1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 /* High-level class interface. */
28 #include "coretypes.h"
38 static int is_subobject_of_p (tree
, tree
);
39 static tree
dfs_lookup_base (tree
, void *);
40 static tree
dfs_dcast_hint_pre (tree
, void *);
41 static tree
dfs_dcast_hint_post (tree
, void *);
42 static tree
dfs_debug_mark (tree
, void *);
43 static tree
dfs_walk_once_r (tree
, tree (*pre_fn
) (tree
, void *),
44 tree (*post_fn
) (tree
, void *), void *data
);
45 static void dfs_unmark_r (tree
);
46 static int check_hidden_convs (tree
, int, int, tree
, tree
, tree
);
47 static tree
split_conversions (tree
, tree
, tree
, tree
);
48 static int lookup_conversions_r (tree
, int, int,
49 tree
, tree
, tree
, tree
, tree
*, tree
*);
50 static int look_for_overrides_r (tree
, tree
);
51 static tree
lookup_field_r (tree
, void *);
52 static tree
dfs_accessible_post (tree
, void *);
53 static tree
dfs_walk_once_accessible_r (tree
, bool, bool,
54 tree (*pre_fn
) (tree
, void *),
55 tree (*post_fn
) (tree
, void *),
57 static tree
dfs_walk_once_accessible (tree
, bool,
58 tree (*pre_fn
) (tree
, void *),
59 tree (*post_fn
) (tree
, void *),
61 static tree
dfs_access_in_type (tree
, void *);
62 static access_kind
access_in_type (tree
, tree
);
63 static int protected_accessible_p (tree
, tree
, tree
);
64 static int friend_accessible_p (tree
, tree
, tree
);
65 static int template_self_reference_p (tree
, tree
);
66 static tree
dfs_get_pure_virtuals (tree
, void *);
69 /* Variables for gathering statistics. */
70 #ifdef GATHER_STATISTICS
71 static int n_fields_searched
;
72 static int n_calls_lookup_field
, n_calls_lookup_field_1
;
73 static int n_calls_lookup_fnfields
, n_calls_lookup_fnfields_1
;
74 static int n_calls_get_base_type
;
75 static int n_outer_fields_searched
;
76 static int n_contexts_saved
;
77 #endif /* GATHER_STATISTICS */
80 /* Data for lookup_base and its workers. */
82 struct lookup_base_data_s
84 tree t
; /* type being searched. */
85 tree base
; /* The base type we're looking for. */
86 tree binfo
; /* Found binfo. */
87 bool via_virtual
; /* Found via a virtual path. */
88 bool ambiguous
; /* Found multiply ambiguous */
89 bool repeated_base
; /* Whether there are repeated bases in the
91 bool want_any
; /* Whether we want any matching binfo. */
94 /* Worker function for lookup_base. See if we've found the desired
95 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
98 dfs_lookup_base (tree binfo
, void *data_
)
100 struct lookup_base_data_s
*data
= data_
;
102 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->base
))
108 = binfo_via_virtual (data
->binfo
, data
->t
) != NULL_TREE
;
110 if (!data
->repeated_base
)
111 /* If there are no repeated bases, we can stop now. */
114 if (data
->want_any
&& !data
->via_virtual
)
115 /* If this is a non-virtual base, then we can't do
119 return dfs_skip_bases
;
123 gcc_assert (binfo
!= data
->binfo
);
125 /* We've found more than one matching binfo. */
128 /* This is immediately ambiguous. */
129 data
->binfo
= NULL_TREE
;
130 data
->ambiguous
= true;
131 return error_mark_node
;
134 /* Prefer one via a non-virtual path. */
135 if (!binfo_via_virtual (binfo
, data
->t
))
138 data
->via_virtual
= false;
142 /* There must be repeated bases, otherwise we'd have stopped
143 on the first base we found. */
144 return dfs_skip_bases
;
151 /* Returns true if type BASE is accessible in T. (BASE is known to be
152 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
153 true, consider any special access of the current scope, or access
154 bestowed by friendship. */
157 accessible_base_p (tree t
, tree base
, bool consider_local_p
)
161 /* [class.access.base]
163 A base class is said to be accessible if an invented public
164 member of the base class is accessible.
166 If BASE is a non-proper base, this condition is trivially
168 if (same_type_p (t
, base
))
170 /* Rather than inventing a public member, we use the implicit
171 public typedef created in the scope of every class. */
172 decl
= TYPE_FIELDS (base
);
173 while (!DECL_SELF_REFERENCE_P (decl
))
174 decl
= TREE_CHAIN (decl
);
175 while (ANON_AGGR_TYPE_P (t
))
176 t
= TYPE_CONTEXT (t
);
177 return accessible_p (t
, decl
, consider_local_p
);
180 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
181 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
182 non-NULL, fill with information about what kind of base we
185 If the base is inaccessible, or ambiguous, and the ba_quiet bit is
186 not set in ACCESS, then an error is issued and error_mark_node is
187 returned. If the ba_quiet bit is set, then no error is issued and
188 NULL_TREE is returned. */
191 lookup_base (tree t
, tree base
, base_access access
, base_kind
*kind_ptr
)
197 if (t
== error_mark_node
|| base
== error_mark_node
)
200 *kind_ptr
= bk_not_base
;
201 return error_mark_node
;
203 gcc_assert (TYPE_P (base
));
212 t
= complete_type (TYPE_MAIN_VARIANT (t
));
213 t_binfo
= TYPE_BINFO (t
);
216 base
= complete_type (TYPE_MAIN_VARIANT (base
));
220 struct lookup_base_data_s data
;
224 data
.binfo
= NULL_TREE
;
225 data
.ambiguous
= data
.via_virtual
= false;
226 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (t
);
227 data
.want_any
= access
== ba_any
;
229 dfs_walk_once (t_binfo
, dfs_lookup_base
, NULL
, &data
);
233 bk
= data
.ambiguous
? bk_ambig
: bk_not_base
;
234 else if (binfo
== t_binfo
)
236 else if (data
.via_virtual
)
247 /* Check that the base is unambiguous and accessible. */
248 if (access
!= ba_any
)
255 if (!(access
& ba_quiet
))
257 error ("%qT is an ambiguous base of %qT", base
, t
);
258 binfo
= error_mark_node
;
263 if ((access
& ba_check_bit
)
264 /* If BASE is incomplete, then BASE and TYPE are probably
265 the same, in which case BASE is accessible. If they
266 are not the same, then TYPE is invalid. In that case,
267 there's no need to issue another error here, and
268 there's no implicit typedef to use in the code that
269 follows, so we skip the check. */
270 && COMPLETE_TYPE_P (base
)
271 && !accessible_base_p (t
, base
, !(access
& ba_ignore_scope
)))
273 if (!(access
& ba_quiet
))
275 error ("%qT is an inaccessible base of %qT", base
, t
);
276 binfo
= error_mark_node
;
280 bk
= bk_inaccessible
;
291 /* Data for dcast_base_hint walker. */
295 tree subtype
; /* The base type we're looking for. */
296 int virt_depth
; /* Number of virtual bases encountered from most
298 tree offset
; /* Best hint offset discovered so far. */
299 bool repeated_base
; /* Whether there are repeated bases in the
303 /* Worker for dcast_base_hint. Search for the base type being cast
307 dfs_dcast_hint_pre (tree binfo
, void *data_
)
309 struct dcast_data_s
*data
= data_
;
311 if (BINFO_VIRTUAL_P (binfo
))
314 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->subtype
))
316 if (data
->virt_depth
)
318 data
->offset
= ssize_int (-1);
322 data
->offset
= ssize_int (-3);
324 data
->offset
= BINFO_OFFSET (binfo
);
326 return data
->repeated_base
? dfs_skip_bases
: data
->offset
;
332 /* Worker for dcast_base_hint. Track the virtual depth. */
335 dfs_dcast_hint_post (tree binfo
, void *data_
)
337 struct dcast_data_s
*data
= data_
;
339 if (BINFO_VIRTUAL_P (binfo
))
345 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
346 started from is related to the required TARGET type, in order to optimize
347 the inheritance graph search. This information is independent of the
348 current context, and ignores private paths, hence get_base_distance is
349 inappropriate. Return a TREE specifying the base offset, BOFF.
350 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
351 and there are no public virtual SUBTYPE bases.
352 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
353 BOFF == -2, SUBTYPE is not a public base.
354 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
357 dcast_base_hint (tree subtype
, tree target
)
359 struct dcast_data_s data
;
361 data
.subtype
= subtype
;
363 data
.offset
= NULL_TREE
;
364 data
.repeated_base
= CLASSTYPE_REPEATED_BASE_P (target
);
366 dfs_walk_once_accessible (TYPE_BINFO (target
), /*friends=*/false,
367 dfs_dcast_hint_pre
, dfs_dcast_hint_post
, &data
);
368 return data
.offset
? data
.offset
: ssize_int (-2);
371 /* Search for a member with name NAME in a multiple inheritance
372 lattice specified by TYPE. If it does not exist, return NULL_TREE.
373 If the member is ambiguously referenced, return `error_mark_node'.
374 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
375 true, type declarations are preferred. */
377 /* Do a 1-level search for NAME as a member of TYPE. The caller must
378 figure out whether it can access this field. (Since it is only one
379 level, this is reasonable.) */
382 lookup_field_1 (tree type
, tree name
, bool want_type
)
386 if (TREE_CODE (type
) == TEMPLATE_TYPE_PARM
387 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
388 || TREE_CODE (type
) == TYPENAME_TYPE
)
389 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
390 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
391 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
392 the code often worked even when we treated the index as a list
394 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
398 && DECL_LANG_SPECIFIC (TYPE_NAME (type
))
399 && DECL_SORTED_FIELDS (TYPE_NAME (type
)))
401 tree
*fields
= &DECL_SORTED_FIELDS (TYPE_NAME (type
))->elts
[0];
402 int lo
= 0, hi
= DECL_SORTED_FIELDS (TYPE_NAME (type
))->len
;
409 #ifdef GATHER_STATISTICS
411 #endif /* GATHER_STATISTICS */
413 if (DECL_NAME (fields
[i
]) > name
)
415 else if (DECL_NAME (fields
[i
]) < name
)
421 /* We might have a nested class and a field with the
422 same name; we sorted them appropriately via
423 field_decl_cmp, so just look for the first or last
424 field with this name. */
429 while (i
>= lo
&& DECL_NAME (fields
[i
]) == name
);
430 if (TREE_CODE (field
) != TYPE_DECL
431 && !DECL_CLASS_TEMPLATE_P (field
))
438 while (i
< hi
&& DECL_NAME (fields
[i
]) == name
);
446 field
= TYPE_FIELDS (type
);
448 #ifdef GATHER_STATISTICS
449 n_calls_lookup_field_1
++;
450 #endif /* GATHER_STATISTICS */
451 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
453 #ifdef GATHER_STATISTICS
455 #endif /* GATHER_STATISTICS */
456 gcc_assert (DECL_P (field
));
457 if (DECL_NAME (field
) == NULL_TREE
458 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
460 tree temp
= lookup_field_1 (TREE_TYPE (field
), name
, want_type
);
464 if (TREE_CODE (field
) == USING_DECL
)
466 /* We generally treat class-scope using-declarations as
467 ARM-style access specifications, because support for the
468 ISO semantics has not been implemented. So, in general,
469 there's no reason to return a USING_DECL, and the rest of
470 the compiler cannot handle that. Once the class is
471 defined, USING_DECLs are purged from TYPE_FIELDS; see
472 handle_using_decl. However, we make special efforts to
473 make using-declarations in class templates and class
474 template partial specializations work correctly. */
475 if (!DECL_DEPENDENT_P (field
))
479 if (DECL_NAME (field
) == name
481 || TREE_CODE (field
) == TYPE_DECL
482 || DECL_CLASS_TEMPLATE_P (field
)))
486 if (name
== vptr_identifier
)
488 /* Give the user what s/he thinks s/he wants. */
489 if (TYPE_POLYMORPHIC_P (type
))
490 return TYPE_VFIELD (type
);
495 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
496 NAMESPACE_DECL corresponding to the innermost non-block scope. */
501 /* There are a number of cases we need to be aware of here:
502 current_class_type current_function_decl
509 Those last two make life interesting. If we're in a function which is
510 itself inside a class, we need decls to go into the fn's decls (our
511 second case below). But if we're in a class and the class itself is
512 inside a function, we need decls to go into the decls for the class. To
513 achieve this last goal, we must see if, when both current_class_ptr and
514 current_function_decl are set, the class was declared inside that
515 function. If so, we know to put the decls into the class's scope. */
516 if (current_function_decl
&& current_class_type
517 && ((DECL_FUNCTION_MEMBER_P (current_function_decl
)
518 && same_type_p (DECL_CONTEXT (current_function_decl
),
520 || (DECL_FRIEND_CONTEXT (current_function_decl
)
521 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl
),
522 current_class_type
))))
523 return current_function_decl
;
524 if (current_class_type
)
525 return current_class_type
;
526 if (current_function_decl
)
527 return current_function_decl
;
528 return current_namespace
;
531 /* Returns nonzero if we are currently in a function scope. Note
532 that this function returns zero if we are within a local class, but
533 not within a member function body of the local class. */
536 at_function_scope_p (void)
538 tree cs
= current_scope ();
539 return cs
&& TREE_CODE (cs
) == FUNCTION_DECL
;
542 /* Returns true if the innermost active scope is a class scope. */
545 at_class_scope_p (void)
547 tree cs
= current_scope ();
548 return cs
&& TYPE_P (cs
);
551 /* Returns true if the innermost active scope is a namespace scope. */
554 at_namespace_scope_p (void)
556 tree cs
= current_scope ();
557 return cs
&& TREE_CODE (cs
) == NAMESPACE_DECL
;
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
563 context_for_name_lookup (tree decl
)
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
571 tree context
= DECL_CONTEXT (decl
);
573 while (context
&& TYPE_P (context
) && ANON_AGGR_TYPE_P (context
))
574 context
= TYPE_CONTEXT (context
);
576 context
= global_namespace
;
581 /* The accessibility routines use BINFO_ACCESS for scratch space
582 during the computation of the accessibility of some declaration. */
584 #define BINFO_ACCESS(NODE) \
585 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
587 /* Set the access associated with NODE to ACCESS. */
589 #define SET_BINFO_ACCESS(NODE, ACCESS) \
590 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
591 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
593 /* Called from access_in_type via dfs_walk. Calculate the access to
594 DATA (which is really a DECL) in BINFO. */
597 dfs_access_in_type (tree binfo
, void *data
)
599 tree decl
= (tree
) data
;
600 tree type
= BINFO_TYPE (binfo
);
601 access_kind access
= ak_none
;
603 if (context_for_name_lookup (decl
) == type
)
605 /* If we have descended to the scope of DECL, just note the
606 appropriate access. */
607 if (TREE_PRIVATE (decl
))
609 else if (TREE_PROTECTED (decl
))
610 access
= ak_protected
;
616 /* First, check for an access-declaration that gives us more
617 access to the DECL. The CONST_DECL for an enumeration
618 constant will not have DECL_LANG_SPECIFIC, and thus no
620 if (DECL_LANG_SPECIFIC (decl
) && !DECL_DISCRIMINATOR_P (decl
))
622 tree decl_access
= purpose_member (type
, DECL_ACCESS (decl
));
626 decl_access
= TREE_VALUE (decl_access
);
628 if (decl_access
== access_public_node
)
630 else if (decl_access
== access_protected_node
)
631 access
= ak_protected
;
632 else if (decl_access
== access_private_node
)
643 VEC(tree
,gc
) *accesses
;
645 /* Otherwise, scan our baseclasses, and pick the most favorable
647 accesses
= BINFO_BASE_ACCESSES (binfo
);
648 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
650 tree base_access
= VEC_index (tree
, accesses
, i
);
651 access_kind base_access_now
= BINFO_ACCESS (base_binfo
);
653 if (base_access_now
== ak_none
|| base_access_now
== ak_private
)
654 /* If it was not accessible in the base, or only
655 accessible as a private member, we can't access it
657 base_access_now
= ak_none
;
658 else if (base_access
== access_protected_node
)
659 /* Public and protected members in the base become
661 base_access_now
= ak_protected
;
662 else if (base_access
== access_private_node
)
663 /* Public and protected members in the base become
665 base_access_now
= ak_private
;
667 /* See if the new access, via this base, gives more
668 access than our previous best access. */
669 if (base_access_now
!= ak_none
670 && (access
== ak_none
|| base_access_now
< access
))
672 access
= base_access_now
;
674 /* If the new access is public, we can't do better. */
675 if (access
== ak_public
)
682 /* Note the access to DECL in TYPE. */
683 SET_BINFO_ACCESS (binfo
, access
);
688 /* Return the access to DECL in TYPE. */
691 access_in_type (tree type
, tree decl
)
693 tree binfo
= TYPE_BINFO (type
);
695 /* We must take into account
699 If a name can be reached by several paths through a multiple
700 inheritance graph, the access is that of the path that gives
703 The algorithm we use is to make a post-order depth-first traversal
704 of the base-class hierarchy. As we come up the tree, we annotate
705 each node with the most lenient access. */
706 dfs_walk_once (binfo
, NULL
, dfs_access_in_type
, decl
);
708 return BINFO_ACCESS (binfo
);
711 /* Returns nonzero if it is OK to access DECL through an object
712 indicated by BINFO in the context of DERIVED. */
715 protected_accessible_p (tree decl
, tree derived
, tree binfo
)
719 /* We're checking this clause from [class.access.base]
721 m as a member of N is protected, and the reference occurs in a
722 member or friend of class N, or in a member or friend of a
723 class P derived from N, where m as a member of P is private or
726 Here DERIVED is a possible P and DECL is m. accessible_p will
727 iterate over various values of N, but the access to m in DERIVED
730 Note that I believe that the passage above is wrong, and should read
731 "...is private or protected or public"; otherwise you get bizarre results
732 whereby a public using-decl can prevent you from accessing a protected
733 member of a base. (jason 2000/02/28) */
735 /* If DERIVED isn't derived from m's class, then it can't be a P. */
736 if (!DERIVED_FROM_P (context_for_name_lookup (decl
), derived
))
739 access
= access_in_type (derived
, decl
);
741 /* If m is inaccessible in DERIVED, then it's not a P. */
742 if (access
== ak_none
)
747 When a friend or a member function of a derived class references
748 a protected nonstatic member of a base class, an access check
749 applies in addition to those described earlier in clause
750 _class.access_) Except when forming a pointer to member
751 (_expr.unary.op_), the access must be through a pointer to,
752 reference to, or object of the derived class itself (or any class
753 derived from that class) (_expr.ref_). If the access is to form
754 a pointer to member, the nested-name-specifier shall name the
755 derived class (or any class derived from that class). */
756 if (DECL_NONSTATIC_MEMBER_P (decl
))
758 /* We can tell through what the reference is occurring by
759 chasing BINFO up to the root. */
761 while (BINFO_INHERITANCE_CHAIN (t
))
762 t
= BINFO_INHERITANCE_CHAIN (t
);
764 if (!DERIVED_FROM_P (derived
, BINFO_TYPE (t
)))
771 /* Returns nonzero if SCOPE is a friend of a type which would be able
772 to access DECL through the object indicated by BINFO. */
775 friend_accessible_p (tree scope
, tree decl
, tree binfo
)
777 tree befriending_classes
;
783 if (TREE_CODE (scope
) == FUNCTION_DECL
784 || DECL_FUNCTION_TEMPLATE_P (scope
))
785 befriending_classes
= DECL_BEFRIENDING_CLASSES (scope
);
786 else if (TYPE_P (scope
))
787 befriending_classes
= CLASSTYPE_BEFRIENDING_CLASSES (scope
);
791 for (t
= befriending_classes
; t
; t
= TREE_CHAIN (t
))
792 if (protected_accessible_p (decl
, TREE_VALUE (t
), binfo
))
795 /* Nested classes have the same access as their enclosing types, as
796 per DR 45 (this is a change from the standard). */
798 for (t
= TYPE_CONTEXT (scope
); t
&& TYPE_P (t
); t
= TYPE_CONTEXT (t
))
799 if (protected_accessible_p (decl
, t
, binfo
))
802 if (TREE_CODE (scope
) == FUNCTION_DECL
803 || DECL_FUNCTION_TEMPLATE_P (scope
))
805 /* Perhaps this SCOPE is a member of a class which is a
807 if (DECL_CLASS_SCOPE_P (scope
)
808 && friend_accessible_p (DECL_CONTEXT (scope
), decl
, binfo
))
811 /* Or an instantiation of something which is a friend. */
812 if (DECL_TEMPLATE_INFO (scope
))
815 /* Increment processing_template_decl to make sure that
816 dependent_type_p works correctly. */
817 ++processing_template_decl
;
818 ret
= friend_accessible_p (DECL_TI_TEMPLATE (scope
), decl
, binfo
);
819 --processing_template_decl
;
827 /* Called via dfs_walk_once_accessible from accessible_p */
830 dfs_accessible_post (tree binfo
, void *data ATTRIBUTE_UNUSED
)
832 if (BINFO_ACCESS (binfo
) != ak_none
)
834 tree scope
= current_scope ();
835 if (scope
&& TREE_CODE (scope
) != NAMESPACE_DECL
836 && is_friend (BINFO_TYPE (binfo
), scope
))
843 /* DECL is a declaration from a base class of TYPE, which was the
844 class used to name DECL. Return nonzero if, in the current
845 context, DECL is accessible. If TYPE is actually a BINFO node,
846 then we can tell in what context the access is occurring by looking
847 at the most derived class along the path indicated by BINFO. If
848 CONSIDER_LOCAL is true, do consider special access the current
849 scope or friendship thereof we might have. */
852 accessible_p (tree type
, tree decl
, bool consider_local_p
)
858 /* Nonzero if it's OK to access DECL if it has protected
859 accessibility in TYPE. */
860 int protected_ok
= 0;
862 /* If this declaration is in a block or namespace scope, there's no
864 if (!TYPE_P (context_for_name_lookup (decl
)))
867 /* There is no need to perform access checks inside a thunk. */
868 scope
= current_scope ();
869 if (scope
&& DECL_THUNK_P (scope
))
872 /* In a template declaration, we cannot be sure whether the
873 particular specialization that is instantiated will be a friend
874 or not. Therefore, all access checks are deferred until
875 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
876 parameter list for a template (because we may see dependent types
877 in default arguments for template parameters), and access
878 checking should be performed in the outermost parameter list. */
879 if (processing_template_decl
880 && (!processing_template_parmlist
|| processing_template_decl
> 1))
886 type
= BINFO_TYPE (type
);
889 binfo
= TYPE_BINFO (type
);
891 /* [class.access.base]
893 A member m is accessible when named in class N if
895 --m as a member of N is public, or
897 --m as a member of N is private, and the reference occurs in a
898 member or friend of class N, or
900 --m as a member of N is protected, and the reference occurs in a
901 member or friend of class N, or in a member or friend of a
902 class P derived from N, where m as a member of P is private or
905 --there exists a base class B of N that is accessible at the point
906 of reference, and m is accessible when named in class B.
908 We walk the base class hierarchy, checking these conditions. */
910 if (consider_local_p
)
912 /* Figure out where the reference is occurring. Check to see if
913 DECL is private or protected in this scope, since that will
914 determine whether protected access is allowed. */
915 if (current_class_type
)
916 protected_ok
= protected_accessible_p (decl
,
917 current_class_type
, binfo
);
919 /* Now, loop through the classes of which we are a friend. */
921 protected_ok
= friend_accessible_p (scope
, decl
, binfo
);
924 /* Standardize the binfo that access_in_type will use. We don't
925 need to know what path was chosen from this point onwards. */
926 binfo
= TYPE_BINFO (type
);
928 /* Compute the accessibility of DECL in the class hierarchy
929 dominated by type. */
930 access
= access_in_type (type
, decl
);
931 if (access
== ak_public
932 || (access
== ak_protected
&& protected_ok
))
935 if (!consider_local_p
)
938 /* Walk the hierarchy again, looking for a base class that allows
940 return dfs_walk_once_accessible (binfo
, /*friends=*/true,
941 NULL
, dfs_accessible_post
, NULL
)
945 struct lookup_field_info
{
946 /* The type in which we're looking. */
948 /* The name of the field for which we're looking. */
950 /* If non-NULL, the current result of the lookup. */
952 /* The path to RVAL. */
954 /* If non-NULL, the lookup was ambiguous, and this is a list of the
957 /* If nonzero, we are looking for types, not data members. */
959 /* If something went wrong, a message indicating what. */
963 /* Within the scope of a template class, you can refer to the to the
964 current specialization with the name of the template itself. For
967 template <typename T> struct S { S* sp; }
969 Returns nonzero if DECL is such a declaration in a class TYPE. */
972 template_self_reference_p (tree type
, tree decl
)
974 return (CLASSTYPE_USE_TEMPLATE (type
)
975 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type
))
976 && TREE_CODE (decl
) == TYPE_DECL
977 && DECL_ARTIFICIAL (decl
)
978 && DECL_NAME (decl
) == constructor_name (type
));
981 /* Nonzero for a class member means that it is shared between all objects
984 [class.member.lookup]:If the resulting set of declarations are not all
985 from sub-objects of the same type, or the set has a nonstatic member
986 and includes members from distinct sub-objects, there is an ambiguity
987 and the program is ill-formed.
989 This function checks that T contains no nonstatic members. */
992 shared_member_p (tree t
)
994 if (TREE_CODE (t
) == VAR_DECL
|| TREE_CODE (t
) == TYPE_DECL \
995 || TREE_CODE (t
) == CONST_DECL
)
997 if (is_overloaded_fn (t
))
999 for (; t
; t
= OVL_NEXT (t
))
1001 tree fn
= OVL_CURRENT (t
);
1002 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
1010 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1011 found as a base class and sub-object of the object denoted by
1015 is_subobject_of_p (tree parent
, tree binfo
)
1019 for (probe
= parent
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1023 if (BINFO_VIRTUAL_P (probe
))
1024 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (binfo
))
1030 /* DATA is really a struct lookup_field_info. Look for a field with
1031 the name indicated there in BINFO. If this function returns a
1032 non-NULL value it is the result of the lookup. Called from
1033 lookup_field via breadth_first_search. */
1036 lookup_field_r (tree binfo
, void *data
)
1038 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1039 tree type
= BINFO_TYPE (binfo
);
1040 tree nval
= NULL_TREE
;
1042 /* If this is a dependent base, don't look in it. */
1043 if (BINFO_DEPENDENT_BASE_P (binfo
))
1046 /* If this base class is hidden by the best-known value so far, we
1047 don't need to look. */
1048 if (lfi
->rval_binfo
&& BINFO_INHERITANCE_CHAIN (binfo
) == lfi
->rval_binfo
1049 && !BINFO_VIRTUAL_P (binfo
))
1050 return dfs_skip_bases
;
1052 /* First, look for a function. There can't be a function and a data
1053 member with the same name, and if there's a function and a type
1054 with the same name, the type is hidden by the function. */
1055 if (!lfi
->want_type
)
1057 int idx
= lookup_fnfields_1 (type
, lfi
->name
);
1059 nval
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), idx
);
1063 /* Look for a data member or type. */
1064 nval
= lookup_field_1 (type
, lfi
->name
, lfi
->want_type
);
1066 /* If there is no declaration with the indicated name in this type,
1067 then there's nothing to do. */
1071 /* If we're looking up a type (as with an elaborated type specifier)
1072 we ignore all non-types we find. */
1073 if (lfi
->want_type
&& TREE_CODE (nval
) != TYPE_DECL
1074 && !DECL_CLASS_TEMPLATE_P (nval
))
1076 if (lfi
->name
== TYPE_IDENTIFIER (type
))
1078 /* If the aggregate has no user defined constructors, we allow
1079 it to have fields with the same name as the enclosing type.
1080 If we are looking for that name, find the corresponding
1082 for (nval
= TREE_CHAIN (nval
); nval
; nval
= TREE_CHAIN (nval
))
1083 if (DECL_NAME (nval
) == lfi
->name
1084 && TREE_CODE (nval
) == TYPE_DECL
)
1089 if (!nval
&& CLASSTYPE_NESTED_UTDS (type
) != NULL
)
1091 binding_entry e
= binding_table_find (CLASSTYPE_NESTED_UTDS (type
),
1094 nval
= TYPE_MAIN_DECL (e
->type
);
1100 /* You must name a template base class with a template-id. */
1101 if (!same_type_p (type
, lfi
->type
)
1102 && template_self_reference_p (type
, nval
))
1105 /* If the lookup already found a match, and the new value doesn't
1106 hide the old one, we might have an ambiguity. */
1108 && !is_subobject_of_p (lfi
->rval_binfo
, binfo
))
1111 if (nval
== lfi
->rval
&& shared_member_p (nval
))
1112 /* The two things are really the same. */
1114 else if (is_subobject_of_p (binfo
, lfi
->rval_binfo
))
1115 /* The previous value hides the new one. */
1119 /* We have a real ambiguity. We keep a chain of all the
1121 if (!lfi
->ambiguous
&& lfi
->rval
)
1123 /* This is the first time we noticed an ambiguity. Add
1124 what we previously thought was a reasonable candidate
1126 lfi
->ambiguous
= tree_cons (NULL_TREE
, lfi
->rval
, NULL_TREE
);
1127 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1130 /* Add the new value. */
1131 lfi
->ambiguous
= tree_cons (NULL_TREE
, nval
, lfi
->ambiguous
);
1132 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1133 lfi
->errstr
= "request for member %qD is ambiguous";
1139 lfi
->rval_binfo
= binfo
;
1143 /* Don't look for constructors or destructors in base classes. */
1144 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi
->name
))
1145 return dfs_skip_bases
;
1149 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1150 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1151 FUNCTIONS, and OPTYPE respectively. */
1154 build_baselink (tree binfo
, tree access_binfo
, tree functions
, tree optype
)
1158 gcc_assert (TREE_CODE (functions
) == FUNCTION_DECL
1159 || TREE_CODE (functions
) == TEMPLATE_DECL
1160 || TREE_CODE (functions
) == TEMPLATE_ID_EXPR
1161 || TREE_CODE (functions
) == OVERLOAD
);
1162 gcc_assert (!optype
|| TYPE_P (optype
));
1163 gcc_assert (TREE_TYPE (functions
));
1165 baselink
= make_node (BASELINK
);
1166 TREE_TYPE (baselink
) = TREE_TYPE (functions
);
1167 BASELINK_BINFO (baselink
) = binfo
;
1168 BASELINK_ACCESS_BINFO (baselink
) = access_binfo
;
1169 BASELINK_FUNCTIONS (baselink
) = functions
;
1170 BASELINK_OPTYPE (baselink
) = optype
;
1175 /* Look for a member named NAME in an inheritance lattice dominated by
1176 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1177 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1178 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1179 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1180 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1181 TREE_VALUEs are the list of ambiguous candidates.
1183 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1185 If nothing can be found return NULL_TREE and do not issue an error. */
1188 lookup_member (tree xbasetype
, tree name
, int protect
, bool want_type
)
1190 tree rval
, rval_binfo
= NULL_TREE
;
1191 tree type
= NULL_TREE
, basetype_path
= NULL_TREE
;
1192 struct lookup_field_info lfi
;
1194 /* rval_binfo is the binfo associated with the found member, note,
1195 this can be set with useful information, even when rval is not
1196 set, because it must deal with ALL members, not just non-function
1197 members. It is used for ambiguity checking and the hidden
1198 checks. Whereas rval is only set if a proper (not hidden)
1199 non-function member is found. */
1201 const char *errstr
= 0;
1203 if (name
== error_mark_node
)
1206 gcc_assert (TREE_CODE (name
) == IDENTIFIER_NODE
);
1208 if (TREE_CODE (xbasetype
) == TREE_BINFO
)
1210 type
= BINFO_TYPE (xbasetype
);
1211 basetype_path
= xbasetype
;
1215 if (!IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype
)))
1218 xbasetype
= NULL_TREE
;
1221 type
= complete_type (type
);
1223 basetype_path
= TYPE_BINFO (type
);
1228 #ifdef GATHER_STATISTICS
1229 n_calls_lookup_field
++;
1230 #endif /* GATHER_STATISTICS */
1232 memset (&lfi
, 0, sizeof (lfi
));
1235 lfi
.want_type
= want_type
;
1236 dfs_walk_all (basetype_path
, &lookup_field_r
, NULL
, &lfi
);
1238 rval_binfo
= lfi
.rval_binfo
;
1240 type
= BINFO_TYPE (rval_binfo
);
1241 errstr
= lfi
.errstr
;
1243 /* If we are not interested in ambiguities, don't report them;
1244 just return NULL_TREE. */
1245 if (!protect
&& lfi
.ambiguous
)
1251 return lfi
.ambiguous
;
1258 In the case of overloaded function names, access control is
1259 applied to the function selected by overloaded resolution. */
1260 if (rval
&& protect
&& !is_overloaded_fn (rval
))
1261 perform_or_defer_access_check (basetype_path
, rval
);
1263 if (errstr
&& protect
)
1265 error (errstr
, name
, type
);
1267 print_candidates (lfi
.ambiguous
);
1268 rval
= error_mark_node
;
1271 if (rval
&& is_overloaded_fn (rval
))
1272 rval
= build_baselink (rval_binfo
, basetype_path
, rval
,
1273 (IDENTIFIER_TYPENAME_P (name
)
1274 ? TREE_TYPE (name
): NULL_TREE
));
1278 /* Like lookup_member, except that if we find a function member we
1279 return NULL_TREE. */
1282 lookup_field (tree xbasetype
, tree name
, int protect
, bool want_type
)
1284 tree rval
= lookup_member (xbasetype
, name
, protect
, want_type
);
1286 /* Ignore functions, but propagate the ambiguity list. */
1287 if (!error_operand_p (rval
)
1288 && (rval
&& BASELINK_P (rval
)))
1294 /* Like lookup_member, except that if we find a non-function member we
1295 return NULL_TREE. */
1298 lookup_fnfields (tree xbasetype
, tree name
, int protect
)
1300 tree rval
= lookup_member (xbasetype
, name
, protect
, /*want_type=*/false);
1302 /* Ignore non-functions, but propagate the ambiguity list. */
1303 if (!error_operand_p (rval
)
1304 && (rval
&& !BASELINK_P (rval
)))
1310 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1311 corresponding to "operator TYPE ()", or -1 if there is no such
1312 operator. Only CLASS_TYPE itself is searched; this routine does
1313 not scan the base classes of CLASS_TYPE. */
1316 lookup_conversion_operator (tree class_type
, tree type
)
1320 if (TYPE_HAS_CONVERSION (class_type
))
1324 VEC(tree
,gc
) *methods
= CLASSTYPE_METHOD_VEC (class_type
);
1326 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1327 VEC_iterate (tree
, methods
, i
, fn
); ++i
)
1329 /* All the conversion operators come near the beginning of
1330 the class. Therefore, if FN is not a conversion
1331 operator, there is no matching conversion operator in
1333 fn
= OVL_CURRENT (fn
);
1334 if (!DECL_CONV_FN_P (fn
))
1337 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
1338 /* All the templated conversion functions are on the same
1339 slot, so remember it. */
1341 else if (same_type_p (DECL_CONV_FN_TYPE (fn
), type
))
1349 /* TYPE is a class type. Return the index of the fields within
1350 the method vector with name NAME, or -1 is no such field exists. */
1353 lookup_fnfields_1 (tree type
, tree name
)
1355 VEC(tree
,gc
) *method_vec
;
1360 if (!CLASS_TYPE_P (type
))
1363 if (COMPLETE_TYPE_P (type
))
1365 if ((name
== ctor_identifier
1366 || name
== base_ctor_identifier
1367 || name
== complete_ctor_identifier
))
1369 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type
))
1370 lazily_declare_fn (sfk_constructor
, type
);
1371 if (CLASSTYPE_LAZY_COPY_CTOR (type
))
1372 lazily_declare_fn (sfk_copy_constructor
, type
);
1374 else if (name
== ansi_assopname(NOP_EXPR
)
1375 && CLASSTYPE_LAZY_ASSIGNMENT_OP (type
))
1376 lazily_declare_fn (sfk_assignment_operator
, type
);
1377 else if ((name
== dtor_identifier
1378 || name
== base_dtor_identifier
1379 || name
== complete_dtor_identifier
1380 || name
== deleting_dtor_identifier
)
1381 && CLASSTYPE_LAZY_DESTRUCTOR (type
))
1382 lazily_declare_fn (sfk_destructor
, type
);
1385 method_vec
= CLASSTYPE_METHOD_VEC (type
);
1389 #ifdef GATHER_STATISTICS
1390 n_calls_lookup_fnfields_1
++;
1391 #endif /* GATHER_STATISTICS */
1393 /* Constructors are first... */
1394 if (name
== ctor_identifier
)
1396 fn
= CLASSTYPE_CONSTRUCTORS (type
);
1397 return fn
? CLASSTYPE_CONSTRUCTOR_SLOT
: -1;
1399 /* and destructors are second. */
1400 if (name
== dtor_identifier
)
1402 fn
= CLASSTYPE_DESTRUCTORS (type
);
1403 return fn
? CLASSTYPE_DESTRUCTOR_SLOT
: -1;
1405 if (IDENTIFIER_TYPENAME_P (name
))
1406 return lookup_conversion_operator (type
, TREE_TYPE (name
));
1408 /* Skip the conversion operators. */
1409 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1410 VEC_iterate (tree
, method_vec
, i
, fn
);
1412 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1415 /* If the type is complete, use binary search. */
1416 if (COMPLETE_TYPE_P (type
))
1422 hi
= VEC_length (tree
, method_vec
);
1427 #ifdef GATHER_STATISTICS
1428 n_outer_fields_searched
++;
1429 #endif /* GATHER_STATISTICS */
1431 tmp
= VEC_index (tree
, method_vec
, i
);
1432 tmp
= DECL_NAME (OVL_CURRENT (tmp
));
1435 else if (tmp
< name
)
1442 for (; VEC_iterate (tree
, method_vec
, i
, fn
); ++i
)
1444 #ifdef GATHER_STATISTICS
1445 n_outer_fields_searched
++;
1446 #endif /* GATHER_STATISTICS */
1447 if (DECL_NAME (OVL_CURRENT (fn
)) == name
)
1454 /* Like lookup_fnfields_1, except that the name is extracted from
1455 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1458 class_method_index_for_fn (tree class_type
, tree function
)
1460 gcc_assert (TREE_CODE (function
) == FUNCTION_DECL
1461 || DECL_FUNCTION_TEMPLATE_P (function
));
1463 return lookup_fnfields_1 (class_type
,
1464 DECL_CONSTRUCTOR_P (function
) ? ctor_identifier
:
1465 DECL_DESTRUCTOR_P (function
) ? dtor_identifier
:
1466 DECL_NAME (function
));
1470 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1471 the class or namespace used to qualify the name. CONTEXT_CLASS is
1472 the class corresponding to the object in which DECL will be used.
1473 Return a possibly modified version of DECL that takes into account
1476 In particular, consider an expression like `B::m' in the context of
1477 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1478 then the most derived class indicated by the BASELINK_BINFO will be
1479 `B', not `D'. This function makes that adjustment. */
1482 adjust_result_of_qualified_name_lookup (tree decl
,
1483 tree qualifying_scope
,
1486 if (context_class
&& context_class
!= error_mark_node
1487 && CLASS_TYPE_P (context_class
)
1488 && CLASS_TYPE_P (qualifying_scope
)
1489 && DERIVED_FROM_P (qualifying_scope
, context_class
)
1490 && BASELINK_P (decl
))
1494 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1495 Because we do not yet know which function will be chosen by
1496 overload resolution, we cannot yet check either accessibility
1497 or ambiguity -- in either case, the choice of a static member
1498 function might make the usage valid. */
1499 base
= lookup_base (context_class
, qualifying_scope
,
1500 ba_unique
| ba_quiet
, NULL
);
1503 BASELINK_ACCESS_BINFO (decl
) = base
;
1504 BASELINK_BINFO (decl
)
1505 = lookup_base (base
, BINFO_TYPE (BASELINK_BINFO (decl
)),
1506 ba_unique
| ba_quiet
,
1515 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1516 PRE_FN is called in preorder, while POST_FN is called in postorder.
1517 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1518 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1519 that value is immediately returned and the walk is terminated. One
1520 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1521 POST_FN are passed the binfo to examine and the caller's DATA
1522 value. All paths are walked, thus virtual and morally virtual
1523 binfos can be multiply walked. */
1526 dfs_walk_all (tree binfo
, tree (*pre_fn
) (tree
, void *),
1527 tree (*post_fn
) (tree
, void *), void *data
)
1533 /* Call the pre-order walking function. */
1536 rval
= pre_fn (binfo
, data
);
1539 if (rval
== dfs_skip_bases
)
1545 /* Find the next child binfo to walk. */
1546 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1548 rval
= dfs_walk_all (base_binfo
, pre_fn
, post_fn
, data
);
1554 /* Call the post-order walking function. */
1557 rval
= post_fn (binfo
, data
);
1558 gcc_assert (rval
!= dfs_skip_bases
);
1565 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1566 that binfos are walked at most once. */
1569 dfs_walk_once_r (tree binfo
, tree (*pre_fn
) (tree
, void *),
1570 tree (*post_fn
) (tree
, void *), void *data
)
1576 /* Call the pre-order walking function. */
1579 rval
= pre_fn (binfo
, data
);
1582 if (rval
== dfs_skip_bases
)
1589 /* Find the next child binfo to walk. */
1590 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1592 if (BINFO_VIRTUAL_P (base_binfo
))
1594 if (BINFO_MARKED (base_binfo
))
1596 BINFO_MARKED (base_binfo
) = 1;
1599 rval
= dfs_walk_once_r (base_binfo
, pre_fn
, post_fn
, data
);
1605 /* Call the post-order walking function. */
1608 rval
= post_fn (binfo
, data
);
1609 gcc_assert (rval
!= dfs_skip_bases
);
1616 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1620 dfs_unmark_r (tree binfo
)
1625 /* Process the basetypes. */
1626 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1628 if (BINFO_VIRTUAL_P (base_binfo
))
1630 if (!BINFO_MARKED (base_binfo
))
1632 BINFO_MARKED (base_binfo
) = 0;
1634 /* Only walk, if it can contain more virtual bases. */
1635 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo
)))
1636 dfs_unmark_r (base_binfo
);
1640 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1641 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1642 For diamond shaped hierarchies we must mark the virtual bases, to
1643 avoid multiple walks. */
1646 dfs_walk_once (tree binfo
, tree (*pre_fn
) (tree
, void *),
1647 tree (*post_fn
) (tree
, void *), void *data
)
1649 static int active
= 0; /* We must not be called recursively. */
1652 gcc_assert (pre_fn
|| post_fn
);
1653 gcc_assert (!active
);
1656 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
)))
1657 /* We are not diamond shaped, and therefore cannot encounter the
1658 same binfo twice. */
1659 rval
= dfs_walk_all (binfo
, pre_fn
, post_fn
, data
);
1662 rval
= dfs_walk_once_r (binfo
, pre_fn
, post_fn
, data
);
1663 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1665 /* We are at the top of the hierarchy, and can use the
1666 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1668 VEC(tree
,gc
) *vbases
;
1672 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1673 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1674 BINFO_MARKED (base_binfo
) = 0;
1677 dfs_unmark_r (binfo
);
1685 /* Worker function for dfs_walk_once_accessible. Behaves like
1686 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1687 access given by the current context should be considered, (b) ONCE
1688 indicates whether bases should be marked during traversal. */
1691 dfs_walk_once_accessible_r (tree binfo
, bool friends_p
, bool once
,
1692 tree (*pre_fn
) (tree
, void *),
1693 tree (*post_fn
) (tree
, void *), void *data
)
1695 tree rval
= NULL_TREE
;
1699 /* Call the pre-order walking function. */
1702 rval
= pre_fn (binfo
, data
);
1705 if (rval
== dfs_skip_bases
)
1712 /* Find the next child binfo to walk. */
1713 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1715 bool mark
= once
&& BINFO_VIRTUAL_P (base_binfo
);
1717 if (mark
&& BINFO_MARKED (base_binfo
))
1720 /* If the base is inherited via private or protected
1721 inheritance, then we can't see it, unless we are a friend of
1722 the current binfo. */
1723 if (BINFO_BASE_ACCESS (binfo
, ix
) != access_public_node
)
1728 scope
= current_scope ();
1730 || TREE_CODE (scope
) == NAMESPACE_DECL
1731 || !is_friend (BINFO_TYPE (binfo
), scope
))
1736 BINFO_MARKED (base_binfo
) = 1;
1738 rval
= dfs_walk_once_accessible_r (base_binfo
, friends_p
, once
,
1739 pre_fn
, post_fn
, data
);
1745 /* Call the post-order walking function. */
1748 rval
= post_fn (binfo
, data
);
1749 gcc_assert (rval
!= dfs_skip_bases
);
1756 /* Like dfs_walk_once except that only accessible bases are walked.
1757 FRIENDS_P indicates whether friendship of the local context
1758 should be considered when determining accessibility. */
1761 dfs_walk_once_accessible (tree binfo
, bool friends_p
,
1762 tree (*pre_fn
) (tree
, void *),
1763 tree (*post_fn
) (tree
, void *), void *data
)
1765 bool diamond_shaped
= CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo
));
1766 tree rval
= dfs_walk_once_accessible_r (binfo
, friends_p
, diamond_shaped
,
1767 pre_fn
, post_fn
, data
);
1771 if (!BINFO_INHERITANCE_CHAIN (binfo
))
1773 /* We are at the top of the hierarchy, and can use the
1774 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1776 VEC(tree
,gc
) *vbases
;
1780 for (vbases
= CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)), ix
= 0;
1781 VEC_iterate (tree
, vbases
, ix
, base_binfo
); ix
++)
1782 BINFO_MARKED (base_binfo
) = 0;
1785 dfs_unmark_r (binfo
);
1790 /* Check that virtual overrider OVERRIDER is acceptable for base function
1791 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1794 check_final_overrider (tree overrider
, tree basefn
)
1796 tree over_type
= TREE_TYPE (overrider
);
1797 tree base_type
= TREE_TYPE (basefn
);
1798 tree over_return
= TREE_TYPE (over_type
);
1799 tree base_return
= TREE_TYPE (base_type
);
1800 tree over_throw
= TYPE_RAISES_EXCEPTIONS (over_type
);
1801 tree base_throw
= TYPE_RAISES_EXCEPTIONS (base_type
);
1804 if (DECL_INVALID_OVERRIDER_P (overrider
))
1807 if (same_type_p (base_return
, over_return
))
1809 else if ((CLASS_TYPE_P (over_return
) && CLASS_TYPE_P (base_return
))
1810 || (TREE_CODE (base_return
) == TREE_CODE (over_return
)
1811 && POINTER_TYPE_P (base_return
)))
1813 /* Potentially covariant. */
1814 unsigned base_quals
, over_quals
;
1816 fail
= !POINTER_TYPE_P (base_return
);
1819 fail
= cp_type_quals (base_return
) != cp_type_quals (over_return
);
1821 base_return
= TREE_TYPE (base_return
);
1822 over_return
= TREE_TYPE (over_return
);
1824 base_quals
= cp_type_quals (base_return
);
1825 over_quals
= cp_type_quals (over_return
);
1827 if ((base_quals
& over_quals
) != over_quals
)
1830 if (CLASS_TYPE_P (base_return
) && CLASS_TYPE_P (over_return
))
1832 tree binfo
= lookup_base (over_return
, base_return
,
1833 ba_check
| ba_quiet
, NULL
);
1839 && can_convert (TREE_TYPE (base_type
), TREE_TYPE (over_type
)))
1840 /* GNU extension, allow trivial pointer conversions such as
1841 converting to void *, or qualification conversion. */
1843 /* can_convert will permit user defined conversion from a
1844 (reference to) class type. We must reject them. */
1845 over_return
= non_reference (TREE_TYPE (over_type
));
1846 if (CLASS_TYPE_P (over_return
))
1850 warning (0, "deprecated covariant return type for %q+#D",
1852 warning (0, " overriding %q+#D", basefn
);
1866 error ("invalid covariant return type for %q+#D", overrider
);
1867 error (" overriding %q+#D", basefn
);
1871 error ("conflicting return type specified for %q+#D", overrider
);
1872 error (" overriding %q+#D", basefn
);
1874 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1878 /* Check throw specifier is at least as strict. */
1879 if (!comp_except_specs (base_throw
, over_throw
, 0))
1881 error ("looser throw specifier for %q+#F", overrider
);
1882 error (" overriding %q+#F", basefn
);
1883 DECL_INVALID_OVERRIDER_P (overrider
) = 1;
1890 /* Given a class TYPE, and a function decl FNDECL, look for
1891 virtual functions in TYPE's hierarchy which FNDECL overrides.
1892 We do not look in TYPE itself, only its bases.
1894 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1895 find that it overrides anything.
1897 We check that every function which is overridden, is correctly
1901 look_for_overrides (tree type
, tree fndecl
)
1903 tree binfo
= TYPE_BINFO (type
);
1908 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
1910 tree basetype
= BINFO_TYPE (base_binfo
);
1912 if (TYPE_POLYMORPHIC_P (basetype
))
1913 found
+= look_for_overrides_r (basetype
, fndecl
);
1918 /* Look in TYPE for virtual functions with the same signature as
1922 look_for_overrides_here (tree type
, tree fndecl
)
1926 /* If there are no methods in TYPE (meaning that only implicitly
1927 declared methods will ever be provided for TYPE), then there are
1928 no virtual functions. */
1929 if (!CLASSTYPE_METHOD_VEC (type
))
1932 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl
))
1933 ix
= CLASSTYPE_DESTRUCTOR_SLOT
;
1935 ix
= lookup_fnfields_1 (type
, DECL_NAME (fndecl
));
1938 tree fns
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (type
), ix
);
1940 for (; fns
; fns
= OVL_NEXT (fns
))
1942 tree fn
= OVL_CURRENT (fns
);
1944 if (!DECL_VIRTUAL_P (fn
))
1945 /* Not a virtual. */;
1946 else if (DECL_CONTEXT (fn
) != type
)
1947 /* Introduced with a using declaration. */;
1948 else if (DECL_STATIC_FUNCTION_P (fndecl
))
1950 tree btypes
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1951 tree dtypes
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1952 if (compparms (TREE_CHAIN (btypes
), dtypes
))
1955 else if (same_signature_p (fndecl
, fn
))
1962 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
1963 TYPE itself and its bases. */
1966 look_for_overrides_r (tree type
, tree fndecl
)
1968 tree fn
= look_for_overrides_here (type
, fndecl
);
1971 if (DECL_STATIC_FUNCTION_P (fndecl
))
1973 /* A static member function cannot match an inherited
1974 virtual member function. */
1975 error ("%q+#D cannot be declared", fndecl
);
1976 error (" since %q+#D declared in base class", fn
);
1980 /* It's definitely virtual, even if not explicitly set. */
1981 DECL_VIRTUAL_P (fndecl
) = 1;
1982 check_final_overrider (fndecl
, fn
);
1987 /* We failed to find one declared in this class. Look in its bases. */
1988 return look_for_overrides (type
, fndecl
);
1991 /* Called via dfs_walk from dfs_get_pure_virtuals. */
1994 dfs_get_pure_virtuals (tree binfo
, void *data
)
1996 tree type
= (tree
) data
;
1998 /* We're not interested in primary base classes; the derived class
1999 of which they are a primary base will contain the information we
2001 if (!BINFO_PRIMARY_P (binfo
))
2005 for (virtuals
= BINFO_VIRTUALS (binfo
);
2007 virtuals
= TREE_CHAIN (virtuals
))
2008 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals
)))
2009 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (type
),
2016 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2019 get_pure_virtuals (tree type
)
2021 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2022 is going to be overridden. */
2023 CLASSTYPE_PURE_VIRTUALS (type
) = NULL
;
2024 /* Now, run through all the bases which are not primary bases, and
2025 collect the pure virtual functions. We look at the vtable in
2026 each class to determine what pure virtual functions are present.
2027 (A primary base is not interesting because the derived class of
2028 which it is a primary base will contain vtable entries for the
2029 pure virtuals in the base class. */
2030 dfs_walk_once (TYPE_BINFO (type
), NULL
, dfs_get_pure_virtuals
, type
);
2033 /* Debug info for C++ classes can get very large; try to avoid
2034 emitting it everywhere.
2036 Note that this optimization wins even when the target supports
2037 BINCL (if only slightly), and reduces the amount of work for the
2041 maybe_suppress_debug_info (tree t
)
2043 if (write_symbols
== NO_DEBUG
)
2046 /* We might have set this earlier in cp_finish_decl. */
2047 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 0;
2049 /* If we already know how we're handling this class, handle debug info
2051 if (CLASSTYPE_INTERFACE_KNOWN (t
))
2053 if (CLASSTYPE_INTERFACE_ONLY (t
))
2054 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2055 /* else don't set it. */
2057 /* If the class has a vtable, write out the debug info along with
2059 else if (TYPE_CONTAINS_VPTR_P (t
))
2060 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t
)) = 1;
2062 /* Otherwise, just emit the debug info normally. */
2065 /* Note that we want debugging information for a base class of a class
2066 whose vtable is being emitted. Normally, this would happen because
2067 calling the constructor for a derived class implies calling the
2068 constructors for all bases, which involve initializing the
2069 appropriate vptr with the vtable for the base class; but in the
2070 presence of optimization, this initialization may be optimized
2071 away, so we tell finish_vtable_vardecl that we want the debugging
2072 information anyway. */
2075 dfs_debug_mark (tree binfo
, void *data ATTRIBUTE_UNUSED
)
2077 tree t
= BINFO_TYPE (binfo
);
2079 if (CLASSTYPE_DEBUG_REQUESTED (t
))
2080 return dfs_skip_bases
;
2082 CLASSTYPE_DEBUG_REQUESTED (t
) = 1;
2087 /* Write out the debugging information for TYPE, whose vtable is being
2088 emitted. Also walk through our bases and note that we want to
2089 write out information for them. This avoids the problem of not
2090 writing any debug info for intermediate basetypes whose
2091 constructors, and thus the references to their vtables, and thus
2092 the vtables themselves, were optimized away. */
2095 note_debug_info_needed (tree type
)
2097 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)))
2099 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type
)) = 0;
2100 rest_of_type_compilation (type
, toplevel_bindings_p ());
2103 dfs_walk_all (TYPE_BINFO (type
), dfs_debug_mark
, NULL
, 0);
2107 print_search_statistics (void)
2109 #ifdef GATHER_STATISTICS
2110 fprintf (stderr
, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2111 n_fields_searched
, n_calls_lookup_field
, n_calls_lookup_field_1
);
2112 fprintf (stderr
, "%d fnfields searched in %d calls to lookup_fnfields\n",
2113 n_outer_fields_searched
, n_calls_lookup_fnfields
);
2114 fprintf (stderr
, "%d calls to get_base_type\n", n_calls_get_base_type
);
2115 #else /* GATHER_STATISTICS */
2116 fprintf (stderr
, "no search statistics\n");
2117 #endif /* GATHER_STATISTICS */
2121 reinit_search_statistics (void)
2123 #ifdef GATHER_STATISTICS
2124 n_fields_searched
= 0;
2125 n_calls_lookup_field
= 0, n_calls_lookup_field_1
= 0;
2126 n_calls_lookup_fnfields
= 0, n_calls_lookup_fnfields_1
= 0;
2127 n_calls_get_base_type
= 0;
2128 n_outer_fields_searched
= 0;
2129 n_contexts_saved
= 0;
2130 #endif /* GATHER_STATISTICS */
2133 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2134 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2135 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2136 bases have been encountered already in the tree walk. PARENT_CONVS
2137 is the list of lists of conversion functions that could hide CONV
2138 and OTHER_CONVS is the list of lists of conversion functions that
2139 could hide or be hidden by CONV, should virtualness be involved in
2140 the hierarchy. Merely checking the conversion op's name is not
2141 enough because two conversion operators to the same type can have
2142 different names. Return nonzero if we are visible. */
2145 check_hidden_convs (tree binfo
, int virtual_depth
, int virtualness
,
2146 tree to_type
, tree parent_convs
, tree other_convs
)
2150 /* See if we are hidden by a parent conversion. */
2151 for (level
= parent_convs
; level
; level
= TREE_CHAIN (level
))
2152 for (probe
= TREE_VALUE (level
); probe
; probe
= TREE_CHAIN (probe
))
2153 if (same_type_p (to_type
, TREE_TYPE (probe
)))
2156 if (virtual_depth
|| virtualness
)
2158 /* In a virtual hierarchy, we could be hidden, or could hide a
2159 conversion function on the other_convs list. */
2160 for (level
= other_convs
; level
; level
= TREE_CHAIN (level
))
2166 if (!(virtual_depth
|| TREE_STATIC (level
)))
2167 /* Neither is morally virtual, so cannot hide each other. */
2170 if (!TREE_VALUE (level
))
2171 /* They evaporated away already. */
2174 they_hide_us
= (virtual_depth
2175 && original_binfo (binfo
, TREE_PURPOSE (level
)));
2176 we_hide_them
= (!they_hide_us
&& TREE_STATIC (level
)
2177 && original_binfo (TREE_PURPOSE (level
), binfo
));
2179 if (!(we_hide_them
|| they_hide_us
))
2180 /* Neither is within the other, so no hiding can occur. */
2183 for (prev
= &TREE_VALUE (level
), other
= *prev
; other
;)
2185 if (same_type_p (to_type
, TREE_TYPE (other
)))
2188 /* We are hidden. */
2193 /* We hide the other one. */
2194 other
= TREE_CHAIN (other
);
2199 prev
= &TREE_CHAIN (other
);
2207 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2208 of conversion functions, the first slot will be for the current
2209 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2210 of conversion functions from children of the current binfo,
2211 concatenated with conversions from elsewhere in the hierarchy --
2212 that list begins with OTHER_CONVS. Return a single list of lists
2213 containing only conversions from the current binfo and its
2217 split_conversions (tree my_convs
, tree parent_convs
,
2218 tree child_convs
, tree other_convs
)
2223 /* Remove the original other_convs portion from child_convs. */
2224 for (prev
= NULL
, t
= child_convs
;
2225 t
!= other_convs
; prev
= t
, t
= TREE_CHAIN (t
))
2229 TREE_CHAIN (prev
) = NULL_TREE
;
2231 child_convs
= NULL_TREE
;
2233 /* Attach the child convs to any we had at this level. */
2236 my_convs
= parent_convs
;
2237 TREE_CHAIN (my_convs
) = child_convs
;
2240 my_convs
= child_convs
;
2245 /* Worker for lookup_conversions. Lookup conversion functions in
2246 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2247 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2248 encountered virtual bases already in the tree walk. PARENT_CONVS &
2249 PARENT_TPL_CONVS are lists of list of conversions within parent
2250 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2251 elsewhere in the tree. Return the conversions found within this
2252 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2253 encountered virtualness. We keep template and non-template
2254 conversions separate, to avoid unnecessary type comparisons.
2256 The located conversion functions are held in lists of lists. The
2257 TREE_VALUE of the outer list is the list of conversion functions
2258 found in a particular binfo. The TREE_PURPOSE of both the outer
2259 and inner lists is the binfo at which those conversions were
2260 found. TREE_STATIC is set for those lists within of morally
2261 virtual binfos. The TREE_VALUE of the inner list is the conversion
2262 function or overload itself. The TREE_TYPE of each inner list node
2263 is the converted-to type. */
2266 lookup_conversions_r (tree binfo
,
2267 int virtual_depth
, int virtualness
,
2268 tree parent_convs
, tree parent_tpl_convs
,
2269 tree other_convs
, tree other_tpl_convs
,
2270 tree
*convs
, tree
*tpl_convs
)
2272 int my_virtualness
= 0;
2273 tree my_convs
= NULL_TREE
;
2274 tree my_tpl_convs
= NULL_TREE
;
2275 tree child_convs
= NULL_TREE
;
2276 tree child_tpl_convs
= NULL_TREE
;
2279 VEC(tree
,gc
) *method_vec
= CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo
));
2282 /* If we have no conversion operators, then don't look. */
2283 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo
)))
2285 *convs
= *tpl_convs
= NULL_TREE
;
2290 if (BINFO_VIRTUAL_P (binfo
))
2293 /* First, locate the unhidden ones at this level. */
2294 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2295 VEC_iterate (tree
, method_vec
, i
, conv
);
2298 tree cur
= OVL_CURRENT (conv
);
2300 if (!DECL_CONV_FN_P (cur
))
2303 if (TREE_CODE (cur
) == TEMPLATE_DECL
)
2305 /* Only template conversions can be overloaded, and we must
2306 flatten them out and check each one individually. */
2309 for (tpls
= conv
; tpls
; tpls
= OVL_NEXT (tpls
))
2311 tree tpl
= OVL_CURRENT (tpls
);
2312 tree type
= DECL_CONV_FN_TYPE (tpl
);
2314 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2315 type
, parent_tpl_convs
, other_tpl_convs
))
2317 my_tpl_convs
= tree_cons (binfo
, tpl
, my_tpl_convs
);
2318 TREE_TYPE (my_tpl_convs
) = type
;
2321 TREE_STATIC (my_tpl_convs
) = 1;
2329 tree name
= DECL_NAME (cur
);
2331 if (!IDENTIFIER_MARKED (name
))
2333 tree type
= DECL_CONV_FN_TYPE (cur
);
2335 if (check_hidden_convs (binfo
, virtual_depth
, virtualness
,
2336 type
, parent_convs
, other_convs
))
2338 my_convs
= tree_cons (binfo
, conv
, my_convs
);
2339 TREE_TYPE (my_convs
) = type
;
2342 TREE_STATIC (my_convs
) = 1;
2345 IDENTIFIER_MARKED (name
) = 1;
2353 parent_convs
= tree_cons (binfo
, my_convs
, parent_convs
);
2355 TREE_STATIC (parent_convs
) = 1;
2360 parent_tpl_convs
= tree_cons (binfo
, my_tpl_convs
, parent_tpl_convs
);
2362 TREE_STATIC (parent_tpl_convs
) = 1;
2365 child_convs
= other_convs
;
2366 child_tpl_convs
= other_tpl_convs
;
2368 /* Now iterate over each base, looking for more conversions. */
2369 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
2371 tree base_convs
, base_tpl_convs
;
2372 unsigned base_virtualness
;
2374 base_virtualness
= lookup_conversions_r (base_binfo
,
2375 virtual_depth
, virtualness
,
2376 parent_convs
, parent_tpl_convs
,
2377 child_convs
, child_tpl_convs
,
2378 &base_convs
, &base_tpl_convs
);
2379 if (base_virtualness
)
2380 my_virtualness
= virtualness
= 1;
2381 child_convs
= chainon (base_convs
, child_convs
);
2382 child_tpl_convs
= chainon (base_tpl_convs
, child_tpl_convs
);
2385 /* Unmark the conversions found at this level */
2386 for (conv
= my_convs
; conv
; conv
= TREE_CHAIN (conv
))
2387 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv
)))) = 0;
2389 *convs
= split_conversions (my_convs
, parent_convs
,
2390 child_convs
, other_convs
);
2391 *tpl_convs
= split_conversions (my_tpl_convs
, parent_tpl_convs
,
2392 child_tpl_convs
, other_tpl_convs
);
2394 return my_virtualness
;
2397 /* Return a TREE_LIST containing all the non-hidden user-defined
2398 conversion functions for TYPE (and its base-classes). The
2399 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2400 function. The TREE_PURPOSE is the BINFO from which the conversion
2401 functions in this node were selected. This function is effectively
2402 performing a set of member lookups as lookup_fnfield does, but
2403 using the type being converted to as the unique key, rather than the
2407 lookup_conversions (tree type
)
2409 tree convs
, tpl_convs
;
2410 tree list
= NULL_TREE
;
2412 complete_type (type
);
2413 if (!TYPE_BINFO (type
))
2416 lookup_conversions_r (TYPE_BINFO (type
), 0, 0,
2417 NULL_TREE
, NULL_TREE
, NULL_TREE
, NULL_TREE
,
2418 &convs
, &tpl_convs
);
2420 /* Flatten the list-of-lists */
2421 for (; convs
; convs
= TREE_CHAIN (convs
))
2425 for (probe
= TREE_VALUE (convs
); probe
; probe
= next
)
2427 next
= TREE_CHAIN (probe
);
2429 TREE_CHAIN (probe
) = list
;
2434 for (; tpl_convs
; tpl_convs
= TREE_CHAIN (tpl_convs
))
2438 for (probe
= TREE_VALUE (tpl_convs
); probe
; probe
= next
)
2440 next
= TREE_CHAIN (probe
);
2442 TREE_CHAIN (probe
) = list
;
2450 /* Returns the binfo of the first direct or indirect virtual base derived
2451 from BINFO, or NULL if binfo is not via virtual. */
2454 binfo_from_vbase (tree binfo
)
2456 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2458 if (BINFO_VIRTUAL_P (binfo
))
2464 /* Returns the binfo of the first direct or indirect virtual base derived
2465 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2469 binfo_via_virtual (tree binfo
, tree limit
)
2471 if (limit
&& !CLASSTYPE_VBASECLASSES (limit
))
2472 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2475 for (; binfo
&& !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), limit
);
2476 binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2478 if (BINFO_VIRTUAL_P (binfo
))
2484 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2485 Find the equivalent binfo within whatever graph HERE is located.
2486 This is the inverse of original_binfo. */
2489 copied_binfo (tree binfo
, tree here
)
2491 tree result
= NULL_TREE
;
2493 if (BINFO_VIRTUAL_P (binfo
))
2497 for (t
= here
; BINFO_INHERITANCE_CHAIN (t
);
2498 t
= BINFO_INHERITANCE_CHAIN (t
))
2501 result
= binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (t
));
2503 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2509 cbinfo
= copied_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2510 for (ix
= 0; BINFO_BASE_ITERATE (cbinfo
, ix
, base_binfo
); ix
++)
2511 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
), BINFO_TYPE (binfo
)))
2513 result
= base_binfo
;
2519 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here
), BINFO_TYPE (binfo
)));
2523 gcc_assert (result
);
2528 binfo_for_vbase (tree base
, tree t
)
2532 VEC(tree
,gc
) *vbases
;
2534 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
2535 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
2536 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), base
))
2541 /* BINFO is some base binfo of HERE, within some other
2542 hierarchy. Return the equivalent binfo, but in the hierarchy
2543 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2544 is not a base binfo of HERE, returns NULL_TREE. */
2547 original_binfo (tree binfo
, tree here
)
2551 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (here
)))
2553 else if (BINFO_VIRTUAL_P (binfo
))
2554 result
= (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here
))
2555 ? binfo_for_vbase (BINFO_TYPE (binfo
), BINFO_TYPE (here
))
2557 else if (BINFO_INHERITANCE_CHAIN (binfo
))
2561 base_binfos
= original_binfo (BINFO_INHERITANCE_CHAIN (binfo
), here
);
2567 for (ix
= 0; (base_binfo
= BINFO_BASE_BINFO (base_binfos
, ix
)); ix
++)
2568 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
2569 BINFO_TYPE (binfo
)))
2571 result
= base_binfo
;