1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
50 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
63 #include "hard-reg-set.h"
70 #include "basic-block.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
117 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
118 #define HAVE_READONLY_DATA_SECTION 1
120 #define HAVE_READONLY_DATA_SECTION 0
123 /* Bitflags used by final_scan_insn. */
126 #define SEEN_EMITTED 4
128 /* Last insn processed by final_scan_insn. */
129 static rtx debug_insn
;
130 rtx current_output_insn
;
132 /* Line number of last NOTE. */
133 static int last_linenum
;
135 /* Highest line number in current block. */
136 static int high_block_linenum
;
138 /* Likewise for function. */
139 static int high_function_linenum
;
141 /* Filename of last NOTE. */
142 static const char *last_filename
;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line
= false;
147 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands
;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands
;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare
= 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter
= 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status
;
179 /* Indexed by hardware reg number, is 1 if that register is ever
180 used in the current function.
182 In life_analysis, or in stupid_life_analysis, this is set
183 up to record the hard regs used explicitly. Reload adds
184 in the hard regs used for holding pseudo regs. Final uses
185 it to generate the code in the function prologue and epilogue
186 to save and restore registers as needed. */
188 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
190 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
191 Unlike regs_ever_live, elements of this array corresponding to
192 eliminable regs like the frame pointer are set if an asm sets them. */
194 char regs_asm_clobbered
[FIRST_PSEUDO_REGISTER
];
196 /* Nonzero means current function must be given a frame pointer.
197 Initialized in function.c to 0. Set only in reload1.c as per
198 the needs of the function. */
200 int frame_pointer_needed
;
202 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
204 static int block_depth
;
206 /* Nonzero if have enabled APP processing of our assembler output. */
210 /* If we are outputting an insn sequence, this contains the sequence rtx.
215 #ifdef ASSEMBLER_DIALECT
217 /* Number of the assembler dialect to use, starting at 0. */
218 static int dialect_number
;
221 #ifdef HAVE_conditional_execution
222 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
223 rtx current_insn_predicate
;
226 #ifdef HAVE_ATTR_length
227 static int asm_insn_count (rtx
);
229 static void profile_function (FILE *);
230 static void profile_after_prologue (FILE *);
231 static bool notice_source_line (rtx
);
232 static rtx
walk_alter_subreg (rtx
*);
233 static void output_asm_name (void);
234 static void output_alternate_entry_point (FILE *, rtx
);
235 static tree
get_mem_expr_from_op (rtx
, int *);
236 static void output_asm_operand_names (rtx
*, int *, int);
237 static void output_operand (rtx
, int);
238 #ifdef LEAF_REGISTERS
239 static void leaf_renumber_regs (rtx
);
242 static int alter_cond (rtx
);
244 #ifndef ADDR_VEC_ALIGN
245 static int final_addr_vec_align (rtx
);
247 #ifdef HAVE_ATTR_length
248 static int align_fuzz (rtx
, rtx
, int, unsigned);
251 /* Initialize data in final at the beginning of a compilation. */
254 init_final (const char *filename ATTRIBUTE_UNUSED
)
259 #ifdef ASSEMBLER_DIALECT
260 dialect_number
= ASSEMBLER_DIALECT
;
264 /* Default target function prologue and epilogue assembler output.
266 If not overridden for epilogue code, then the function body itself
267 contains return instructions wherever needed. */
269 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
270 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
274 /* Default target hook that outputs nothing to a stream. */
276 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
280 /* Enable APP processing of subsequent output.
281 Used before the output from an `asm' statement. */
288 fputs (ASM_APP_ON
, asm_out_file
);
293 /* Disable APP processing of subsequent output.
294 Called from varasm.c before most kinds of output. */
301 fputs (ASM_APP_OFF
, asm_out_file
);
306 /* Return the number of slots filled in the current
307 delayed branch sequence (we don't count the insn needing the
308 delay slot). Zero if not in a delayed branch sequence. */
312 dbr_sequence_length (void)
314 if (final_sequence
!= 0)
315 return XVECLEN (final_sequence
, 0) - 1;
321 /* The next two pages contain routines used to compute the length of an insn
322 and to shorten branches. */
324 /* Arrays for insn lengths, and addresses. The latter is referenced by
325 `insn_current_length'. */
327 static int *insn_lengths
;
329 varray_type insn_addresses_
;
331 /* Max uid for which the above arrays are valid. */
332 static int insn_lengths_max_uid
;
334 /* Address of insn being processed. Used by `insn_current_length'. */
335 int insn_current_address
;
337 /* Address of insn being processed in previous iteration. */
338 int insn_last_address
;
340 /* known invariant alignment of insn being processed. */
341 int insn_current_align
;
343 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
344 gives the next following alignment insn that increases the known
345 alignment, or NULL_RTX if there is no such insn.
346 For any alignment obtained this way, we can again index uid_align with
347 its uid to obtain the next following align that in turn increases the
348 alignment, till we reach NULL_RTX; the sequence obtained this way
349 for each insn we'll call the alignment chain of this insn in the following
352 struct label_alignment
358 static rtx
*uid_align
;
359 static int *uid_shuid
;
360 static struct label_alignment
*label_align
;
362 /* Indicate that branch shortening hasn't yet been done. */
365 init_insn_lengths (void)
376 insn_lengths_max_uid
= 0;
378 #ifdef HAVE_ATTR_length
379 INSN_ADDRESSES_FREE ();
388 /* Obtain the current length of an insn. If branch shortening has been done,
389 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
392 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
393 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
395 #ifdef HAVE_ATTR_length
400 if (insn_lengths_max_uid
> INSN_UID (insn
))
401 return insn_lengths
[INSN_UID (insn
)];
403 switch (GET_CODE (insn
))
411 length
= fallback_fn (insn
);
415 body
= PATTERN (insn
);
416 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
418 /* Alignment is machine-dependent and should be handled by
422 length
= fallback_fn (insn
);
426 body
= PATTERN (insn
);
427 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
430 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
431 length
= asm_insn_count (body
) * fallback_fn (insn
);
432 else if (GET_CODE (body
) == SEQUENCE
)
433 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
434 length
+= get_attr_length (XVECEXP (body
, 0, i
));
436 length
= fallback_fn (insn
);
443 #ifdef ADJUST_INSN_LENGTH
444 ADJUST_INSN_LENGTH (insn
, length
);
447 #else /* not HAVE_ATTR_length */
449 #define insn_default_length 0
450 #define insn_min_length 0
451 #endif /* not HAVE_ATTR_length */
454 /* Obtain the current length of an insn. If branch shortening has been done,
455 get its actual length. Otherwise, get its maximum length. */
457 get_attr_length (rtx insn
)
459 return get_attr_length_1 (insn
, insn_default_length
);
462 /* Obtain the current length of an insn. If branch shortening has been done,
463 get its actual length. Otherwise, get its minimum length. */
465 get_attr_min_length (rtx insn
)
467 return get_attr_length_1 (insn
, insn_min_length
);
470 /* Code to handle alignment inside shorten_branches. */
472 /* Here is an explanation how the algorithm in align_fuzz can give
475 Call a sequence of instructions beginning with alignment point X
476 and continuing until the next alignment point `block X'. When `X'
477 is used in an expression, it means the alignment value of the
480 Call the distance between the start of the first insn of block X, and
481 the end of the last insn of block X `IX', for the `inner size of X'.
482 This is clearly the sum of the instruction lengths.
484 Likewise with the next alignment-delimited block following X, which we
487 Call the distance between the start of the first insn of block X, and
488 the start of the first insn of block Y `OX', for the `outer size of X'.
490 The estimated padding is then OX - IX.
492 OX can be safely estimated as
497 OX = round_up(IX, X) + Y - X
499 Clearly est(IX) >= real(IX), because that only depends on the
500 instruction lengths, and those being overestimated is a given.
502 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
503 we needn't worry about that when thinking about OX.
505 When X >= Y, the alignment provided by Y adds no uncertainty factor
506 for branch ranges starting before X, so we can just round what we have.
507 But when X < Y, we don't know anything about the, so to speak,
508 `middle bits', so we have to assume the worst when aligning up from an
509 address mod X to one mod Y, which is Y - X. */
512 #define LABEL_ALIGN(LABEL) align_labels_log
515 #ifndef LABEL_ALIGN_MAX_SKIP
516 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
520 #define LOOP_ALIGN(LABEL) align_loops_log
523 #ifndef LOOP_ALIGN_MAX_SKIP
524 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
527 #ifndef LABEL_ALIGN_AFTER_BARRIER
528 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
531 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
532 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
536 #define JUMP_ALIGN(LABEL) align_jumps_log
539 #ifndef JUMP_ALIGN_MAX_SKIP
540 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
543 #ifndef ADDR_VEC_ALIGN
545 final_addr_vec_align (rtx addr_vec
)
547 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
549 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
550 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
551 return exact_log2 (align
);
555 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
558 #ifndef INSN_LENGTH_ALIGNMENT
559 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
562 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
564 static int min_labelno
, max_labelno
;
566 #define LABEL_TO_ALIGNMENT(LABEL) \
567 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
569 #define LABEL_TO_MAX_SKIP(LABEL) \
570 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
572 /* For the benefit of port specific code do this also as a function. */
575 label_to_alignment (rtx label
)
577 return LABEL_TO_ALIGNMENT (label
);
580 #ifdef HAVE_ATTR_length
581 /* The differences in addresses
582 between a branch and its target might grow or shrink depending on
583 the alignment the start insn of the range (the branch for a forward
584 branch or the label for a backward branch) starts out on; if these
585 differences are used naively, they can even oscillate infinitely.
586 We therefore want to compute a 'worst case' address difference that
587 is independent of the alignment the start insn of the range end
588 up on, and that is at least as large as the actual difference.
589 The function align_fuzz calculates the amount we have to add to the
590 naively computed difference, by traversing the part of the alignment
591 chain of the start insn of the range that is in front of the end insn
592 of the range, and considering for each alignment the maximum amount
593 that it might contribute to a size increase.
595 For casesi tables, we also want to know worst case minimum amounts of
596 address difference, in case a machine description wants to introduce
597 some common offset that is added to all offsets in a table.
598 For this purpose, align_fuzz with a growth argument of 0 computes the
599 appropriate adjustment. */
601 /* Compute the maximum delta by which the difference of the addresses of
602 START and END might grow / shrink due to a different address for start
603 which changes the size of alignment insns between START and END.
604 KNOWN_ALIGN_LOG is the alignment known for START.
605 GROWTH should be ~0 if the objective is to compute potential code size
606 increase, and 0 if the objective is to compute potential shrink.
607 The return value is undefined for any other value of GROWTH. */
610 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
612 int uid
= INSN_UID (start
);
614 int known_align
= 1 << known_align_log
;
615 int end_shuid
= INSN_SHUID (end
);
618 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
620 int align_addr
, new_align
;
622 uid
= INSN_UID (align_label
);
623 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
624 if (uid_shuid
[uid
] > end_shuid
)
626 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
627 new_align
= 1 << known_align_log
;
628 if (new_align
< known_align
)
630 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
631 known_align
= new_align
;
636 /* Compute a worst-case reference address of a branch so that it
637 can be safely used in the presence of aligned labels. Since the
638 size of the branch itself is unknown, the size of the branch is
639 not included in the range. I.e. for a forward branch, the reference
640 address is the end address of the branch as known from the previous
641 branch shortening pass, minus a value to account for possible size
642 increase due to alignment. For a backward branch, it is the start
643 address of the branch as known from the current pass, plus a value
644 to account for possible size increase due to alignment.
645 NB.: Therefore, the maximum offset allowed for backward branches needs
646 to exclude the branch size. */
649 insn_current_reference_address (rtx branch
)
654 if (! INSN_ADDRESSES_SET_P ())
657 seq
= NEXT_INSN (PREV_INSN (branch
));
658 seq_uid
= INSN_UID (seq
);
659 if (!JUMP_P (branch
))
660 /* This can happen for example on the PA; the objective is to know the
661 offset to address something in front of the start of the function.
662 Thus, we can treat it like a backward branch.
663 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
664 any alignment we'd encounter, so we skip the call to align_fuzz. */
665 return insn_current_address
;
666 dest
= JUMP_LABEL (branch
);
668 /* BRANCH has no proper alignment chain set, so use SEQ.
669 BRANCH also has no INSN_SHUID. */
670 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
672 /* Forward branch. */
673 return (insn_last_address
+ insn_lengths
[seq_uid
]
674 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
678 /* Backward branch. */
679 return (insn_current_address
680 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
683 #endif /* HAVE_ATTR_length */
686 compute_alignments (void)
688 int log
, max_skip
, max_log
;
697 max_labelno
= max_label_num ();
698 min_labelno
= get_first_label_num ();
699 label_align
= xcalloc (max_labelno
- min_labelno
+ 1,
700 sizeof (struct label_alignment
));
702 /* If not optimizing or optimizing for size, don't assign any alignments. */
703 if (! optimize
|| optimize_size
)
708 rtx label
= BB_HEAD (bb
);
709 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
714 || probably_never_executed_bb_p (bb
))
716 max_log
= LABEL_ALIGN (label
);
717 max_skip
= LABEL_ALIGN_MAX_SKIP
;
719 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
721 if (e
->flags
& EDGE_FALLTHRU
)
722 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
724 branch_frequency
+= EDGE_FREQUENCY (e
);
727 /* There are two purposes to align block with no fallthru incoming edge:
728 1) to avoid fetch stalls when branch destination is near cache boundary
729 2) to improve cache efficiency in case the previous block is not executed
730 (so it does not need to be in the cache).
732 We to catch first case, we align frequently executed blocks.
733 To catch the second, we align blocks that are executed more frequently
734 than the predecessor and the predecessor is likely to not be executed
735 when function is called. */
738 && (branch_frequency
> BB_FREQ_MAX
/ 10
739 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
740 && (bb
->prev_bb
->frequency
741 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
743 log
= JUMP_ALIGN (label
);
747 max_skip
= JUMP_ALIGN_MAX_SKIP
;
750 /* In case block is frequent and reached mostly by non-fallthru edge,
751 align it. It is most likely a first block of loop. */
753 && maybe_hot_bb_p (bb
)
754 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
755 && branch_frequency
> fallthru_frequency
* 2)
757 log
= LOOP_ALIGN (label
);
761 max_skip
= LOOP_ALIGN_MAX_SKIP
;
764 LABEL_TO_ALIGNMENT (label
) = max_log
;
765 LABEL_TO_MAX_SKIP (label
) = max_skip
;
769 struct tree_opt_pass pass_compute_alignments
=
773 compute_alignments
, /* execute */
776 0, /* static_pass_number */
778 0, /* properties_required */
779 0, /* properties_provided */
780 0, /* properties_destroyed */
781 0, /* todo_flags_start */
782 0, /* todo_flags_finish */
787 /* Make a pass over all insns and compute their actual lengths by shortening
788 any branches of variable length if possible. */
790 /* shorten_branches might be called multiple times: for example, the SH
791 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
792 In order to do this, it needs proper length information, which it obtains
793 by calling shorten_branches. This cannot be collapsed with
794 shorten_branches itself into a single pass unless we also want to integrate
795 reorg.c, since the branch splitting exposes new instructions with delay
799 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
806 #ifdef HAVE_ATTR_length
807 #define MAX_CODE_ALIGN 16
809 int something_changed
= 1;
810 char *varying_length
;
813 rtx align_tab
[MAX_CODE_ALIGN
];
817 /* Compute maximum UID and allocate label_align / uid_shuid. */
818 max_uid
= get_max_uid ();
820 /* Free uid_shuid before reallocating it. */
823 uid_shuid
= xmalloc (max_uid
* sizeof *uid_shuid
);
825 if (max_labelno
!= max_label_num ())
827 int old
= max_labelno
;
831 max_labelno
= max_label_num ();
833 n_labels
= max_labelno
- min_labelno
+ 1;
834 n_old_labels
= old
- min_labelno
+ 1;
836 label_align
= xrealloc (label_align
,
837 n_labels
* sizeof (struct label_alignment
));
839 /* Range of labels grows monotonically in the function. Failing here
840 means that the initialization of array got lost. */
841 gcc_assert (n_old_labels
<= n_labels
);
843 memset (label_align
+ n_old_labels
, 0,
844 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
847 /* Initialize label_align and set up uid_shuid to be strictly
848 monotonically rising with insn order. */
849 /* We use max_log here to keep track of the maximum alignment we want to
850 impose on the next CODE_LABEL (or the current one if we are processing
851 the CODE_LABEL itself). */
856 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
860 INSN_SHUID (insn
) = i
++;
863 /* reorg might make the first insn of a loop being run once only,
864 and delete the label in front of it. Then we want to apply
865 the loop alignment to the new label created by reorg, which
866 is separated by the former loop start insn from the
867 NOTE_INSN_LOOP_BEG. */
869 else if (LABEL_P (insn
))
873 /* Merge in alignments computed by compute_alignments. */
874 log
= LABEL_TO_ALIGNMENT (insn
);
878 max_skip
= LABEL_TO_MAX_SKIP (insn
);
881 log
= LABEL_ALIGN (insn
);
885 max_skip
= LABEL_ALIGN_MAX_SKIP
;
887 next
= next_nonnote_insn (insn
);
888 /* ADDR_VECs only take room if read-only data goes into the text
890 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
891 if (next
&& JUMP_P (next
))
893 rtx nextbody
= PATTERN (next
);
894 if (GET_CODE (nextbody
) == ADDR_VEC
895 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
897 log
= ADDR_VEC_ALIGN (next
);
901 max_skip
= LABEL_ALIGN_MAX_SKIP
;
905 LABEL_TO_ALIGNMENT (insn
) = max_log
;
906 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
910 else if (BARRIER_P (insn
))
914 for (label
= insn
; label
&& ! INSN_P (label
);
915 label
= NEXT_INSN (label
))
918 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
922 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
928 #ifdef HAVE_ATTR_length
930 /* Allocate the rest of the arrays. */
931 insn_lengths
= xmalloc (max_uid
* sizeof (*insn_lengths
));
932 insn_lengths_max_uid
= max_uid
;
933 /* Syntax errors can lead to labels being outside of the main insn stream.
934 Initialize insn_addresses, so that we get reproducible results. */
935 INSN_ADDRESSES_ALLOC (max_uid
);
937 varying_length
= xcalloc (max_uid
, sizeof (char));
939 /* Initialize uid_align. We scan instructions
940 from end to start, and keep in align_tab[n] the last seen insn
941 that does an alignment of at least n+1, i.e. the successor
942 in the alignment chain for an insn that does / has a known
944 uid_align
= xcalloc (max_uid
, sizeof *uid_align
);
946 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
947 align_tab
[i
] = NULL_RTX
;
948 seq
= get_last_insn ();
949 for (; seq
; seq
= PREV_INSN (seq
))
951 int uid
= INSN_UID (seq
);
953 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
954 uid_align
[uid
] = align_tab
[0];
957 /* Found an alignment label. */
958 uid_align
[uid
] = align_tab
[log
];
959 for (i
= log
- 1; i
>= 0; i
--)
963 #ifdef CASE_VECTOR_SHORTEN_MODE
966 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
969 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
970 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
973 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
975 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
976 int len
, i
, min
, max
, insn_shuid
;
978 addr_diff_vec_flags flags
;
981 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
983 pat
= PATTERN (insn
);
984 len
= XVECLEN (pat
, 1);
985 gcc_assert (len
> 0);
986 min_align
= MAX_CODE_ALIGN
;
987 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
989 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
990 int shuid
= INSN_SHUID (lab
);
1001 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1002 min_align
= LABEL_TO_ALIGNMENT (lab
);
1004 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1005 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1006 insn_shuid
= INSN_SHUID (insn
);
1007 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1008 memset (&flags
, 0, sizeof (flags
));
1009 flags
.min_align
= min_align
;
1010 flags
.base_after_vec
= rel
> insn_shuid
;
1011 flags
.min_after_vec
= min
> insn_shuid
;
1012 flags
.max_after_vec
= max
> insn_shuid
;
1013 flags
.min_after_base
= min
> rel
;
1014 flags
.max_after_base
= max
> rel
;
1015 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1018 #endif /* CASE_VECTOR_SHORTEN_MODE */
1020 /* Compute initial lengths, addresses, and varying flags for each insn. */
1021 for (insn_current_address
= 0, insn
= first
;
1023 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1025 uid
= INSN_UID (insn
);
1027 insn_lengths
[uid
] = 0;
1031 int log
= LABEL_TO_ALIGNMENT (insn
);
1034 int align
= 1 << log
;
1035 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1036 insn_lengths
[uid
] = new_address
- insn_current_address
;
1040 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1042 if (NOTE_P (insn
) || BARRIER_P (insn
)
1045 if (INSN_DELETED_P (insn
))
1048 body
= PATTERN (insn
);
1049 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1051 /* This only takes room if read-only data goes into the text
1053 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1054 insn_lengths
[uid
] = (XVECLEN (body
,
1055 GET_CODE (body
) == ADDR_DIFF_VEC
)
1056 * GET_MODE_SIZE (GET_MODE (body
)));
1057 /* Alignment is handled by ADDR_VEC_ALIGN. */
1059 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1060 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1061 else if (GET_CODE (body
) == SEQUENCE
)
1064 int const_delay_slots
;
1066 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1068 const_delay_slots
= 0;
1070 /* Inside a delay slot sequence, we do not do any branch shortening
1071 if the shortening could change the number of delay slots
1073 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1075 rtx inner_insn
= XVECEXP (body
, 0, i
);
1076 int inner_uid
= INSN_UID (inner_insn
);
1079 if (GET_CODE (body
) == ASM_INPUT
1080 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1081 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1082 * insn_default_length (inner_insn
));
1084 inner_length
= insn_default_length (inner_insn
);
1086 insn_lengths
[inner_uid
] = inner_length
;
1087 if (const_delay_slots
)
1089 if ((varying_length
[inner_uid
]
1090 = insn_variable_length_p (inner_insn
)) != 0)
1091 varying_length
[uid
] = 1;
1092 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1093 + insn_lengths
[uid
]);
1096 varying_length
[inner_uid
] = 0;
1097 insn_lengths
[uid
] += inner_length
;
1100 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1102 insn_lengths
[uid
] = insn_default_length (insn
);
1103 varying_length
[uid
] = insn_variable_length_p (insn
);
1106 /* If needed, do any adjustment. */
1107 #ifdef ADJUST_INSN_LENGTH
1108 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1109 if (insn_lengths
[uid
] < 0)
1110 fatal_insn ("negative insn length", insn
);
1114 /* Now loop over all the insns finding varying length insns. For each,
1115 get the current insn length. If it has changed, reflect the change.
1116 When nothing changes for a full pass, we are done. */
1118 while (something_changed
)
1120 something_changed
= 0;
1121 insn_current_align
= MAX_CODE_ALIGN
- 1;
1122 for (insn_current_address
= 0, insn
= first
;
1124 insn
= NEXT_INSN (insn
))
1127 #ifdef ADJUST_INSN_LENGTH
1132 uid
= INSN_UID (insn
);
1136 int log
= LABEL_TO_ALIGNMENT (insn
);
1137 if (log
> insn_current_align
)
1139 int align
= 1 << log
;
1140 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1141 insn_lengths
[uid
] = new_address
- insn_current_address
;
1142 insn_current_align
= log
;
1143 insn_current_address
= new_address
;
1146 insn_lengths
[uid
] = 0;
1147 INSN_ADDRESSES (uid
) = insn_current_address
;
1151 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1152 if (length_align
< insn_current_align
)
1153 insn_current_align
= length_align
;
1155 insn_last_address
= INSN_ADDRESSES (uid
);
1156 INSN_ADDRESSES (uid
) = insn_current_address
;
1158 #ifdef CASE_VECTOR_SHORTEN_MODE
1159 if (optimize
&& JUMP_P (insn
)
1160 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1162 rtx body
= PATTERN (insn
);
1163 int old_length
= insn_lengths
[uid
];
1164 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1165 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1166 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1167 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1168 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1169 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1172 addr_diff_vec_flags flags
;
1174 /* Avoid automatic aggregate initialization. */
1175 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1177 /* Try to find a known alignment for rel_lab. */
1178 for (prev
= rel_lab
;
1180 && ! insn_lengths
[INSN_UID (prev
)]
1181 && ! (varying_length
[INSN_UID (prev
)] & 1);
1182 prev
= PREV_INSN (prev
))
1183 if (varying_length
[INSN_UID (prev
)] & 2)
1185 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1189 /* See the comment on addr_diff_vec_flags in rtl.h for the
1190 meaning of the flags values. base: REL_LAB vec: INSN */
1191 /* Anything after INSN has still addresses from the last
1192 pass; adjust these so that they reflect our current
1193 estimate for this pass. */
1194 if (flags
.base_after_vec
)
1195 rel_addr
+= insn_current_address
- insn_last_address
;
1196 if (flags
.min_after_vec
)
1197 min_addr
+= insn_current_address
- insn_last_address
;
1198 if (flags
.max_after_vec
)
1199 max_addr
+= insn_current_address
- insn_last_address
;
1200 /* We want to know the worst case, i.e. lowest possible value
1201 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1202 its offset is positive, and we have to be wary of code shrink;
1203 otherwise, it is negative, and we have to be vary of code
1205 if (flags
.min_after_base
)
1207 /* If INSN is between REL_LAB and MIN_LAB, the size
1208 changes we are about to make can change the alignment
1209 within the observed offset, therefore we have to break
1210 it up into two parts that are independent. */
1211 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1213 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1214 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1217 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1221 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1223 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1224 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1227 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1229 /* Likewise, determine the highest lowest possible value
1230 for the offset of MAX_LAB. */
1231 if (flags
.max_after_base
)
1233 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1235 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1236 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1239 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1243 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1245 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1246 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1249 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1251 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1252 max_addr
- rel_addr
,
1254 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1257 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1258 insn_current_address
+= insn_lengths
[uid
];
1259 if (insn_lengths
[uid
] != old_length
)
1260 something_changed
= 1;
1265 #endif /* CASE_VECTOR_SHORTEN_MODE */
1267 if (! (varying_length
[uid
]))
1269 if (NONJUMP_INSN_P (insn
)
1270 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1274 body
= PATTERN (insn
);
1275 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1277 rtx inner_insn
= XVECEXP (body
, 0, i
);
1278 int inner_uid
= INSN_UID (inner_insn
);
1280 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1282 insn_current_address
+= insn_lengths
[inner_uid
];
1286 insn_current_address
+= insn_lengths
[uid
];
1291 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1295 body
= PATTERN (insn
);
1297 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1299 rtx inner_insn
= XVECEXP (body
, 0, i
);
1300 int inner_uid
= INSN_UID (inner_insn
);
1303 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1305 /* insn_current_length returns 0 for insns with a
1306 non-varying length. */
1307 if (! varying_length
[inner_uid
])
1308 inner_length
= insn_lengths
[inner_uid
];
1310 inner_length
= insn_current_length (inner_insn
);
1312 if (inner_length
!= insn_lengths
[inner_uid
])
1314 insn_lengths
[inner_uid
] = inner_length
;
1315 something_changed
= 1;
1317 insn_current_address
+= insn_lengths
[inner_uid
];
1318 new_length
+= inner_length
;
1323 new_length
= insn_current_length (insn
);
1324 insn_current_address
+= new_length
;
1327 #ifdef ADJUST_INSN_LENGTH
1328 /* If needed, do any adjustment. */
1329 tmp_length
= new_length
;
1330 ADJUST_INSN_LENGTH (insn
, new_length
);
1331 insn_current_address
+= (new_length
- tmp_length
);
1334 if (new_length
!= insn_lengths
[uid
])
1336 insn_lengths
[uid
] = new_length
;
1337 something_changed
= 1;
1340 /* For a non-optimizing compile, do only a single pass. */
1345 free (varying_length
);
1347 #endif /* HAVE_ATTR_length */
1350 #ifdef HAVE_ATTR_length
1351 /* Given the body of an INSN known to be generated by an ASM statement, return
1352 the number of machine instructions likely to be generated for this insn.
1353 This is used to compute its length. */
1356 asm_insn_count (rtx body
)
1358 const char *template;
1361 if (GET_CODE (body
) == ASM_INPUT
)
1362 template = XSTR (body
, 0);
1364 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1366 for (; *template; template++)
1367 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1374 /* Output assembler code for the start of a function,
1375 and initialize some of the variables in this file
1376 for the new function. The label for the function and associated
1377 assembler pseudo-ops have already been output in `assemble_start_function'.
1379 FIRST is the first insn of the rtl for the function being compiled.
1380 FILE is the file to write assembler code to.
1381 OPTIMIZE is nonzero if we should eliminate redundant
1382 test and compare insns. */
1385 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1386 int optimize ATTRIBUTE_UNUSED
)
1390 this_is_asm_operands
= 0;
1392 last_filename
= locator_file (prologue_locator
);
1393 last_linenum
= locator_line (prologue_locator
);
1395 high_block_linenum
= high_function_linenum
= last_linenum
;
1397 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1399 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1400 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1401 dwarf2out_begin_prologue (0, NULL
);
1404 #ifdef LEAF_REG_REMAP
1405 if (current_function_uses_only_leaf_regs
)
1406 leaf_renumber_regs (first
);
1409 /* The Sun386i and perhaps other machines don't work right
1410 if the profiling code comes after the prologue. */
1411 #ifdef PROFILE_BEFORE_PROLOGUE
1412 if (current_function_profile
)
1413 profile_function (file
);
1414 #endif /* PROFILE_BEFORE_PROLOGUE */
1416 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1417 if (dwarf2out_do_frame ())
1418 dwarf2out_frame_debug (NULL_RTX
, false);
1421 /* If debugging, assign block numbers to all of the blocks in this
1425 remove_unnecessary_notes ();
1426 reemit_insn_block_notes ();
1427 number_blocks (current_function_decl
);
1428 /* We never actually put out begin/end notes for the top-level
1429 block in the function. But, conceptually, that block is
1431 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1434 /* First output the function prologue: code to set up the stack frame. */
1435 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1437 /* If the machine represents the prologue as RTL, the profiling code must
1438 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1439 #ifdef HAVE_prologue
1440 if (! HAVE_prologue
)
1442 profile_after_prologue (file
);
1446 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1448 #ifndef PROFILE_BEFORE_PROLOGUE
1449 if (current_function_profile
)
1450 profile_function (file
);
1451 #endif /* not PROFILE_BEFORE_PROLOGUE */
1455 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1457 #ifndef NO_PROFILE_COUNTERS
1458 # define NO_PROFILE_COUNTERS 0
1460 #if defined(ASM_OUTPUT_REG_PUSH)
1461 int sval
= current_function_returns_struct
;
1462 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1463 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1464 int cxt
= cfun
->static_chain_decl
!= NULL
;
1466 #endif /* ASM_OUTPUT_REG_PUSH */
1468 if (! NO_PROFILE_COUNTERS
)
1470 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1472 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1473 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1474 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1477 current_function_section (current_function_decl
);
1479 #if defined(ASM_OUTPUT_REG_PUSH)
1480 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1481 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1484 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1486 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1488 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1491 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1496 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1498 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1500 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1502 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1505 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1510 #if defined(ASM_OUTPUT_REG_PUSH)
1511 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1512 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1516 /* Output assembler code for the end of a function.
1517 For clarity, args are same as those of `final_start_function'
1518 even though not all of them are needed. */
1521 final_end_function (void)
1525 (*debug_hooks
->end_function
) (high_function_linenum
);
1527 /* Finally, output the function epilogue:
1528 code to restore the stack frame and return to the caller. */
1529 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1531 /* And debug output. */
1532 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1534 #if defined (DWARF2_UNWIND_INFO)
1535 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1536 && dwarf2out_do_frame ())
1537 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1541 /* Output assembler code for some insns: all or part of a function.
1542 For description of args, see `final_start_function', above. */
1545 final (rtx first
, FILE *file
, int optimize
)
1551 last_ignored_compare
= 0;
1553 #ifdef SDB_DEBUGGING_INFO
1554 /* When producing SDB debugging info, delete troublesome line number
1555 notes from inlined functions in other files as well as duplicate
1556 line number notes. */
1557 if (write_symbols
== SDB_DEBUG
)
1560 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1561 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
1564 #ifdef USE_MAPPED_LOCATION
1565 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last
)
1567 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1568 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)
1572 delete_insn (insn
); /* Use delete_note. */
1580 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1582 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1583 max_uid
= INSN_UID (insn
);
1585 /* If CC tracking across branches is enabled, record the insn which
1586 jumps to each branch only reached from one place. */
1587 if (optimize
&& JUMP_P (insn
))
1589 rtx lab
= JUMP_LABEL (insn
);
1590 if (lab
&& LABEL_NUSES (lab
) == 1)
1592 LABEL_REFS (lab
) = insn
;
1602 /* Output the insns. */
1603 for (insn
= NEXT_INSN (first
); insn
;)
1605 #ifdef HAVE_ATTR_length
1606 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1608 /* This can be triggered by bugs elsewhere in the compiler if
1609 new insns are created after init_insn_lengths is called. */
1610 gcc_assert (NOTE_P (insn
));
1611 insn_current_address
= -1;
1614 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1615 #endif /* HAVE_ATTR_length */
1617 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1622 get_insn_template (int code
, rtx insn
)
1624 switch (insn_data
[code
].output_format
)
1626 case INSN_OUTPUT_FORMAT_SINGLE
:
1627 return insn_data
[code
].output
.single
;
1628 case INSN_OUTPUT_FORMAT_MULTI
:
1629 return insn_data
[code
].output
.multi
[which_alternative
];
1630 case INSN_OUTPUT_FORMAT_FUNCTION
:
1632 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1639 /* Emit the appropriate declaration for an alternate-entry-point
1640 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1641 LABEL_KIND != LABEL_NORMAL.
1643 The case fall-through in this function is intentional. */
1645 output_alternate_entry_point (FILE *file
, rtx insn
)
1647 const char *name
= LABEL_NAME (insn
);
1649 switch (LABEL_KIND (insn
))
1651 case LABEL_WEAK_ENTRY
:
1652 #ifdef ASM_WEAKEN_LABEL
1653 ASM_WEAKEN_LABEL (file
, name
);
1655 case LABEL_GLOBAL_ENTRY
:
1656 targetm
.asm_out
.globalize_label (file
, name
);
1657 case LABEL_STATIC_ENTRY
:
1658 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1659 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1661 ASM_OUTPUT_LABEL (file
, name
);
1670 /* The final scan for one insn, INSN.
1671 Args are same as in `final', except that INSN
1672 is the insn being scanned.
1673 Value returned is the next insn to be scanned.
1675 NOPEEPHOLES is the flag to disallow peephole processing (currently
1676 used for within delayed branch sequence output).
1678 SEEN is used to track the end of the prologue, for emitting
1679 debug information. We force the emission of a line note after
1680 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1681 at the beginning of the second basic block, whichever comes
1685 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1686 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1695 /* Ignore deleted insns. These can occur when we split insns (due to a
1696 template of "#") while not optimizing. */
1697 if (INSN_DELETED_P (insn
))
1698 return NEXT_INSN (insn
);
1700 switch (GET_CODE (insn
))
1703 switch (NOTE_LINE_NUMBER (insn
))
1705 case NOTE_INSN_DELETED
:
1706 case NOTE_INSN_LOOP_BEG
:
1707 case NOTE_INSN_LOOP_END
:
1708 case NOTE_INSN_FUNCTION_END
:
1709 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1710 case NOTE_INSN_EXPECTED_VALUE
:
1713 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1715 /* The presence of this note indicates that this basic block
1716 belongs in the "cold" section of the .o file. If we are
1717 not already writing to the cold section we need to change
1720 if (last_text_section
== in_text
)
1722 (*debug_hooks
->switch_text_section
) ();
1723 #if defined (DWARF2_UNWIND_INFO)
1724 if (write_symbols
!= DWARF2_DEBUG
1725 && write_symbols
!= VMS_AND_DWARF2_DEBUG
1726 && dwarf2out_do_frame ())
1727 dwarf2out_switch_text_section ();
1729 unlikely_text_section ();
1733 (*debug_hooks
->switch_text_section
) ();
1734 #if defined (DWARF2_UNWIND_INFO)
1735 if (write_symbols
!= DWARF2_DEBUG
1736 && write_symbols
!= VMS_AND_DWARF2_DEBUG
1737 && dwarf2out_do_frame ())
1738 dwarf2out_switch_text_section ();
1744 case NOTE_INSN_BASIC_BLOCK
:
1746 #ifdef TARGET_UNWIND_INFO
1747 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1751 fprintf (asm_out_file
, "\t%s basic block %d\n",
1752 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1754 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1756 *seen
|= SEEN_EMITTED
;
1757 force_source_line
= true;
1764 case NOTE_INSN_EH_REGION_BEG
:
1765 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1766 NOTE_EH_HANDLER (insn
));
1769 case NOTE_INSN_EH_REGION_END
:
1770 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1771 NOTE_EH_HANDLER (insn
));
1774 case NOTE_INSN_PROLOGUE_END
:
1775 targetm
.asm_out
.function_end_prologue (file
);
1776 profile_after_prologue (file
);
1778 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1780 *seen
|= SEEN_EMITTED
;
1781 force_source_line
= true;
1788 case NOTE_INSN_EPILOGUE_BEG
:
1789 targetm
.asm_out
.function_begin_epilogue (file
);
1792 case NOTE_INSN_FUNCTION_BEG
:
1794 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1796 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1798 *seen
|= SEEN_EMITTED
;
1799 force_source_line
= true;
1806 case NOTE_INSN_BLOCK_BEG
:
1807 if (debug_info_level
== DINFO_LEVEL_NORMAL
1808 || debug_info_level
== DINFO_LEVEL_VERBOSE
1809 || write_symbols
== DWARF2_DEBUG
1810 || write_symbols
== VMS_AND_DWARF2_DEBUG
1811 || write_symbols
== VMS_DEBUG
)
1813 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1817 high_block_linenum
= last_linenum
;
1819 /* Output debugging info about the symbol-block beginning. */
1820 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1822 /* Mark this block as output. */
1823 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1827 case NOTE_INSN_BLOCK_END
:
1828 if (debug_info_level
== DINFO_LEVEL_NORMAL
1829 || debug_info_level
== DINFO_LEVEL_VERBOSE
1830 || write_symbols
== DWARF2_DEBUG
1831 || write_symbols
== VMS_AND_DWARF2_DEBUG
1832 || write_symbols
== VMS_DEBUG
)
1834 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1838 /* End of a symbol-block. */
1840 gcc_assert (block_depth
>= 0);
1842 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1846 case NOTE_INSN_DELETED_LABEL
:
1847 /* Emit the label. We may have deleted the CODE_LABEL because
1848 the label could be proved to be unreachable, though still
1849 referenced (in the form of having its address taken. */
1850 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1853 case NOTE_INSN_VAR_LOCATION
:
1854 (*debug_hooks
->var_location
) (insn
);
1861 gcc_assert (NOTE_LINE_NUMBER (insn
) > 0);
1867 #if defined (DWARF2_UNWIND_INFO)
1868 if (dwarf2out_do_frame ())
1869 dwarf2out_frame_debug (insn
, false);
1874 /* The target port might emit labels in the output function for
1875 some insn, e.g. sh.c output_branchy_insn. */
1876 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1878 int align
= LABEL_TO_ALIGNMENT (insn
);
1879 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1880 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1883 if (align
&& NEXT_INSN (insn
))
1885 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1886 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1888 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1889 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1891 ASM_OUTPUT_ALIGN (file
, align
);
1898 /* If this label is reached from only one place, set the condition
1899 codes from the instruction just before the branch. */
1901 /* Disabled because some insns set cc_status in the C output code
1902 and NOTICE_UPDATE_CC alone can set incorrect status. */
1903 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1905 rtx jump
= LABEL_REFS (insn
);
1906 rtx barrier
= prev_nonnote_insn (insn
);
1908 /* If the LABEL_REFS field of this label has been set to point
1909 at a branch, the predecessor of the branch is a regular
1910 insn, and that branch is the only way to reach this label,
1911 set the condition codes based on the branch and its
1913 if (barrier
&& BARRIER_P (barrier
)
1914 && jump
&& JUMP_P (jump
)
1915 && (prev
= prev_nonnote_insn (jump
))
1916 && NONJUMP_INSN_P (prev
))
1918 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1919 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1924 if (LABEL_NAME (insn
))
1925 (*debug_hooks
->label
) (insn
);
1929 fputs (ASM_APP_OFF
, file
);
1933 next
= next_nonnote_insn (insn
);
1934 if (next
!= 0 && JUMP_P (next
))
1936 rtx nextbody
= PATTERN (next
);
1938 /* If this label is followed by a jump-table,
1939 make sure we put the label in the read-only section. Also
1940 possibly write the label and jump table together. */
1942 if (GET_CODE (nextbody
) == ADDR_VEC
1943 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1945 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1946 /* In this case, the case vector is being moved by the
1947 target, so don't output the label at all. Leave that
1948 to the back end macros. */
1950 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1954 targetm
.asm_out
.function_rodata_section (current_function_decl
);
1956 #ifdef ADDR_VEC_ALIGN
1957 log_align
= ADDR_VEC_ALIGN (next
);
1959 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1961 ASM_OUTPUT_ALIGN (file
, log_align
);
1964 current_function_section (current_function_decl
);
1966 #ifdef ASM_OUTPUT_CASE_LABEL
1967 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1970 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1976 if (LABEL_ALT_ENTRY_P (insn
))
1977 output_alternate_entry_point (file
, insn
);
1979 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1984 rtx body
= PATTERN (insn
);
1985 int insn_code_number
;
1986 const char *template;
1988 /* An INSN, JUMP_INSN or CALL_INSN.
1989 First check for special kinds that recog doesn't recognize. */
1991 if (GET_CODE (body
) == USE
/* These are just declarations. */
1992 || GET_CODE (body
) == CLOBBER
)
1997 /* If there is a REG_CC_SETTER note on this insn, it means that
1998 the setting of the condition code was done in the delay slot
1999 of the insn that branched here. So recover the cc status
2000 from the insn that set it. */
2002 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2005 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2006 cc_prev_status
= cc_status
;
2011 /* Detect insns that are really jump-tables
2012 and output them as such. */
2014 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2016 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2020 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2021 targetm
.asm_out
.function_rodata_section (current_function_decl
);
2023 current_function_section (current_function_decl
);
2027 fputs (ASM_APP_OFF
, file
);
2031 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2032 if (GET_CODE (body
) == ADDR_VEC
)
2034 #ifdef ASM_OUTPUT_ADDR_VEC
2035 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2042 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2043 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2049 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2050 for (idx
= 0; idx
< vlen
; idx
++)
2052 if (GET_CODE (body
) == ADDR_VEC
)
2054 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2055 ASM_OUTPUT_ADDR_VEC_ELT
2056 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2063 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2064 ASM_OUTPUT_ADDR_DIFF_ELT
2067 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2068 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2074 #ifdef ASM_OUTPUT_CASE_END
2075 ASM_OUTPUT_CASE_END (file
,
2076 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2081 current_function_section (current_function_decl
);
2085 /* Output this line note if it is the first or the last line
2087 if (notice_source_line (insn
))
2089 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2092 if (GET_CODE (body
) == ASM_INPUT
)
2094 const char *string
= XSTR (body
, 0);
2096 /* There's no telling what that did to the condition codes. */
2103 fputs (ASM_APP_ON
, file
);
2106 fprintf (asm_out_file
, "\t%s\n", string
);
2111 /* Detect `asm' construct with operands. */
2112 if (asm_noperands (body
) >= 0)
2114 unsigned int noperands
= asm_noperands (body
);
2115 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2118 /* There's no telling what that did to the condition codes. */
2121 /* Get out the operand values. */
2122 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2123 /* Inhibit dieing on what would otherwise be compiler bugs. */
2124 insn_noperands
= noperands
;
2125 this_is_asm_operands
= insn
;
2127 #ifdef FINAL_PRESCAN_INSN
2128 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2131 /* Output the insn using them. */
2136 fputs (ASM_APP_ON
, file
);
2139 output_asm_insn (string
, ops
);
2142 this_is_asm_operands
= 0;
2148 fputs (ASM_APP_OFF
, file
);
2152 if (GET_CODE (body
) == SEQUENCE
)
2154 /* A delayed-branch sequence */
2157 final_sequence
= body
;
2159 /* Record the delay slots' frame information before the branch.
2160 This is needed for delayed calls: see execute_cfa_program(). */
2161 #if defined (DWARF2_UNWIND_INFO)
2162 if (dwarf2out_do_frame ())
2163 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2164 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2167 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2168 force the restoration of a comparison that was previously
2169 thought unnecessary. If that happens, cancel this sequence
2170 and cause that insn to be restored. */
2172 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2173 if (next
!= XVECEXP (body
, 0, 1))
2179 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2181 rtx insn
= XVECEXP (body
, 0, i
);
2182 rtx next
= NEXT_INSN (insn
);
2183 /* We loop in case any instruction in a delay slot gets
2186 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2187 while (insn
!= next
);
2189 #ifdef DBR_OUTPUT_SEQEND
2190 DBR_OUTPUT_SEQEND (file
);
2194 /* If the insn requiring the delay slot was a CALL_INSN, the
2195 insns in the delay slot are actually executed before the
2196 called function. Hence we don't preserve any CC-setting
2197 actions in these insns and the CC must be marked as being
2198 clobbered by the function. */
2199 if (CALL_P (XVECEXP (body
, 0, 0)))
2206 /* We have a real machine instruction as rtl. */
2208 body
= PATTERN (insn
);
2211 set
= single_set (insn
);
2213 /* Check for redundant test and compare instructions
2214 (when the condition codes are already set up as desired).
2215 This is done only when optimizing; if not optimizing,
2216 it should be possible for the user to alter a variable
2217 with the debugger in between statements
2218 and the next statement should reexamine the variable
2219 to compute the condition codes. */
2224 && GET_CODE (SET_DEST (set
)) == CC0
2225 && insn
!= last_ignored_compare
)
2227 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2228 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2229 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2231 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2232 XEXP (SET_SRC (set
), 0)
2233 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2234 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2235 XEXP (SET_SRC (set
), 1)
2236 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2238 if ((cc_status
.value1
!= 0
2239 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2240 || (cc_status
.value2
!= 0
2241 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2243 /* Don't delete insn if it has an addressing side-effect. */
2244 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2245 /* or if anything in it is volatile. */
2246 && ! volatile_refs_p (PATTERN (insn
)))
2248 /* We don't really delete the insn; just ignore it. */
2249 last_ignored_compare
= insn
;
2258 /* If this is a conditional branch, maybe modify it
2259 if the cc's are in a nonstandard state
2260 so that it accomplishes the same thing that it would
2261 do straightforwardly if the cc's were set up normally. */
2263 if (cc_status
.flags
!= 0
2265 && GET_CODE (body
) == SET
2266 && SET_DEST (body
) == pc_rtx
2267 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2268 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2269 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2271 /* This function may alter the contents of its argument
2272 and clear some of the cc_status.flags bits.
2273 It may also return 1 meaning condition now always true
2274 or -1 meaning condition now always false
2275 or 2 meaning condition nontrivial but altered. */
2276 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2277 /* If condition now has fixed value, replace the IF_THEN_ELSE
2278 with its then-operand or its else-operand. */
2280 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2282 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2284 /* The jump is now either unconditional or a no-op.
2285 If it has become a no-op, don't try to output it.
2286 (It would not be recognized.) */
2287 if (SET_SRC (body
) == pc_rtx
)
2292 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2293 /* Replace (set (pc) (return)) with (return). */
2294 PATTERN (insn
) = body
= SET_SRC (body
);
2296 /* Rerecognize the instruction if it has changed. */
2298 INSN_CODE (insn
) = -1;
2301 /* Make same adjustments to instructions that examine the
2302 condition codes without jumping and instructions that
2303 handle conditional moves (if this machine has either one). */
2305 if (cc_status
.flags
!= 0
2308 rtx cond_rtx
, then_rtx
, else_rtx
;
2311 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2313 cond_rtx
= XEXP (SET_SRC (set
), 0);
2314 then_rtx
= XEXP (SET_SRC (set
), 1);
2315 else_rtx
= XEXP (SET_SRC (set
), 2);
2319 cond_rtx
= SET_SRC (set
);
2320 then_rtx
= const_true_rtx
;
2321 else_rtx
= const0_rtx
;
2324 switch (GET_CODE (cond_rtx
))
2338 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2340 result
= alter_cond (cond_rtx
);
2342 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2343 else if (result
== -1)
2344 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2345 else if (result
== 2)
2346 INSN_CODE (insn
) = -1;
2347 if (SET_DEST (set
) == SET_SRC (set
))
2359 #ifdef HAVE_peephole
2360 /* Do machine-specific peephole optimizations if desired. */
2362 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2364 rtx next
= peephole (insn
);
2365 /* When peepholing, if there were notes within the peephole,
2366 emit them before the peephole. */
2367 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2369 rtx note
, prev
= PREV_INSN (insn
);
2371 for (note
= NEXT_INSN (insn
); note
!= next
;
2372 note
= NEXT_INSN (note
))
2373 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2375 /* Put the notes in the proper position for a later
2376 rescan. For example, the SH target can do this
2377 when generating a far jump in a delayed branch
2379 note
= NEXT_INSN (insn
);
2380 PREV_INSN (note
) = prev
;
2381 NEXT_INSN (prev
) = note
;
2382 NEXT_INSN (PREV_INSN (next
)) = insn
;
2383 PREV_INSN (insn
) = PREV_INSN (next
);
2384 NEXT_INSN (insn
) = next
;
2385 PREV_INSN (next
) = insn
;
2388 /* PEEPHOLE might have changed this. */
2389 body
= PATTERN (insn
);
2393 /* Try to recognize the instruction.
2394 If successful, verify that the operands satisfy the
2395 constraints for the instruction. Crash if they don't,
2396 since `reload' should have changed them so that they do. */
2398 insn_code_number
= recog_memoized (insn
);
2399 cleanup_subreg_operands (insn
);
2401 /* Dump the insn in the assembly for debugging. */
2402 if (flag_dump_rtl_in_asm
)
2404 print_rtx_head
= ASM_COMMENT_START
;
2405 print_rtl_single (asm_out_file
, insn
);
2406 print_rtx_head
= "";
2409 if (! constrain_operands_cached (1))
2410 fatal_insn_not_found (insn
);
2412 /* Some target machines need to prescan each insn before
2415 #ifdef FINAL_PRESCAN_INSN
2416 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2419 #ifdef HAVE_conditional_execution
2420 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2421 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2423 current_insn_predicate
= NULL_RTX
;
2427 cc_prev_status
= cc_status
;
2429 /* Update `cc_status' for this instruction.
2430 The instruction's output routine may change it further.
2431 If the output routine for a jump insn needs to depend
2432 on the cc status, it should look at cc_prev_status. */
2434 NOTICE_UPDATE_CC (body
, insn
);
2437 current_output_insn
= debug_insn
= insn
;
2439 #if defined (DWARF2_UNWIND_INFO)
2440 if (CALL_P (insn
) && dwarf2out_do_frame ())
2441 dwarf2out_frame_debug (insn
, false);
2444 /* Find the proper template for this insn. */
2445 template = get_insn_template (insn_code_number
, insn
);
2447 /* If the C code returns 0, it means that it is a jump insn
2448 which follows a deleted test insn, and that test insn
2449 needs to be reinserted. */
2454 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2456 /* We have already processed the notes between the setter and
2457 the user. Make sure we don't process them again, this is
2458 particularly important if one of the notes is a block
2459 scope note or an EH note. */
2461 prev
!= last_ignored_compare
;
2462 prev
= PREV_INSN (prev
))
2465 delete_insn (prev
); /* Use delete_note. */
2471 /* If the template is the string "#", it means that this insn must
2473 if (template[0] == '#' && template[1] == '\0')
2475 rtx
new = try_split (body
, insn
, 0);
2477 /* If we didn't split the insn, go away. */
2478 if (new == insn
&& PATTERN (new) == body
)
2479 fatal_insn ("could not split insn", insn
);
2481 #ifdef HAVE_ATTR_length
2482 /* This instruction should have been split in shorten_branches,
2483 to ensure that we would have valid length info for the
2491 #ifdef TARGET_UNWIND_INFO
2492 /* ??? This will put the directives in the wrong place if
2493 get_insn_template outputs assembly directly. However calling it
2494 before get_insn_template breaks if the insns is split. */
2495 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2498 /* Output assembler code from the template. */
2499 output_asm_insn (template, recog_data
.operand
);
2501 /* If necessary, report the effect that the instruction has on
2502 the unwind info. We've already done this for delay slots
2503 and call instructions. */
2504 #if defined (DWARF2_UNWIND_INFO)
2505 if (final_sequence
== 0
2506 #if !defined (HAVE_prologue)
2507 && !ACCUMULATE_OUTGOING_ARGS
2509 && dwarf2out_do_frame ())
2510 dwarf2out_frame_debug (insn
, true);
2513 current_output_insn
= debug_insn
= 0;
2516 return NEXT_INSN (insn
);
2519 /* Return whether a source line note needs to be emitted before INSN. */
2522 notice_source_line (rtx insn
)
2524 const char *filename
= insn_file (insn
);
2525 int linenum
= insn_line (insn
);
2528 && (force_source_line
2529 || filename
!= last_filename
2530 || last_linenum
!= linenum
))
2532 force_source_line
= false;
2533 last_filename
= filename
;
2534 last_linenum
= linenum
;
2535 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2536 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2542 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2543 directly to the desired hard register. */
2546 cleanup_subreg_operands (rtx insn
)
2549 extract_insn_cached (insn
);
2550 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2552 /* The following test cannot use recog_data.operand when testing
2553 for a SUBREG: the underlying object might have been changed
2554 already if we are inside a match_operator expression that
2555 matches the else clause. Instead we test the underlying
2556 expression directly. */
2557 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2558 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2559 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2560 || GET_CODE (recog_data
.operand
[i
]) == MULT
2561 || MEM_P (recog_data
.operand
[i
]))
2562 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2565 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2567 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2568 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2569 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2570 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2571 || MEM_P (*recog_data
.dup_loc
[i
]))
2572 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2576 /* If X is a SUBREG, replace it with a REG or a MEM,
2577 based on the thing it is a subreg of. */
2580 alter_subreg (rtx
*xp
)
2583 rtx y
= SUBREG_REG (x
);
2585 /* simplify_subreg does not remove subreg from volatile references.
2586 We are required to. */
2589 int offset
= SUBREG_BYTE (x
);
2591 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2592 contains 0 instead of the proper offset. See simplify_subreg. */
2594 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2596 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2597 - GET_MODE_SIZE (GET_MODE (x
));
2598 if (WORDS_BIG_ENDIAN
)
2599 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2600 if (BYTES_BIG_ENDIAN
)
2601 offset
+= difference
% UNITS_PER_WORD
;
2604 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2608 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2615 /* Simplify_subreg can't handle some REG cases, but we have to. */
2616 unsigned int regno
= subreg_regno (x
);
2617 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2624 /* Do alter_subreg on all the SUBREGs contained in X. */
2627 walk_alter_subreg (rtx
*xp
)
2630 switch (GET_CODE (x
))
2635 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2636 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2641 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2645 return alter_subreg (xp
);
2656 /* Given BODY, the body of a jump instruction, alter the jump condition
2657 as required by the bits that are set in cc_status.flags.
2658 Not all of the bits there can be handled at this level in all cases.
2660 The value is normally 0.
2661 1 means that the condition has become always true.
2662 -1 means that the condition has become always false.
2663 2 means that COND has been altered. */
2666 alter_cond (rtx cond
)
2670 if (cc_status
.flags
& CC_REVERSED
)
2673 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2676 if (cc_status
.flags
& CC_INVERTED
)
2679 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2682 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2683 switch (GET_CODE (cond
))
2688 /* Jump becomes unconditional. */
2694 /* Jump becomes no-op. */
2698 PUT_CODE (cond
, EQ
);
2703 PUT_CODE (cond
, NE
);
2711 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2712 switch (GET_CODE (cond
))
2716 /* Jump becomes unconditional. */
2721 /* Jump becomes no-op. */
2726 PUT_CODE (cond
, EQ
);
2732 PUT_CODE (cond
, NE
);
2740 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2741 switch (GET_CODE (cond
))
2744 /* Jump becomes unconditional. */
2748 PUT_CODE (cond
, EQ
);
2753 PUT_CODE (cond
, NE
);
2758 /* Jump becomes no-op. */
2765 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2766 switch (GET_CODE (cond
))
2772 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2777 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2782 if (cc_status
.flags
& CC_NOT_SIGNED
)
2783 /* The flags are valid if signed condition operators are converted
2785 switch (GET_CODE (cond
))
2788 PUT_CODE (cond
, LEU
);
2793 PUT_CODE (cond
, LTU
);
2798 PUT_CODE (cond
, GTU
);
2803 PUT_CODE (cond
, GEU
);
2815 /* Report inconsistency between the assembler template and the operands.
2816 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2819 output_operand_lossage (const char *cmsgid
, ...)
2823 const char *pfx_str
;
2826 va_start (ap
, cmsgid
);
2828 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
2829 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
2830 vasprintf (&new_message
, fmt_string
, ap
);
2832 if (this_is_asm_operands
)
2833 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2835 internal_error ("%s", new_message
);
2842 /* Output of assembler code from a template, and its subroutines. */
2844 /* Annotate the assembly with a comment describing the pattern and
2845 alternative used. */
2848 output_asm_name (void)
2852 int num
= INSN_CODE (debug_insn
);
2853 fprintf (asm_out_file
, "\t%s %d\t%s",
2854 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2855 insn_data
[num
].name
);
2856 if (insn_data
[num
].n_alternatives
> 1)
2857 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2858 #ifdef HAVE_ATTR_length
2859 fprintf (asm_out_file
, "\t[length = %d]",
2860 get_attr_length (debug_insn
));
2862 /* Clear this so only the first assembler insn
2863 of any rtl insn will get the special comment for -dp. */
2868 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2869 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2870 corresponds to the address of the object and 0 if to the object. */
2873 get_mem_expr_from_op (rtx op
, int *paddressp
)
2881 return REG_EXPR (op
);
2882 else if (!MEM_P (op
))
2885 if (MEM_EXPR (op
) != 0)
2886 return MEM_EXPR (op
);
2888 /* Otherwise we have an address, so indicate it and look at the address. */
2892 /* First check if we have a decl for the address, then look at the right side
2893 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2894 But don't allow the address to itself be indirect. */
2895 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2897 else if (GET_CODE (op
) == PLUS
2898 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2901 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2902 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2905 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2906 return inner_addressp
? 0 : expr
;
2909 /* Output operand names for assembler instructions. OPERANDS is the
2910 operand vector, OPORDER is the order to write the operands, and NOPS
2911 is the number of operands to write. */
2914 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2919 for (i
= 0; i
< nops
; i
++)
2922 rtx op
= operands
[oporder
[i
]];
2923 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2925 fprintf (asm_out_file
, "%c%s",
2926 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2930 fprintf (asm_out_file
, "%s",
2931 addressp
? "*" : "");
2932 print_mem_expr (asm_out_file
, expr
);
2935 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2936 && ORIGINAL_REGNO (op
) != REGNO (op
))
2937 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2941 /* Output text from TEMPLATE to the assembler output file,
2942 obeying %-directions to substitute operands taken from
2943 the vector OPERANDS.
2945 %N (for N a digit) means print operand N in usual manner.
2946 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2947 and print the label name with no punctuation.
2948 %cN means require operand N to be a constant
2949 and print the constant expression with no punctuation.
2950 %aN means expect operand N to be a memory address
2951 (not a memory reference!) and print a reference
2953 %nN means expect operand N to be a constant
2954 and print a constant expression for minus the value
2955 of the operand, with no other punctuation. */
2958 output_asm_insn (const char *template, rtx
*operands
)
2962 #ifdef ASSEMBLER_DIALECT
2965 int oporder
[MAX_RECOG_OPERANDS
];
2966 char opoutput
[MAX_RECOG_OPERANDS
];
2969 /* An insn may return a null string template
2970 in a case where no assembler code is needed. */
2974 memset (opoutput
, 0, sizeof opoutput
);
2976 putc ('\t', asm_out_file
);
2978 #ifdef ASM_OUTPUT_OPCODE
2979 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2986 if (flag_verbose_asm
)
2987 output_asm_operand_names (operands
, oporder
, ops
);
2988 if (flag_print_asm_name
)
2992 memset (opoutput
, 0, sizeof opoutput
);
2994 putc (c
, asm_out_file
);
2995 #ifdef ASM_OUTPUT_OPCODE
2996 while ((c
= *p
) == '\t')
2998 putc (c
, asm_out_file
);
3001 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3005 #ifdef ASSEMBLER_DIALECT
3011 output_operand_lossage ("nested assembly dialect alternatives");
3015 /* If we want the first dialect, do nothing. Otherwise, skip
3016 DIALECT_NUMBER of strings ending with '|'. */
3017 for (i
= 0; i
< dialect_number
; i
++)
3019 while (*p
&& *p
!= '}' && *p
++ != '|')
3028 output_operand_lossage ("unterminated assembly dialect alternative");
3035 /* Skip to close brace. */
3040 output_operand_lossage ("unterminated assembly dialect alternative");
3044 while (*p
++ != '}');
3048 putc (c
, asm_out_file
);
3053 putc (c
, asm_out_file
);
3059 /* %% outputs a single %. */
3063 putc (c
, asm_out_file
);
3065 /* %= outputs a number which is unique to each insn in the entire
3066 compilation. This is useful for making local labels that are
3067 referred to more than once in a given insn. */
3071 fprintf (asm_out_file
, "%d", insn_counter
);
3073 /* % followed by a letter and some digits
3074 outputs an operand in a special way depending on the letter.
3075 Letters `acln' are implemented directly.
3076 Other letters are passed to `output_operand' so that
3077 the PRINT_OPERAND macro can define them. */
3078 else if (ISALPHA (*p
))
3081 unsigned long opnum
;
3084 opnum
= strtoul (p
, &endptr
, 10);
3087 output_operand_lossage ("operand number missing "
3089 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3090 output_operand_lossage ("operand number out of range");
3091 else if (letter
== 'l')
3092 output_asm_label (operands
[opnum
]);
3093 else if (letter
== 'a')
3094 output_address (operands
[opnum
]);
3095 else if (letter
== 'c')
3097 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3098 output_addr_const (asm_out_file
, operands
[opnum
]);
3100 output_operand (operands
[opnum
], 'c');
3102 else if (letter
== 'n')
3104 if (GET_CODE (operands
[opnum
]) == CONST_INT
)
3105 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3106 - INTVAL (operands
[opnum
]));
3109 putc ('-', asm_out_file
);
3110 output_addr_const (asm_out_file
, operands
[opnum
]);
3114 output_operand (operands
[opnum
], letter
);
3116 if (!opoutput
[opnum
])
3117 oporder
[ops
++] = opnum
;
3118 opoutput
[opnum
] = 1;
3123 /* % followed by a digit outputs an operand the default way. */
3124 else if (ISDIGIT (*p
))
3126 unsigned long opnum
;
3129 opnum
= strtoul (p
, &endptr
, 10);
3130 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3131 output_operand_lossage ("operand number out of range");
3133 output_operand (operands
[opnum
], 0);
3135 if (!opoutput
[opnum
])
3136 oporder
[ops
++] = opnum
;
3137 opoutput
[opnum
] = 1;
3142 /* % followed by punctuation: output something for that
3143 punctuation character alone, with no operand.
3144 The PRINT_OPERAND macro decides what is actually done. */
3145 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3146 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3147 output_operand (NULL_RTX
, *p
++);
3150 output_operand_lossage ("invalid %%-code");
3154 putc (c
, asm_out_file
);
3157 /* Write out the variable names for operands, if we know them. */
3158 if (flag_verbose_asm
)
3159 output_asm_operand_names (operands
, oporder
, ops
);
3160 if (flag_print_asm_name
)
3163 putc ('\n', asm_out_file
);
3166 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3169 output_asm_label (rtx x
)
3173 if (GET_CODE (x
) == LABEL_REF
)
3177 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3178 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3180 output_operand_lossage ("'%%l' operand isn't a label");
3182 assemble_name (asm_out_file
, buf
);
3185 /* Print operand X using machine-dependent assembler syntax.
3186 The macro PRINT_OPERAND is defined just to control this function.
3187 CODE is a non-digit that preceded the operand-number in the % spec,
3188 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3189 between the % and the digits.
3190 When CODE is a non-letter, X is 0.
3192 The meanings of the letters are machine-dependent and controlled
3193 by PRINT_OPERAND. */
3196 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3198 if (x
&& GET_CODE (x
) == SUBREG
)
3199 x
= alter_subreg (&x
);
3201 /* X must not be a pseudo reg. */
3202 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3204 PRINT_OPERAND (asm_out_file
, x
, code
);
3207 /* Print a memory reference operand for address X
3208 using machine-dependent assembler syntax.
3209 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3212 output_address (rtx x
)
3214 walk_alter_subreg (&x
);
3215 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3218 /* Print an integer constant expression in assembler syntax.
3219 Addition and subtraction are the only arithmetic
3220 that may appear in these expressions. */
3223 output_addr_const (FILE *file
, rtx x
)
3228 switch (GET_CODE (x
))
3235 if (SYMBOL_REF_DECL (x
))
3236 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3237 #ifdef ASM_OUTPUT_SYMBOL_REF
3238 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3240 assemble_name (file
, XSTR (x
, 0));
3248 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3249 #ifdef ASM_OUTPUT_LABEL_REF
3250 ASM_OUTPUT_LABEL_REF (file
, buf
);
3252 assemble_name (file
, buf
);
3257 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3261 /* This used to output parentheses around the expression,
3262 but that does not work on the 386 (either ATT or BSD assembler). */
3263 output_addr_const (file
, XEXP (x
, 0));
3267 if (GET_MODE (x
) == VOIDmode
)
3269 /* We can use %d if the number is one word and positive. */
3270 if (CONST_DOUBLE_HIGH (x
))
3271 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3272 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3273 else if (CONST_DOUBLE_LOW (x
) < 0)
3274 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3276 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3279 /* We can't handle floating point constants;
3280 PRINT_OPERAND must handle them. */
3281 output_operand_lossage ("floating constant misused");
3285 /* Some assemblers need integer constants to appear last (eg masm). */
3286 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3288 output_addr_const (file
, XEXP (x
, 1));
3289 if (INTVAL (XEXP (x
, 0)) >= 0)
3290 fprintf (file
, "+");
3291 output_addr_const (file
, XEXP (x
, 0));
3295 output_addr_const (file
, XEXP (x
, 0));
3296 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3297 || INTVAL (XEXP (x
, 1)) >= 0)
3298 fprintf (file
, "+");
3299 output_addr_const (file
, XEXP (x
, 1));
3304 /* Avoid outputting things like x-x or x+5-x,
3305 since some assemblers can't handle that. */
3306 x
= simplify_subtraction (x
);
3307 if (GET_CODE (x
) != MINUS
)
3310 output_addr_const (file
, XEXP (x
, 0));
3311 fprintf (file
, "-");
3312 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3313 || GET_CODE (XEXP (x
, 1)) == PC
3314 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3315 output_addr_const (file
, XEXP (x
, 1));
3318 fputs (targetm
.asm_out
.open_paren
, file
);
3319 output_addr_const (file
, XEXP (x
, 1));
3320 fputs (targetm
.asm_out
.close_paren
, file
);
3327 output_addr_const (file
, XEXP (x
, 0));
3331 #ifdef OUTPUT_ADDR_CONST_EXTRA
3332 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3337 output_operand_lossage ("invalid expression as operand");
3341 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3342 %R prints the value of REGISTER_PREFIX.
3343 %L prints the value of LOCAL_LABEL_PREFIX.
3344 %U prints the value of USER_LABEL_PREFIX.
3345 %I prints the value of IMMEDIATE_PREFIX.
3346 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3347 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3349 We handle alternate assembler dialects here, just like output_asm_insn. */
3352 asm_fprintf (FILE *file
, const char *p
, ...)
3358 va_start (argptr
, p
);
3365 #ifdef ASSEMBLER_DIALECT
3370 /* If we want the first dialect, do nothing. Otherwise, skip
3371 DIALECT_NUMBER of strings ending with '|'. */
3372 for (i
= 0; i
< dialect_number
; i
++)
3374 while (*p
&& *p
++ != '|')
3384 /* Skip to close brace. */
3385 while (*p
&& *p
++ != '}')
3396 while (strchr ("-+ #0", c
))
3401 while (ISDIGIT (c
) || c
== '.')
3412 case 'd': case 'i': case 'u':
3413 case 'x': case 'X': case 'o':
3417 fprintf (file
, buf
, va_arg (argptr
, int));
3421 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3422 'o' cases, but we do not check for those cases. It
3423 means that the value is a HOST_WIDE_INT, which may be
3424 either `long' or `long long'. */
3425 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3426 q
+= strlen (HOST_WIDE_INT_PRINT
);
3429 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3434 #ifdef HAVE_LONG_LONG
3440 fprintf (file
, buf
, va_arg (argptr
, long long));
3447 fprintf (file
, buf
, va_arg (argptr
, long));
3455 fprintf (file
, buf
, va_arg (argptr
, char *));
3459 #ifdef ASM_OUTPUT_OPCODE
3460 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3465 #ifdef REGISTER_PREFIX
3466 fprintf (file
, "%s", REGISTER_PREFIX
);
3471 #ifdef IMMEDIATE_PREFIX
3472 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3477 #ifdef LOCAL_LABEL_PREFIX
3478 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3483 fputs (user_label_prefix
, file
);
3486 #ifdef ASM_FPRINTF_EXTENSIONS
3487 /* Uppercase letters are reserved for general use by asm_fprintf
3488 and so are not available to target specific code. In order to
3489 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3490 they are defined here. As they get turned into real extensions
3491 to asm_fprintf they should be removed from this list. */
3492 case 'A': case 'B': case 'C': case 'D': case 'E':
3493 case 'F': case 'G': case 'H': case 'J': case 'K':
3494 case 'M': case 'N': case 'P': case 'Q': case 'S':
3495 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3498 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3511 /* Split up a CONST_DOUBLE or integer constant rtx
3512 into two rtx's for single words,
3513 storing in *FIRST the word that comes first in memory in the target
3514 and in *SECOND the other. */
3517 split_double (rtx value
, rtx
*first
, rtx
*second
)
3519 if (GET_CODE (value
) == CONST_INT
)
3521 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3523 /* In this case the CONST_INT holds both target words.
3524 Extract the bits from it into two word-sized pieces.
3525 Sign extend each half to HOST_WIDE_INT. */
3526 unsigned HOST_WIDE_INT low
, high
;
3527 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3529 /* Set sign_bit to the most significant bit of a word. */
3531 sign_bit
<<= BITS_PER_WORD
- 1;
3533 /* Set mask so that all bits of the word are set. We could
3534 have used 1 << BITS_PER_WORD instead of basing the
3535 calculation on sign_bit. However, on machines where
3536 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3537 compiler warning, even though the code would never be
3539 mask
= sign_bit
<< 1;
3542 /* Set sign_extend as any remaining bits. */
3543 sign_extend
= ~mask
;
3545 /* Pick the lower word and sign-extend it. */
3546 low
= INTVAL (value
);
3551 /* Pick the higher word, shifted to the least significant
3552 bits, and sign-extend it. */
3553 high
= INTVAL (value
);
3554 high
>>= BITS_PER_WORD
- 1;
3557 if (high
& sign_bit
)
3558 high
|= sign_extend
;
3560 /* Store the words in the target machine order. */
3561 if (WORDS_BIG_ENDIAN
)
3563 *first
= GEN_INT (high
);
3564 *second
= GEN_INT (low
);
3568 *first
= GEN_INT (low
);
3569 *second
= GEN_INT (high
);
3574 /* The rule for using CONST_INT for a wider mode
3575 is that we regard the value as signed.
3576 So sign-extend it. */
3577 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3578 if (WORDS_BIG_ENDIAN
)
3590 else if (GET_CODE (value
) != CONST_DOUBLE
)
3592 if (WORDS_BIG_ENDIAN
)
3594 *first
= const0_rtx
;
3600 *second
= const0_rtx
;
3603 else if (GET_MODE (value
) == VOIDmode
3604 /* This is the old way we did CONST_DOUBLE integers. */
3605 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3607 /* In an integer, the words are defined as most and least significant.
3608 So order them by the target's convention. */
3609 if (WORDS_BIG_ENDIAN
)
3611 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3612 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3616 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3617 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3624 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3626 /* Note, this converts the REAL_VALUE_TYPE to the target's
3627 format, splits up the floating point double and outputs
3628 exactly 32 bits of it into each of l[0] and l[1] --
3629 not necessarily BITS_PER_WORD bits. */
3630 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3632 /* If 32 bits is an entire word for the target, but not for the host,
3633 then sign-extend on the host so that the number will look the same
3634 way on the host that it would on the target. See for instance
3635 simplify_unary_operation. The #if is needed to avoid compiler
3638 #if HOST_BITS_PER_LONG > 32
3639 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3641 if (l
[0] & ((long) 1 << 31))
3642 l
[0] |= ((long) (-1) << 32);
3643 if (l
[1] & ((long) 1 << 31))
3644 l
[1] |= ((long) (-1) << 32);
3648 *first
= GEN_INT (l
[0]);
3649 *second
= GEN_INT (l
[1]);
3653 /* Return nonzero if this function has no function calls. */
3656 leaf_function_p (void)
3661 if (current_function_profile
|| profile_arc_flag
)
3664 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3667 && ! SIBLING_CALL_P (insn
))
3669 if (NONJUMP_INSN_P (insn
)
3670 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3671 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3672 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3675 for (link
= current_function_epilogue_delay_list
;
3677 link
= XEXP (link
, 1))
3679 insn
= XEXP (link
, 0);
3682 && ! SIBLING_CALL_P (insn
))
3684 if (NONJUMP_INSN_P (insn
)
3685 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3686 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3687 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3694 /* Return 1 if branch is a forward branch.
3695 Uses insn_shuid array, so it works only in the final pass. May be used by
3696 output templates to customary add branch prediction hints.
3699 final_forward_branch_p (rtx insn
)
3701 int insn_id
, label_id
;
3703 gcc_assert (uid_shuid
);
3704 insn_id
= INSN_SHUID (insn
);
3705 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3706 /* We've hit some insns that does not have id information available. */
3707 gcc_assert (insn_id
&& label_id
);
3708 return insn_id
< label_id
;
3711 /* On some machines, a function with no call insns
3712 can run faster if it doesn't create its own register window.
3713 When output, the leaf function should use only the "output"
3714 registers. Ordinarily, the function would be compiled to use
3715 the "input" registers to find its arguments; it is a candidate
3716 for leaf treatment if it uses only the "input" registers.
3717 Leaf function treatment means renumbering so the function
3718 uses the "output" registers instead. */
3720 #ifdef LEAF_REGISTERS
3722 /* Return 1 if this function uses only the registers that can be
3723 safely renumbered. */
3726 only_leaf_regs_used (void)
3729 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3731 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3732 if ((regs_ever_live
[i
] || global_regs
[i
])
3733 && ! permitted_reg_in_leaf_functions
[i
])
3736 if (current_function_uses_pic_offset_table
3737 && pic_offset_table_rtx
!= 0
3738 && REG_P (pic_offset_table_rtx
)
3739 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3745 /* Scan all instructions and renumber all registers into those
3746 available in leaf functions. */
3749 leaf_renumber_regs (rtx first
)
3753 /* Renumber only the actual patterns.
3754 The reg-notes can contain frame pointer refs,
3755 and renumbering them could crash, and should not be needed. */
3756 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3758 leaf_renumber_regs_insn (PATTERN (insn
));
3759 for (insn
= current_function_epilogue_delay_list
;
3761 insn
= XEXP (insn
, 1))
3762 if (INSN_P (XEXP (insn
, 0)))
3763 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3766 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3767 available in leaf functions. */
3770 leaf_renumber_regs_insn (rtx in_rtx
)
3773 const char *format_ptr
;
3778 /* Renumber all input-registers into output-registers.
3779 renumbered_regs would be 1 for an output-register;
3786 /* Don't renumber the same reg twice. */
3790 newreg
= REGNO (in_rtx
);
3791 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3792 to reach here as part of a REG_NOTE. */
3793 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3798 newreg
= LEAF_REG_REMAP (newreg
);
3799 gcc_assert (newreg
>= 0);
3800 regs_ever_live
[REGNO (in_rtx
)] = 0;
3801 regs_ever_live
[newreg
] = 1;
3802 REGNO (in_rtx
) = newreg
;
3806 if (INSN_P (in_rtx
))
3808 /* Inside a SEQUENCE, we find insns.
3809 Renumber just the patterns of these insns,
3810 just as we do for the top-level insns. */
3811 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3815 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3817 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3818 switch (*format_ptr
++)
3821 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3825 if (NULL
!= XVEC (in_rtx
, i
))
3827 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3828 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3848 /* When -gused is used, emit debug info for only used symbols. But in
3849 addition to the standard intercepted debug_hooks there are some direct
3850 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3851 Those routines may also be called from a higher level intercepted routine. So
3852 to prevent recording data for an inner call to one of these for an intercept,
3853 we maintain an intercept nesting counter (debug_nesting). We only save the
3854 intercepted arguments if the nesting is 1. */
3855 int debug_nesting
= 0;
3857 static tree
*symbol_queue
;
3858 int symbol_queue_index
= 0;
3859 static int symbol_queue_size
= 0;
3861 /* Generate the symbols for any queued up type symbols we encountered
3862 while generating the type info for some originally used symbol.
3863 This might generate additional entries in the queue. Only when
3864 the nesting depth goes to 0 is this routine called. */
3867 debug_flush_symbol_queue (void)
3871 /* Make sure that additionally queued items are not flushed
3876 for (i
= 0; i
< symbol_queue_index
; ++i
)
3878 /* If we pushed queued symbols then such symbols are must be
3879 output no matter what anyone else says. Specifically,
3880 we need to make sure dbxout_symbol() thinks the symbol was
3881 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3882 which may be set for outside reasons. */
3883 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3884 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3885 TREE_USED (symbol_queue
[i
]) = 1;
3886 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3888 #ifdef DBX_DEBUGGING_INFO
3889 dbxout_symbol (symbol_queue
[i
], 0);
3892 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3893 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3896 symbol_queue_index
= 0;
3900 /* Queue a type symbol needed as part of the definition of a decl
3901 symbol. These symbols are generated when debug_flush_symbol_queue()
3905 debug_queue_symbol (tree decl
)
3907 if (symbol_queue_index
>= symbol_queue_size
)
3909 symbol_queue_size
+= 10;
3910 symbol_queue
= xrealloc (symbol_queue
,
3911 symbol_queue_size
* sizeof (tree
));
3914 symbol_queue
[symbol_queue_index
++] = decl
;
3917 /* Free symbol queue. */
3919 debug_free_queue (void)
3923 free (symbol_queue
);
3924 symbol_queue
= NULL
;
3925 symbol_queue_size
= 0;
3929 /* Turn the RTL into assembly. */
3931 rest_of_handle_final (void)
3936 /* Get the function's name, as described by its RTL. This may be
3937 different from the DECL_NAME name used in the source file. */
3939 x
= DECL_RTL (current_function_decl
);
3940 gcc_assert (MEM_P (x
));
3942 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
3943 fnname
= XSTR (x
, 0);
3945 assemble_start_function (current_function_decl
, fnname
);
3946 final_start_function (get_insns (), asm_out_file
, optimize
);
3947 final (get_insns (), asm_out_file
, optimize
);
3948 final_end_function ();
3950 #ifdef TARGET_UNWIND_INFO
3951 /* ??? The IA-64 ".handlerdata" directive must be issued before
3952 the ".endp" directive that closes the procedure descriptor. */
3953 output_function_exception_table ();
3956 assemble_end_function (current_function_decl
, fnname
);
3958 #ifndef TARGET_UNWIND_INFO
3959 /* Otherwise, it feels unclean to switch sections in the middle. */
3960 output_function_exception_table ();
3963 user_defined_section_attribute
= false;
3966 fflush (asm_out_file
);
3968 /* Release all memory allocated by flow. */
3969 free_basic_block_vars ();
3971 /* Write DBX symbols if requested. */
3973 /* Note that for those inline functions where we don't initially
3974 know for certain that we will be generating an out-of-line copy,
3975 the first invocation of this routine (rest_of_compilation) will
3976 skip over this code by doing a `goto exit_rest_of_compilation;'.
3977 Later on, wrapup_global_declarations will (indirectly) call
3978 rest_of_compilation again for those inline functions that need
3979 to have out-of-line copies generated. During that call, we
3980 *will* be routed past here. */
3982 timevar_push (TV_SYMOUT
);
3983 (*debug_hooks
->function_decl
) (current_function_decl
);
3984 timevar_pop (TV_SYMOUT
);
3987 struct tree_opt_pass pass_final
=
3991 rest_of_handle_final
, /* execute */
3994 0, /* static_pass_number */
3995 TV_FINAL
, /* tv_id */
3996 0, /* properties_required */
3997 0, /* properties_provided */
3998 0, /* properties_destroyed */
3999 0, /* todo_flags_start */
4000 TODO_ggc_collect
, /* todo_flags_finish */
4006 rest_of_handle_shorten_branches (void)
4008 /* Shorten branches. */
4009 shorten_branches (get_insns ());
4012 struct tree_opt_pass pass_shorten_branches
=
4014 "shorten", /* name */
4016 rest_of_handle_shorten_branches
, /* execute */
4019 0, /* static_pass_number */
4020 TV_FINAL
, /* tv_id */
4021 0, /* properties_required */
4022 0, /* properties_provided */
4023 0, /* properties_destroyed */
4024 0, /* todo_flags_start */
4025 TODO_dump_func
, /* todo_flags_finish */
4031 rest_of_clean_state (void)
4035 /* It is very important to decompose the RTL instruction chain here:
4036 debug information keeps pointing into CODE_LABEL insns inside the function
4037 body. If these remain pointing to the other insns, we end up preserving
4038 whole RTL chain and attached detailed debug info in memory. */
4039 for (insn
= get_insns (); insn
; insn
= next
)
4041 next
= NEXT_INSN (insn
);
4042 NEXT_INSN (insn
) = NULL
;
4043 PREV_INSN (insn
) = NULL
;
4046 /* In case the function was not output,
4047 don't leave any temporary anonymous types
4048 queued up for sdb output. */
4049 #ifdef SDB_DEBUGGING_INFO
4050 if (write_symbols
== SDB_DEBUG
)
4051 sdbout_types (NULL_TREE
);
4054 reload_completed
= 0;
4055 epilogue_completed
= 0;
4056 flow2_completed
= 0;
4059 /* Clear out the insn_length contents now that they are no
4061 init_insn_lengths ();
4063 /* Show no temporary slots allocated. */
4066 free_basic_block_vars ();
4067 free_bb_for_insn ();
4070 if (targetm
.binds_local_p (current_function_decl
))
4072 int pref
= cfun
->preferred_stack_boundary
;
4073 if (cfun
->stack_alignment_needed
> cfun
->preferred_stack_boundary
)
4074 pref
= cfun
->stack_alignment_needed
;
4075 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4079 /* Make sure volatile mem refs aren't considered valid operands for
4080 arithmetic insns. We must call this here if this is a nested inline
4081 function, since the above code leaves us in the init_recog state,
4082 and the function context push/pop code does not save/restore volatile_ok.
4084 ??? Maybe it isn't necessary for expand_start_function to call this
4085 anymore if we do it here? */
4087 init_recog_no_volatile ();
4089 /* We're done with this function. Free up memory if we can. */
4090 free_after_parsing (cfun
);
4091 free_after_compilation (cfun
);
4094 struct tree_opt_pass pass_clean_state
=
4098 rest_of_clean_state
, /* execute */
4101 0, /* static_pass_number */
4102 TV_FINAL
, /* tv_id */
4103 0, /* properties_required */
4104 0, /* properties_provided */
4105 PROP_rtl
, /* properties_destroyed */
4106 0, /* todo_flags_start */
4107 0, /* todo_flags_finish */