */
2235 if (BINFO_PRIMARY_P (binfo
) && !BINFO_VIRTUAL_P (binfo
))
2236 /* There's no need to modify the vtable for a non-virtual primary
2237 base; we're not going to use that vtable anyhow. We do still
2238 need to do this for virtual primary bases, as they could become
2239 non-primary in a construction vtable. */
2242 make_new_vtable (t
, binfo
);
2244 /* Now, go through each of the virtual functions in the virtual
2245 function table for BINFO. Find the final overrider, and update
2246 the BINFO_VIRTUALS list appropriately. */
2247 for (ix
= 0, virtuals
= BINFO_VIRTUALS (binfo
),
2248 old_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
2250 ix
++, virtuals
= TREE_CHAIN (virtuals
),
2251 old_virtuals
= TREE_CHAIN (old_virtuals
))
2252 update_vtable_entry_for_fn (t
,
2254 BV_FN (old_virtuals
),
2260 /* Update all of the primary and secondary vtables for T. Create new
2261 vtables as required, and initialize their RTTI information. Each
2262 of the functions in VIRTUALS is declared in T and may override a
2263 virtual function from a base class; find and modify the appropriate
2264 entries to point to the overriding functions. Returns a list, in
2265 declaration order, of the virtual functions that are declared in T,
2266 but do not appear in the primary base class vtable, and which
2267 should therefore be appended to the end of the vtable for T. */
2270 modify_all_vtables (tree t
, tree virtuals
)
2272 tree binfo
= TYPE_BINFO (t
);
2275 /* Update all of the vtables. */
2276 dfs_walk_once (binfo
, dfs_modify_vtables
, NULL
, t
);
2278 /* Add virtual functions not already in our primary vtable. These
2279 will be both those introduced by this class, and those overridden
2280 from secondary bases. It does not include virtuals merely
2281 inherited from secondary bases. */
2282 for (fnsp
= &virtuals
; *fnsp
; )
2284 tree fn
= TREE_VALUE (*fnsp
);
2286 if (!value_member (fn
, BINFO_VIRTUALS (binfo
))
2287 || DECL_VINDEX (fn
) == error_mark_node
)
2289 /* We don't need to adjust the `this' pointer when
2290 calling this function. */
2291 BV_DELTA (*fnsp
) = integer_zero_node
;
2292 BV_VCALL_INDEX (*fnsp
) = NULL_TREE
;
2294 /* This is a function not already in our vtable. Keep it. */
2295 fnsp
= &TREE_CHAIN (*fnsp
);
2298 /* We've already got an entry for this function. Skip it. */
2299 *fnsp
= TREE_CHAIN (*fnsp
);
2305 /* Get the base virtual function declarations in T that have the
2309 get_basefndecls (tree name
, tree t
)
2312 tree base_fndecls
= NULL_TREE
;
2313 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
2316 /* Find virtual functions in T with the indicated NAME. */
2317 i
= lookup_fnfields_1 (t
, name
);
2319 for (methods
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (t
), i
);
2321 methods
= OVL_NEXT (methods
))
2323 tree method
= OVL_CURRENT (methods
);
2325 if (TREE_CODE (method
) == FUNCTION_DECL
2326 && DECL_VINDEX (method
))
2327 base_fndecls
= tree_cons (NULL_TREE
, method
, base_fndecls
);
2331 return base_fndecls
;
2333 for (i
= 0; i
< n_baseclasses
; i
++)
2335 tree basetype
= BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t
), i
));
2336 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2340 return base_fndecls
;
2343 /* If this declaration supersedes the declaration of
2344 a method declared virtual in the base class, then
2345 mark this field as being virtual as well. */
2348 check_for_override (tree decl
, tree ctype
)
2350 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2351 /* In [temp.mem] we have:
2353 A specialization of a member function template does not
2354 override a virtual function from a base class. */
2356 if ((DECL_DESTRUCTOR_P (decl
)
2357 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
))
2358 || DECL_CONV_FN_P (decl
))
2359 && look_for_overrides (ctype
, decl
)
2360 && !DECL_STATIC_FUNCTION_P (decl
))
2361 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2362 the error_mark_node so that we know it is an overriding
2364 DECL_VINDEX (decl
) = decl
;
2366 if (DECL_VIRTUAL_P (decl
))
2368 if (!DECL_VINDEX (decl
))
2369 DECL_VINDEX (decl
) = error_mark_node
;
2370 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
)) = 1;
2374 /* Warn about hidden virtual functions that are not overridden in t.
2375 We know that constructors and destructors don't apply. */
2378 warn_hidden (tree t
)
2380 VEC(tree
,gc
) *method_vec
= CLASSTYPE_METHOD_VEC (t
);
2384 /* We go through each separately named virtual function. */
2385 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2386 VEC_iterate (tree
, method_vec
, i
, fns
);
2397 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2398 have the same name. Figure out what name that is. */
2399 name
= DECL_NAME (OVL_CURRENT (fns
));
2400 /* There are no possibly hidden functions yet. */
2401 base_fndecls
= NULL_TREE
;
2402 /* Iterate through all of the base classes looking for possibly
2403 hidden functions. */
2404 for (binfo
= TYPE_BINFO (t
), j
= 0;
2405 BINFO_BASE_ITERATE (binfo
, j
, base_binfo
); j
++)
2407 tree basetype
= BINFO_TYPE (base_binfo
);
2408 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2412 /* If there are no functions to hide, continue. */
2416 /* Remove any overridden functions. */
2417 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
2419 fndecl
= OVL_CURRENT (fn
);
2420 if (DECL_VINDEX (fndecl
))
2422 tree
*prev
= &base_fndecls
;
2425 /* If the method from the base class has the same
2426 signature as the method from the derived class, it
2427 has been overridden. */
2428 if (same_signature_p (fndecl
, TREE_VALUE (*prev
)))
2429 *prev
= TREE_CHAIN (*prev
);
2431 prev
= &TREE_CHAIN (*prev
);
2435 /* Now give a warning for all base functions without overriders,
2436 as they are hidden. */
2437 while (base_fndecls
)
2439 /* Here we know it is a hider, and no overrider exists. */
2440 warning (0, "%q+D was hidden", TREE_VALUE (base_fndecls
));
2441 warning (0, " by %q+D", fns
);
2442 base_fndecls
= TREE_CHAIN (base_fndecls
);
2447 /* Check for things that are invalid. There are probably plenty of other
2448 things we should check for also. */
2451 finish_struct_anon (tree t
)
2455 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
2457 if (TREE_STATIC (field
))
2459 if (TREE_CODE (field
) != FIELD_DECL
)
2462 if (DECL_NAME (field
) == NULL_TREE
2463 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
2465 tree elt
= TYPE_FIELDS (TREE_TYPE (field
));
2466 for (; elt
; elt
= TREE_CHAIN (elt
))
2468 /* We're generally only interested in entities the user
2469 declared, but we also find nested classes by noticing
2470 the TYPE_DECL that we create implicitly. You're
2471 allowed to put one anonymous union inside another,
2472 though, so we explicitly tolerate that. We use
2473 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2474 we also allow unnamed types used for defining fields. */
2475 if (DECL_ARTIFICIAL (elt
)
2476 && (!DECL_IMPLICIT_TYPEDEF_P (elt
)
2477 || TYPE_ANONYMOUS_P (TREE_TYPE (elt
))))
2480 if (TREE_CODE (elt
) != FIELD_DECL
)
2482 pedwarn ("%q+#D invalid; an anonymous union can "
2483 "only have non-static data members", elt
);
2487 if (TREE_PRIVATE (elt
))
2488 pedwarn ("private member %q+#D in anonymous union", elt
);
2489 else if (TREE_PROTECTED (elt
))
2490 pedwarn ("protected member %q+#D in anonymous union", elt
);
2492 TREE_PRIVATE (elt
) = TREE_PRIVATE (field
);
2493 TREE_PROTECTED (elt
) = TREE_PROTECTED (field
);
2499 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2500 will be used later during class template instantiation.
2501 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2502 a non-static member data (FIELD_DECL), a member function
2503 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2504 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2505 When FRIEND_P is nonzero, T is either a friend class
2506 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2507 (FUNCTION_DECL, TEMPLATE_DECL). */
2510 maybe_add_class_template_decl_list (tree type
, tree t
, int friend_p
)
2512 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2513 if (CLASSTYPE_TEMPLATE_INFO (type
))
2514 CLASSTYPE_DECL_LIST (type
)
2515 = tree_cons (friend_p
? NULL_TREE
: type
,
2516 t
, CLASSTYPE_DECL_LIST (type
));
2519 /* Create default constructors, assignment operators, and so forth for
2520 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2521 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2522 the class cannot have a default constructor, copy constructor
2523 taking a const reference argument, or an assignment operator taking
2524 a const reference, respectively. */
2527 add_implicitly_declared_members (tree t
,
2528 int cant_have_const_cctor
,
2529 int cant_have_const_assignment
)
2532 if (!CLASSTYPE_DESTRUCTORS (t
))
2534 /* In general, we create destructors lazily. */
2535 CLASSTYPE_LAZY_DESTRUCTOR (t
) = 1;
2536 /* However, if the implicit destructor is non-trivial
2537 destructor, we sometimes have to create it at this point. */
2538 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
2542 if (TYPE_FOR_JAVA (t
))
2543 /* If this a Java class, any non-trivial destructor is
2544 invalid, even if compiler-generated. Therefore, if the
2545 destructor is non-trivial we create it now. */
2553 /* If the implicit destructor will be virtual, then we must
2554 generate it now because (unfortunately) we do not
2555 generate virtual tables lazily. */
2556 binfo
= TYPE_BINFO (t
);
2557 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
2562 base_type
= BINFO_TYPE (base_binfo
);
2563 dtor
= CLASSTYPE_DESTRUCTORS (base_type
);
2564 if (dtor
&& DECL_VIRTUAL_P (dtor
))
2572 /* If we can't get away with being lazy, generate the destructor
2575 lazily_declare_fn (sfk_destructor
, t
);
2579 /* Default constructor. */
2580 if (! TYPE_HAS_CONSTRUCTOR (t
))
2582 TYPE_HAS_DEFAULT_CONSTRUCTOR (t
) = 1;
2583 CLASSTYPE_LAZY_DEFAULT_CTOR (t
) = 1;
2586 /* Copy constructor. */
2587 if (! TYPE_HAS_INIT_REF (t
) && ! TYPE_FOR_JAVA (t
))
2589 TYPE_HAS_INIT_REF (t
) = 1;
2590 TYPE_HAS_CONST_INIT_REF (t
) = !cant_have_const_cctor
;
2591 CLASSTYPE_LAZY_COPY_CTOR (t
) = 1;
2592 TYPE_HAS_CONSTRUCTOR (t
) = 1;
2595 /* If there is no assignment operator, one will be created if and
2596 when it is needed. For now, just record whether or not the type
2597 of the parameter to the assignment operator will be a const or
2598 non-const reference. */
2599 if (!TYPE_HAS_ASSIGN_REF (t
) && !TYPE_FOR_JAVA (t
))
2601 TYPE_HAS_ASSIGN_REF (t
) = 1;
2602 TYPE_HAS_CONST_ASSIGN_REF (t
) = !cant_have_const_assignment
;
2603 CLASSTYPE_LAZY_ASSIGNMENT_OP (t
) = 1;
2607 /* Subroutine of finish_struct_1. Recursively count the number of fields
2608 in TYPE, including anonymous union members. */
2611 count_fields (tree fields
)
2615 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2617 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2618 n_fields
+= count_fields (TYPE_FIELDS (TREE_TYPE (x
)));
2625 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2626 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2629 add_fields_to_record_type (tree fields
, struct sorted_fields_type
*field_vec
, int idx
)
2632 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2634 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2635 idx
= add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x
)), field_vec
, idx
);
2637 field_vec
->elts
[idx
++] = x
;
2642 /* FIELD is a bit-field. We are finishing the processing for its
2643 enclosing type. Issue any appropriate messages and set appropriate
2647 check_bitfield_decl (tree field
)
2649 tree type
= TREE_TYPE (field
);
2652 /* Detect invalid bit-field type. */
2653 if (DECL_INITIAL (field
)
2654 && ! INTEGRAL_TYPE_P (TREE_TYPE (field
)))
2656 error ("bit-field %q+#D with non-integral type", field
);
2657 w
= error_mark_node
;
2660 /* Detect and ignore out of range field width. */
2661 if (DECL_INITIAL (field
))
2663 w
= DECL_INITIAL (field
);
2665 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2668 /* detect invalid field size. */
2669 w
= integral_constant_value (w
);
2671 if (TREE_CODE (w
) != INTEGER_CST
)
2673 error ("bit-field %q+D width not an integer constant", field
);
2674 w
= error_mark_node
;
2676 else if (tree_int_cst_sgn (w
) < 0)
2678 error ("negative width in bit-field %q+D", field
);
2679 w
= error_mark_node
;
2681 else if (integer_zerop (w
) && DECL_NAME (field
) != 0)
2683 error ("zero width for bit-field %q+D", field
);
2684 w
= error_mark_node
;
2686 else if (compare_tree_int (w
, TYPE_PRECISION (type
)) > 0
2687 && TREE_CODE (type
) != ENUMERAL_TYPE
2688 && TREE_CODE (type
) != BOOLEAN_TYPE
)
2689 warning (0, "width of %q+D exceeds its type", field
);
2690 else if (TREE_CODE (type
) == ENUMERAL_TYPE
2691 && (0 > compare_tree_int (w
,
2692 min_precision (TYPE_MIN_VALUE (type
),
2693 TYPE_UNSIGNED (type
)))
2694 || 0 > compare_tree_int (w
,
2696 (TYPE_MAX_VALUE (type
),
2697 TYPE_UNSIGNED (type
)))))
2698 warning (0, "%q+D is too small to hold all values of %q#T", field
, type
);
2701 /* Remove the bit-field width indicator so that the rest of the
2702 compiler does not treat that value as an initializer. */
2703 DECL_INITIAL (field
) = NULL_TREE
;
2705 if (w
!= error_mark_node
)
2707 DECL_SIZE (field
) = convert (bitsizetype
, w
);
2708 DECL_BIT_FIELD (field
) = 1;
2712 /* Non-bit-fields are aligned for their type. */
2713 DECL_BIT_FIELD (field
) = 0;
2714 CLEAR_DECL_C_BIT_FIELD (field
);
2718 /* FIELD is a non bit-field. We are finishing the processing for its
2719 enclosing type T. Issue any appropriate messages and set appropriate
2723 check_field_decl (tree field
,
2725 int* cant_have_const_ctor
,
2726 int* no_const_asn_ref
,
2727 int* any_default_members
)
2729 tree type
= strip_array_types (TREE_TYPE (field
));
2731 /* An anonymous union cannot contain any fields which would change
2732 the settings of CANT_HAVE_CONST_CTOR and friends. */
2733 if (ANON_UNION_TYPE_P (type
))
2735 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2736 structs. So, we recurse through their fields here. */
2737 else if (ANON_AGGR_TYPE_P (type
))
2741 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
2742 if (TREE_CODE (fields
) == FIELD_DECL
&& !DECL_C_BIT_FIELD (field
))
2743 check_field_decl (fields
, t
, cant_have_const_ctor
,
2744 no_const_asn_ref
, any_default_members
);
2746 /* Check members with class type for constructors, destructors,
2748 else if (CLASS_TYPE_P (type
))
2750 /* Never let anything with uninheritable virtuals
2751 make it through without complaint. */
2752 abstract_virtuals_error (field
, type
);
2754 if (TREE_CODE (t
) == UNION_TYPE
)
2756 if (TYPE_NEEDS_CONSTRUCTING (type
))
2757 error ("member %q+#D with constructor not allowed in union",
2759 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
2760 error ("member %q+#D with destructor not allowed in union", field
);
2761 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type
))
2762 error ("member %q+#D with copy assignment operator not allowed in union",
2767 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (type
);
2768 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
2769 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
);
2770 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type
);
2771 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (type
);
2774 if (!TYPE_HAS_CONST_INIT_REF (type
))
2775 *cant_have_const_ctor
= 1;
2777 if (!TYPE_HAS_CONST_ASSIGN_REF (type
))
2778 *no_const_asn_ref
= 1;
2780 if (DECL_INITIAL (field
) != NULL_TREE
)
2782 /* `build_class_init_list' does not recognize
2784 if (TREE_CODE (t
) == UNION_TYPE
&& any_default_members
!= 0)
2785 error ("multiple fields in union %qT initialized", t
);
2786 *any_default_members
= 1;
2790 /* Check the data members (both static and non-static), class-scoped
2791 typedefs, etc., appearing in the declaration of T. Issue
2792 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2793 declaration order) of access declarations; each TREE_VALUE in this
2794 list is a USING_DECL.
2796 In addition, set the following flags:
2799 The class is empty, i.e., contains no non-static data members.
2801 CANT_HAVE_CONST_CTOR_P
2802 This class cannot have an implicitly generated copy constructor
2803 taking a const reference.
2805 CANT_HAVE_CONST_ASN_REF
2806 This class cannot have an implicitly generated assignment
2807 operator taking a const reference.
2809 All of these flags should be initialized before calling this
2812 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2813 fields can be added by adding to this chain. */
2816 check_field_decls (tree t
, tree
*access_decls
,
2817 int *cant_have_const_ctor_p
,
2818 int *no_const_asn_ref_p
)
2823 int any_default_members
;
2826 /* Assume there are no access declarations. */
2827 *access_decls
= NULL_TREE
;
2828 /* Assume this class has no pointer members. */
2829 has_pointers
= false;
2830 /* Assume none of the members of this class have default
2832 any_default_members
= 0;
2834 for (field
= &TYPE_FIELDS (t
); *field
; field
= next
)
2837 tree type
= TREE_TYPE (x
);
2839 next
= &TREE_CHAIN (x
);
2841 if (TREE_CODE (x
) == USING_DECL
)
2843 /* Prune the access declaration from the list of fields. */
2844 *field
= TREE_CHAIN (x
);
2846 /* Save the access declarations for our caller. */
2847 *access_decls
= tree_cons (NULL_TREE
, x
, *access_decls
);
2849 /* Since we've reset *FIELD there's no reason to skip to the
2855 if (TREE_CODE (x
) == TYPE_DECL
2856 || TREE_CODE (x
) == TEMPLATE_DECL
)
2859 /* If we've gotten this far, it's a data member, possibly static,
2860 or an enumerator. */
2861 DECL_CONTEXT (x
) = t
;
2863 /* When this goes into scope, it will be a non-local reference. */
2864 DECL_NONLOCAL (x
) = 1;
2866 if (TREE_CODE (t
) == UNION_TYPE
)
2870 If a union contains a static data member, or a member of
2871 reference type, the program is ill-formed. */
2872 if (TREE_CODE (x
) == VAR_DECL
)
2874 error ("%q+D may not be static because it is a member of a union", x
);
2877 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2879 error ("%q+D may not have reference type %qT because"
2880 " it is a member of a union",
2886 /* ``A local class cannot have static data members.'' ARM 9.4 */
2887 if (current_function_decl
&& TREE_STATIC (x
))
2888 error ("field %q+D in local class cannot be static", x
);
2890 /* Perform error checking that did not get done in
2892 if (TREE_CODE (type
) == FUNCTION_TYPE
)
2894 error ("field %q+D invalidly declared function type", x
);
2895 type
= build_pointer_type (type
);
2896 TREE_TYPE (x
) = type
;
2898 else if (TREE_CODE (type
) == METHOD_TYPE
)
2900 error ("field %q+D invalidly declared method type", x
);
2901 type
= build_pointer_type (type
);
2902 TREE_TYPE (x
) = type
;
2905 if (type
== error_mark_node
)
2908 if (TREE_CODE (x
) == CONST_DECL
|| TREE_CODE (x
) == VAR_DECL
)
2911 /* Now it can only be a FIELD_DECL. */
2913 if (TREE_PRIVATE (x
) || TREE_PROTECTED (x
))
2914 CLASSTYPE_NON_AGGREGATE (t
) = 1;
2916 /* If this is of reference type, check if it needs an init.
2917 Also do a little ANSI jig if necessary. */
2918 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2920 CLASSTYPE_NON_POD_P (t
) = 1;
2921 if (DECL_INITIAL (x
) == NULL_TREE
)
2922 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2924 /* ARM $12.6.2: [A member initializer list] (or, for an
2925 aggregate, initialization by a brace-enclosed list) is the
2926 only way to initialize nonstatic const and reference
2928 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
2930 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
2932 warning (0, "non-static reference %q+#D in class without a constructor", x
);
2935 type
= strip_array_types (type
);
2937 if (TYPE_PACKED (t
))
2939 if (!pod_type_p (type
) && !TYPE_PACKED (type
))
2943 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2947 else if (TYPE_ALIGN (TREE_TYPE (x
)) > BITS_PER_UNIT
)
2948 DECL_PACKED (x
) = 1;
2951 if (DECL_C_BIT_FIELD (x
) && integer_zerop (DECL_INITIAL (x
)))
2952 /* We don't treat zero-width bitfields as making a class
2957 /* The class is non-empty. */
2958 CLASSTYPE_EMPTY_P (t
) = 0;
2959 /* The class is not even nearly empty. */
2960 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
2961 /* If one of the data members contains an empty class,
2963 if (CLASS_TYPE_P (type
)
2964 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
2965 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
2968 /* This is used by -Weffc++ (see below). Warn only for pointers
2969 to members which might hold dynamic memory. So do not warn
2970 for pointers to functions or pointers to members. */
2971 if (TYPE_PTR_P (type
)
2972 && !TYPE_PTRFN_P (type
)
2973 && !TYPE_PTR_TO_MEMBER_P (type
))
2974 has_pointers
= true;
2976 if (CLASS_TYPE_P (type
))
2978 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type
))
2979 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2980 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
))
2981 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
2984 if (DECL_MUTABLE_P (x
) || TYPE_HAS_MUTABLE_P (type
))
2985 CLASSTYPE_HAS_MUTABLE (t
) = 1;
2987 if (! pod_type_p (type
))
2988 /* DR 148 now allows pointers to members (which are POD themselves),
2989 to be allowed in POD structs. */
2990 CLASSTYPE_NON_POD_P (t
) = 1;
2992 if (! zero_init_p (type
))
2993 CLASSTYPE_NON_ZERO_INIT_P (t
) = 1;
2995 /* If any field is const, the structure type is pseudo-const. */
2996 if (CP_TYPE_CONST_P (type
))
2998 C_TYPE_FIELDS_READONLY (t
) = 1;
2999 if (DECL_INITIAL (x
) == NULL_TREE
)
3000 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
3002 /* ARM $12.6.2: [A member initializer list] (or, for an
3003 aggregate, initialization by a brace-enclosed list) is the
3004 only way to initialize nonstatic const and reference
3006 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
3008 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
3010 warning (0, "non-static const member %q+#D in class without a constructor", x
);
3012 /* A field that is pseudo-const makes the structure likewise. */
3013 else if (CLASS_TYPE_P (type
))
3015 C_TYPE_FIELDS_READONLY (t
) |= C_TYPE_FIELDS_READONLY (type
);
3016 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
,
3017 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
3018 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
));
3021 /* Core issue 80: A nonstatic data member is required to have a
3022 different name from the class iff the class has a
3023 user-defined constructor. */
3024 if (constructor_name_p (DECL_NAME (x
), t
) && TYPE_HAS_CONSTRUCTOR (t
))
3025 pedwarn ("field %q+#D with same name as class", x
);
3027 /* We set DECL_C_BIT_FIELD in grokbitfield.
3028 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3029 if (DECL_C_BIT_FIELD (x
))
3030 check_bitfield_decl (x
);
3032 check_field_decl (x
, t
,
3033 cant_have_const_ctor_p
,
3035 &any_default_members
);
3038 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3039 it should also define a copy constructor and an assignment operator to
3040 implement the correct copy semantic (deep vs shallow, etc.). As it is
3041 not feasible to check whether the constructors do allocate dynamic memory
3042 and store it within members, we approximate the warning like this:
3044 -- Warn only if there are members which are pointers
3045 -- Warn only if there is a non-trivial constructor (otherwise,
3046 there cannot be memory allocated).
3047 -- Warn only if there is a non-trivial destructor. We assume that the
3048 user at least implemented the cleanup correctly, and a destructor
3049 is needed to free dynamic memory.
3051 This seems enough for practical purposes. */
3054 && TYPE_HAS_CONSTRUCTOR (t
)
3055 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3056 && !(TYPE_HAS_INIT_REF (t
) && TYPE_HAS_ASSIGN_REF (t
)))
3058 warning (0, "%q#T has pointer data members", t
);
3060 if (! TYPE_HAS_INIT_REF (t
))
3062 warning (0, " but does not override %<%T(const %T&)%>", t
, t
);
3063 if (! TYPE_HAS_ASSIGN_REF (t
))
3064 warning (0, " or %<operator=(const %T&)%>", t
);
3066 else if (! TYPE_HAS_ASSIGN_REF (t
))
3067 warning (0, " but does not override %<operator=(const %T&)%>", t
);
3070 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3072 TYPE_PACKED (t
) = 0;
3074 /* Check anonymous struct/anonymous union fields. */
3075 finish_struct_anon (t
);
3077 /* We've built up the list of access declarations in reverse order.
3079 *access_decls
= nreverse (*access_decls
);
3082 /* If TYPE is an empty class type, records its OFFSET in the table of
3086 record_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3090 if (!is_empty_class (type
))
3093 /* Record the location of this empty object in OFFSETS. */
3094 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3096 n
= splay_tree_insert (offsets
,
3097 (splay_tree_key
) offset
,
3098 (splay_tree_value
) NULL_TREE
);
3099 n
->value
= ((splay_tree_value
)
3100 tree_cons (NULL_TREE
,
3107 /* Returns nonzero if TYPE is an empty class type and there is
3108 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3111 check_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3116 if (!is_empty_class (type
))
3119 /* Record the location of this empty object in OFFSETS. */
3120 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3124 for (t
= (tree
) n
->value
; t
; t
= TREE_CHAIN (t
))
3125 if (same_type_p (TREE_VALUE (t
), type
))
3131 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3132 F for every subobject, passing it the type, offset, and table of
3133 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3136 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3137 than MAX_OFFSET will not be walked.
3139 If F returns a nonzero value, the traversal ceases, and that value
3140 is returned. Otherwise, returns zero. */
3143 walk_subobject_offsets (tree type
,
3144 subobject_offset_fn f
,
3151 tree type_binfo
= NULL_TREE
;
3153 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3155 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3158 if (type
== error_mark_node
)
3163 if (abi_version_at_least (2))
3165 type
= BINFO_TYPE (type
);
3168 if (CLASS_TYPE_P (type
))
3174 /* Avoid recursing into objects that are not interesting. */
3175 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3178 /* Record the location of TYPE. */
3179 r
= (*f
) (type
, offset
, offsets
);
3183 /* Iterate through the direct base classes of TYPE. */
3185 type_binfo
= TYPE_BINFO (type
);
3186 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, binfo
); i
++)
3190 if (abi_version_at_least (2)
3191 && BINFO_VIRTUAL_P (binfo
))
3195 && BINFO_VIRTUAL_P (binfo
)
3196 && !BINFO_PRIMARY_P (binfo
))
3199 if (!abi_version_at_least (2))
3200 binfo_offset
= size_binop (PLUS_EXPR
,
3202 BINFO_OFFSET (binfo
));
3206 /* We cannot rely on BINFO_OFFSET being set for the base
3207 class yet, but the offsets for direct non-virtual
3208 bases can be calculated by going back to the TYPE. */
3209 orig_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (type
), i
);
3210 binfo_offset
= size_binop (PLUS_EXPR
,
3212 BINFO_OFFSET (orig_binfo
));
3215 r
= walk_subobject_offsets (binfo
,
3220 (abi_version_at_least (2)
3221 ? /*vbases_p=*/0 : vbases_p
));
3226 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type
))
3229 VEC(tree
,gc
) *vbases
;
3231 /* Iterate through the virtual base classes of TYPE. In G++
3232 3.2, we included virtual bases in the direct base class
3233 loop above, which results in incorrect results; the
3234 correct offsets for virtual bases are only known when
3235 working with the most derived type. */
3237 for (vbases
= CLASSTYPE_VBASECLASSES (type
), ix
= 0;
3238 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
3240 r
= walk_subobject_offsets (binfo
,
3242 size_binop (PLUS_EXPR
,
3244 BINFO_OFFSET (binfo
)),
3253 /* We still have to walk the primary base, if it is
3254 virtual. (If it is non-virtual, then it was walked
3256 tree vbase
= get_primary_binfo (type_binfo
);
3258 if (vbase
&& BINFO_VIRTUAL_P (vbase
)
3259 && BINFO_PRIMARY_P (vbase
)
3260 && BINFO_INHERITANCE_CHAIN (vbase
) == type_binfo
)
3262 r
= (walk_subobject_offsets
3264 offsets
, max_offset
, /*vbases_p=*/0));
3271 /* Iterate through the fields of TYPE. */
3272 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
3273 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_ARTIFICIAL (field
))
3277 if (abi_version_at_least (2))
3278 field_offset
= byte_position (field
);
3280 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3281 field_offset
= DECL_FIELD_OFFSET (field
);
3283 r
= walk_subobject_offsets (TREE_TYPE (field
),
3285 size_binop (PLUS_EXPR
,
3295 else if (TREE_CODE (type
) == ARRAY_TYPE
)
3297 tree element_type
= strip_array_types (type
);
3298 tree domain
= TYPE_DOMAIN (type
);
3301 /* Avoid recursing into objects that are not interesting. */
3302 if (!CLASS_TYPE_P (element_type
)
3303 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type
))
3306 /* Step through each of the elements in the array. */
3307 for (index
= size_zero_node
;
3308 /* G++ 3.2 had an off-by-one error here. */
3309 (abi_version_at_least (2)
3310 ? !INT_CST_LT (TYPE_MAX_VALUE (domain
), index
)
3311 : INT_CST_LT (index
, TYPE_MAX_VALUE (domain
)));
3312 index
= size_binop (PLUS_EXPR
, index
, size_one_node
))
3314 r
= walk_subobject_offsets (TREE_TYPE (type
),
3322 offset
= size_binop (PLUS_EXPR
, offset
,
3323 TYPE_SIZE_UNIT (TREE_TYPE (type
)));
3324 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3325 there's no point in iterating through the remaining
3326 elements of the array. */
3327 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3335 /* Record all of the empty subobjects of TYPE (either a type or a
3336 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3337 is being placed at OFFSET; otherwise, it is a base class that is
3338 being placed at OFFSET. */
3341 record_subobject_offsets (tree type
,
3344 bool is_data_member
)
3347 /* If recording subobjects for a non-static data member or a
3348 non-empty base class , we do not need to record offsets beyond
3349 the size of the biggest empty class. Additional data members
3350 will go at the end of the class. Additional base classes will go
3351 either at offset zero (if empty, in which case they cannot
3352 overlap with offsets past the size of the biggest empty class) or
3353 at the end of the class.
3355 However, if we are placing an empty base class, then we must record
3356 all offsets, as either the empty class is at offset zero (where
3357 other empty classes might later be placed) or at the end of the
3358 class (where other objects might then be placed, so other empty
3359 subobjects might later overlap). */
3361 || !is_empty_class (BINFO_TYPE (type
)))
3362 max_offset
= sizeof_biggest_empty_class
;
3364 max_offset
= NULL_TREE
;
3365 walk_subobject_offsets (type
, record_subobject_offset
, offset
,
3366 offsets
, max_offset
, is_data_member
);
3369 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3370 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3371 virtual bases of TYPE are examined. */
3374 layout_conflict_p (tree type
,
3379 splay_tree_node max_node
;
3381 /* Get the node in OFFSETS that indicates the maximum offset where
3382 an empty subobject is located. */
3383 max_node
= splay_tree_max (offsets
);
3384 /* If there aren't any empty subobjects, then there's no point in
3385 performing this check. */
3389 return walk_subobject_offsets (type
, check_subobject_offset
, offset
,
3390 offsets
, (tree
) (max_node
->key
),
3394 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3395 non-static data member of the type indicated by RLI. BINFO is the
3396 binfo corresponding to the base subobject, OFFSETS maps offsets to
3397 types already located at those offsets. This function determines
3398 the position of the DECL. */
3401 layout_nonempty_base_or_field (record_layout_info rli
,
3406 tree offset
= NULL_TREE
;
3412 /* For the purposes of determining layout conflicts, we want to
3413 use the class type of BINFO; TREE_TYPE (DECL) will be the
3414 CLASSTYPE_AS_BASE version, which does not contain entries for
3415 zero-sized bases. */
3416 type
= TREE_TYPE (binfo
);
3421 type
= TREE_TYPE (decl
);
3425 /* Try to place the field. It may take more than one try if we have
3426 a hard time placing the field without putting two objects of the
3427 same type at the same address. */
3430 struct record_layout_info_s old_rli
= *rli
;
3432 /* Place this field. */
3433 place_field (rli
, decl
);
3434 offset
= byte_position (decl
);
3436 /* We have to check to see whether or not there is already
3437 something of the same type at the offset we're about to use.
3438 For example, consider:
3441 struct T : public S { int i; };
3442 struct U : public S, public T {};
3444 Here, we put S at offset zero in U. Then, we can't put T at
3445 offset zero -- its S component would be at the same address
3446 as the S we already allocated. So, we have to skip ahead.
3447 Since all data members, including those whose type is an
3448 empty class, have nonzero size, any overlap can happen only
3449 with a direct or indirect base-class -- it can't happen with
3451 /* In a union, overlap is permitted; all members are placed at
3453 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
3455 /* G++ 3.2 did not check for overlaps when placing a non-empty
3457 if (!abi_version_at_least (2) && binfo
&& BINFO_VIRTUAL_P (binfo
))
3459 if (layout_conflict_p (field_p
? type
: binfo
, offset
,
3462 /* Strip off the size allocated to this field. That puts us
3463 at the first place we could have put the field with
3464 proper alignment. */
3467 /* Bump up by the alignment required for the type. */
3469 = size_binop (PLUS_EXPR
, rli
->bitpos
,
3471 ? CLASSTYPE_ALIGN (type
)
3472 : TYPE_ALIGN (type
)));
3473 normalize_rli (rli
);
3476 /* There was no conflict. We're done laying out this field. */
3480 /* Now that we know where it will be placed, update its
3482 if (binfo
&& CLASS_TYPE_P (BINFO_TYPE (binfo
)))
3483 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3484 this point because their BINFO_OFFSET is copied from another
3485 hierarchy. Therefore, we may not need to add the entire
3487 propagate_binfo_offsets (binfo
,
3488 size_diffop (convert (ssizetype
, offset
),
3490 BINFO_OFFSET (binfo
))));
3493 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3496 empty_base_at_nonzero_offset_p (tree type
,
3498 splay_tree offsets ATTRIBUTE_UNUSED
)
3500 return is_empty_class (type
) && !integer_zerop (offset
);
3503 /* Layout the empty base BINFO. EOC indicates the byte currently just
3504 past the end of the class, and should be correctly aligned for a
3505 class of the type indicated by BINFO; OFFSETS gives the offsets of
3506 the empty bases allocated so far. T is the most derived
3507 type. Return nonzero iff we added it at the end. */
3510 layout_empty_base (tree binfo
, tree eoc
, splay_tree offsets
)
3513 tree basetype
= BINFO_TYPE (binfo
);
3516 /* This routine should only be used for empty classes. */
3517 gcc_assert (is_empty_class (basetype
));
3518 alignment
= ssize_int (CLASSTYPE_ALIGN_UNIT (basetype
));
3520 if (!integer_zerop (BINFO_OFFSET (binfo
)))
3522 if (abi_version_at_least (2))
3523 propagate_binfo_offsets
3524 (binfo
, size_diffop (size_zero_node
, BINFO_OFFSET (binfo
)));
3526 warning (0, "offset of empty base %qT may not be ABI-compliant and may"
3527 "change in a future version of GCC",
3528 BINFO_TYPE (binfo
));
3531 /* This is an empty base class. We first try to put it at offset
3533 if (layout_conflict_p (binfo
,
3534 BINFO_OFFSET (binfo
),
3538 /* That didn't work. Now, we move forward from the next
3539 available spot in the class. */
3541 propagate_binfo_offsets (binfo
, convert (ssizetype
, eoc
));
3544 if (!layout_conflict_p (binfo
,
3545 BINFO_OFFSET (binfo
),
3548 /* We finally found a spot where there's no overlap. */
3551 /* There's overlap here, too. Bump along to the next spot. */
3552 propagate_binfo_offsets (binfo
, alignment
);
3558 /* Layout the base given by BINFO in the class indicated by RLI.
3559 *BASE_ALIGN is a running maximum of the alignments of
3560 any base class. OFFSETS gives the location of empty base
3561 subobjects. T is the most derived type. Return nonzero if the new
3562 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3563 *NEXT_FIELD, unless BINFO is for an empty base class.
3565 Returns the location at which the next field should be inserted. */
3568 build_base_field (record_layout_info rli
, tree binfo
,
3569 splay_tree offsets
, tree
*next_field
)
3572 tree basetype
= BINFO_TYPE (binfo
);
3574 if (!COMPLETE_TYPE_P (basetype
))
3575 /* This error is now reported in xref_tag, thus giving better
3576 location information. */
3579 /* Place the base class. */
3580 if (!is_empty_class (basetype
))
3584 /* The containing class is non-empty because it has a non-empty
3586 CLASSTYPE_EMPTY_P (t
) = 0;
3588 /* Create the FIELD_DECL. */
3589 decl
= build_decl (FIELD_DECL
, NULL_TREE
, CLASSTYPE_AS_BASE (basetype
));
3590 DECL_ARTIFICIAL (decl
) = 1;
3591 DECL_IGNORED_P (decl
) = 1;
3592 DECL_FIELD_CONTEXT (decl
) = t
;
3593 DECL_SIZE (decl
) = CLASSTYPE_SIZE (basetype
);
3594 DECL_SIZE_UNIT (decl
) = CLASSTYPE_SIZE_UNIT (basetype
);
3595 DECL_ALIGN (decl
) = CLASSTYPE_ALIGN (basetype
);
3596 DECL_USER_ALIGN (decl
) = CLASSTYPE_USER_ALIGN (basetype
);
3597 DECL_MODE (decl
) = TYPE_MODE (basetype
);
3598 DECL_FIELD_IS_BASE (decl
) = 1;
3600 /* Try to place the field. It may take more than one try if we
3601 have a hard time placing the field without putting two
3602 objects of the same type at the same address. */
3603 layout_nonempty_base_or_field (rli
, decl
, binfo
, offsets
);
3604 /* Add the new FIELD_DECL to the list of fields for T. */
3605 TREE_CHAIN (decl
) = *next_field
;
3607 next_field
= &TREE_CHAIN (decl
);
3614 /* On some platforms (ARM), even empty classes will not be
3616 eoc
= round_up (rli_size_unit_so_far (rli
),
3617 CLASSTYPE_ALIGN_UNIT (basetype
));
3618 atend
= layout_empty_base (binfo
, eoc
, offsets
);
3619 /* A nearly-empty class "has no proper base class that is empty,
3620 not morally virtual, and at an offset other than zero." */
3621 if (!BINFO_VIRTUAL_P (binfo
) && CLASSTYPE_NEARLY_EMPTY_P (t
))
3624 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3625 /* The check above (used in G++ 3.2) is insufficient because
3626 an empty class placed at offset zero might itself have an
3627 empty base at a nonzero offset. */
3628 else if (walk_subobject_offsets (basetype
,
3629 empty_base_at_nonzero_offset_p
,
3632 /*max_offset=*/NULL_TREE
,
3635 if (abi_version_at_least (2))
3636 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3638 warning (0, "class %qT will be considered nearly empty in a "
3639 "future version of GCC", t
);
3643 /* We do not create a FIELD_DECL for empty base classes because
3644 it might overlap some other field. We want to be able to
3645 create CONSTRUCTORs for the class by iterating over the
3646 FIELD_DECLs, and the back end does not handle overlapping
3649 /* An empty virtual base causes a class to be non-empty
3650 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3651 here because that was already done when the virtual table
3652 pointer was created. */
3655 /* Record the offsets of BINFO and its base subobjects. */
3656 record_subobject_offsets (binfo
,
3657 BINFO_OFFSET (binfo
),
3659 /*is_data_member=*/false);
3664 /* Layout all of the non-virtual base classes. Record empty
3665 subobjects in OFFSETS. T is the most derived type. Return nonzero
3666 if the type cannot be nearly empty. The fields created
3667 corresponding to the base classes will be inserted at
3671 build_base_fields (record_layout_info rli
,
3672 splay_tree offsets
, tree
*next_field
)
3674 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3677 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
3680 /* The primary base class is always allocated first. */
3681 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
3682 next_field
= build_base_field (rli
, CLASSTYPE_PRIMARY_BINFO (t
),
3683 offsets
, next_field
);
3685 /* Now allocate the rest of the bases. */
3686 for (i
= 0; i
< n_baseclasses
; ++i
)
3690 base_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (t
), i
);
3692 /* The primary base was already allocated above, so we don't
3693 need to allocate it again here. */
3694 if (base_binfo
== CLASSTYPE_PRIMARY_BINFO (t
))
3697 /* Virtual bases are added at the end (a primary virtual base
3698 will have already been added). */
3699 if (BINFO_VIRTUAL_P (base_binfo
))
3702 next_field
= build_base_field (rli
, base_binfo
,
3703 offsets
, next_field
);
3707 /* Go through the TYPE_METHODS of T issuing any appropriate
3708 diagnostics, figuring out which methods override which other
3709 methods, and so forth. */
3712 check_methods (tree t
)
3716 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
3718 check_for_override (x
, t
);
3719 if (DECL_PURE_VIRTUAL_P (x
) && ! DECL_VINDEX (x
))
3720 error ("initializer specified for non-virtual method %q+D", x
);
3721 /* The name of the field is the original field name
3722 Save this in auxiliary field for later overloading. */
3723 if (DECL_VINDEX (x
))
3725 TYPE_POLYMORPHIC_P (t
) = 1;
3726 if (DECL_PURE_VIRTUAL_P (x
))
3727 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
3729 /* All user-declared destructors are non-trivial. */
3730 if (DECL_DESTRUCTOR_P (x
))
3731 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
) = 1;
3735 /* FN is a constructor or destructor. Clone the declaration to create
3736 a specialized in-charge or not-in-charge version, as indicated by
3740 build_clone (tree fn
, tree name
)
3745 /* Copy the function. */
3746 clone
= copy_decl (fn
);
3747 /* Remember where this function came from. */
3748 DECL_CLONED_FUNCTION (clone
) = fn
;
3749 DECL_ABSTRACT_ORIGIN (clone
) = fn
;
3750 /* Reset the function name. */
3751 DECL_NAME (clone
) = name
;
3752 SET_DECL_ASSEMBLER_NAME (clone
, NULL_TREE
);
3753 /* There's no pending inline data for this function. */
3754 DECL_PENDING_INLINE_INFO (clone
) = NULL
;
3755 DECL_PENDING_INLINE_P (clone
) = 0;
3756 /* And it hasn't yet been deferred. */
3757 DECL_DEFERRED_FN (clone
) = 0;
3759 /* The base-class destructor is not virtual. */
3760 if (name
== base_dtor_identifier
)
3762 DECL_VIRTUAL_P (clone
) = 0;
3763 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3764 DECL_VINDEX (clone
) = NULL_TREE
;
3767 /* If there was an in-charge parameter, drop it from the function
3769 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3775 exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3776 basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3777 parmtypes
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3778 /* Skip the `this' parameter. */
3779 parmtypes
= TREE_CHAIN (parmtypes
);
3780 /* Skip the in-charge parameter. */
3781 parmtypes
= TREE_CHAIN (parmtypes
);
3782 /* And the VTT parm, in a complete [cd]tor. */
3783 if (DECL_HAS_VTT_PARM_P (fn
)
3784 && ! DECL_NEEDS_VTT_PARM_P (clone
))
3785 parmtypes
= TREE_CHAIN (parmtypes
);
3786 /* If this is subobject constructor or destructor, add the vtt
3789 = build_method_type_directly (basetype
,
3790 TREE_TYPE (TREE_TYPE (clone
)),
3793 TREE_TYPE (clone
) = build_exception_variant (TREE_TYPE (clone
),
3796 = cp_build_type_attribute_variant (TREE_TYPE (clone
),
3797 TYPE_ATTRIBUTES (TREE_TYPE (fn
)));
3800 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3801 aren't function parameters; those are the template parameters. */
3802 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3804 DECL_ARGUMENTS (clone
) = copy_list (DECL_ARGUMENTS (clone
));
3805 /* Remove the in-charge parameter. */
3806 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3808 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3809 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3810 DECL_HAS_IN_CHARGE_PARM_P (clone
) = 0;
3812 /* And the VTT parm, in a complete [cd]tor. */
3813 if (DECL_HAS_VTT_PARM_P (fn
))
3815 if (DECL_NEEDS_VTT_PARM_P (clone
))
3816 DECL_HAS_VTT_PARM_P (clone
) = 1;
3819 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3820 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3821 DECL_HAS_VTT_PARM_P (clone
) = 0;
3825 for (parms
= DECL_ARGUMENTS (clone
); parms
; parms
= TREE_CHAIN (parms
))
3827 DECL_CONTEXT (parms
) = clone
;
3828 cxx_dup_lang_specific_decl (parms
);
3832 /* Create the RTL for this function. */
3833 SET_DECL_RTL (clone
, NULL_RTX
);
3834 rest_of_decl_compilation (clone
, /*top_level=*/1, at_eof
);
3836 /* Make it easy to find the CLONE given the FN. */
3837 TREE_CHAIN (clone
) = TREE_CHAIN (fn
);
3838 TREE_CHAIN (fn
) = clone
;
3840 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3841 if (TREE_CODE (clone
) == TEMPLATE_DECL
)
3845 DECL_TEMPLATE_RESULT (clone
)
3846 = build_clone (DECL_TEMPLATE_RESULT (clone
), name
);
3847 result
= DECL_TEMPLATE_RESULT (clone
);
3848 DECL_TEMPLATE_INFO (result
) = copy_node (DECL_TEMPLATE_INFO (result
));
3849 DECL_TI_TEMPLATE (result
) = clone
;
3852 note_decl_for_pch (clone
);
3857 /* Produce declarations for all appropriate clones of FN. If
3858 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3859 CLASTYPE_METHOD_VEC as well. */
3862 clone_function_decl (tree fn
, int update_method_vec_p
)
3866 /* Avoid inappropriate cloning. */
3868 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn
)))
3871 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn
))
3873 /* For each constructor, we need two variants: an in-charge version
3874 and a not-in-charge version. */
3875 clone
= build_clone (fn
, complete_ctor_identifier
);
3876 if (update_method_vec_p
)
3877 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3878 clone
= build_clone (fn
, base_ctor_identifier
);
3879 if (update_method_vec_p
)
3880 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3884 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
));
3886 /* For each destructor, we need three variants: an in-charge
3887 version, a not-in-charge version, and an in-charge deleting
3888 version. We clone the deleting version first because that
3889 means it will go second on the TYPE_METHODS list -- and that
3890 corresponds to the correct layout order in the virtual
3893 For a non-virtual destructor, we do not build a deleting
3895 if (DECL_VIRTUAL_P (fn
))
3897 clone
= build_clone (fn
, deleting_dtor_identifier
);
3898 if (update_method_vec_p
)
3899 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3901 clone
= build_clone (fn
, complete_dtor_identifier
);
3902 if (update_method_vec_p
)
3903 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3904 clone
= build_clone (fn
, base_dtor_identifier
);
3905 if (update_method_vec_p
)
3906 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3909 /* Note that this is an abstract function that is never emitted. */
3910 DECL_ABSTRACT (fn
) = 1;
3913 /* DECL is an in charge constructor, which is being defined. This will
3914 have had an in class declaration, from whence clones were
3915 declared. An out-of-class definition can specify additional default
3916 arguments. As it is the clones that are involved in overload
3917 resolution, we must propagate the information from the DECL to its
3921 adjust_clone_args (tree decl
)
3925 for (clone
= TREE_CHAIN (decl
); clone
&& DECL_CLONED_FUNCTION (clone
);
3926 clone
= TREE_CHAIN (clone
))
3928 tree orig_clone_parms
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3929 tree orig_decl_parms
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
3930 tree decl_parms
, clone_parms
;
3932 clone_parms
= orig_clone_parms
;
3934 /* Skip the 'this' parameter. */
3935 orig_clone_parms
= TREE_CHAIN (orig_clone_parms
);
3936 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3938 if (DECL_HAS_IN_CHARGE_PARM_P (decl
))
3939 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3940 if (DECL_HAS_VTT_PARM_P (decl
))
3941 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3943 clone_parms
= orig_clone_parms
;
3944 if (DECL_HAS_VTT_PARM_P (clone
))
3945 clone_parms
= TREE_CHAIN (clone_parms
);
3947 for (decl_parms
= orig_decl_parms
; decl_parms
;
3948 decl_parms
= TREE_CHAIN (decl_parms
),
3949 clone_parms
= TREE_CHAIN (clone_parms
))
3951 gcc_assert (same_type_p (TREE_TYPE (decl_parms
),
3952 TREE_TYPE (clone_parms
)));
3954 if (TREE_PURPOSE (decl_parms
) && !TREE_PURPOSE (clone_parms
))
3956 /* A default parameter has been added. Adjust the
3957 clone's parameters. */
3958 tree exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3959 tree basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3962 clone_parms
= orig_decl_parms
;
3964 if (DECL_HAS_VTT_PARM_P (clone
))
3966 clone_parms
= tree_cons (TREE_PURPOSE (orig_clone_parms
),
3967 TREE_VALUE (orig_clone_parms
),
3969 TREE_TYPE (clone_parms
) = TREE_TYPE (orig_clone_parms
);
3971 type
= build_method_type_directly (basetype
,
3972 TREE_TYPE (TREE_TYPE (clone
)),
3975 type
= build_exception_variant (type
, exceptions
);
3976 TREE_TYPE (clone
) = type
;
3978 clone_parms
= NULL_TREE
;
3982 gcc_assert (!clone_parms
);
3986 /* For each of the constructors and destructors in T, create an
3987 in-charge and not-in-charge variant. */
3990 clone_constructors_and_destructors (tree t
)
3994 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3996 if (!CLASSTYPE_METHOD_VEC (t
))
3999 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4000 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4001 for (fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4002 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4005 /* Remove all zero-width bit-fields from T. */
4008 remove_zero_width_bit_fields (tree t
)
4012 fieldsp
= &TYPE_FIELDS (t
);
4015 if (TREE_CODE (*fieldsp
) == FIELD_DECL
4016 && DECL_C_BIT_FIELD (*fieldsp
)
4017 && DECL_INITIAL (*fieldsp
))
4018 *fieldsp
= TREE_CHAIN (*fieldsp
);
4020 fieldsp
= &TREE_CHAIN (*fieldsp
);
4024 /* Returns TRUE iff we need a cookie when dynamically allocating an
4025 array whose elements have the indicated class TYPE. */
4028 type_requires_array_cookie (tree type
)
4031 bool has_two_argument_delete_p
= false;
4033 gcc_assert (CLASS_TYPE_P (type
));
4035 /* If there's a non-trivial destructor, we need a cookie. In order
4036 to iterate through the array calling the destructor for each
4037 element, we'll have to know how many elements there are. */
4038 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
4041 /* If the usual deallocation function is a two-argument whose second
4042 argument is of type `size_t', then we have to pass the size of
4043 the array to the deallocation function, so we will need to store
4045 fns
= lookup_fnfields (TYPE_BINFO (type
),
4046 ansi_opname (VEC_DELETE_EXPR
),
4048 /* If there are no `operator []' members, or the lookup is
4049 ambiguous, then we don't need a cookie. */
4050 if (!fns
|| fns
== error_mark_node
)
4052 /* Loop through all of the functions. */
4053 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
4058 /* Select the current function. */
4059 fn
= OVL_CURRENT (fns
);
4060 /* See if this function is a one-argument delete function. If
4061 it is, then it will be the usual deallocation function. */
4062 second_parm
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn
)));
4063 if (second_parm
== void_list_node
)
4065 /* Otherwise, if we have a two-argument function and the second
4066 argument is `size_t', it will be the usual deallocation
4067 function -- unless there is one-argument function, too. */
4068 if (TREE_CHAIN (second_parm
) == void_list_node
4069 && same_type_p (TREE_VALUE (second_parm
), sizetype
))
4070 has_two_argument_delete_p
= true;
4073 return has_two_argument_delete_p
;
4076 /* Check the validity of the bases and members declared in T. Add any
4077 implicitly-generated functions (like copy-constructors and
4078 assignment operators). Compute various flag bits (like
4079 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4080 level: i.e., independently of the ABI in use. */
4083 check_bases_and_members (tree t
)
4085 /* Nonzero if the implicitly generated copy constructor should take
4086 a non-const reference argument. */
4087 int cant_have_const_ctor
;
4088 /* Nonzero if the implicitly generated assignment operator
4089 should take a non-const reference argument. */
4090 int no_const_asn_ref
;
4093 /* By default, we use const reference arguments and generate default
4095 cant_have_const_ctor
= 0;
4096 no_const_asn_ref
= 0;
4098 /* Check all the base-classes. */
4099 check_bases (t
, &cant_have_const_ctor
,
4102 /* Check all the method declarations. */
4105 /* Check all the data member declarations. We cannot call
4106 check_field_decls until we have called check_bases check_methods,
4107 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4108 being set appropriately. */
4109 check_field_decls (t
, &access_decls
,
4110 &cant_have_const_ctor
,
4113 /* A nearly-empty class has to be vptr-containing; a nearly empty
4114 class contains just a vptr. */
4115 if (!TYPE_CONTAINS_VPTR_P (t
))
4116 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4118 /* Do some bookkeeping that will guide the generation of implicitly
4119 declared member functions. */
4120 TYPE_HAS_COMPLEX_INIT_REF (t
)
4121 |= (TYPE_HAS_INIT_REF (t
) || TYPE_CONTAINS_VPTR_P (t
));
4122 TYPE_NEEDS_CONSTRUCTING (t
)
4123 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_CONTAINS_VPTR_P (t
));
4124 CLASSTYPE_NON_AGGREGATE (t
)
4125 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_POLYMORPHIC_P (t
));
4126 CLASSTYPE_NON_POD_P (t
)
4127 |= (CLASSTYPE_NON_AGGREGATE (t
)
4128 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
4129 || TYPE_HAS_ASSIGN_REF (t
));
4130 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
4131 |= TYPE_HAS_ASSIGN_REF (t
) || TYPE_CONTAINS_VPTR_P (t
);
4133 /* Synthesize any needed methods. */
4134 add_implicitly_declared_members (t
,
4135 cant_have_const_ctor
,
4138 /* Create the in-charge and not-in-charge variants of constructors
4140 clone_constructors_and_destructors (t
);
4142 /* Process the using-declarations. */
4143 for (; access_decls
; access_decls
= TREE_CHAIN (access_decls
))
4144 handle_using_decl (TREE_VALUE (access_decls
), t
);
4146 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4147 finish_struct_methods (t
);
4149 /* Figure out whether or not we will need a cookie when dynamically
4150 allocating an array of this type. */
4151 TYPE_LANG_SPECIFIC (t
)->u
.c
.vec_new_uses_cookie
4152 = type_requires_array_cookie (t
);
4155 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4156 accordingly. If a new vfield was created (because T doesn't have a
4157 primary base class), then the newly created field is returned. It
4158 is not added to the TYPE_FIELDS list; it is the caller's
4159 responsibility to do that. Accumulate declared virtual functions
4163 create_vtable_ptr (tree t
, tree
* virtuals_p
)
4167 /* Collect the virtual functions declared in T. */
4168 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
4169 if (DECL_VINDEX (fn
) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
)
4170 && TREE_CODE (DECL_VINDEX (fn
)) != INTEGER_CST
)
4172 tree new_virtual
= make_node (TREE_LIST
);
4174 BV_FN (new_virtual
) = fn
;
4175 BV_DELTA (new_virtual
) = integer_zero_node
;
4176 BV_VCALL_INDEX (new_virtual
) = NULL_TREE
;
4178 TREE_CHAIN (new_virtual
) = *virtuals_p
;
4179 *virtuals_p
= new_virtual
;
4182 /* If we couldn't find an appropriate base class, create a new field
4183 here. Even if there weren't any new virtual functions, we might need a
4184 new virtual function table if we're supposed to include vptrs in
4185 all classes that need them. */
4186 if (!TYPE_VFIELD (t
) && (*virtuals_p
|| TYPE_CONTAINS_VPTR_P (t
)))
4188 /* We build this decl with vtbl_ptr_type_node, which is a
4189 `vtable_entry_type*'. It might seem more precise to use
4190 `vtable_entry_type (*)[N]' where N is the number of virtual
4191 functions. However, that would require the vtable pointer in
4192 base classes to have a different type than the vtable pointer
4193 in derived classes. We could make that happen, but that
4194 still wouldn't solve all the problems. In particular, the
4195 type-based alias analysis code would decide that assignments
4196 to the base class vtable pointer can't alias assignments to
4197 the derived class vtable pointer, since they have different
4198 types. Thus, in a derived class destructor, where the base
4199 class constructor was inlined, we could generate bad code for
4200 setting up the vtable pointer.
4202 Therefore, we use one type for all vtable pointers. We still
4203 use a type-correct type; it's just doesn't indicate the array
4204 bounds. That's better than using `void*' or some such; it's
4205 cleaner, and it let's the alias analysis code know that these
4206 stores cannot alias stores to void*! */
4209 field
= build_decl (FIELD_DECL
, get_vfield_name (t
), vtbl_ptr_type_node
);
4210 DECL_VIRTUAL_P (field
) = 1;
4211 DECL_ARTIFICIAL (field
) = 1;
4212 DECL_FIELD_CONTEXT (field
) = t
;
4213 DECL_FCONTEXT (field
) = t
;
4215 TYPE_VFIELD (t
) = field
;
4217 /* This class is non-empty. */
4218 CLASSTYPE_EMPTY_P (t
) = 0;
4226 /* Fixup the inline function given by INFO now that the class is
4230 fixup_pending_inline (tree fn
)
4232 if (DECL_PENDING_INLINE_INFO (fn
))
4234 tree args
= DECL_ARGUMENTS (fn
);
4237 DECL_CONTEXT (args
) = fn
;
4238 args
= TREE_CHAIN (args
);
4243 /* Fixup the inline methods and friends in TYPE now that TYPE is
4247 fixup_inline_methods (tree type
)
4249 tree method
= TYPE_METHODS (type
);
4250 VEC(tree
,gc
) *friends
;
4253 if (method
&& TREE_CODE (method
) == TREE_VEC
)
4255 if (TREE_VEC_ELT (method
, 1))
4256 method
= TREE_VEC_ELT (method
, 1);
4257 else if (TREE_VEC_ELT (method
, 0))
4258 method
= TREE_VEC_ELT (method
, 0);
4260 method
= TREE_VEC_ELT (method
, 2);
4263 /* Do inline member functions. */
4264 for (; method
; method
= TREE_CHAIN (method
))
4265 fixup_pending_inline (method
);
4268 for (friends
= CLASSTYPE_INLINE_FRIENDS (type
), ix
= 0;
4269 VEC_iterate (tree
, friends
, ix
, method
); ix
++)
4270 fixup_pending_inline (method
);
4271 CLASSTYPE_INLINE_FRIENDS (type
) = NULL
;
4274 /* Add OFFSET to all base types of BINFO which is a base in the
4275 hierarchy dominated by T.
4277 OFFSET, which is a type offset, is number of bytes. */
4280 propagate_binfo_offsets (tree binfo
, tree offset
)
4286 /* Update BINFO's offset. */
4287 BINFO_OFFSET (binfo
)
4288 = convert (sizetype
,
4289 size_binop (PLUS_EXPR
,
4290 convert (ssizetype
, BINFO_OFFSET (binfo
)),
4293 /* Find the primary base class. */
4294 primary_binfo
= get_primary_binfo (binfo
);
4296 if (primary_binfo
&& BINFO_INHERITANCE_CHAIN (primary_binfo
) == binfo
)
4297 propagate_binfo_offsets (primary_binfo
, offset
);
4299 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4301 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4303 /* Don't do the primary base twice. */
4304 if (base_binfo
== primary_binfo
)
4307 if (BINFO_VIRTUAL_P (base_binfo
))
4310 propagate_binfo_offsets (base_binfo
, offset
);
4314 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4315 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4316 empty subobjects of T. */
4319 layout_virtual_bases (record_layout_info rli
, splay_tree offsets
)
4323 bool first_vbase
= true;
4326 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) == 0)
4329 if (!abi_version_at_least(2))
4331 /* In G++ 3.2, we incorrectly rounded the size before laying out
4332 the virtual bases. */
4333 finish_record_layout (rli
, /*free_p=*/false);
4334 #ifdef STRUCTURE_SIZE_BOUNDARY
4335 /* Packed structures don't need to have minimum size. */
4336 if (! TYPE_PACKED (t
))
4337 TYPE_ALIGN (t
) = MAX (TYPE_ALIGN (t
), (unsigned) STRUCTURE_SIZE_BOUNDARY
);
4339 rli
->offset
= TYPE_SIZE_UNIT (t
);
4340 rli
->bitpos
= bitsize_zero_node
;
4341 rli
->record_align
= TYPE_ALIGN (t
);
4344 /* Find the last field. The artificial fields created for virtual
4345 bases will go after the last extant field to date. */
4346 next_field
= &TYPE_FIELDS (t
);
4348 next_field
= &TREE_CHAIN (*next_field
);
4350 /* Go through the virtual bases, allocating space for each virtual
4351 base that is not already a primary base class. These are
4352 allocated in inheritance graph order. */
4353 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
4355 if (!BINFO_VIRTUAL_P (vbase
))
4358 if (!BINFO_PRIMARY_P (vbase
))
4360 tree basetype
= TREE_TYPE (vbase
);
4362 /* This virtual base is not a primary base of any class in the
4363 hierarchy, so we have to add space for it. */
4364 next_field
= build_base_field (rli
, vbase
,
4365 offsets
, next_field
);
4367 /* If the first virtual base might have been placed at a
4368 lower address, had we started from CLASSTYPE_SIZE, rather
4369 than TYPE_SIZE, issue a warning. There can be both false
4370 positives and false negatives from this warning in rare
4371 cases; to deal with all the possibilities would probably
4372 require performing both layout algorithms and comparing
4373 the results which is not particularly tractable. */
4377 (size_binop (CEIL_DIV_EXPR
,
4378 round_up (CLASSTYPE_SIZE (t
),
4379 CLASSTYPE_ALIGN (basetype
)),
4381 BINFO_OFFSET (vbase
))))
4382 warning (0, "offset of virtual base %qT is not ABI-compliant and "
4383 "may change in a future version of GCC",
4386 first_vbase
= false;
4391 /* Returns the offset of the byte just past the end of the base class
4395 end_of_base (tree binfo
)
4399 if (is_empty_class (BINFO_TYPE (binfo
)))
4400 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4401 allocate some space for it. It cannot have virtual bases, so
4402 TYPE_SIZE_UNIT is fine. */
4403 size
= TYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4405 size
= CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4407 return size_binop (PLUS_EXPR
, BINFO_OFFSET (binfo
), size
);
4410 /* Returns the offset of the byte just past the end of the base class
4411 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4412 only non-virtual bases are included. */
4415 end_of_class (tree t
, int include_virtuals_p
)
4417 tree result
= size_zero_node
;
4418 VEC(tree
,gc
) *vbases
;
4424 for (binfo
= TYPE_BINFO (t
), i
= 0;
4425 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4427 if (!include_virtuals_p
4428 && BINFO_VIRTUAL_P (base_binfo
)
4429 && (!BINFO_PRIMARY_P (base_binfo
)
4430 || BINFO_INHERITANCE_CHAIN (base_binfo
) != TYPE_BINFO (t
)))
4433 offset
= end_of_base (base_binfo
);
4434 if (INT_CST_LT_UNSIGNED (result
, offset
))
4438 /* G++ 3.2 did not check indirect virtual bases. */
4439 if (abi_version_at_least (2) && include_virtuals_p
)
4440 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4441 VEC_iterate (tree
, vbases
, i
, base_binfo
); i
++)
4443 offset
= end_of_base (base_binfo
);
4444 if (INT_CST_LT_UNSIGNED (result
, offset
))
4451 /* Warn about bases of T that are inaccessible because they are
4452 ambiguous. For example:
4455 struct T : public S {};
4456 struct U : public S, public T {};
4458 Here, `(S*) new U' is not allowed because there are two `S'
4462 warn_about_ambiguous_bases (tree t
)
4465 VEC(tree
,gc
) *vbases
;
4470 /* If there are no repeated bases, nothing can be ambiguous. */
4471 if (!CLASSTYPE_REPEATED_BASE_P (t
))
4474 /* Check direct bases. */
4475 for (binfo
= TYPE_BINFO (t
), i
= 0;
4476 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4478 basetype
= BINFO_TYPE (base_binfo
);
4480 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4481 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4485 /* Check for ambiguous virtual bases. */
4487 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4488 VEC_iterate (tree
, vbases
, i
, binfo
); i
++)
4490 basetype
= BINFO_TYPE (binfo
);
4492 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4493 warning (0, "virtual base %qT inaccessible in %qT due to ambiguity",
4498 /* Compare two INTEGER_CSTs K1 and K2. */
4501 splay_tree_compare_integer_csts (splay_tree_key k1
, splay_tree_key k2
)
4503 return tree_int_cst_compare ((tree
) k1
, (tree
) k2
);
4506 /* Increase the size indicated in RLI to account for empty classes
4507 that are "off the end" of the class. */
4510 include_empty_classes (record_layout_info rli
)
4515 /* It might be the case that we grew the class to allocate a
4516 zero-sized base class. That won't be reflected in RLI, yet,
4517 because we are willing to overlay multiple bases at the same
4518 offset. However, now we need to make sure that RLI is big enough
4519 to reflect the entire class. */
4520 eoc
= end_of_class (rli
->t
,
4521 CLASSTYPE_AS_BASE (rli
->t
) != NULL_TREE
);
4522 rli_size
= rli_size_unit_so_far (rli
);
4523 if (TREE_CODE (rli_size
) == INTEGER_CST
4524 && INT_CST_LT_UNSIGNED (rli_size
, eoc
))
4526 if (!abi_version_at_least (2))
4527 /* In version 1 of the ABI, the size of a class that ends with
4528 a bitfield was not rounded up to a whole multiple of a
4529 byte. Because rli_size_unit_so_far returns only the number
4530 of fully allocated bytes, any extra bits were not included
4532 rli
->bitpos
= round_down (rli
->bitpos
, BITS_PER_UNIT
);
4534 /* The size should have been rounded to a whole byte. */
4535 gcc_assert (tree_int_cst_equal
4536 (rli
->bitpos
, round_down (rli
->bitpos
, BITS_PER_UNIT
)));
4538 = size_binop (PLUS_EXPR
,
4540 size_binop (MULT_EXPR
,
4541 convert (bitsizetype
,
4542 size_binop (MINUS_EXPR
,
4544 bitsize_int (BITS_PER_UNIT
)));
4545 normalize_rli (rli
);
4549 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4550 BINFO_OFFSETs for all of the base-classes. Position the vtable
4551 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4554 layout_class_type (tree t
, tree
*virtuals_p
)
4556 tree non_static_data_members
;
4559 record_layout_info rli
;
4560 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4561 types that appear at that offset. */
4562 splay_tree empty_base_offsets
;
4563 /* True if the last field layed out was a bit-field. */
4564 bool last_field_was_bitfield
= false;
4565 /* The location at which the next field should be inserted. */
4567 /* T, as a base class. */
4570 /* Keep track of the first non-static data member. */
4571 non_static_data_members
= TYPE_FIELDS (t
);
4573 /* Start laying out the record. */
4574 rli
= start_record_layout (t
);
4576 /* Mark all the primary bases in the hierarchy. */
4577 determine_primary_bases (t
);
4579 /* Create a pointer to our virtual function table. */
4580 vptr
= create_vtable_ptr (t
, virtuals_p
);
4582 /* The vptr is always the first thing in the class. */
4585 TREE_CHAIN (vptr
) = TYPE_FIELDS (t
);
4586 TYPE_FIELDS (t
) = vptr
;
4587 next_field
= &TREE_CHAIN (vptr
);
4588 place_field (rli
, vptr
);
4591 next_field
= &TYPE_FIELDS (t
);
4593 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4594 empty_base_offsets
= splay_tree_new (splay_tree_compare_integer_csts
,
4596 build_base_fields (rli
, empty_base_offsets
, next_field
);
4598 /* Layout the non-static data members. */
4599 for (field
= non_static_data_members
; field
; field
= TREE_CHAIN (field
))
4604 /* We still pass things that aren't non-static data members to
4605 the back-end, in case it wants to do something with them. */
4606 if (TREE_CODE (field
) != FIELD_DECL
)
4608 place_field (rli
, field
);
4609 /* If the static data member has incomplete type, keep track
4610 of it so that it can be completed later. (The handling
4611 of pending statics in finish_record_layout is
4612 insufficient; consider:
4615 struct S2 { static S1 s1; };
4617 At this point, finish_record_layout will be called, but
4618 S1 is still incomplete.) */
4619 if (TREE_CODE (field
) == VAR_DECL
)
4621 maybe_register_incomplete_var (field
);
4622 /* The visibility of static data members is determined
4623 at their point of declaration, not their point of
4625 determine_visibility (field
);
4630 type
= TREE_TYPE (field
);
4632 padding
= NULL_TREE
;
4634 /* If this field is a bit-field whose width is greater than its
4635 type, then there are some special rules for allocating
4637 if (DECL_C_BIT_FIELD (field
)
4638 && INT_CST_LT (TYPE_SIZE (type
), DECL_SIZE (field
)))
4640 integer_type_kind itk
;
4642 bool was_unnamed_p
= false;
4643 /* We must allocate the bits as if suitably aligned for the
4644 longest integer type that fits in this many bits. type
4645 of the field. Then, we are supposed to use the left over
4646 bits as additional padding. */
4647 for (itk
= itk_char
; itk
!= itk_none
; ++itk
)
4648 if (INT_CST_LT (DECL_SIZE (field
),
4649 TYPE_SIZE (integer_types
[itk
])))
4652 /* ITK now indicates a type that is too large for the
4653 field. We have to back up by one to find the largest
4655 integer_type
= integer_types
[itk
- 1];
4657 /* Figure out how much additional padding is required. GCC
4658 3.2 always created a padding field, even if it had zero
4660 if (!abi_version_at_least (2)
4661 || INT_CST_LT (TYPE_SIZE (integer_type
), DECL_SIZE (field
)))
4663 if (abi_version_at_least (2) && TREE_CODE (t
) == UNION_TYPE
)
4664 /* In a union, the padding field must have the full width
4665 of the bit-field; all fields start at offset zero. */
4666 padding
= DECL_SIZE (field
);
4669 if (warn_abi
&& TREE_CODE (t
) == UNION_TYPE
)
4670 warning (0, "size assigned to %qT may not be "
4671 "ABI-compliant and may change in a future "
4674 padding
= size_binop (MINUS_EXPR
, DECL_SIZE (field
),
4675 TYPE_SIZE (integer_type
));
4678 #ifdef PCC_BITFIELD_TYPE_MATTERS
4679 /* An unnamed bitfield does not normally affect the
4680 alignment of the containing class on a target where
4681 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4682 make any exceptions for unnamed bitfields when the
4683 bitfields are longer than their types. Therefore, we
4684 temporarily give the field a name. */
4685 if (PCC_BITFIELD_TYPE_MATTERS
&& !DECL_NAME (field
))
4687 was_unnamed_p
= true;
4688 DECL_NAME (field
) = make_anon_name ();
4691 DECL_SIZE (field
) = TYPE_SIZE (integer_type
);
4692 DECL_ALIGN (field
) = TYPE_ALIGN (integer_type
);
4693 DECL_USER_ALIGN (field
) = TYPE_USER_ALIGN (integer_type
);
4694 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4695 empty_base_offsets
);
4697 DECL_NAME (field
) = NULL_TREE
;
4698 /* Now that layout has been performed, set the size of the
4699 field to the size of its declared type; the rest of the
4700 field is effectively invisible. */
4701 DECL_SIZE (field
) = TYPE_SIZE (type
);
4702 /* We must also reset the DECL_MODE of the field. */
4703 if (abi_version_at_least (2))
4704 DECL_MODE (field
) = TYPE_MODE (type
);
4706 && DECL_MODE (field
) != TYPE_MODE (type
))
4707 /* Versions of G++ before G++ 3.4 did not reset the
4709 warning (0, "the offset of %qD may not be ABI-compliant and may "
4710 "change in a future version of GCC", field
);
4713 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4714 empty_base_offsets
);
4716 /* Remember the location of any empty classes in FIELD. */
4717 if (abi_version_at_least (2))
4718 record_subobject_offsets (TREE_TYPE (field
),
4719 byte_position(field
),
4721 /*is_data_member=*/true);
4723 /* If a bit-field does not immediately follow another bit-field,
4724 and yet it starts in the middle of a byte, we have failed to
4725 comply with the ABI. */
4727 && DECL_C_BIT_FIELD (field
)
4728 /* The TREE_NO_WARNING flag gets set by Objective-C when
4729 laying out an Objective-C class. The ObjC ABI differs
4730 from the C++ ABI, and so we do not want a warning
4732 && !TREE_NO_WARNING (field
)
4733 && !last_field_was_bitfield
4734 && !integer_zerop (size_binop (TRUNC_MOD_EXPR
,
4735 DECL_FIELD_BIT_OFFSET (field
),
4736 bitsize_unit_node
)))
4737 warning (0, "offset of %q+D is not ABI-compliant and may "
4738 "change in a future version of GCC", field
);
4740 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4741 offset of the field. */
4743 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field
),
4744 byte_position (field
))
4745 && contains_empty_class_p (TREE_TYPE (field
)))
4746 warning (0, "%q+D contains empty classes which may cause base "
4747 "classes to be placed at different locations in a "
4748 "future version of GCC", field
);
4750 /* If we needed additional padding after this field, add it
4756 padding_field
= build_decl (FIELD_DECL
,
4759 DECL_BIT_FIELD (padding_field
) = 1;
4760 DECL_SIZE (padding_field
) = padding
;
4761 DECL_CONTEXT (padding_field
) = t
;
4762 DECL_ARTIFICIAL (padding_field
) = 1;
4763 DECL_IGNORED_P (padding_field
) = 1;
4764 layout_nonempty_base_or_field (rli
, padding_field
,
4766 empty_base_offsets
);
4769 last_field_was_bitfield
= DECL_C_BIT_FIELD (field
);
4772 if (abi_version_at_least (2) && !integer_zerop (rli
->bitpos
))
4774 /* Make sure that we are on a byte boundary so that the size of
4775 the class without virtual bases will always be a round number
4777 rli
->bitpos
= round_up (rli
->bitpos
, BITS_PER_UNIT
);
4778 normalize_rli (rli
);
4781 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4783 if (!abi_version_at_least (2))
4784 include_empty_classes(rli
);
4786 /* Delete all zero-width bit-fields from the list of fields. Now
4787 that the type is laid out they are no longer important. */
4788 remove_zero_width_bit_fields (t
);
4790 /* Create the version of T used for virtual bases. We do not use
4791 make_aggr_type for this version; this is an artificial type. For
4792 a POD type, we just reuse T. */
4793 if (CLASSTYPE_NON_POD_P (t
) || CLASSTYPE_EMPTY_P (t
))
4795 base_t
= make_node (TREE_CODE (t
));
4797 /* Set the size and alignment for the new type. In G++ 3.2, all
4798 empty classes were considered to have size zero when used as
4800 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t
))
4802 TYPE_SIZE (base_t
) = bitsize_zero_node
;
4803 TYPE_SIZE_UNIT (base_t
) = size_zero_node
;
4804 if (warn_abi
&& !integer_zerop (rli_size_unit_so_far (rli
)))
4805 warning (0, "layout of classes derived from empty class %qT "
4806 "may change in a future version of GCC",
4813 /* If the ABI version is not at least two, and the last
4814 field was a bit-field, RLI may not be on a byte
4815 boundary. In particular, rli_size_unit_so_far might
4816 indicate the last complete byte, while rli_size_so_far
4817 indicates the total number of bits used. Therefore,
4818 rli_size_so_far, rather than rli_size_unit_so_far, is
4819 used to compute TYPE_SIZE_UNIT. */
4820 eoc
= end_of_class (t
, /*include_virtuals_p=*/0);
4821 TYPE_SIZE_UNIT (base_t
)
4822 = size_binop (MAX_EXPR
,
4824 size_binop (CEIL_DIV_EXPR
,
4825 rli_size_so_far (rli
),
4826 bitsize_int (BITS_PER_UNIT
))),
4829 = size_binop (MAX_EXPR
,
4830 rli_size_so_far (rli
),
4831 size_binop (MULT_EXPR
,
4832 convert (bitsizetype
, eoc
),
4833 bitsize_int (BITS_PER_UNIT
)));
4835 TYPE_ALIGN (base_t
) = rli
->record_align
;
4836 TYPE_USER_ALIGN (base_t
) = TYPE_USER_ALIGN (t
);
4838 /* Copy the fields from T. */
4839 next_field
= &TYPE_FIELDS (base_t
);
4840 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4841 if (TREE_CODE (field
) == FIELD_DECL
)
4843 *next_field
= build_decl (FIELD_DECL
,
4846 DECL_CONTEXT (*next_field
) = base_t
;
4847 DECL_FIELD_OFFSET (*next_field
) = DECL_FIELD_OFFSET (field
);
4848 DECL_FIELD_BIT_OFFSET (*next_field
)
4849 = DECL_FIELD_BIT_OFFSET (field
);
4850 DECL_SIZE (*next_field
) = DECL_SIZE (field
);
4851 DECL_MODE (*next_field
) = DECL_MODE (field
);
4852 next_field
= &TREE_CHAIN (*next_field
);
4855 /* Record the base version of the type. */
4856 CLASSTYPE_AS_BASE (t
) = base_t
;
4857 TYPE_CONTEXT (base_t
) = t
;
4860 CLASSTYPE_AS_BASE (t
) = t
;
4862 /* Every empty class contains an empty class. */
4863 if (CLASSTYPE_EMPTY_P (t
))
4864 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
4866 /* Set the TYPE_DECL for this type to contain the right
4867 value for DECL_OFFSET, so that we can use it as part
4868 of a COMPONENT_REF for multiple inheritance. */
4869 layout_decl (TYPE_MAIN_DECL (t
), 0);
4871 /* Now fix up any virtual base class types that we left lying
4872 around. We must get these done before we try to lay out the
4873 virtual function table. As a side-effect, this will remove the
4874 base subobject fields. */
4875 layout_virtual_bases (rli
, empty_base_offsets
);
4877 /* Make sure that empty classes are reflected in RLI at this
4879 include_empty_classes(rli
);
4881 /* Make sure not to create any structures with zero size. */
4882 if (integer_zerop (rli_size_unit_so_far (rli
)) && CLASSTYPE_EMPTY_P (t
))
4884 build_decl (FIELD_DECL
, NULL_TREE
, char_type_node
));
4886 /* Let the back-end lay out the type. */
4887 finish_record_layout (rli
, /*free_p=*/true);
4889 /* Warn about bases that can't be talked about due to ambiguity. */
4890 warn_about_ambiguous_bases (t
);
4892 /* Now that we're done with layout, give the base fields the real types. */
4893 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4894 if (DECL_ARTIFICIAL (field
) && IS_FAKE_BASE_TYPE (TREE_TYPE (field
)))
4895 TREE_TYPE (field
) = TYPE_CONTEXT (TREE_TYPE (field
));
4898 splay_tree_delete (empty_base_offsets
);
4900 if (CLASSTYPE_EMPTY_P (t
)
4901 && tree_int_cst_lt (sizeof_biggest_empty_class
,
4902 TYPE_SIZE_UNIT (t
)))
4903 sizeof_biggest_empty_class
= TYPE_SIZE_UNIT (t
);
4906 /* Determine the "key method" for the class type indicated by TYPE,
4907 and set CLASSTYPE_KEY_METHOD accordingly. */
4910 determine_key_method (tree type
)
4914 if (TYPE_FOR_JAVA (type
)
4915 || processing_template_decl
4916 || CLASSTYPE_TEMPLATE_INSTANTIATION (type
)
4917 || CLASSTYPE_INTERFACE_KNOWN (type
))
4920 /* The key method is the first non-pure virtual function that is not
4921 inline at the point of class definition. On some targets the
4922 key function may not be inline; those targets should not call
4923 this function until the end of the translation unit. */
4924 for (method
= TYPE_METHODS (type
); method
!= NULL_TREE
;
4925 method
= TREE_CHAIN (method
))
4926 if (DECL_VINDEX (method
) != NULL_TREE
4927 && ! DECL_DECLARED_INLINE_P (method
)
4928 && ! DECL_PURE_VIRTUAL_P (method
))
4930 CLASSTYPE_KEY_METHOD (type
) = method
;
4937 /* Perform processing required when the definition of T (a class type)
4941 finish_struct_1 (tree t
)
4944 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4945 tree virtuals
= NULL_TREE
;
4948 if (COMPLETE_TYPE_P (t
))
4950 gcc_assert (IS_AGGR_TYPE (t
));
4951 error ("redefinition of %q#T", t
);
4956 /* If this type was previously laid out as a forward reference,
4957 make sure we lay it out again. */
4958 TYPE_SIZE (t
) = NULL_TREE
;
4959 CLASSTYPE_PRIMARY_BINFO (t
) = NULL_TREE
;
4961 fixup_inline_methods (t
);
4963 /* Make assumptions about the class; we'll reset the flags if
4965 CLASSTYPE_EMPTY_P (t
) = 1;
4966 CLASSTYPE_NEARLY_EMPTY_P (t
) = 1;
4967 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 0;
4969 /* Do end-of-class semantic processing: checking the validity of the
4970 bases and members and add implicitly generated methods. */
4971 check_bases_and_members (t
);
4973 /* Find the key method. */
4974 if (TYPE_CONTAINS_VPTR_P (t
))
4976 /* The Itanium C++ ABI permits the key method to be chosen when
4977 the class is defined -- even though the key method so
4978 selected may later turn out to be an inline function. On
4979 some systems (such as ARM Symbian OS) the key method cannot
4980 be determined until the end of the translation unit. On such
4981 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4982 will cause the class to be added to KEYED_CLASSES. Then, in
4983 finish_file we will determine the key method. */
4984 if (targetm
.cxx
.key_method_may_be_inline ())
4985 determine_key_method (t
);
4987 /* If a polymorphic class has no key method, we may emit the vtable
4988 in every translation unit where the class definition appears. */
4989 if (CLASSTYPE_KEY_METHOD (t
) == NULL_TREE
)
4990 keyed_classes
= tree_cons (NULL_TREE
, t
, keyed_classes
);
4993 /* Layout the class itself. */
4994 layout_class_type (t
, &virtuals
);
4995 if (CLASSTYPE_AS_BASE (t
) != t
)
4996 /* We use the base type for trivial assignments, and hence it
4998 compute_record_mode (CLASSTYPE_AS_BASE (t
));
5000 virtuals
= modify_all_vtables (t
, nreverse (virtuals
));
5002 /* If necessary, create the primary vtable for this class. */
5003 if (virtuals
|| TYPE_CONTAINS_VPTR_P (t
))
5005 /* We must enter these virtuals into the table. */
5006 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5007 build_primary_vtable (NULL_TREE
, t
);
5008 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t
)))
5009 /* Here we know enough to change the type of our virtual
5010 function table, but we will wait until later this function. */
5011 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t
), t
);
5014 if (TYPE_CONTAINS_VPTR_P (t
))
5019 if (BINFO_VTABLE (TYPE_BINFO (t
)))
5020 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t
))));
5021 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5022 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t
)) == NULL_TREE
);
5024 /* Add entries for virtual functions introduced by this class. */
5025 BINFO_VIRTUALS (TYPE_BINFO (t
))
5026 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t
)), virtuals
);
5028 /* Set DECL_VINDEX for all functions declared in this class. */
5029 for (vindex
= 0, fn
= BINFO_VIRTUALS (TYPE_BINFO (t
));
5031 fn
= TREE_CHAIN (fn
),
5032 vindex
+= (TARGET_VTABLE_USES_DESCRIPTORS
5033 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1))
5035 tree fndecl
= BV_FN (fn
);
5037 if (DECL_THUNK_P (fndecl
))
5038 /* A thunk. We should never be calling this entry directly
5039 from this vtable -- we'd use the entry for the non
5040 thunk base function. */
5041 DECL_VINDEX (fndecl
) = NULL_TREE
;
5042 else if (TREE_CODE (DECL_VINDEX (fndecl
)) != INTEGER_CST
)
5043 DECL_VINDEX (fndecl
) = build_int_cst (NULL_TREE
, vindex
);
5047 finish_struct_bits (t
);
5049 /* Complete the rtl for any static member objects of the type we're
5051 for (x
= TYPE_FIELDS (t
); x
; x
= TREE_CHAIN (x
))
5052 if (TREE_CODE (x
) == VAR_DECL
&& TREE_STATIC (x
)
5053 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x
)), t
))
5054 DECL_MODE (x
) = TYPE_MODE (t
);
5056 /* Done with FIELDS...now decide whether to sort these for
5057 faster lookups later.
5059 We use a small number because most searches fail (succeeding
5060 ultimately as the search bores through the inheritance
5061 hierarchy), and we want this failure to occur quickly. */
5063 n_fields
= count_fields (TYPE_FIELDS (t
));
5066 struct sorted_fields_type
*field_vec
= GGC_NEWVAR
5067 (struct sorted_fields_type
,
5068 sizeof (struct sorted_fields_type
) + n_fields
* sizeof (tree
));
5069 field_vec
->len
= n_fields
;
5070 add_fields_to_record_type (TYPE_FIELDS (t
), field_vec
, 0);
5071 qsort (field_vec
->elts
, n_fields
, sizeof (tree
),
5073 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t
)))
5074 retrofit_lang_decl (TYPE_MAIN_DECL (t
));
5075 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t
)) = field_vec
;
5078 /* Make the rtl for any new vtables we have created, and unmark
5079 the base types we marked. */
5082 /* Build the VTT for T. */
5085 /* This warning does not make sense for Java classes, since they
5086 cannot have destructors. */
5087 if (!TYPE_FOR_JAVA (t
) && warn_nonvdtor
&& TYPE_POLYMORPHIC_P (t
))
5091 dtor
= CLASSTYPE_DESTRUCTORS (t
);
5092 /* Warn only if the dtor is non-private or the class has
5094 if (/* An implicitly declared destructor is always public. And,
5095 if it were virtual, we would have created it by now. */
5097 || (!DECL_VINDEX (dtor
)
5098 && (!TREE_PRIVATE (dtor
)
5099 || CLASSTYPE_FRIEND_CLASSES (t
)
5100 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))))
5101 warning (0, "%q#T has virtual functions but non-virtual destructor",
5107 if (warn_overloaded_virtual
)
5110 /* Class layout, assignment of virtual table slots, etc., is now
5111 complete. Give the back end a chance to tweak the visibility of
5112 the class or perform any other required target modifications. */
5113 targetm
.cxx
.adjust_class_at_definition (t
);
5115 maybe_suppress_debug_info (t
);
5117 dump_class_hierarchy (t
);
5119 /* Finish debugging output for this type. */
5120 rest_of_type_compilation (t
, ! LOCAL_CLASS_P (t
));
5123 /* When T was built up, the member declarations were added in reverse
5124 order. Rearrange them to declaration order. */
5127 unreverse_member_declarations (tree t
)
5133 /* The following lists are all in reverse order. Put them in
5134 declaration order now. */
5135 TYPE_METHODS (t
) = nreverse (TYPE_METHODS (t
));
5136 CLASSTYPE_DECL_LIST (t
) = nreverse (CLASSTYPE_DECL_LIST (t
));
5138 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5139 reverse order, so we can't just use nreverse. */
5141 for (x
= TYPE_FIELDS (t
);
5142 x
&& TREE_CODE (x
) != TYPE_DECL
;
5145 next
= TREE_CHAIN (x
);
5146 TREE_CHAIN (x
) = prev
;
5151 TREE_CHAIN (TYPE_FIELDS (t
)) = x
;
5153 TYPE_FIELDS (t
) = prev
;
5158 finish_struct (tree t
, tree attributes
)
5160 location_t saved_loc
= input_location
;
5162 /* Now that we've got all the field declarations, reverse everything
5164 unreverse_member_declarations (t
);
5166 cplus_decl_attributes (&t
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
5168 /* Nadger the current location so that diagnostics point to the start of
5169 the struct, not the end. */
5170 input_location
= DECL_SOURCE_LOCATION (TYPE_NAME (t
));
5172 if (processing_template_decl
)
5176 finish_struct_methods (t
);
5177 TYPE_SIZE (t
) = bitsize_zero_node
;
5178 TYPE_SIZE_UNIT (t
) = size_zero_node
;
5180 /* We need to emit an error message if this type was used as a parameter
5181 and it is an abstract type, even if it is a template. We construct
5182 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5183 account and we call complete_vars with this type, which will check
5184 the PARM_DECLS. Note that while the type is being defined,
5185 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5186 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5187 CLASSTYPE_PURE_VIRTUALS (t
) = NULL
;
5188 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
5189 if (DECL_PURE_VIRTUAL_P (x
))
5190 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
5194 finish_struct_1 (t
);
5196 input_location
= saved_loc
;
5198 TYPE_BEING_DEFINED (t
) = 0;
5200 if (current_class_type
)
5203 error ("trying to finish struct, but kicked out due to previous parse errors");
5205 if (processing_template_decl
&& at_function_scope_p ())
5206 add_stmt (build_min (TAG_DEFN
, t
));
5211 /* Return the dynamic type of INSTANCE, if known.
5212 Used to determine whether the virtual function table is needed
5215 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5216 of our knowledge of its type. *NONNULL should be initialized
5217 before this function is called. */
5220 fixed_type_or_null (tree instance
, int* nonnull
, int* cdtorp
)
5222 switch (TREE_CODE (instance
))
5225 if (POINTER_TYPE_P (TREE_TYPE (instance
)))
5228 return fixed_type_or_null (TREE_OPERAND (instance
, 0),
5232 /* This is a call to a constructor, hence it's never zero. */
5233 if (TREE_HAS_CONSTRUCTOR (instance
))
5237 return TREE_TYPE (instance
);
5242 /* This is a call to a constructor, hence it's never zero. */
5243 if (TREE_HAS_CONSTRUCTOR (instance
))
5247 return TREE_TYPE (instance
);
5249 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5253 if (TREE_CODE (TREE_OPERAND (instance
, 0)) == ADDR_EXPR
)
5254 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5255 if (TREE_CODE (TREE_OPERAND (instance
, 1)) == INTEGER_CST
)
5256 /* Propagate nonnull. */
5257 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5262 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5265 instance
= TREE_OPERAND (instance
, 0);
5268 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5269 with a real object -- given &p->f, p can still be null. */
5270 tree t
= get_base_address (instance
);
5271 /* ??? Probably should check DECL_WEAK here. */
5272 if (t
&& DECL_P (t
))
5275 return fixed_type_or_null (instance
, nonnull
, cdtorp
);
5278 /* If this component is really a base class reference, then the field
5279 itself isn't definitive. */
5280 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance
, 1)))
5281 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5282 return fixed_type_or_null (TREE_OPERAND (instance
, 1), nonnull
, cdtorp
);
5286 if (TREE_CODE (TREE_TYPE (instance
)) == ARRAY_TYPE
5287 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance
))))
5291 return TREE_TYPE (TREE_TYPE (instance
));
5293 /* fall through... */
5297 if (IS_AGGR_TYPE (TREE_TYPE (instance
)))
5301 return TREE_TYPE (instance
);
5303 else if (instance
== current_class_ptr
)
5308 /* if we're in a ctor or dtor, we know our type. */
5309 if (DECL_LANG_SPECIFIC (current_function_decl
)
5310 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5311 || DECL_DESTRUCTOR_P (current_function_decl
)))
5315 return TREE_TYPE (TREE_TYPE (instance
));
5318 else if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
5320 /* Reference variables should be references to objects. */
5324 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5325 variable's initializer may refer to the variable
5327 if (TREE_CODE (instance
) == VAR_DECL
5328 && DECL_INITIAL (instance
)
5329 && !DECL_VAR_MARKED_P (instance
))
5332 DECL_VAR_MARKED_P (instance
) = 1;
5333 type
= fixed_type_or_null (DECL_INITIAL (instance
),
5335 DECL_VAR_MARKED_P (instance
) = 0;
5346 /* Return nonzero if the dynamic type of INSTANCE is known, and
5347 equivalent to the static type. We also handle the case where
5348 INSTANCE is really a pointer. Return negative if this is a
5349 ctor/dtor. There the dynamic type is known, but this might not be
5350 the most derived base of the original object, and hence virtual
5351 bases may not be layed out according to this type.
5353 Used to determine whether the virtual function table is needed
5356 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5357 of our knowledge of its type. *NONNULL should be initialized
5358 before this function is called. */
5361 resolves_to_fixed_type_p (tree instance
, int* nonnull
)
5363 tree t
= TREE_TYPE (instance
);
5366 tree fixed
= fixed_type_or_null (instance
, nonnull
, &cdtorp
);
5367 if (fixed
== NULL_TREE
)
5369 if (POINTER_TYPE_P (t
))
5371 if (!same_type_ignoring_top_level_qualifiers_p (t
, fixed
))
5373 return cdtorp
? -1 : 1;
5378 init_class_processing (void)
5380 current_class_depth
= 0;
5381 current_class_stack_size
= 10;
5383 = xmalloc (current_class_stack_size
* sizeof (struct class_stack_node
));
5384 local_classes
= VEC_alloc (tree
, gc
, 8);
5385 sizeof_biggest_empty_class
= size_zero_node
;
5387 ridpointers
[(int) RID_PUBLIC
] = access_public_node
;
5388 ridpointers
[(int) RID_PRIVATE
] = access_private_node
;
5389 ridpointers
[(int) RID_PROTECTED
] = access_protected_node
;
5392 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5395 restore_class_cache (void)
5399 /* We are re-entering the same class we just left, so we don't
5400 have to search the whole inheritance matrix to find all the
5401 decls to bind again. Instead, we install the cached
5402 class_shadowed list and walk through it binding names. */
5403 push_binding_level (previous_class_level
);
5404 class_binding_level
= previous_class_level
;
5405 /* Restore IDENTIFIER_TYPE_VALUE. */
5406 for (type
= class_binding_level
->type_shadowed
;
5408 type
= TREE_CHAIN (type
))
5409 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type
), TREE_TYPE (type
));
5412 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5413 appropriate for TYPE.
5415 So that we may avoid calls to lookup_name, we cache the _TYPE
5416 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5418 For multiple inheritance, we perform a two-pass depth-first search
5419 of the type lattice. */
5422 pushclass (tree type
)
5424 class_stack_node_t csn
;
5426 type
= TYPE_MAIN_VARIANT (type
);
5428 /* Make sure there is enough room for the new entry on the stack. */
5429 if (current_class_depth
+ 1 >= current_class_stack_size
)
5431 current_class_stack_size
*= 2;
5433 = xrealloc (current_class_stack
,
5434 current_class_stack_size
5435 * sizeof (struct class_stack_node
));
5438 /* Insert a new entry on the class stack. */
5439 csn
= current_class_stack
+ current_class_depth
;
5440 csn
->name
= current_class_name
;
5441 csn
->type
= current_class_type
;
5442 csn
->access
= current_access_specifier
;
5443 csn
->names_used
= 0;
5445 current_class_depth
++;
5447 /* Now set up the new type. */
5448 current_class_name
= TYPE_NAME (type
);
5449 if (TREE_CODE (current_class_name
) == TYPE_DECL
)
5450 current_class_name
= DECL_NAME (current_class_name
);
5451 current_class_type
= type
;
5453 /* By default, things in classes are private, while things in
5454 structures or unions are public. */
5455 current_access_specifier
= (CLASSTYPE_DECLARED_CLASS (type
)
5456 ? access_private_node
5457 : access_public_node
);
5459 if (previous_class_level
5460 && type
!= previous_class_level
->this_entity
5461 && current_class_depth
== 1)
5463 /* Forcibly remove any old class remnants. */
5464 invalidate_class_lookup_cache ();
5467 if (!previous_class_level
5468 || type
!= previous_class_level
->this_entity
5469 || current_class_depth
> 1)
5472 restore_class_cache ();
5475 /* When we exit a toplevel class scope, we save its binding level so
5476 that we can restore it quickly. Here, we've entered some other
5477 class, so we must invalidate our cache. */
5480 invalidate_class_lookup_cache (void)
5482 previous_class_level
= NULL
;
5485 /* Get out of the current class scope. If we were in a class scope
5486 previously, that is the one popped to. */
5493 current_class_depth
--;
5494 current_class_name
= current_class_stack
[current_class_depth
].name
;
5495 current_class_type
= current_class_stack
[current_class_depth
].type
;
5496 current_access_specifier
= current_class_stack
[current_class_depth
].access
;
5497 if (current_class_stack
[current_class_depth
].names_used
)
5498 splay_tree_delete (current_class_stack
[current_class_depth
].names_used
);
5501 /* Mark the top of the class stack as hidden. */
5504 push_class_stack (void)
5506 if (current_class_depth
)
5507 ++current_class_stack
[current_class_depth
- 1].hidden
;
5510 /* Mark the top of the class stack as un-hidden. */
5513 pop_class_stack (void)
5515 if (current_class_depth
)
5516 --current_class_stack
[current_class_depth
- 1].hidden
;
5519 /* Returns 1 if current_class_type is either T or a nested type of T.
5520 We start looking from 1 because entry 0 is from global scope, and has
5524 currently_open_class (tree t
)
5527 if (current_class_type
&& same_type_p (t
, current_class_type
))
5529 for (i
= current_class_depth
- 1; i
> 0; --i
)
5531 if (current_class_stack
[i
].hidden
)
5533 if (current_class_stack
[i
].type
5534 && same_type_p (current_class_stack
[i
].type
, t
))
5540 /* If either current_class_type or one of its enclosing classes are derived
5541 from T, return the appropriate type. Used to determine how we found
5542 something via unqualified lookup. */
5545 currently_open_derived_class (tree t
)
5549 /* The bases of a dependent type are unknown. */
5550 if (dependent_type_p (t
))
5553 if (!current_class_type
)
5556 if (DERIVED_FROM_P (t
, current_class_type
))
5557 return current_class_type
;
5559 for (i
= current_class_depth
- 1; i
> 0; --i
)
5561 if (current_class_stack
[i
].hidden
)
5563 if (DERIVED_FROM_P (t
, current_class_stack
[i
].type
))
5564 return current_class_stack
[i
].type
;
5570 /* When entering a class scope, all enclosing class scopes' names with
5571 static meaning (static variables, static functions, types and
5572 enumerators) have to be visible. This recursive function calls
5573 pushclass for all enclosing class contexts until global or a local
5574 scope is reached. TYPE is the enclosed class. */
5577 push_nested_class (tree type
)
5581 /* A namespace might be passed in error cases, like A::B:C. */
5582 if (type
== NULL_TREE
5583 || type
== error_mark_node
5584 || TREE_CODE (type
) == NAMESPACE_DECL
5585 || ! IS_AGGR_TYPE (type
)
5586 || TREE_CODE (type
) == TEMPLATE_TYPE_PARM
5587 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
)
5590 context
= DECL_CONTEXT (TYPE_MAIN_DECL (type
));
5592 if (context
&& CLASS_TYPE_P (context
))
5593 push_nested_class (context
);
5597 /* Undoes a push_nested_class call. */
5600 pop_nested_class (void)
5602 tree context
= DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type
));
5605 if (context
&& CLASS_TYPE_P (context
))
5606 pop_nested_class ();
5609 /* Returns the number of extern "LANG" blocks we are nested within. */
5612 current_lang_depth (void)
5614 return VEC_length (tree
, current_lang_base
);
5617 /* Set global variables CURRENT_LANG_NAME to appropriate value
5618 so that behavior of name-mangling machinery is correct. */
5621 push_lang_context (tree name
)
5623 VEC_safe_push (tree
, gc
, current_lang_base
, current_lang_name
);
5625 if (name
== lang_name_cplusplus
)
5627 current_lang_name
= name
;
5629 else if (name
== lang_name_java
)
5631 current_lang_name
= name
;
5632 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5633 (See record_builtin_java_type in decl.c.) However, that causes
5634 incorrect debug entries if these types are actually used.
5635 So we re-enable debug output after extern "Java". */
5636 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node
)) = 0;
5637 DECL_IGNORED_P (TYPE_NAME (java_short_type_node
)) = 0;
5638 DECL_IGNORED_P (TYPE_NAME (java_int_type_node
)) = 0;
5639 DECL_IGNORED_P (TYPE_NAME (java_long_type_node
)) = 0;
5640 DECL_IGNORED_P (TYPE_NAME (java_float_type_node
)) = 0;
5641 DECL_IGNORED_P (TYPE_NAME (java_double_type_node
)) = 0;
5642 DECL_IGNORED_P (TYPE_NAME (java_char_type_node
)) = 0;
5643 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node
)) = 0;
5645 else if (name
== lang_name_c
)
5647 current_lang_name
= name
;
5650 error ("language string %<\"%E\"%> not recognized", name
);
5653 /* Get out of the current language scope. */
5656 pop_lang_context (void)
5658 current_lang_name
= VEC_pop (tree
, current_lang_base
);
5661 /* Type instantiation routines. */
5663 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5664 matches the TARGET_TYPE. If there is no satisfactory match, return
5665 error_mark_node, and issue an error & warning messages under control
5666 of FLAGS. Permit pointers to member function if FLAGS permits. If
5667 TEMPLATE_ONLY, the name of the overloaded function was a
5668 template-id, and EXPLICIT_TARGS are the explicitly provided
5669 template arguments. */
5672 resolve_address_of_overloaded_function (tree target_type
,
5674 tsubst_flags_t flags
,
5676 tree explicit_targs
)
5678 /* Here's what the standard says:
5682 If the name is a function template, template argument deduction
5683 is done, and if the argument deduction succeeds, the deduced
5684 arguments are used to generate a single template function, which
5685 is added to the set of overloaded functions considered.
5687 Non-member functions and static member functions match targets of
5688 type "pointer-to-function" or "reference-to-function." Nonstatic
5689 member functions match targets of type "pointer-to-member
5690 function;" the function type of the pointer to member is used to
5691 select the member function from the set of overloaded member
5692 functions. If a nonstatic member function is selected, the
5693 reference to the overloaded function name is required to have the
5694 form of a pointer to member as described in 5.3.1.
5696 If more than one function is selected, any template functions in
5697 the set are eliminated if the set also contains a non-template
5698 function, and any given template function is eliminated if the
5699 set contains a second template function that is more specialized
5700 than the first according to the partial ordering rules 14.5.5.2.
5701 After such eliminations, if any, there shall remain exactly one
5702 selected function. */
5705 int is_reference
= 0;
5706 /* We store the matches in a TREE_LIST rooted here. The functions
5707 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5708 interoperability with most_specialized_instantiation. */
5709 tree matches
= NULL_TREE
;
5712 /* By the time we get here, we should be seeing only real
5713 pointer-to-member types, not the internal POINTER_TYPE to
5714 METHOD_TYPE representation. */
5715 gcc_assert (TREE_CODE (target_type
) != POINTER_TYPE
5716 || TREE_CODE (TREE_TYPE (target_type
)) != METHOD_TYPE
);
5718 gcc_assert (is_overloaded_fn (overload
));
5720 /* Check that the TARGET_TYPE is reasonable. */
5721 if (TYPE_PTRFN_P (target_type
))
5723 else if (TYPE_PTRMEMFUNC_P (target_type
))
5724 /* This is OK, too. */
5726 else if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
5728 /* This is OK, too. This comes from a conversion to reference
5730 target_type
= build_reference_type (target_type
);
5735 if (flags
& tf_error
)
5736 error ("cannot resolve overloaded function %qD based on"
5737 " conversion to type %qT",
5738 DECL_NAME (OVL_FUNCTION (overload
)), target_type
);
5739 return error_mark_node
;
5742 /* If we can find a non-template function that matches, we can just
5743 use it. There's no point in generating template instantiations
5744 if we're just going to throw them out anyhow. But, of course, we
5745 can only do this when we don't *need* a template function. */
5750 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5752 tree fn
= OVL_CURRENT (fns
);
5755 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
5756 /* We're not looking for templates just yet. */
5759 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5761 /* We're looking for a non-static member, and this isn't
5762 one, or vice versa. */
5765 /* Ignore functions which haven't been explicitly
5767 if (DECL_ANTICIPATED (fn
))
5770 /* See if there's a match. */
5771 fntype
= TREE_TYPE (fn
);
5773 fntype
= build_ptrmemfunc_type (build_pointer_type (fntype
));
5774 else if (!is_reference
)
5775 fntype
= build_pointer_type (fntype
);
5777 if (can_convert_arg (target_type
, fntype
, fn
, LOOKUP_NORMAL
))
5778 matches
= tree_cons (fn
, NULL_TREE
, matches
);
5782 /* Now, if we've already got a match (or matches), there's no need
5783 to proceed to the template functions. But, if we don't have a
5784 match we need to look at them, too. */
5787 tree target_fn_type
;
5788 tree target_arg_types
;
5789 tree target_ret_type
;
5794 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type
));
5796 target_fn_type
= TREE_TYPE (target_type
);
5797 target_arg_types
= TYPE_ARG_TYPES (target_fn_type
);
5798 target_ret_type
= TREE_TYPE (target_fn_type
);
5800 /* Never do unification on the 'this' parameter. */
5801 if (TREE_CODE (target_fn_type
) == METHOD_TYPE
)
5802 target_arg_types
= TREE_CHAIN (target_arg_types
);
5804 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5806 tree fn
= OVL_CURRENT (fns
);
5808 tree instantiation_type
;
5811 if (TREE_CODE (fn
) != TEMPLATE_DECL
)
5812 /* We're only looking for templates. */
5815 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5817 /* We're not looking for a non-static member, and this is
5818 one, or vice versa. */
5821 /* Try to do argument deduction. */
5822 targs
= make_tree_vec (DECL_NTPARMS (fn
));
5823 if (fn_type_unification (fn
, explicit_targs
, targs
,
5824 target_arg_types
, target_ret_type
,
5825 DEDUCE_EXACT
, LOOKUP_NORMAL
))
5826 /* Argument deduction failed. */
5829 /* Instantiate the template. */
5830 instantiation
= instantiate_template (fn
, targs
, flags
);
5831 if (instantiation
== error_mark_node
)
5832 /* Instantiation failed. */
5835 /* See if there's a match. */
5836 instantiation_type
= TREE_TYPE (instantiation
);
5838 instantiation_type
=
5839 build_ptrmemfunc_type (build_pointer_type (instantiation_type
));
5840 else if (!is_reference
)
5841 instantiation_type
= build_pointer_type (instantiation_type
);
5842 if (can_convert_arg (target_type
, instantiation_type
, instantiation
,
5844 matches
= tree_cons (instantiation
, fn
, matches
);
5847 /* Now, remove all but the most specialized of the matches. */
5850 tree match
= most_specialized_instantiation (matches
);
5852 if (match
!= error_mark_node
)
5853 matches
= tree_cons (match
, NULL_TREE
, NULL_TREE
);
5857 /* Now we should have exactly one function in MATCHES. */
5858 if (matches
== NULL_TREE
)
5860 /* There were *no* matches. */
5861 if (flags
& tf_error
)
5863 error ("no matches converting function %qD to type %q#T",
5864 DECL_NAME (OVL_FUNCTION (overload
)),
5867 /* print_candidates expects a chain with the functions in
5868 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5869 so why be clever?). */
5870 for (; overload
; overload
= OVL_NEXT (overload
))
5871 matches
= tree_cons (NULL_TREE
, OVL_CURRENT (overload
),
5874 print_candidates (matches
);
5876 return error_mark_node
;
5878 else if (TREE_CHAIN (matches
))
5880 /* There were too many matches. */
5882 if (flags
& tf_error
)
5886 error ("converting overloaded function %qD to type %q#T is ambiguous",
5887 DECL_NAME (OVL_FUNCTION (overload
)),
5890 /* Since print_candidates expects the functions in the
5891 TREE_VALUE slot, we flip them here. */
5892 for (match
= matches
; match
; match
= TREE_CHAIN (match
))
5893 TREE_VALUE (match
) = TREE_PURPOSE (match
);
5895 print_candidates (matches
);
5898 return error_mark_node
;
5901 /* Good, exactly one match. Now, convert it to the correct type. */
5902 fn
= TREE_PURPOSE (matches
);
5904 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
5905 && !(flags
& tf_ptrmem_ok
) && !flag_ms_extensions
)
5907 static int explained
;
5909 if (!(flags
& tf_error
))
5910 return error_mark_node
;
5912 pedwarn ("assuming pointer to member %qD", fn
);
5915 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn
);
5920 /* If we're doing overload resolution purely for the purpose of
5921 determining conversion sequences, we should not consider the
5922 function used. If this conversion sequence is selected, the
5923 function will be marked as used at this point. */
5924 if (!(flags
& tf_conv
))
5927 if (TYPE_PTRFN_P (target_type
) || TYPE_PTRMEMFUNC_P (target_type
))
5928 return build_unary_op (ADDR_EXPR
, fn
, 0);
5931 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5932 will mark the function as addressed, but here we must do it
5934 cxx_mark_addressable (fn
);
5940 /* This function will instantiate the type of the expression given in
5941 RHS to match the type of LHSTYPE. If errors exist, then return
5942 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5943 we complain on errors. If we are not complaining, never modify rhs,
5944 as overload resolution wants to try many possible instantiations, in
5945 the hope that at least one will work.
5947 For non-recursive calls, LHSTYPE should be a function, pointer to
5948 function, or a pointer to member function. */
5951 instantiate_type (tree lhstype
, tree rhs
, tsubst_flags_t flags
)
5953 tsubst_flags_t flags_in
= flags
;
5955 flags
&= ~tf_ptrmem_ok
;
5957 if (TREE_CODE (lhstype
) == UNKNOWN_TYPE
)
5959 if (flags
& tf_error
)
5960 error ("not enough type information");
5961 return error_mark_node
;
5964 if (TREE_TYPE (rhs
) != NULL_TREE
&& ! (type_unknown_p (rhs
)))
5966 if (same_type_p (lhstype
, TREE_TYPE (rhs
)))
5968 if (flag_ms_extensions
5969 && TYPE_PTRMEMFUNC_P (lhstype
)
5970 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs
)))
5971 /* Microsoft allows `A::f' to be resolved to a
5972 pointer-to-member. */
5976 if (flags
& tf_error
)
5977 error ("argument of type %qT does not match %qT",
5978 TREE_TYPE (rhs
), lhstype
);
5979 return error_mark_node
;
5983 if (TREE_CODE (rhs
) == BASELINK
)
5984 rhs
= BASELINK_FUNCTIONS (rhs
);
5986 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
5987 deduce any type information. */
5988 if (TREE_CODE (rhs
) == NON_DEPENDENT_EXPR
)
5990 if (flags
& tf_error
)
5991 error ("not enough type information");
5992 return error_mark_node
;
5995 /* We don't overwrite rhs if it is an overloaded function.
5996 Copying it would destroy the tree link. */
5997 if (TREE_CODE (rhs
) != OVERLOAD
)
5998 rhs
= copy_node (rhs
);
6000 /* This should really only be used when attempting to distinguish
6001 what sort of a pointer to function we have. For now, any
6002 arithmetic operation which is not supported on pointers
6003 is rejected as an error. */
6005 switch (TREE_CODE (rhs
))
6018 new_rhs
= instantiate_type (build_pointer_type (lhstype
),
6019 TREE_OPERAND (rhs
, 0), flags
);
6020 if (new_rhs
== error_mark_node
)
6021 return error_mark_node
;
6023 TREE_TYPE (rhs
) = lhstype
;
6024 TREE_OPERAND (rhs
, 0) = new_rhs
;
6029 rhs
= copy_node (TREE_OPERAND (rhs
, 0));
6030 TREE_TYPE (rhs
) = unknown_type_node
;
6031 return instantiate_type (lhstype
, rhs
, flags
);
6035 tree member
= TREE_OPERAND (rhs
, 1);
6037 member
= instantiate_type (lhstype
, member
, flags
);
6038 if (member
!= error_mark_node
6039 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs
, 0)))
6040 /* Do not lose object's side effects. */
6041 return build2 (COMPOUND_EXPR
, TREE_TYPE (member
),
6042 TREE_OPERAND (rhs
, 0), member
);
6047 rhs
= TREE_OPERAND (rhs
, 1);
6048 if (BASELINK_P (rhs
))
6049 return instantiate_type (lhstype
, BASELINK_FUNCTIONS (rhs
), flags_in
);
6051 /* This can happen if we are forming a pointer-to-member for a
6053 gcc_assert (TREE_CODE (rhs
) == TEMPLATE_ID_EXPR
);
6057 case TEMPLATE_ID_EXPR
:
6059 tree fns
= TREE_OPERAND (rhs
, 0);
6060 tree args
= TREE_OPERAND (rhs
, 1);
6063 resolve_address_of_overloaded_function (lhstype
, fns
, flags_in
,
6064 /*template_only=*/true,
6071 resolve_address_of_overloaded_function (lhstype
, rhs
, flags_in
,
6072 /*template_only=*/false,
6073 /*explicit_targs=*/NULL_TREE
);
6076 /* This is too hard for now. */
6082 TREE_OPERAND (rhs
, 0)
6083 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6084 if (TREE_OPERAND (rhs
, 0) == error_mark_node
)
6085 return error_mark_node
;
6086 TREE_OPERAND (rhs
, 1)
6087 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 1), flags
);
6088 if (TREE_OPERAND (rhs
, 1) == error_mark_node
)
6089 return error_mark_node
;
6091 TREE_TYPE (rhs
) = lhstype
;
6095 case TRUNC_DIV_EXPR
:
6096 case FLOOR_DIV_EXPR
:
6098 case ROUND_DIV_EXPR
:
6100 case TRUNC_MOD_EXPR
:
6101 case FLOOR_MOD_EXPR
:
6103 case ROUND_MOD_EXPR
:
6104 case FIX_ROUND_EXPR
:
6105 case FIX_FLOOR_EXPR
:
6107 case FIX_TRUNC_EXPR
:
6122 case PREINCREMENT_EXPR
:
6123 case PREDECREMENT_EXPR
:
6124 case POSTINCREMENT_EXPR
:
6125 case POSTDECREMENT_EXPR
:
6126 if (flags
& tf_error
)
6127 error ("invalid operation on uninstantiated type");
6128 return error_mark_node
;
6130 case TRUTH_AND_EXPR
:
6132 case TRUTH_XOR_EXPR
:
6139 case TRUTH_ANDIF_EXPR
:
6140 case TRUTH_ORIF_EXPR
:
6141 case TRUTH_NOT_EXPR
:
6142 if (flags
& tf_error
)
6143 error ("not enough type information");
6144 return error_mark_node
;
6147 if (type_unknown_p (TREE_OPERAND (rhs
, 0)))
6149 if (flags
& tf_error
)
6150 error ("not enough type information");
6151 return error_mark_node
;
6153 TREE_OPERAND (rhs
, 1)
6154 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 1), flags
);
6155 if (TREE_OPERAND (rhs
, 1) == error_mark_node
)
6156 return error_mark_node
;
6157 TREE_OPERAND (rhs
, 2)
6158 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 2), flags
);
6159 if (TREE_OPERAND (rhs
, 2) == error_mark_node
)
6160 return error_mark_node
;
6162 TREE_TYPE (rhs
) = lhstype
;
6166 TREE_OPERAND (rhs
, 1)
6167 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 1), flags
);
6168 if (TREE_OPERAND (rhs
, 1) == error_mark_node
)
6169 return error_mark_node
;
6171 TREE_TYPE (rhs
) = lhstype
;
6176 if (PTRMEM_OK_P (rhs
))
6177 flags
|= tf_ptrmem_ok
;
6179 return instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6183 return error_mark_node
;
6188 return error_mark_node
;
6191 /* Return the name of the virtual function pointer field
6192 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6193 this may have to look back through base types to find the
6194 ultimate field name. (For single inheritance, these could
6195 all be the same name. Who knows for multiple inheritance). */
6198 get_vfield_name (tree type
)
6200 tree binfo
, base_binfo
;
6203 for (binfo
= TYPE_BINFO (type
);
6204 BINFO_N_BASE_BINFOS (binfo
);
6207 base_binfo
= BINFO_BASE_BINFO (binfo
, 0);
6209 if (BINFO_VIRTUAL_P (base_binfo
)
6210 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo
)))
6214 type
= BINFO_TYPE (binfo
);
6215 buf
= alloca (sizeof (VFIELD_NAME_FORMAT
) + TYPE_NAME_LENGTH (type
) + 2);
6216 sprintf (buf
, VFIELD_NAME_FORMAT
,
6217 IDENTIFIER_POINTER (constructor_name (type
)));
6218 return get_identifier (buf
);
6222 print_class_statistics (void)
6224 #ifdef GATHER_STATISTICS
6225 fprintf (stderr
, "convert_harshness = %d\n", n_convert_harshness
);
6226 fprintf (stderr
, "compute_conversion_costs = %d\n", n_compute_conversion_costs
);
6229 fprintf (stderr
, "vtables = %d; vtable searches = %d\n",
6230 n_vtables
, n_vtable_searches
);
6231 fprintf (stderr
, "vtable entries = %d; vtable elems = %d\n",
6232 n_vtable_entries
, n_vtable_elems
);
6237 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6238 according to [class]:
6239 The class-name is also inserted
6240 into the scope of the class itself. For purposes of access checking,
6241 the inserted class name is treated as if it were a public member name. */
6244 build_self_reference (void)
6246 tree name
= constructor_name (current_class_type
);
6247 tree value
= build_lang_decl (TYPE_DECL
, name
, current_class_type
);
6250 DECL_NONLOCAL (value
) = 1;
6251 DECL_CONTEXT (value
) = current_class_type
;
6252 DECL_ARTIFICIAL (value
) = 1;
6253 SET_DECL_SELF_REFERENCE_P (value
);
6255 if (processing_template_decl
)
6256 value
= push_template_decl (value
);
6258 saved_cas
= current_access_specifier
;
6259 current_access_specifier
= access_public_node
;
6260 finish_member_declaration (value
);
6261 current_access_specifier
= saved_cas
;
6264 /* Returns 1 if TYPE contains only padding bytes. */
6267 is_empty_class (tree type
)
6269 if (type
== error_mark_node
)
6272 if (! IS_AGGR_TYPE (type
))
6275 /* In G++ 3.2, whether or not a class was empty was determined by
6276 looking at its size. */
6277 if (abi_version_at_least (2))
6278 return CLASSTYPE_EMPTY_P (type
);
6280 return integer_zerop (CLASSTYPE_SIZE (type
));
6283 /* Returns true if TYPE contains an empty class. */
6286 contains_empty_class_p (tree type
)
6288 if (is_empty_class (type
))
6290 if (CLASS_TYPE_P (type
))
6297 for (binfo
= TYPE_BINFO (type
), i
= 0;
6298 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
6299 if (contains_empty_class_p (BINFO_TYPE (base_binfo
)))
6301 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
6302 if (TREE_CODE (field
) == FIELD_DECL
6303 && !DECL_ARTIFICIAL (field
)
6304 && is_empty_class (TREE_TYPE (field
)))
6307 else if (TREE_CODE (type
) == ARRAY_TYPE
)
6308 return contains_empty_class_p (TREE_TYPE (type
));
6312 /* Note that NAME was looked up while the current class was being
6313 defined and that the result of that lookup was DECL. */
6316 maybe_note_name_used_in_class (tree name
, tree decl
)
6318 splay_tree names_used
;
6320 /* If we're not defining a class, there's nothing to do. */
6321 if (!(innermost_scope_kind() == sk_class
6322 && TYPE_BEING_DEFINED (current_class_type
)))
6325 /* If there's already a binding for this NAME, then we don't have
6326 anything to worry about. */
6327 if (lookup_member (current_class_type
, name
,
6328 /*protect=*/0, /*want_type=*/false))
6331 if (!current_class_stack
[current_class_depth
- 1].names_used
)
6332 current_class_stack
[current_class_depth
- 1].names_used
6333 = splay_tree_new (splay_tree_compare_pointers
, 0, 0);
6334 names_used
= current_class_stack
[current_class_depth
- 1].names_used
;
6336 splay_tree_insert (names_used
,
6337 (splay_tree_key
) name
,
6338 (splay_tree_value
) decl
);
6341 /* Note that NAME was declared (as DECL) in the current class. Check
6342 to see that the declaration is valid. */
6345 note_name_declared_in_class (tree name
, tree decl
)
6347 splay_tree names_used
;
6350 /* Look to see if we ever used this name. */
6352 = current_class_stack
[current_class_depth
- 1].names_used
;
6356 n
= splay_tree_lookup (names_used
, (splay_tree_key
) name
);
6359 /* [basic.scope.class]
6361 A name N used in a class S shall refer to the same declaration
6362 in its context and when re-evaluated in the completed scope of
6364 error ("declaration of %q#D", decl
);
6365 error ("changes meaning of %qD from %q+#D",
6366 DECL_NAME (OVL_CURRENT (decl
)), (tree
) n
->value
);
6370 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6371 Secondary vtables are merged with primary vtables; this function
6372 will return the VAR_DECL for the primary vtable. */
6375 get_vtbl_decl_for_binfo (tree binfo
)
6379 decl
= BINFO_VTABLE (binfo
);
6380 if (decl
&& TREE_CODE (decl
) == PLUS_EXPR
)
6382 gcc_assert (TREE_CODE (TREE_OPERAND (decl
, 0)) == ADDR_EXPR
);
6383 decl
= TREE_OPERAND (TREE_OPERAND (decl
, 0), 0);
6386 gcc_assert (TREE_CODE (decl
) == VAR_DECL
);
6391 /* Returns the binfo for the primary base of BINFO. If the resulting
6392 BINFO is a virtual base, and it is inherited elsewhere in the
6393 hierarchy, then the returned binfo might not be the primary base of
6394 BINFO in the complete object. Check BINFO_PRIMARY_P or
6395 BINFO_LOST_PRIMARY_P to be sure. */
6398 get_primary_binfo (tree binfo
)
6403 primary_base
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo
));
6407 result
= copied_binfo (primary_base
, binfo
);
6411 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6414 maybe_indent_hierarchy (FILE * stream
, int indent
, int indented_p
)
6417 fprintf (stream
, "%*s", indent
, "");
6421 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6422 INDENT should be zero when called from the top level; it is
6423 incremented recursively. IGO indicates the next expected BINFO in
6424 inheritance graph ordering. */
6427 dump_class_hierarchy_r (FILE *stream
,
6437 indented
= maybe_indent_hierarchy (stream
, indent
, 0);
6438 fprintf (stream
, "%s (0x%lx) ",
6439 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
),
6440 (unsigned long) binfo
);
6443 fprintf (stream
, "alternative-path\n");
6446 igo
= TREE_CHAIN (binfo
);
6448 fprintf (stream
, HOST_WIDE_INT_PRINT_DEC
,
6449 tree_low_cst (BINFO_OFFSET (binfo
), 0));
6450 if (is_empty_class (BINFO_TYPE (binfo
)))
6451 fprintf (stream
, " empty");
6452 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo
)))
6453 fprintf (stream
, " nearly-empty");
6454 if (BINFO_VIRTUAL_P (binfo
))
6455 fprintf (stream
, " virtual");
6456 fprintf (stream
, "\n");
6459 if (BINFO_PRIMARY_P (binfo
))
6461 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6462 fprintf (stream
, " primary-for %s (0x%lx)",
6463 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
6464 TFF_PLAIN_IDENTIFIER
),
6465 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo
));
6467 if (BINFO_LOST_PRIMARY_P (binfo
))
6469 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6470 fprintf (stream
, " lost-primary");
6473 fprintf (stream
, "\n");
6475 if (!(flags
& TDF_SLIM
))
6479 if (BINFO_SUBVTT_INDEX (binfo
))
6481 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6482 fprintf (stream
, " subvttidx=%s",
6483 expr_as_string (BINFO_SUBVTT_INDEX (binfo
),
6484 TFF_PLAIN_IDENTIFIER
));
6486 if (BINFO_VPTR_INDEX (binfo
))
6488 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6489 fprintf (stream
, " vptridx=%s",
6490 expr_as_string (BINFO_VPTR_INDEX (binfo
),
6491 TFF_PLAIN_IDENTIFIER
));
6493 if (BINFO_VPTR_FIELD (binfo
))
6495 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6496 fprintf (stream
, " vbaseoffset=%s",
6497 expr_as_string (BINFO_VPTR_FIELD (binfo
),
6498 TFF_PLAIN_IDENTIFIER
));
6500 if (BINFO_VTABLE (binfo
))
6502 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6503 fprintf (stream
, " vptr=%s",
6504 expr_as_string (BINFO_VTABLE (binfo
),
6505 TFF_PLAIN_IDENTIFIER
));
6509 fprintf (stream
, "\n");
6512 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
6513 igo
= dump_class_hierarchy_r (stream
, flags
, base_binfo
, igo
, indent
+ 2);
6518 /* Dump the BINFO hierarchy for T. */
6521 dump_class_hierarchy_1 (FILE *stream
, int flags
, tree t
)
6523 fprintf (stream
, "Class %s\n", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6524 fprintf (stream
, " size=%lu align=%lu\n",
6525 (unsigned long)(tree_low_cst (TYPE_SIZE (t
), 0) / BITS_PER_UNIT
),
6526 (unsigned long)(TYPE_ALIGN (t
) / BITS_PER_UNIT
));
6527 fprintf (stream
, " base size=%lu base align=%lu\n",
6528 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t
)), 0)
6530 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t
))
6532 dump_class_hierarchy_r (stream
, flags
, TYPE_BINFO (t
), TYPE_BINFO (t
), 0);
6533 fprintf (stream
, "\n");
6536 /* Debug interface to hierarchy dumping. */
6539 debug_class (tree t
)
6541 dump_class_hierarchy_1 (stderr
, TDF_SLIM
, t
);
6545 dump_class_hierarchy (tree t
)
6548 FILE *stream
= dump_begin (TDI_class
, &flags
);
6552 dump_class_hierarchy_1 (stream
, flags
, t
);
6553 dump_end (TDI_class
, stream
);
6558 dump_array (FILE * stream
, tree decl
)
6561 unsigned HOST_WIDE_INT ix
;
6563 tree size
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl
)));
6565 elt
= (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl
))), 0)
6567 fprintf (stream
, "%s:", decl_as_string (decl
, TFF_PLAIN_IDENTIFIER
));
6568 fprintf (stream
, " %s entries",
6569 expr_as_string (size_binop (PLUS_EXPR
, size
, size_one_node
),
6570 TFF_PLAIN_IDENTIFIER
));
6571 fprintf (stream
, "\n");
6573 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl
)),
6575 fprintf (stream
, "%-4ld %s\n", (long)(ix
* elt
),
6576 expr_as_string (value
, TFF_PLAIN_IDENTIFIER
));
6580 dump_vtable (tree t
, tree binfo
, tree vtable
)
6583 FILE *stream
= dump_begin (TDI_class
, &flags
);
6588 if (!(flags
& TDF_SLIM
))
6590 int ctor_vtbl_p
= TYPE_BINFO (t
) != binfo
;
6592 fprintf (stream
, "%s for %s",
6593 ctor_vtbl_p
? "Construction vtable" : "Vtable",
6594 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
));
6597 if (!BINFO_VIRTUAL_P (binfo
))
6598 fprintf (stream
, " (0x%lx instance)", (unsigned long)binfo
);
6599 fprintf (stream
, " in %s", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6601 fprintf (stream
, "\n");
6602 dump_array (stream
, vtable
);
6603 fprintf (stream
, "\n");
6606 dump_end (TDI_class
, stream
);
6610 dump_vtt (tree t
, tree vtt
)
6613 FILE *stream
= dump_begin (TDI_class
, &flags
);
6618 if (!(flags
& TDF_SLIM
))
6620 fprintf (stream
, "VTT for %s\n",
6621 type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6622 dump_array (stream
, vtt
);
6623 fprintf (stream
, "\n");
6626 dump_end (TDI_class
, stream
);
6629 /* Dump a function or thunk and its thunkees. */
6632 dump_thunk (FILE *stream
, int indent
, tree thunk
)
6634 static const char spaces
[] = " ";
6635 tree name
= DECL_NAME (thunk
);
6638 fprintf (stream
, "%.*s%p %s %s", indent
, spaces
,
6640 !DECL_THUNK_P (thunk
) ? "function"
6641 : DECL_THIS_THUNK_P (thunk
) ? "this-thunk" : "covariant-thunk",
6642 name
? IDENTIFIER_POINTER (name
) : "<unset>");
6643 if (DECL_THUNK_P (thunk
))
6645 HOST_WIDE_INT fixed_adjust
= THUNK_FIXED_OFFSET (thunk
);
6646 tree virtual_adjust
= THUNK_VIRTUAL_OFFSET (thunk
);
6648 fprintf (stream
, " fixed=" HOST_WIDE_INT_PRINT_DEC
, fixed_adjust
);
6649 if (!virtual_adjust
)
6651 else if (DECL_THIS_THUNK_P (thunk
))
6652 fprintf (stream
, " vcall=" HOST_WIDE_INT_PRINT_DEC
,
6653 tree_low_cst (virtual_adjust
, 0));
6655 fprintf (stream
, " vbase=" HOST_WIDE_INT_PRINT_DEC
"(%s)",
6656 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust
), 0),
6657 type_as_string (BINFO_TYPE (virtual_adjust
), TFF_SCOPE
));
6658 if (THUNK_ALIAS (thunk
))
6659 fprintf (stream
, " alias to %p", (void *)THUNK_ALIAS (thunk
));
6661 fprintf (stream
, "\n");
6662 for (thunks
= DECL_THUNKS (thunk
); thunks
; thunks
= TREE_CHAIN (thunks
))
6663 dump_thunk (stream
, indent
+ 2, thunks
);
6666 /* Dump the thunks for FN. */
6669 debug_thunks (tree fn
)
6671 dump_thunk (stderr
, 0, fn
);
6674 /* Virtual function table initialization. */
6676 /* Create all the necessary vtables for T and its base classes. */
6679 finish_vtbls (tree t
)
6684 /* We lay out the primary and secondary vtables in one contiguous
6685 vtable. The primary vtable is first, followed by the non-virtual
6686 secondary vtables in inheritance graph order. */
6687 list
= build_tree_list (BINFO_VTABLE (TYPE_BINFO (t
)), NULL_TREE
);
6688 accumulate_vtbl_inits (TYPE_BINFO (t
), TYPE_BINFO (t
),
6689 TYPE_BINFO (t
), t
, list
);
6691 /* Then come the virtual bases, also in inheritance graph order. */
6692 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
6694 if (!BINFO_VIRTUAL_P (vbase
))
6696 accumulate_vtbl_inits (vbase
, vbase
, TYPE_BINFO (t
), t
, list
);
6699 if (BINFO_VTABLE (TYPE_BINFO (t
)))
6700 initialize_vtable (TYPE_BINFO (t
), TREE_VALUE (list
));
6703 /* Initialize the vtable for BINFO with the INITS. */
6706 initialize_vtable (tree binfo
, tree inits
)
6710 layout_vtable_decl (binfo
, list_length (inits
));
6711 decl
= get_vtbl_decl_for_binfo (binfo
);
6712 initialize_artificial_var (decl
, inits
);
6713 dump_vtable (BINFO_TYPE (binfo
), binfo
, decl
);
6716 /* Build the VTT (virtual table table) for T.
6717 A class requires a VTT if it has virtual bases.
6720 1 - primary virtual pointer for complete object T
6721 2 - secondary VTTs for each direct non-virtual base of T which requires a
6723 3 - secondary virtual pointers for each direct or indirect base of T which
6724 has virtual bases or is reachable via a virtual path from T.
6725 4 - secondary VTTs for each direct or indirect virtual base of T.
6727 Secondary VTTs look like complete object VTTs without part 4. */
6737 /* Build up the initializers for the VTT. */
6739 index
= size_zero_node
;
6740 build_vtt_inits (TYPE_BINFO (t
), t
, &inits
, &index
);
6742 /* If we didn't need a VTT, we're done. */
6746 /* Figure out the type of the VTT. */
6747 type
= build_index_type (size_int (list_length (inits
) - 1));
6748 type
= build_cplus_array_type (const_ptr_type_node
, type
);
6750 /* Now, build the VTT object itself. */
6751 vtt
= build_vtable (t
, get_vtt_name (t
), type
);
6752 initialize_artificial_var (vtt
, inits
);
6753 /* Add the VTT to the vtables list. */
6754 TREE_CHAIN (vtt
) = TREE_CHAIN (CLASSTYPE_VTABLES (t
));
6755 TREE_CHAIN (CLASSTYPE_VTABLES (t
)) = vtt
;
6760 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6761 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6762 and CHAIN the vtable pointer for this binfo after construction is
6763 complete. VALUE can also be another BINFO, in which case we recurse. */
6766 binfo_ctor_vtable (tree binfo
)
6772 vt
= BINFO_VTABLE (binfo
);
6773 if (TREE_CODE (vt
) == TREE_LIST
)
6774 vt
= TREE_VALUE (vt
);
6775 if (TREE_CODE (vt
) == TREE_BINFO
)
6784 /* Data for secondary VTT initialization. */
6785 typedef struct secondary_vptr_vtt_init_data_s
6787 /* Is this the primary VTT? */
6790 /* Current index into the VTT. */
6793 /* TREE_LIST of initializers built up. */
6796 /* The type being constructed by this secondary VTT. */
6797 tree type_being_constructed
;
6798 } secondary_vptr_vtt_init_data
;
6800 /* Recursively build the VTT-initializer for BINFO (which is in the
6801 hierarchy dominated by T). INITS points to the end of the initializer
6802 list to date. INDEX is the VTT index where the next element will be
6803 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6804 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6805 for virtual bases of T. When it is not so, we build the constructor
6806 vtables for the BINFO-in-T variant. */
6809 build_vtt_inits (tree binfo
, tree t
, tree
*inits
, tree
*index
)
6814 tree secondary_vptrs
;
6815 secondary_vptr_vtt_init_data data
;
6816 int top_level_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
6818 /* We only need VTTs for subobjects with virtual bases. */
6819 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
6822 /* We need to use a construction vtable if this is not the primary
6826 build_ctor_vtbl_group (binfo
, t
);
6828 /* Record the offset in the VTT where this sub-VTT can be found. */
6829 BINFO_SUBVTT_INDEX (binfo
) = *index
;
6832 /* Add the address of the primary vtable for the complete object. */
6833 init
= binfo_ctor_vtable (binfo
);
6834 *inits
= build_tree_list (NULL_TREE
, init
);
6835 inits
= &TREE_CHAIN (*inits
);
6838 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6839 BINFO_VPTR_INDEX (binfo
) = *index
;
6841 *index
= size_binop (PLUS_EXPR
, *index
, TYPE_SIZE_UNIT (ptr_type_node
));
6843 /* Recursively add the secondary VTTs for non-virtual bases. */
6844 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, b
); ++i
)
6845 if (!BINFO_VIRTUAL_P (b
))
6846 inits
= build_vtt_inits (b
, t
, inits
, index
);
6848 /* Add secondary virtual pointers for all subobjects of BINFO with
6849 either virtual bases or reachable along a virtual path, except
6850 subobjects that are non-virtual primary bases. */
6851 data
.top_level_p
= top_level_p
;
6852 data
.index
= *index
;
6854 data
.type_being_constructed
= BINFO_TYPE (binfo
);
6856 dfs_walk_once (binfo
, dfs_build_secondary_vptr_vtt_inits
, NULL
, &data
);
6858 *index
= data
.index
;
6860 /* The secondary vptrs come back in reverse order. After we reverse
6861 them, and add the INITS, the last init will be the first element
6863 secondary_vptrs
= data
.inits
;
6864 if (secondary_vptrs
)
6866 *inits
= nreverse (secondary_vptrs
);
6867 inits
= &TREE_CHAIN (secondary_vptrs
);
6868 gcc_assert (*inits
== NULL_TREE
);
6872 /* Add the secondary VTTs for virtual bases in inheritance graph
6874 for (b
= TYPE_BINFO (BINFO_TYPE (binfo
)); b
; b
= TREE_CHAIN (b
))
6876 if (!BINFO_VIRTUAL_P (b
))
6879 inits
= build_vtt_inits (b
, t
, inits
, index
);
6882 /* Remove the ctor vtables we created. */
6883 dfs_walk_all (binfo
, dfs_fixup_binfo_vtbls
, NULL
, binfo
);
6888 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6889 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6892 dfs_build_secondary_vptr_vtt_inits (tree binfo
, void *data_
)
6894 secondary_vptr_vtt_init_data
*data
= (secondary_vptr_vtt_init_data
*)data_
;
6896 /* We don't care about bases that don't have vtables. */
6897 if (!TYPE_VFIELD (BINFO_TYPE (binfo
)))
6898 return dfs_skip_bases
;
6900 /* We're only interested in proper subobjects of the type being
6902 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->type_being_constructed
))
6905 /* We're only interested in bases with virtual bases or reachable
6906 via a virtual path from the type being constructed. */
6907 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
6908 || binfo_via_virtual (binfo
, data
->type_being_constructed
)))
6909 return dfs_skip_bases
;
6911 /* We're not interested in non-virtual primary bases. */
6912 if (!BINFO_VIRTUAL_P (binfo
) && BINFO_PRIMARY_P (binfo
))
6915 /* Record the index where this secondary vptr can be found. */
6916 if (data
->top_level_p
)
6918 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6919 BINFO_VPTR_INDEX (binfo
) = data
->index
;
6921 if (BINFO_VIRTUAL_P (binfo
))
6923 /* It's a primary virtual base, and this is not a
6924 construction vtable. Find the base this is primary of in
6925 the inheritance graph, and use that base's vtable
6927 while (BINFO_PRIMARY_P (binfo
))
6928 binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
6932 /* Add the initializer for the secondary vptr itself. */
6933 data
->inits
= tree_cons (NULL_TREE
, binfo_ctor_vtable (binfo
), data
->inits
);
6935 /* Advance the vtt index. */
6936 data
->index
= size_binop (PLUS_EXPR
, data
->index
,
6937 TYPE_SIZE_UNIT (ptr_type_node
));
6942 /* Called from build_vtt_inits via dfs_walk. After building
6943 constructor vtables and generating the sub-vtt from them, we need
6944 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6945 binfo of the base whose sub vtt was generated. */
6948 dfs_fixup_binfo_vtbls (tree binfo
, void* data
)
6950 tree vtable
= BINFO_VTABLE (binfo
);
6952 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
6953 /* If this class has no vtable, none of its bases do. */
6954 return dfs_skip_bases
;
6957 /* This might be a primary base, so have no vtable in this
6961 /* If we scribbled the construction vtable vptr into BINFO, clear it
6963 if (TREE_CODE (vtable
) == TREE_LIST
6964 && (TREE_PURPOSE (vtable
) == (tree
) data
))
6965 BINFO_VTABLE (binfo
) = TREE_CHAIN (vtable
);
6970 /* Build the construction vtable group for BINFO which is in the
6971 hierarchy dominated by T. */
6974 build_ctor_vtbl_group (tree binfo
, tree t
)
6983 /* See if we've already created this construction vtable group. */
6984 id
= mangle_ctor_vtbl_for_type (t
, binfo
);
6985 if (IDENTIFIER_GLOBAL_VALUE (id
))
6988 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
));
6989 /* Build a version of VTBL (with the wrong type) for use in
6990 constructing the addresses of secondary vtables in the
6991 construction vtable group. */
6992 vtbl
= build_vtable (t
, id
, ptr_type_node
);
6993 DECL_CONSTRUCTION_VTABLE_P (vtbl
) = 1;
6994 list
= build_tree_list (vtbl
, NULL_TREE
);
6995 accumulate_vtbl_inits (binfo
, TYPE_BINFO (TREE_TYPE (binfo
)),
6998 /* Add the vtables for each of our virtual bases using the vbase in T
7000 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
7002 vbase
= TREE_CHAIN (vbase
))
7006 if (!BINFO_VIRTUAL_P (vbase
))
7008 b
= copied_binfo (vbase
, binfo
);
7010 accumulate_vtbl_inits (b
, vbase
, binfo
, t
, list
);
7012 inits
= TREE_VALUE (list
);
7014 /* Figure out the type of the construction vtable. */
7015 type
= build_index_type (size_int (list_length (inits
) - 1));
7016 type
= build_cplus_array_type (vtable_entry_type
, type
);
7017 TREE_TYPE (vtbl
) = type
;
7019 /* Initialize the construction vtable. */
7020 CLASSTYPE_VTABLES (t
) = chainon (CLASSTYPE_VTABLES (t
), vtbl
);
7021 initialize_artificial_var (vtbl
, inits
);
7022 dump_vtable (t
, binfo
, vtbl
);
7025 /* Add the vtbl initializers for BINFO (and its bases other than
7026 non-virtual primaries) to the list of INITS. BINFO is in the
7027 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7028 the constructor the vtbl inits should be accumulated for. (If this
7029 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7030 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7031 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7032 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7033 but are not necessarily the same in terms of layout. */
7036 accumulate_vtbl_inits (tree binfo
,
7044 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7046 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (orig_binfo
)));
7048 /* If it doesn't have a vptr, we don't do anything. */
7049 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
7052 /* If we're building a construction vtable, we're not interested in
7053 subobjects that don't require construction vtables. */
7055 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
7056 && !binfo_via_virtual (orig_binfo
, BINFO_TYPE (rtti_binfo
)))
7059 /* Build the initializers for the BINFO-in-T vtable. */
7061 = chainon (TREE_VALUE (inits
),
7062 dfs_accumulate_vtbl_inits (binfo
, orig_binfo
,
7063 rtti_binfo
, t
, inits
));
7065 /* Walk the BINFO and its bases. We walk in preorder so that as we
7066 initialize each vtable we can figure out at what offset the
7067 secondary vtable lies from the primary vtable. We can't use
7068 dfs_walk here because we need to iterate through bases of BINFO
7069 and RTTI_BINFO simultaneously. */
7070 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7072 /* Skip virtual bases. */
7073 if (BINFO_VIRTUAL_P (base_binfo
))
7075 accumulate_vtbl_inits (base_binfo
,
7076 BINFO_BASE_BINFO (orig_binfo
, i
),
7082 /* Called from accumulate_vtbl_inits. Returns the initializers for
7083 the BINFO vtable. */
7086 dfs_accumulate_vtbl_inits (tree binfo
,
7092 tree inits
= NULL_TREE
;
7093 tree vtbl
= NULL_TREE
;
7094 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7097 && BINFO_VIRTUAL_P (orig_binfo
) && BINFO_PRIMARY_P (orig_binfo
))
7099 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7100 primary virtual base. If it is not the same primary in
7101 the hierarchy of T, we'll need to generate a ctor vtable
7102 for it, to place at its location in T. If it is the same
7103 primary, we still need a VTT entry for the vtable, but it
7104 should point to the ctor vtable for the base it is a
7105 primary for within the sub-hierarchy of RTTI_BINFO.
7107 There are three possible cases:
7109 1) We are in the same place.
7110 2) We are a primary base within a lost primary virtual base of
7112 3) We are primary to something not a base of RTTI_BINFO. */
7115 tree last
= NULL_TREE
;
7117 /* First, look through the bases we are primary to for RTTI_BINFO
7118 or a virtual base. */
7120 while (BINFO_PRIMARY_P (b
))
7122 b
= BINFO_INHERITANCE_CHAIN (b
);
7124 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7127 /* If we run out of primary links, keep looking down our
7128 inheritance chain; we might be an indirect primary. */
7129 for (b
= last
; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
7130 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7134 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7135 base B and it is a base of RTTI_BINFO, this is case 2. In
7136 either case, we share our vtable with LAST, i.e. the
7137 derived-most base within B of which we are a primary. */
7139 || (b
&& binfo_for_vbase (BINFO_TYPE (b
), BINFO_TYPE (rtti_binfo
))))
7140 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7141 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7142 binfo_ctor_vtable after everything's been set up. */
7145 /* Otherwise, this is case 3 and we get our own. */
7147 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo
))
7155 /* Compute the initializer for this vtable. */
7156 inits
= build_vtbl_initializer (binfo
, orig_binfo
, t
, rtti_binfo
,
7159 /* Figure out the position to which the VPTR should point. */
7160 vtbl
= TREE_PURPOSE (l
);
7161 vtbl
= build1 (ADDR_EXPR
, vtbl_ptr_type_node
, vtbl
);
7162 index
= size_binop (PLUS_EXPR
,
7163 size_int (non_fn_entries
),
7164 size_int (list_length (TREE_VALUE (l
))));
7165 index
= size_binop (MULT_EXPR
,
7166 TYPE_SIZE_UNIT (vtable_entry_type
),
7168 vtbl
= build2 (PLUS_EXPR
, TREE_TYPE (vtbl
), vtbl
, index
);
7172 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7173 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7174 straighten this out. */
7175 BINFO_VTABLE (binfo
) = tree_cons (rtti_binfo
, vtbl
, BINFO_VTABLE (binfo
));
7176 else if (BINFO_PRIMARY_P (binfo
) && BINFO_VIRTUAL_P (binfo
))
7179 /* For an ordinary vtable, set BINFO_VTABLE. */
7180 BINFO_VTABLE (binfo
) = vtbl
;
7185 static GTY(()) tree abort_fndecl_addr
;
7187 /* Construct the initializer for BINFO's virtual function table. BINFO
7188 is part of the hierarchy dominated by T. If we're building a
7189 construction vtable, the ORIG_BINFO is the binfo we should use to
7190 find the actual function pointers to put in the vtable - but they
7191 can be overridden on the path to most-derived in the graph that
7192 ORIG_BINFO belongs. Otherwise,
7193 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7194 BINFO that should be indicated by the RTTI information in the
7195 vtable; it will be a base class of T, rather than T itself, if we
7196 are building a construction vtable.
7198 The value returned is a TREE_LIST suitable for wrapping in a
7199 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7200 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7201 number of non-function entries in the vtable.
7203 It might seem that this function should never be called with a
7204 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7205 base is always subsumed by a derived class vtable. However, when
7206 we are building construction vtables, we do build vtables for
7207 primary bases; we need these while the primary base is being
7211 build_vtbl_initializer (tree binfo
,
7215 int* non_fn_entries_p
)
7222 VEC(tree
,gc
) *vbases
;
7224 /* Initialize VID. */
7225 memset (&vid
, 0, sizeof (vid
));
7228 vid
.rtti_binfo
= rtti_binfo
;
7229 vid
.last_init
= &vid
.inits
;
7230 vid
.primary_vtbl_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
7231 vid
.ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7232 vid
.generate_vcall_entries
= true;
7233 /* The first vbase or vcall offset is at index -3 in the vtable. */
7234 vid
.index
= ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE
);
7236 /* Add entries to the vtable for RTTI. */
7237 build_rtti_vtbl_entries (binfo
, &vid
);
7239 /* Create an array for keeping track of the functions we've
7240 processed. When we see multiple functions with the same
7241 signature, we share the vcall offsets. */
7242 vid
.fns
= VEC_alloc (tree
, gc
, 32);
7243 /* Add the vcall and vbase offset entries. */
7244 build_vcall_and_vbase_vtbl_entries (binfo
, &vid
);
7246 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7247 build_vbase_offset_vtbl_entries. */
7248 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
7249 VEC_iterate (tree
, vbases
, ix
, vbinfo
); ix
++)
7250 BINFO_VTABLE_PATH_MARKED (vbinfo
) = 0;
7252 /* If the target requires padding between data entries, add that now. */
7253 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE
> 1)
7257 for (prev
= &vid
.inits
; (cur
= *prev
); prev
= &TREE_CHAIN (cur
))
7262 for (i
= 1; i
< TARGET_VTABLE_DATA_ENTRY_DISTANCE
; ++i
)
7263 add
= tree_cons (NULL_TREE
,
7264 build1 (NOP_EXPR
, vtable_entry_type
,
7271 if (non_fn_entries_p
)
7272 *non_fn_entries_p
= list_length (vid
.inits
);
7274 /* Go through all the ordinary virtual functions, building up
7276 vfun_inits
= NULL_TREE
;
7277 for (v
= BINFO_VIRTUALS (orig_binfo
); v
; v
= TREE_CHAIN (v
))
7281 tree fn
, fn_original
;
7282 tree init
= NULL_TREE
;
7286 if (DECL_THUNK_P (fn
))
7288 if (!DECL_NAME (fn
))
7290 if (THUNK_ALIAS (fn
))
7292 fn
= THUNK_ALIAS (fn
);
7295 fn_original
= THUNK_TARGET (fn
);
7298 /* If the only definition of this function signature along our
7299 primary base chain is from a lost primary, this vtable slot will
7300 never be used, so just zero it out. This is important to avoid
7301 requiring extra thunks which cannot be generated with the function.
7303 We first check this in update_vtable_entry_for_fn, so we handle
7304 restored primary bases properly; we also need to do it here so we
7305 zero out unused slots in ctor vtables, rather than filling themff
7306 with erroneous values (though harmless, apart from relocation
7308 for (b
= binfo
; ; b
= get_primary_binfo (b
))
7310 /* We found a defn before a lost primary; go ahead as normal. */
7311 if (look_for_overrides_here (BINFO_TYPE (b
), fn_original
))
7314 /* The nearest definition is from a lost primary; clear the
7316 if (BINFO_LOST_PRIMARY_P (b
))
7318 init
= size_zero_node
;
7325 /* Pull the offset for `this', and the function to call, out of
7327 delta
= BV_DELTA (v
);
7328 vcall_index
= BV_VCALL_INDEX (v
);
7330 gcc_assert (TREE_CODE (delta
) == INTEGER_CST
);
7331 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
);
7333 /* You can't call an abstract virtual function; it's abstract.
7334 So, we replace these functions with __pure_virtual. */
7335 if (DECL_PURE_VIRTUAL_P (fn_original
))
7338 if (abort_fndecl_addr
== NULL
)
7339 abort_fndecl_addr
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7340 init
= abort_fndecl_addr
;
7344 if (!integer_zerop (delta
) || vcall_index
)
7346 fn
= make_thunk (fn
, /*this_adjusting=*/1, delta
, vcall_index
);
7347 if (!DECL_NAME (fn
))
7350 /* Take the address of the function, considering it to be of an
7351 appropriate generic type. */
7352 init
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7356 /* And add it to the chain of initializers. */
7357 if (TARGET_VTABLE_USES_DESCRIPTORS
)
7360 if (init
== size_zero_node
)
7361 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7362 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7364 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7366 tree fdesc
= build2 (FDESC_EXPR
, vfunc_ptr_type_node
,
7367 TREE_OPERAND (init
, 0),
7368 build_int_cst (NULL_TREE
, i
));
7369 TREE_CONSTANT (fdesc
) = 1;
7370 TREE_INVARIANT (fdesc
) = 1;
7372 vfun_inits
= tree_cons (NULL_TREE
, fdesc
, vfun_inits
);
7376 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7379 /* The initializers for virtual functions were built up in reverse
7380 order; straighten them out now. */
7381 vfun_inits
= nreverse (vfun_inits
);
7383 /* The negative offset initializers are also in reverse order. */
7384 vid
.inits
= nreverse (vid
.inits
);
7386 /* Chain the two together. */
7387 return chainon (vid
.inits
, vfun_inits
);
7390 /* Adds to vid->inits the initializers for the vbase and vcall
7391 offsets in BINFO, which is in the hierarchy dominated by T. */
7394 build_vcall_and_vbase_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7398 /* If this is a derived class, we must first create entries
7399 corresponding to the primary base class. */
7400 b
= get_primary_binfo (binfo
);
7402 build_vcall_and_vbase_vtbl_entries (b
, vid
);
7404 /* Add the vbase entries for this base. */
7405 build_vbase_offset_vtbl_entries (binfo
, vid
);
7406 /* Add the vcall entries for this base. */
7407 build_vcall_offset_vtbl_entries (binfo
, vid
);
7410 /* Returns the initializers for the vbase offset entries in the vtable
7411 for BINFO (which is part of the class hierarchy dominated by T), in
7412 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7413 where the next vbase offset will go. */
7416 build_vbase_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7420 tree non_primary_binfo
;
7422 /* If there are no virtual baseclasses, then there is nothing to
7424 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
7429 /* We might be a primary base class. Go up the inheritance hierarchy
7430 until we find the most derived class of which we are a primary base:
7431 it is the offset of that which we need to use. */
7432 non_primary_binfo
= binfo
;
7433 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7437 /* If we have reached a virtual base, then it must be a primary
7438 base (possibly multi-level) of vid->binfo, or we wouldn't
7439 have called build_vcall_and_vbase_vtbl_entries for it. But it
7440 might be a lost primary, so just skip down to vid->binfo. */
7441 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7443 non_primary_binfo
= vid
->binfo
;
7447 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7448 if (get_primary_binfo (b
) != non_primary_binfo
)
7450 non_primary_binfo
= b
;
7453 /* Go through the virtual bases, adding the offsets. */
7454 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
7456 vbase
= TREE_CHAIN (vbase
))
7461 if (!BINFO_VIRTUAL_P (vbase
))
7464 /* Find the instance of this virtual base in the complete
7466 b
= copied_binfo (vbase
, binfo
);
7468 /* If we've already got an offset for this virtual base, we
7469 don't need another one. */
7470 if (BINFO_VTABLE_PATH_MARKED (b
))
7472 BINFO_VTABLE_PATH_MARKED (b
) = 1;
7474 /* Figure out where we can find this vbase offset. */
7475 delta
= size_binop (MULT_EXPR
,
7478 TYPE_SIZE_UNIT (vtable_entry_type
)));
7479 if (vid
->primary_vtbl_p
)
7480 BINFO_VPTR_FIELD (b
) = delta
;
7482 if (binfo
!= TYPE_BINFO (t
))
7483 /* The vbase offset had better be the same. */
7484 gcc_assert (tree_int_cst_equal (delta
, BINFO_VPTR_FIELD (vbase
)));
7486 /* The next vbase will come at a more negative offset. */
7487 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7488 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7490 /* The initializer is the delta from BINFO to this virtual base.
7491 The vbase offsets go in reverse inheritance-graph order, and
7492 we are walking in inheritance graph order so these end up in
7494 delta
= size_diffop (BINFO_OFFSET (b
), BINFO_OFFSET (non_primary_binfo
));
7497 = build_tree_list (NULL_TREE
,
7498 fold_build1 (NOP_EXPR
,
7501 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7505 /* Adds the initializers for the vcall offset entries in the vtable
7506 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7510 build_vcall_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7512 /* We only need these entries if this base is a virtual base. We
7513 compute the indices -- but do not add to the vtable -- when
7514 building the main vtable for a class. */
7515 if (BINFO_VIRTUAL_P (binfo
) || binfo
== TYPE_BINFO (vid
->derived
))
7517 /* We need a vcall offset for each of the virtual functions in this
7518 vtable. For example:
7520 class A { virtual void f (); };
7521 class B1 : virtual public A { virtual void f (); };
7522 class B2 : virtual public A { virtual void f (); };
7523 class C: public B1, public B2 { virtual void f (); };
7525 A C object has a primary base of B1, which has a primary base of A. A
7526 C also has a secondary base of B2, which no longer has a primary base
7527 of A. So the B2-in-C construction vtable needs a secondary vtable for
7528 A, which will adjust the A* to a B2* to call f. We have no way of
7529 knowing what (or even whether) this offset will be when we define B2,
7530 so we store this "vcall offset" in the A sub-vtable and look it up in
7531 a "virtual thunk" for B2::f.
7533 We need entries for all the functions in our primary vtable and
7534 in our non-virtual bases' secondary vtables. */
7536 /* If we are just computing the vcall indices -- but do not need
7537 the actual entries -- not that. */
7538 if (!BINFO_VIRTUAL_P (binfo
))
7539 vid
->generate_vcall_entries
= false;
7540 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7541 add_vcall_offset_vtbl_entries_r (binfo
, vid
);
7545 /* Build vcall offsets, starting with those for BINFO. */
7548 add_vcall_offset_vtbl_entries_r (tree binfo
, vtbl_init_data
* vid
)
7554 /* Don't walk into virtual bases -- except, of course, for the
7555 virtual base for which we are building vcall offsets. Any
7556 primary virtual base will have already had its offsets generated
7557 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7558 if (BINFO_VIRTUAL_P (binfo
) && vid
->vbase
!= binfo
)
7561 /* If BINFO has a primary base, process it first. */
7562 primary_binfo
= get_primary_binfo (binfo
);
7564 add_vcall_offset_vtbl_entries_r (primary_binfo
, vid
);
7566 /* Add BINFO itself to the list. */
7567 add_vcall_offset_vtbl_entries_1 (binfo
, vid
);
7569 /* Scan the non-primary bases of BINFO. */
7570 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7571 if (base_binfo
!= primary_binfo
)
7572 add_vcall_offset_vtbl_entries_r (base_binfo
, vid
);
7575 /* Called from build_vcall_offset_vtbl_entries_r. */
7578 add_vcall_offset_vtbl_entries_1 (tree binfo
, vtbl_init_data
* vid
)
7580 /* Make entries for the rest of the virtuals. */
7581 if (abi_version_at_least (2))
7585 /* The ABI requires that the methods be processed in declaration
7586 order. G++ 3.2 used the order in the vtable. */
7587 for (orig_fn
= TYPE_METHODS (BINFO_TYPE (binfo
));
7589 orig_fn
= TREE_CHAIN (orig_fn
))
7590 if (DECL_VINDEX (orig_fn
))
7591 add_vcall_offset (orig_fn
, binfo
, vid
);
7595 tree derived_virtuals
;
7598 /* If BINFO is a primary base, the most derived class which has
7599 BINFO as a primary base; otherwise, just BINFO. */
7600 tree non_primary_binfo
;
7602 /* We might be a primary base class. Go up the inheritance hierarchy
7603 until we find the most derived class of which we are a primary base:
7604 it is the BINFO_VIRTUALS there that we need to consider. */
7605 non_primary_binfo
= binfo
;
7606 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7610 /* If we have reached a virtual base, then it must be vid->vbase,
7611 because we ignore other virtual bases in
7612 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7613 base (possibly multi-level) of vid->binfo, or we wouldn't
7614 have called build_vcall_and_vbase_vtbl_entries for it. But it
7615 might be a lost primary, so just skip down to vid->binfo. */
7616 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7618 gcc_assert (non_primary_binfo
== vid
->vbase
);
7619 non_primary_binfo
= vid
->binfo
;
7623 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7624 if (get_primary_binfo (b
) != non_primary_binfo
)
7626 non_primary_binfo
= b
;
7629 if (vid
->ctor_vtbl_p
)
7630 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7631 where rtti_binfo is the most derived type. */
7633 = original_binfo (non_primary_binfo
, vid
->rtti_binfo
);
7635 for (base_virtuals
= BINFO_VIRTUALS (binfo
),
7636 derived_virtuals
= BINFO_VIRTUALS (non_primary_binfo
),
7637 orig_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
7639 base_virtuals
= TREE_CHAIN (base_virtuals
),
7640 derived_virtuals
= TREE_CHAIN (derived_virtuals
),
7641 orig_virtuals
= TREE_CHAIN (orig_virtuals
))
7645 /* Find the declaration that originally caused this function to
7646 be present in BINFO_TYPE (binfo). */
7647 orig_fn
= BV_FN (orig_virtuals
);
7649 /* When processing BINFO, we only want to generate vcall slots for
7650 function slots introduced in BINFO. So don't try to generate
7651 one if the function isn't even defined in BINFO. */
7652 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), DECL_CONTEXT (orig_fn
)))
7655 add_vcall_offset (orig_fn
, binfo
, vid
);
7660 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7663 add_vcall_offset (tree orig_fn
, tree binfo
, vtbl_init_data
*vid
)
7669 /* If there is already an entry for a function with the same
7670 signature as FN, then we do not need a second vcall offset.
7671 Check the list of functions already present in the derived
7673 for (i
= 0; VEC_iterate (tree
, vid
->fns
, i
, derived_entry
); ++i
)
7675 if (same_signature_p (derived_entry
, orig_fn
)
7676 /* We only use one vcall offset for virtual destructors,
7677 even though there are two virtual table entries. */
7678 || (DECL_DESTRUCTOR_P (derived_entry
)
7679 && DECL_DESTRUCTOR_P (orig_fn
)))
7683 /* If we are building these vcall offsets as part of building
7684 the vtable for the most derived class, remember the vcall
7686 if (vid
->binfo
== TYPE_BINFO (vid
->derived
))
7688 tree_pair_p elt
= VEC_safe_push (tree_pair_s
, gc
,
7689 CLASSTYPE_VCALL_INDICES (vid
->derived
),
7691 elt
->purpose
= orig_fn
;
7692 elt
->value
= vid
->index
;
7695 /* The next vcall offset will be found at a more negative
7697 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7698 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7700 /* Keep track of this function. */
7701 VEC_safe_push (tree
, gc
, vid
->fns
, orig_fn
);
7703 if (vid
->generate_vcall_entries
)
7708 /* Find the overriding function. */
7709 fn
= find_final_overrider (vid
->rtti_binfo
, binfo
, orig_fn
);
7710 if (fn
== error_mark_node
)
7711 vcall_offset
= build1 (NOP_EXPR
, vtable_entry_type
,
7715 base
= TREE_VALUE (fn
);
7717 /* The vbase we're working on is a primary base of
7718 vid->binfo. But it might be a lost primary, so its
7719 BINFO_OFFSET might be wrong, so we just use the
7720 BINFO_OFFSET from vid->binfo. */
7721 vcall_offset
= size_diffop (BINFO_OFFSET (base
),
7722 BINFO_OFFSET (vid
->binfo
));
7723 vcall_offset
= fold_build1 (NOP_EXPR
, vtable_entry_type
,
7726 /* Add the initializer to the vtable. */
7727 *vid
->last_init
= build_tree_list (NULL_TREE
, vcall_offset
);
7728 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7732 /* Return vtbl initializers for the RTTI entries corresponding to the
7733 BINFO's vtable. The RTTI entries should indicate the object given
7734 by VID->rtti_binfo. */
7737 build_rtti_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7746 basetype
= BINFO_TYPE (binfo
);
7747 t
= BINFO_TYPE (vid
->rtti_binfo
);
7749 /* To find the complete object, we will first convert to our most
7750 primary base, and then add the offset in the vtbl to that value. */
7752 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b
))
7753 && !BINFO_LOST_PRIMARY_P (b
))
7757 primary_base
= get_primary_binfo (b
);
7758 gcc_assert (BINFO_PRIMARY_P (primary_base
)
7759 && BINFO_INHERITANCE_CHAIN (primary_base
) == b
);
7762 offset
= size_diffop (BINFO_OFFSET (vid
->rtti_binfo
), BINFO_OFFSET (b
));
7764 /* The second entry is the address of the typeinfo object. */
7766 decl
= build_address (get_tinfo_decl (t
));
7768 decl
= integer_zero_node
;
7770 /* Convert the declaration to a type that can be stored in the
7772 init
= build_nop (vfunc_ptr_type_node
, decl
);
7773 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7774 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7776 /* Add the offset-to-top entry. It comes earlier in the vtable than
7777 the typeinfo entry. Convert the offset to look like a
7778 function pointer, so that we can put it in the vtable. */
7779 init
= build_nop (vfunc_ptr_type_node
, offset
);
7780 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7781 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7784 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7785 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7788 cp_fold_obj_type_ref (tree ref
, tree known_type
)
7790 HOST_WIDE_INT index
= tree_low_cst (OBJ_TYPE_REF_TOKEN (ref
), 1);
7791 HOST_WIDE_INT i
= 0;
7792 tree v
= BINFO_VIRTUALS (TYPE_BINFO (known_type
));
7797 i
+= (TARGET_VTABLE_USES_DESCRIPTORS
7798 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1);
7804 #ifdef ENABLE_CHECKING
7805 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref
),
7806 DECL_VINDEX (fndecl
)));
7809 cgraph_node (fndecl
)->local
.vtable_method
= true;
7811 return build_address (fndecl
);
7814 #include "gt-cp-class.h"