1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
172 #include "tree-pass.h"
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
190 We perform the following steps:
192 1) Compute basic block information.
194 2) Compute table of places where registers are set.
196 3) Perform copy/constant propagation.
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
201 5) Perform another pass of copy/constant propagation.
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
221 **********************
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
234 It was found doing copy propagation between each pass enables further
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
241 **********************
243 The steps for PRE are:
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247 2) Perform the data flow analysis for PRE.
249 3) Delete the redundant instructions
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
272 /* GCSE global vars. */
275 static FILE *gcse_file
;
277 /* Note whether or not we should run jump optimization after gcse. We
278 want to do this for two cases.
280 * If we changed any jumps via cprop.
282 * If we added any labels via edge splitting. */
283 static int run_jump_opt_after_gcse
;
285 /* Bitmaps are normally not included in debugging dumps.
286 However it's useful to be able to print them from GDB.
287 We could create special functions for this, but it's simpler to
288 just allow passing stderr to the dump_foo fns. Since stderr can
289 be a macro, we store a copy here. */
290 static FILE *debug_stderr
;
292 /* An obstack for our working variables. */
293 static struct obstack gcse_obstack
;
295 struct reg_use
{rtx reg_rtx
; };
297 /* Hash table of expressions. */
301 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
303 /* Index in the available expression bitmaps. */
305 /* Next entry with the same hash. */
306 struct expr
*next_same_hash
;
307 /* List of anticipatable occurrences in basic blocks in the function.
308 An "anticipatable occurrence" is one that is the first occurrence in the
309 basic block, the operands are not modified in the basic block prior
310 to the occurrence and the output is not used between the start of
311 the block and the occurrence. */
312 struct occr
*antic_occr
;
313 /* List of available occurrence in basic blocks in the function.
314 An "available occurrence" is one that is the last occurrence in the
315 basic block and the operands are not modified by following statements in
316 the basic block [including this insn]. */
317 struct occr
*avail_occr
;
318 /* Non-null if the computation is PRE redundant.
319 The value is the newly created pseudo-reg to record a copy of the
320 expression in all the places that reach the redundant copy. */
324 /* Occurrence of an expression.
325 There is one per basic block. If a pattern appears more than once the
326 last appearance is used [or first for anticipatable expressions]. */
330 /* Next occurrence of this expression. */
332 /* The insn that computes the expression. */
334 /* Nonzero if this [anticipatable] occurrence has been deleted. */
336 /* Nonzero if this [available] occurrence has been copied to
338 /* ??? This is mutually exclusive with deleted_p, so they could share
343 /* Expression and copy propagation hash tables.
344 Each hash table is an array of buckets.
345 ??? It is known that if it were an array of entries, structure elements
346 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
347 not clear whether in the final analysis a sufficient amount of memory would
348 be saved as the size of the available expression bitmaps would be larger
349 [one could build a mapping table without holes afterwards though].
350 Someday I'll perform the computation and figure it out. */
355 This is an array of `expr_hash_table_size' elements. */
358 /* Size of the hash table, in elements. */
361 /* Number of hash table elements. */
362 unsigned int n_elems
;
364 /* Whether the table is expression of copy propagation one. */
368 /* Expression hash table. */
369 static struct hash_table expr_hash_table
;
371 /* Copy propagation hash table. */
372 static struct hash_table set_hash_table
;
374 /* Mapping of uids to cuids.
375 Only real insns get cuids. */
376 static int *uid_cuid
;
378 /* Highest UID in UID_CUID. */
381 /* Get the cuid of an insn. */
382 #ifdef ENABLE_CHECKING
383 #define INSN_CUID(INSN) \
384 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
386 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
389 /* Number of cuids. */
392 /* Mapping of cuids to insns. */
393 static rtx
*cuid_insn
;
395 /* Get insn from cuid. */
396 #define CUID_INSN(CUID) (cuid_insn[CUID])
398 /* Maximum register number in function prior to doing gcse + 1.
399 Registers created during this pass have regno >= max_gcse_regno.
400 This is named with "gcse" to not collide with global of same name. */
401 static unsigned int max_gcse_regno
;
403 /* Table of registers that are modified.
405 For each register, each element is a list of places where the pseudo-reg
408 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
409 requires knowledge of which blocks kill which regs [and thus could use
410 a bitmap instead of the lists `reg_set_table' uses].
412 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
413 num-regs) [however perhaps it may be useful to keep the data as is]. One
414 advantage of recording things this way is that `reg_set_table' is fairly
415 sparse with respect to pseudo regs but for hard regs could be fairly dense
416 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
417 up functions like compute_transp since in the case of pseudo-regs we only
418 need to iterate over the number of times a pseudo-reg is set, not over the
419 number of basic blocks [clearly there is a bit of a slow down in the cases
420 where a pseudo is set more than once in a block, however it is believed
421 that the net effect is to speed things up]. This isn't done for hard-regs
422 because recording call-clobbered hard-regs in `reg_set_table' at each
423 function call can consume a fair bit of memory, and iterating over
424 hard-regs stored this way in compute_transp will be more expensive. */
426 typedef struct reg_set
428 /* The next setting of this register. */
429 struct reg_set
*next
;
430 /* The index of the block where it was set. */
434 static reg_set
**reg_set_table
;
436 /* Size of `reg_set_table'.
437 The table starts out at max_gcse_regno + slop, and is enlarged as
439 static int reg_set_table_size
;
441 /* Amount to grow `reg_set_table' by when it's full. */
442 #define REG_SET_TABLE_SLOP 100
444 /* This is a list of expressions which are MEMs and will be used by load
446 Load motion tracks MEMs which aren't killed by
447 anything except itself. (i.e., loads and stores to a single location).
448 We can then allow movement of these MEM refs with a little special
449 allowance. (all stores copy the same value to the reaching reg used
450 for the loads). This means all values used to store into memory must have
451 no side effects so we can re-issue the setter value.
452 Store Motion uses this structure as an expression table to track stores
453 which look interesting, and might be moveable towards the exit block. */
457 struct expr
* expr
; /* Gcse expression reference for LM. */
458 rtx pattern
; /* Pattern of this mem. */
459 rtx pattern_regs
; /* List of registers mentioned by the mem. */
460 rtx loads
; /* INSN list of loads seen. */
461 rtx stores
; /* INSN list of stores seen. */
462 struct ls_expr
* next
; /* Next in the list. */
463 int invalid
; /* Invalid for some reason. */
464 int index
; /* If it maps to a bitmap index. */
465 unsigned int hash_index
; /* Index when in a hash table. */
466 rtx reaching_reg
; /* Register to use when re-writing. */
469 /* Array of implicit set patterns indexed by basic block index. */
470 static rtx
*implicit_sets
;
472 /* Head of the list of load/store memory refs. */
473 static struct ls_expr
* pre_ldst_mems
= NULL
;
475 /* Hashtable for the load/store memory refs. */
476 static htab_t pre_ldst_table
= NULL
;
478 /* Bitmap containing one bit for each register in the program.
479 Used when performing GCSE to track which registers have been set since
480 the start of the basic block. */
481 static regset reg_set_bitmap
;
483 /* For each block, a bitmap of registers set in the block.
484 This is used by compute_transp.
485 It is computed during hash table computation and not by compute_sets
486 as it includes registers added since the last pass (or between cprop and
487 gcse) and it's currently not easy to realloc sbitmap vectors. */
488 static sbitmap
*reg_set_in_block
;
490 /* Array, indexed by basic block number for a list of insns which modify
491 memory within that block. */
492 static rtx
* modify_mem_list
;
493 static bitmap modify_mem_list_set
;
495 /* This array parallels modify_mem_list, but is kept canonicalized. */
496 static rtx
* canon_modify_mem_list
;
498 /* Bitmap indexed by block numbers to record which blocks contain
500 static bitmap blocks_with_calls
;
502 /* Various variables for statistics gathering. */
504 /* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507 static int bytes_used
;
509 /* GCSE substitutions made. */
510 static int gcse_subst_count
;
511 /* Number of copy instructions created. */
512 static int gcse_create_count
;
513 /* Number of local constants propagated. */
514 static int local_const_prop_count
;
515 /* Number of local copies propagated. */
516 static int local_copy_prop_count
;
517 /* Number of global constants propagated. */
518 static int global_const_prop_count
;
519 /* Number of global copies propagated. */
520 static int global_copy_prop_count
;
522 /* For available exprs */
523 static sbitmap
*ae_kill
, *ae_gen
;
525 static void compute_can_copy (void);
526 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
527 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
528 static void *grealloc (void *, size_t);
529 static void *gcse_alloc (unsigned long);
530 static void alloc_gcse_mem (void);
531 static void free_gcse_mem (void);
532 static void alloc_reg_set_mem (int);
533 static void free_reg_set_mem (void);
534 static void record_one_set (int, rtx
);
535 static void record_set_info (rtx
, rtx
, void *);
536 static void compute_sets (void);
537 static void hash_scan_insn (rtx
, struct hash_table
*, int);
538 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
539 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
540 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
541 static int want_to_gcse_p (rtx
);
542 static bool can_assign_to_reg_p (rtx
);
543 static bool gcse_constant_p (rtx
);
544 static int oprs_unchanged_p (rtx
, rtx
, int);
545 static int oprs_anticipatable_p (rtx
, rtx
);
546 static int oprs_available_p (rtx
, rtx
);
547 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
548 struct hash_table
*);
549 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
550 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
551 static unsigned int hash_set (int, int);
552 static int expr_equiv_p (rtx
, rtx
);
553 static void record_last_reg_set_info (rtx
, int);
554 static void record_last_mem_set_info (rtx
);
555 static void record_last_set_info (rtx
, rtx
, void *);
556 static void compute_hash_table (struct hash_table
*);
557 static void alloc_hash_table (int, struct hash_table
*, int);
558 static void free_hash_table (struct hash_table
*);
559 static void compute_hash_table_work (struct hash_table
*);
560 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
561 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
562 static struct expr
*next_set (unsigned int, struct expr
*);
563 static void reset_opr_set_tables (void);
564 static int oprs_not_set_p (rtx
, rtx
);
565 static void mark_call (rtx
);
566 static void mark_set (rtx
, rtx
);
567 static void mark_clobber (rtx
, rtx
);
568 static void mark_oprs_set (rtx
);
569 static void alloc_cprop_mem (int, int);
570 static void free_cprop_mem (void);
571 static void compute_transp (rtx
, int, sbitmap
*, int);
572 static void compute_transpout (void);
573 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
574 struct hash_table
*);
575 static void compute_cprop_data (void);
576 static void find_used_regs (rtx
*, void *);
577 static int try_replace_reg (rtx
, rtx
, rtx
);
578 static struct expr
*find_avail_set (int, rtx
);
579 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
580 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
581 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
582 static void canon_list_insert (rtx
, rtx
, void *);
583 static int cprop_insn (rtx
, int);
584 static int cprop (int);
585 static void find_implicit_sets (void);
586 static int one_cprop_pass (int, bool, bool);
587 static bool constprop_register (rtx
, rtx
, rtx
, bool);
588 static struct expr
*find_bypass_set (int, int);
589 static bool reg_killed_on_edge (rtx
, edge
);
590 static int bypass_block (basic_block
, rtx
, rtx
);
591 static int bypass_conditional_jumps (void);
592 static void alloc_pre_mem (int, int);
593 static void free_pre_mem (void);
594 static void compute_pre_data (void);
595 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
597 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
598 static void pre_insert_copy_insn (struct expr
*, rtx
);
599 static void pre_insert_copies (void);
600 static int pre_delete (void);
601 static int pre_gcse (void);
602 static int one_pre_gcse_pass (int);
603 static void add_label_notes (rtx
, rtx
);
604 static void alloc_code_hoist_mem (int, int);
605 static void free_code_hoist_mem (void);
606 static void compute_code_hoist_vbeinout (void);
607 static void compute_code_hoist_data (void);
608 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
609 static void hoist_code (void);
610 static int one_code_hoisting_pass (void);
611 static rtx
process_insert_insn (struct expr
*);
612 static int pre_edge_insert (struct edge_list
*, struct expr
**);
613 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
614 basic_block
, char *);
615 static struct ls_expr
* ldst_entry (rtx
);
616 static void free_ldst_entry (struct ls_expr
*);
617 static void free_ldst_mems (void);
618 static void print_ldst_list (FILE *);
619 static struct ls_expr
* find_rtx_in_ldst (rtx
);
620 static int enumerate_ldsts (void);
621 static inline struct ls_expr
* first_ls_expr (void);
622 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
623 static int simple_mem (rtx
);
624 static void invalidate_any_buried_refs (rtx
);
625 static void compute_ld_motion_mems (void);
626 static void trim_ld_motion_mems (void);
627 static void update_ld_motion_stores (struct expr
*);
628 static void reg_set_info (rtx
, rtx
, void *);
629 static void reg_clear_last_set (rtx
, rtx
, void *);
630 static bool store_ops_ok (rtx
, int *);
631 static rtx
extract_mentioned_regs (rtx
);
632 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
633 static void find_moveable_store (rtx
, int *, int *);
634 static int compute_store_table (void);
635 static bool load_kills_store (rtx
, rtx
, int);
636 static bool find_loads (rtx
, rtx
, int);
637 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
638 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
639 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
640 static void build_store_vectors (void);
641 static void insert_insn_start_bb (rtx
, basic_block
);
642 static int insert_store (struct ls_expr
*, edge
);
643 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
644 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
645 static void delete_store (struct ls_expr
*, basic_block
);
646 static void free_store_memory (void);
647 static void store_motion (void);
648 static void free_insn_expr_list_list (rtx
*);
649 static void clear_modify_mem_tables (void);
650 static void free_modify_mem_tables (void);
651 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
652 static void local_cprop_find_used_regs (rtx
*, void *);
653 static bool do_local_cprop (rtx
, rtx
, bool, rtx
*);
654 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
655 static void local_cprop_pass (bool);
656 static bool is_too_expensive (const char *);
659 /* Entry point for global common subexpression elimination.
660 F is the first instruction in the function. Return nonzero if a
664 gcse_main (rtx f ATTRIBUTE_UNUSED
, FILE *file
)
667 /* Bytes used at start of pass. */
668 int initial_bytes_used
;
669 /* Maximum number of bytes used by a pass. */
671 /* Point to release obstack data from for each pass. */
672 char *gcse_obstack_bottom
;
674 /* We do not construct an accurate cfg in functions which call
675 setjmp, so just punt to be safe. */
676 if (current_function_calls_setjmp
)
679 /* Assume that we do not need to run jump optimizations after gcse. */
680 run_jump_opt_after_gcse
= 0;
682 /* For calling dump_foo fns from gdb. */
683 debug_stderr
= stderr
;
686 /* Identify the basic block information for this function, including
687 successors and predecessors. */
688 max_gcse_regno
= max_reg_num ();
691 dump_flow_info (file
);
693 /* Return if there's nothing to do, or it is too expensive. */
694 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
697 gcc_obstack_init (&gcse_obstack
);
701 init_alias_analysis ();
702 /* Record where pseudo-registers are set. This data is kept accurate
703 during each pass. ??? We could also record hard-reg information here
704 [since it's unchanging], however it is currently done during hash table
707 It may be tempting to compute MEM set information here too, but MEM sets
708 will be subject to code motion one day and thus we need to compute
709 information about memory sets when we build the hash tables. */
711 alloc_reg_set_mem (max_gcse_regno
);
715 initial_bytes_used
= bytes_used
;
717 gcse_obstack_bottom
= gcse_alloc (1);
719 while (changed
&& pass
< MAX_GCSE_PASSES
)
723 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
725 /* Initialize bytes_used to the space for the pred/succ lists,
726 and the reg_set_table data. */
727 bytes_used
= initial_bytes_used
;
729 /* Each pass may create new registers, so recalculate each time. */
730 max_gcse_regno
= max_reg_num ();
734 /* Don't allow constant propagation to modify jumps
736 timevar_push (TV_CPROP1
);
737 changed
= one_cprop_pass (pass
+ 1, false, false);
738 timevar_pop (TV_CPROP1
);
744 timevar_push (TV_PRE
);
745 changed
|= one_pre_gcse_pass (pass
+ 1);
746 /* We may have just created new basic blocks. Release and
747 recompute various things which are sized on the number of
751 free_modify_mem_tables ();
752 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
753 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
756 alloc_reg_set_mem (max_reg_num ());
758 run_jump_opt_after_gcse
= 1;
759 timevar_pop (TV_PRE
);
762 if (max_pass_bytes
< bytes_used
)
763 max_pass_bytes
= bytes_used
;
765 /* Free up memory, then reallocate for code hoisting. We can
766 not re-use the existing allocated memory because the tables
767 will not have info for the insns or registers created by
768 partial redundancy elimination. */
771 /* It does not make sense to run code hoisting unless we are optimizing
772 for code size -- it rarely makes programs faster, and can make
773 them bigger if we did partial redundancy elimination (when optimizing
774 for space, we don't run the partial redundancy algorithms). */
777 timevar_push (TV_HOIST
);
778 max_gcse_regno
= max_reg_num ();
780 changed
|= one_code_hoisting_pass ();
783 if (max_pass_bytes
< bytes_used
)
784 max_pass_bytes
= bytes_used
;
785 timevar_pop (TV_HOIST
);
790 fprintf (file
, "\n");
794 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
798 /* Do one last pass of copy propagation, including cprop into
799 conditional jumps. */
801 max_gcse_regno
= max_reg_num ();
803 /* This time, go ahead and allow cprop to alter jumps. */
804 timevar_push (TV_CPROP2
);
805 one_cprop_pass (pass
+ 1, true, false);
806 timevar_pop (TV_CPROP2
);
811 fprintf (file
, "GCSE of %s: %d basic blocks, ",
812 current_function_name (), n_basic_blocks
);
813 fprintf (file
, "%d pass%s, %d bytes\n\n",
814 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
817 obstack_free (&gcse_obstack
, NULL
);
820 /* We are finished with alias. */
821 end_alias_analysis ();
822 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
824 if (!optimize_size
&& flag_gcse_sm
)
826 timevar_push (TV_LSM
);
828 timevar_pop (TV_LSM
);
831 /* Record where pseudo-registers are set. */
832 return run_jump_opt_after_gcse
;
835 /* Misc. utilities. */
837 /* Nonzero for each mode that supports (set (reg) (reg)).
838 This is trivially true for integer and floating point values.
839 It may or may not be true for condition codes. */
840 static char can_copy
[(int) NUM_MACHINE_MODES
];
842 /* Compute which modes support reg/reg copy operations. */
845 compute_can_copy (void)
848 #ifndef AVOID_CCMODE_COPIES
851 memset (can_copy
, 0, NUM_MACHINE_MODES
);
854 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
855 if (GET_MODE_CLASS (i
) == MODE_CC
)
857 #ifdef AVOID_CCMODE_COPIES
860 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
861 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
862 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
872 /* Returns whether the mode supports reg/reg copy operations. */
875 can_copy_p (enum machine_mode mode
)
877 static bool can_copy_init_p
= false;
879 if (! can_copy_init_p
)
882 can_copy_init_p
= true;
885 return can_copy
[mode
] != 0;
888 /* Cover function to xmalloc to record bytes allocated. */
891 gmalloc (size_t size
)
894 return xmalloc (size
);
897 /* Cover function to xcalloc to record bytes allocated. */
900 gcalloc (size_t nelem
, size_t elsize
)
902 bytes_used
+= nelem
* elsize
;
903 return xcalloc (nelem
, elsize
);
906 /* Cover function to xrealloc.
907 We don't record the additional size since we don't know it.
908 It won't affect memory usage stats much anyway. */
911 grealloc (void *ptr
, size_t size
)
913 return xrealloc (ptr
, size
);
916 /* Cover function to obstack_alloc. */
919 gcse_alloc (unsigned long size
)
922 return obstack_alloc (&gcse_obstack
, size
);
925 /* Allocate memory for the cuid mapping array,
926 and reg/memory set tracking tables.
928 This is called at the start of each pass. */
931 alloc_gcse_mem (void)
937 /* Find the largest UID and create a mapping from UIDs to CUIDs.
938 CUIDs are like UIDs except they increase monotonically, have no gaps,
939 and only apply to real insns.
940 (Actually, there are gaps, for insn that are not inside a basic block.
941 but we should never see those anyway, so this is OK.) */
943 max_uid
= get_max_uid ();
944 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
947 FOR_BB_INSNS (bb
, insn
)
950 uid_cuid
[INSN_UID (insn
)] = i
++;
952 uid_cuid
[INSN_UID (insn
)] = i
;
955 /* Create a table mapping cuids to insns. */
958 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
961 FOR_BB_INSNS (bb
, insn
)
963 CUID_INSN (i
++) = insn
;
965 /* Allocate vars to track sets of regs. */
966 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
968 /* Allocate vars to track sets of regs, memory per block. */
969 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
970 /* Allocate array to keep a list of insns which modify memory in each
972 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
973 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
974 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
975 blocks_with_calls
= BITMAP_ALLOC (NULL
);
978 /* Free memory allocated by alloc_gcse_mem. */
986 BITMAP_FREE (reg_set_bitmap
);
988 sbitmap_vector_free (reg_set_in_block
);
989 free_modify_mem_tables ();
990 BITMAP_FREE (modify_mem_list_set
);
991 BITMAP_FREE (blocks_with_calls
);
994 /* Compute the local properties of each recorded expression.
996 Local properties are those that are defined by the block, irrespective of
999 An expression is transparent in a block if its operands are not modified
1002 An expression is computed (locally available) in a block if it is computed
1003 at least once and expression would contain the same value if the
1004 computation was moved to the end of the block.
1006 An expression is locally anticipatable in a block if it is computed at
1007 least once and expression would contain the same value if the computation
1008 was moved to the beginning of the block.
1010 We call this routine for cprop, pre and code hoisting. They all compute
1011 basically the same information and thus can easily share this code.
1013 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1014 properties. If NULL, then it is not necessary to compute or record that
1015 particular property.
1017 TABLE controls which hash table to look at. If it is set hash table,
1018 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1022 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
1023 struct hash_table
*table
)
1027 /* Initialize any bitmaps that were passed in. */
1031 sbitmap_vector_zero (transp
, last_basic_block
);
1033 sbitmap_vector_ones (transp
, last_basic_block
);
1037 sbitmap_vector_zero (comp
, last_basic_block
);
1039 sbitmap_vector_zero (antloc
, last_basic_block
);
1041 for (i
= 0; i
< table
->size
; i
++)
1045 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1047 int indx
= expr
->bitmap_index
;
1050 /* The expression is transparent in this block if it is not killed.
1051 We start by assuming all are transparent [none are killed], and
1052 then reset the bits for those that are. */
1054 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1056 /* The occurrences recorded in antic_occr are exactly those that
1057 we want to set to nonzero in ANTLOC. */
1059 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1061 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1063 /* While we're scanning the table, this is a good place to
1065 occr
->deleted_p
= 0;
1068 /* The occurrences recorded in avail_occr are exactly those that
1069 we want to set to nonzero in COMP. */
1071 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1073 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1075 /* While we're scanning the table, this is a good place to
1080 /* While we're scanning the table, this is a good place to
1082 expr
->reaching_reg
= 0;
1087 /* Register set information.
1089 `reg_set_table' records where each register is set or otherwise
1092 static struct obstack reg_set_obstack
;
1095 alloc_reg_set_mem (int n_regs
)
1097 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1098 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1100 gcc_obstack_init (®_set_obstack
);
1104 free_reg_set_mem (void)
1106 free (reg_set_table
);
1107 obstack_free (®_set_obstack
, NULL
);
1110 /* Record REGNO in the reg_set table. */
1113 record_one_set (int regno
, rtx insn
)
1115 /* Allocate a new reg_set element and link it onto the list. */
1116 struct reg_set
*new_reg_info
;
1118 /* If the table isn't big enough, enlarge it. */
1119 if (regno
>= reg_set_table_size
)
1121 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1123 reg_set_table
= grealloc (reg_set_table
,
1124 new_size
* sizeof (struct reg_set
*));
1125 memset (reg_set_table
+ reg_set_table_size
, 0,
1126 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1127 reg_set_table_size
= new_size
;
1130 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1131 bytes_used
+= sizeof (struct reg_set
);
1132 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1133 new_reg_info
->next
= reg_set_table
[regno
];
1134 reg_set_table
[regno
] = new_reg_info
;
1137 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1138 an insn. The DATA is really the instruction in which the SET is
1142 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1144 rtx record_set_insn
= (rtx
) data
;
1146 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1147 record_one_set (REGNO (dest
), record_set_insn
);
1150 /* Scan the function and record each set of each pseudo-register.
1152 This is called once, at the start of the gcse pass. See the comments for
1153 `reg_set_table' for further documentation. */
1162 FOR_BB_INSNS (bb
, insn
)
1164 note_stores (PATTERN (insn
), record_set_info
, insn
);
1167 /* Hash table support. */
1169 struct reg_avail_info
1171 basic_block last_bb
;
1176 static struct reg_avail_info
*reg_avail_info
;
1177 static basic_block current_bb
;
1180 /* See whether X, the source of a set, is something we want to consider for
1184 want_to_gcse_p (rtx x
)
1186 switch (GET_CODE (x
))
1197 return can_assign_to_reg_p (x
);
1201 /* Used internally by can_assign_to_reg_p. */
1203 static GTY(()) rtx test_insn
;
1205 /* Return true if we can assign X to a pseudo register. */
1208 can_assign_to_reg_p (rtx x
)
1210 int num_clobbers
= 0;
1213 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1214 if (general_operand (x
, GET_MODE (x
)))
1216 else if (GET_MODE (x
) == VOIDmode
)
1219 /* Otherwise, check if we can make a valid insn from it. First initialize
1220 our test insn if we haven't already. */
1224 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1225 gen_rtx_REG (word_mode
,
1226 FIRST_PSEUDO_REGISTER
* 2),
1228 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1231 /* Now make an insn like the one we would make when GCSE'ing and see if
1233 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1234 SET_SRC (PATTERN (test_insn
)) = x
;
1235 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1236 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1239 /* Return nonzero if the operands of expression X are unchanged from the
1240 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1241 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1244 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1253 code
= GET_CODE (x
);
1258 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1260 if (info
->last_bb
!= current_bb
)
1263 return info
->last_set
< INSN_CUID (insn
);
1265 return info
->first_set
>= INSN_CUID (insn
);
1269 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1273 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1299 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1303 /* If we are about to do the last recursive call needed at this
1304 level, change it into iteration. This function is called enough
1307 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1309 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1312 else if (fmt
[i
] == 'E')
1313 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1314 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1323 conflict between two memory references. */
1324 static int gcse_mems_conflict_p
;
1326 /* Used for communication between mems_conflict_for_gcse_p and
1327 load_killed_in_block_p. A memory reference for a load instruction,
1328 mems_conflict_for_gcse_p will see if a memory store conflicts with
1329 this memory load. */
1330 static rtx gcse_mem_operand
;
1332 /* DEST is the output of an instruction. If it is a memory reference, and
1333 possibly conflicts with the load found in gcse_mem_operand, then set
1334 gcse_mems_conflict_p to a nonzero value. */
1337 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1338 void *data ATTRIBUTE_UNUSED
)
1340 while (GET_CODE (dest
) == SUBREG
1341 || GET_CODE (dest
) == ZERO_EXTRACT
1342 || GET_CODE (dest
) == STRICT_LOW_PART
)
1343 dest
= XEXP (dest
, 0);
1345 /* If DEST is not a MEM, then it will not conflict with the load. Note
1346 that function calls are assumed to clobber memory, but are handled
1351 /* If we are setting a MEM in our list of specially recognized MEMs,
1352 don't mark as killed this time. */
1354 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1356 if (!find_rtx_in_ldst (dest
))
1357 gcse_mems_conflict_p
= 1;
1361 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1363 gcse_mems_conflict_p
= 1;
1366 /* Return nonzero if the expression in X (a memory reference) is killed
1367 in block BB before or after the insn with the CUID in UID_LIMIT.
1368 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1371 To check the entire block, set UID_LIMIT to max_uid + 1 and
1375 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1377 rtx list_entry
= modify_mem_list
[bb
->index
];
1379 /* If this is a readonly then we aren't going to be changing it. */
1380 if (MEM_READONLY_P (x
))
1386 /* Ignore entries in the list that do not apply. */
1388 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1390 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1392 list_entry
= XEXP (list_entry
, 1);
1396 setter
= XEXP (list_entry
, 0);
1398 /* If SETTER is a call everything is clobbered. Note that calls
1399 to pure functions are never put on the list, so we need not
1400 worry about them. */
1401 if (CALL_P (setter
))
1404 /* SETTER must be an INSN of some kind that sets memory. Call
1405 note_stores to examine each hunk of memory that is modified.
1407 The note_stores interface is pretty limited, so we have to
1408 communicate via global variables. Yuk. */
1409 gcse_mem_operand
= x
;
1410 gcse_mems_conflict_p
= 0;
1411 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1412 if (gcse_mems_conflict_p
)
1414 list_entry
= XEXP (list_entry
, 1);
1419 /* Return nonzero if the operands of expression X are unchanged from
1420 the start of INSN's basic block up to but not including INSN. */
1423 oprs_anticipatable_p (rtx x
, rtx insn
)
1425 return oprs_unchanged_p (x
, insn
, 0);
1428 /* Return nonzero if the operands of expression X are unchanged from
1429 INSN to the end of INSN's basic block. */
1432 oprs_available_p (rtx x
, rtx insn
)
1434 return oprs_unchanged_p (x
, insn
, 1);
1437 /* Hash expression X.
1439 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1440 indicating if a volatile operand is found or if the expression contains
1441 something we don't want to insert in the table. HASH_TABLE_SIZE is
1442 the current size of the hash table to be probed. */
1445 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1446 int hash_table_size
)
1450 *do_not_record_p
= 0;
1452 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1453 NULL
, /*have_reg_qty=*/false);
1454 return hash
% hash_table_size
;
1457 /* Hash a set of register REGNO.
1459 Sets are hashed on the register that is set. This simplifies the PRE copy
1462 ??? May need to make things more elaborate. Later, as necessary. */
1465 hash_set (int regno
, int hash_table_size
)
1470 return hash
% hash_table_size
;
1473 /* Return nonzero if exp1 is equivalent to exp2. */
1476 expr_equiv_p (rtx x
, rtx y
)
1478 return exp_equiv_p (x
, y
, 0, true);
1481 /* Insert expression X in INSN in the hash TABLE.
1482 If it is already present, record it as the last occurrence in INSN's
1485 MODE is the mode of the value X is being stored into.
1486 It is only used if X is a CONST_INT.
1488 ANTIC_P is nonzero if X is an anticipatable expression.
1489 AVAIL_P is nonzero if X is an available expression. */
1492 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1493 int avail_p
, struct hash_table
*table
)
1495 int found
, do_not_record_p
;
1497 struct expr
*cur_expr
, *last_expr
= NULL
;
1498 struct occr
*antic_occr
, *avail_occr
;
1500 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1502 /* Do not insert expression in table if it contains volatile operands,
1503 or if hash_expr determines the expression is something we don't want
1504 to or can't handle. */
1505 if (do_not_record_p
)
1508 cur_expr
= table
->table
[hash
];
1511 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1513 /* If the expression isn't found, save a pointer to the end of
1515 last_expr
= cur_expr
;
1516 cur_expr
= cur_expr
->next_same_hash
;
1521 cur_expr
= gcse_alloc (sizeof (struct expr
));
1522 bytes_used
+= sizeof (struct expr
);
1523 if (table
->table
[hash
] == NULL
)
1524 /* This is the first pattern that hashed to this index. */
1525 table
->table
[hash
] = cur_expr
;
1527 /* Add EXPR to end of this hash chain. */
1528 last_expr
->next_same_hash
= cur_expr
;
1530 /* Set the fields of the expr element. */
1532 cur_expr
->bitmap_index
= table
->n_elems
++;
1533 cur_expr
->next_same_hash
= NULL
;
1534 cur_expr
->antic_occr
= NULL
;
1535 cur_expr
->avail_occr
= NULL
;
1538 /* Now record the occurrence(s). */
1541 antic_occr
= cur_expr
->antic_occr
;
1543 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1547 /* Found another instance of the expression in the same basic block.
1548 Prefer the currently recorded one. We want the first one in the
1549 block and the block is scanned from start to end. */
1550 ; /* nothing to do */
1553 /* First occurrence of this expression in this basic block. */
1554 antic_occr
= gcse_alloc (sizeof (struct occr
));
1555 bytes_used
+= sizeof (struct occr
);
1556 antic_occr
->insn
= insn
;
1557 antic_occr
->next
= cur_expr
->antic_occr
;
1558 antic_occr
->deleted_p
= 0;
1559 cur_expr
->antic_occr
= antic_occr
;
1565 avail_occr
= cur_expr
->avail_occr
;
1567 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1569 /* Found another instance of the expression in the same basic block.
1570 Prefer this occurrence to the currently recorded one. We want
1571 the last one in the block and the block is scanned from start
1573 avail_occr
->insn
= insn
;
1577 /* First occurrence of this expression in this basic block. */
1578 avail_occr
= gcse_alloc (sizeof (struct occr
));
1579 bytes_used
+= sizeof (struct occr
);
1580 avail_occr
->insn
= insn
;
1581 avail_occr
->next
= cur_expr
->avail_occr
;
1582 avail_occr
->deleted_p
= 0;
1583 cur_expr
->avail_occr
= avail_occr
;
1588 /* Insert pattern X in INSN in the hash table.
1589 X is a SET of a reg to either another reg or a constant.
1590 If it is already present, record it as the last occurrence in INSN's
1594 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1598 struct expr
*cur_expr
, *last_expr
= NULL
;
1599 struct occr
*cur_occr
;
1601 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1603 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1605 cur_expr
= table
->table
[hash
];
1608 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1610 /* If the expression isn't found, save a pointer to the end of
1612 last_expr
= cur_expr
;
1613 cur_expr
= cur_expr
->next_same_hash
;
1618 cur_expr
= gcse_alloc (sizeof (struct expr
));
1619 bytes_used
+= sizeof (struct expr
);
1620 if (table
->table
[hash
] == NULL
)
1621 /* This is the first pattern that hashed to this index. */
1622 table
->table
[hash
] = cur_expr
;
1624 /* Add EXPR to end of this hash chain. */
1625 last_expr
->next_same_hash
= cur_expr
;
1627 /* Set the fields of the expr element.
1628 We must copy X because it can be modified when copy propagation is
1629 performed on its operands. */
1630 cur_expr
->expr
= copy_rtx (x
);
1631 cur_expr
->bitmap_index
= table
->n_elems
++;
1632 cur_expr
->next_same_hash
= NULL
;
1633 cur_expr
->antic_occr
= NULL
;
1634 cur_expr
->avail_occr
= NULL
;
1637 /* Now record the occurrence. */
1638 cur_occr
= cur_expr
->avail_occr
;
1640 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1642 /* Found another instance of the expression in the same basic block.
1643 Prefer this occurrence to the currently recorded one. We want
1644 the last one in the block and the block is scanned from start
1646 cur_occr
->insn
= insn
;
1650 /* First occurrence of this expression in this basic block. */
1651 cur_occr
= gcse_alloc (sizeof (struct occr
));
1652 bytes_used
+= sizeof (struct occr
);
1654 cur_occr
->insn
= insn
;
1655 cur_occr
->next
= cur_expr
->avail_occr
;
1656 cur_occr
->deleted_p
= 0;
1657 cur_expr
->avail_occr
= cur_occr
;
1661 /* Determine whether the rtx X should be treated as a constant for
1662 the purposes of GCSE's constant propagation. */
1665 gcse_constant_p (rtx x
)
1667 /* Consider a COMPARE of two integers constant. */
1668 if (GET_CODE (x
) == COMPARE
1669 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1670 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1673 /* Consider a COMPARE of the same registers is a constant
1674 if they are not floating point registers. */
1675 if (GET_CODE(x
) == COMPARE
1676 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1677 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1678 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1682 return CONSTANT_P (x
);
1685 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1689 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1691 rtx src
= SET_SRC (pat
);
1692 rtx dest
= SET_DEST (pat
);
1695 if (GET_CODE (src
) == CALL
)
1696 hash_scan_call (src
, insn
, table
);
1698 else if (REG_P (dest
))
1700 unsigned int regno
= REGNO (dest
);
1703 /* If this is a single set and we are doing constant propagation,
1704 see if a REG_NOTE shows this equivalent to a constant. */
1705 if (table
->set_p
&& (note
= find_reg_equal_equiv_note (insn
)) != 0
1706 && gcse_constant_p (XEXP (note
, 0)))
1707 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1709 /* Only record sets of pseudo-regs in the hash table. */
1711 && regno
>= FIRST_PSEUDO_REGISTER
1712 /* Don't GCSE something if we can't do a reg/reg copy. */
1713 && can_copy_p (GET_MODE (dest
))
1714 /* GCSE commonly inserts instruction after the insn. We can't
1715 do that easily for EH_REGION notes so disable GCSE on these
1717 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1718 /* Is SET_SRC something we want to gcse? */
1719 && want_to_gcse_p (src
)
1720 /* Don't CSE a nop. */
1721 && ! set_noop_p (pat
)
1722 /* Don't GCSE if it has attached REG_EQUIV note.
1723 At this point this only function parameters should have
1724 REG_EQUIV notes and if the argument slot is used somewhere
1725 explicitly, it means address of parameter has been taken,
1726 so we should not extend the lifetime of the pseudo. */
1727 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1728 || ! MEM_P (XEXP (note
, 0))))
1730 /* An expression is not anticipatable if its operands are
1731 modified before this insn or if this is not the only SET in
1733 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
1734 /* An expression is not available if its operands are
1735 subsequently modified, including this insn. It's also not
1736 available if this is a branch, because we can't insert
1737 a set after the branch. */
1738 int avail_p
= (oprs_available_p (src
, insn
)
1739 && ! JUMP_P (insn
));
1741 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1744 /* Record sets for constant/copy propagation. */
1745 else if (table
->set_p
1746 && regno
>= FIRST_PSEUDO_REGISTER
1748 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1749 && can_copy_p (GET_MODE (dest
))
1750 && REGNO (src
) != regno
)
1751 || gcse_constant_p (src
))
1752 /* A copy is not available if its src or dest is subsequently
1753 modified. Here we want to search from INSN+1 on, but
1754 oprs_available_p searches from INSN on. */
1755 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1756 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
1757 && oprs_available_p (pat
, tmp
))))
1758 insert_set_in_table (pat
, insn
, table
);
1760 /* In case of store we want to consider the memory value as available in
1761 the REG stored in that memory. This makes it possible to remove
1762 redundant loads from due to stores to the same location. */
1763 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1765 unsigned int regno
= REGNO (src
);
1767 /* Do not do this for constant/copy propagation. */
1769 /* Only record sets of pseudo-regs in the hash table. */
1770 && regno
>= FIRST_PSEUDO_REGISTER
1771 /* Don't GCSE something if we can't do a reg/reg copy. */
1772 && can_copy_p (GET_MODE (src
))
1773 /* GCSE commonly inserts instruction after the insn. We can't
1774 do that easily for EH_REGION notes so disable GCSE on these
1776 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1777 /* Is SET_DEST something we want to gcse? */
1778 && want_to_gcse_p (dest
)
1779 /* Don't CSE a nop. */
1780 && ! set_noop_p (pat
)
1781 /* Don't GCSE if it has attached REG_EQUIV note.
1782 At this point this only function parameters should have
1783 REG_EQUIV notes and if the argument slot is used somewhere
1784 explicitly, it means address of parameter has been taken,
1785 so we should not extend the lifetime of the pseudo. */
1786 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1787 || ! MEM_P (XEXP (note
, 0))))
1789 /* Stores are never anticipatable. */
1791 /* An expression is not available if its operands are
1792 subsequently modified, including this insn. It's also not
1793 available if this is a branch, because we can't insert
1794 a set after the branch. */
1795 int avail_p
= oprs_available_p (dest
, insn
)
1798 /* Record the memory expression (DEST) in the hash table. */
1799 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1800 antic_p
, avail_p
, table
);
1806 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1807 struct hash_table
*table ATTRIBUTE_UNUSED
)
1809 /* Currently nothing to do. */
1813 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1814 struct hash_table
*table ATTRIBUTE_UNUSED
)
1816 /* Currently nothing to do. */
1819 /* Process INSN and add hash table entries as appropriate.
1821 Only available expressions that set a single pseudo-reg are recorded.
1823 Single sets in a PARALLEL could be handled, but it's an extra complication
1824 that isn't dealt with right now. The trick is handling the CLOBBERs that
1825 are also in the PARALLEL. Later.
1827 If SET_P is nonzero, this is for the assignment hash table,
1828 otherwise it is for the expression hash table.
1829 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1830 not record any expressions. */
1833 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1835 rtx pat
= PATTERN (insn
);
1838 if (in_libcall_block
)
1841 /* Pick out the sets of INSN and for other forms of instructions record
1842 what's been modified. */
1844 if (GET_CODE (pat
) == SET
)
1845 hash_scan_set (pat
, insn
, table
);
1846 else if (GET_CODE (pat
) == PARALLEL
)
1847 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1849 rtx x
= XVECEXP (pat
, 0, i
);
1851 if (GET_CODE (x
) == SET
)
1852 hash_scan_set (x
, insn
, table
);
1853 else if (GET_CODE (x
) == CLOBBER
)
1854 hash_scan_clobber (x
, insn
, table
);
1855 else if (GET_CODE (x
) == CALL
)
1856 hash_scan_call (x
, insn
, table
);
1859 else if (GET_CODE (pat
) == CLOBBER
)
1860 hash_scan_clobber (pat
, insn
, table
);
1861 else if (GET_CODE (pat
) == CALL
)
1862 hash_scan_call (pat
, insn
, table
);
1866 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1869 /* Flattened out table, so it's printed in proper order. */
1870 struct expr
**flat_table
;
1871 unsigned int *hash_val
;
1874 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1875 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1877 for (i
= 0; i
< (int) table
->size
; i
++)
1878 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1880 flat_table
[expr
->bitmap_index
] = expr
;
1881 hash_val
[expr
->bitmap_index
] = i
;
1884 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1885 name
, table
->size
, table
->n_elems
);
1887 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1888 if (flat_table
[i
] != 0)
1890 expr
= flat_table
[i
];
1891 fprintf (file
, "Index %d (hash value %d)\n ",
1892 expr
->bitmap_index
, hash_val
[i
]);
1893 print_rtl (file
, expr
->expr
);
1894 fprintf (file
, "\n");
1897 fprintf (file
, "\n");
1903 /* Record register first/last/block set information for REGNO in INSN.
1905 first_set records the first place in the block where the register
1906 is set and is used to compute "anticipatability".
1908 last_set records the last place in the block where the register
1909 is set and is used to compute "availability".
1911 last_bb records the block for which first_set and last_set are
1912 valid, as a quick test to invalidate them.
1914 reg_set_in_block records whether the register is set in the block
1915 and is used to compute "transparency". */
1918 record_last_reg_set_info (rtx insn
, int regno
)
1920 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1921 int cuid
= INSN_CUID (insn
);
1923 info
->last_set
= cuid
;
1924 if (info
->last_bb
!= current_bb
)
1926 info
->last_bb
= current_bb
;
1927 info
->first_set
= cuid
;
1928 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1933 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1934 Note we store a pair of elements in the list, so they have to be
1935 taken off pairwise. */
1938 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
1941 rtx dest_addr
, insn
;
1944 while (GET_CODE (dest
) == SUBREG
1945 || GET_CODE (dest
) == ZERO_EXTRACT
1946 || GET_CODE (dest
) == STRICT_LOW_PART
)
1947 dest
= XEXP (dest
, 0);
1949 /* If DEST is not a MEM, then it will not conflict with a load. Note
1950 that function calls are assumed to clobber memory, but are handled
1956 dest_addr
= get_addr (XEXP (dest
, 0));
1957 dest_addr
= canon_rtx (dest_addr
);
1958 insn
= (rtx
) v_insn
;
1959 bb
= BLOCK_NUM (insn
);
1961 canon_modify_mem_list
[bb
] =
1962 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1963 canon_modify_mem_list
[bb
] =
1964 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1967 /* Record memory modification information for INSN. We do not actually care
1968 about the memory location(s) that are set, or even how they are set (consider
1969 a CALL_INSN). We merely need to record which insns modify memory. */
1972 record_last_mem_set_info (rtx insn
)
1974 int bb
= BLOCK_NUM (insn
);
1976 /* load_killed_in_block_p will handle the case of calls clobbering
1978 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1979 bitmap_set_bit (modify_mem_list_set
, bb
);
1983 /* Note that traversals of this loop (other than for free-ing)
1984 will break after encountering a CALL_INSN. So, there's no
1985 need to insert a pair of items, as canon_list_insert does. */
1986 canon_modify_mem_list
[bb
] =
1987 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1988 bitmap_set_bit (blocks_with_calls
, bb
);
1991 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1994 /* Called from compute_hash_table via note_stores to handle one
1995 SET or CLOBBER in an insn. DATA is really the instruction in which
1996 the SET is taking place. */
1999 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
2001 rtx last_set_insn
= (rtx
) data
;
2003 if (GET_CODE (dest
) == SUBREG
)
2004 dest
= SUBREG_REG (dest
);
2007 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2008 else if (MEM_P (dest
)
2009 /* Ignore pushes, they clobber nothing. */
2010 && ! push_operand (dest
, GET_MODE (dest
)))
2011 record_last_mem_set_info (last_set_insn
);
2014 /* Top level function to create an expression or assignment hash table.
2016 Expression entries are placed in the hash table if
2017 - they are of the form (set (pseudo-reg) src),
2018 - src is something we want to perform GCSE on,
2019 - none of the operands are subsequently modified in the block
2021 Assignment entries are placed in the hash table if
2022 - they are of the form (set (pseudo-reg) src),
2023 - src is something we want to perform const/copy propagation on,
2024 - none of the operands or target are subsequently modified in the block
2026 Currently src must be a pseudo-reg or a const_int.
2028 TABLE is the table computed. */
2031 compute_hash_table_work (struct hash_table
*table
)
2035 /* While we compute the hash table we also compute a bit array of which
2036 registers are set in which blocks.
2037 ??? This isn't needed during const/copy propagation, but it's cheap to
2039 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2041 /* re-Cache any INSN_LIST nodes we have allocated. */
2042 clear_modify_mem_tables ();
2043 /* Some working arrays used to track first and last set in each block. */
2044 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2046 for (i
= 0; i
< max_gcse_regno
; ++i
)
2047 reg_avail_info
[i
].last_bb
= NULL
;
2049 FOR_EACH_BB (current_bb
)
2053 int in_libcall_block
;
2055 /* First pass over the instructions records information used to
2056 determine when registers and memory are first and last set.
2057 ??? hard-reg reg_set_in_block computation
2058 could be moved to compute_sets since they currently don't change. */
2060 FOR_BB_INSNS (current_bb
, insn
)
2062 if (! INSN_P (insn
))
2067 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2068 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2069 record_last_reg_set_info (insn
, regno
);
2074 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2077 /* Insert implicit sets in the hash table. */
2079 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2080 hash_scan_set (implicit_sets
[current_bb
->index
],
2081 BB_HEAD (current_bb
), table
);
2083 /* The next pass builds the hash table. */
2084 in_libcall_block
= 0;
2085 FOR_BB_INSNS (current_bb
, insn
)
2088 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2089 in_libcall_block
= 1;
2090 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2091 in_libcall_block
= 0;
2092 hash_scan_insn (insn
, table
, in_libcall_block
);
2093 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2094 in_libcall_block
= 0;
2098 free (reg_avail_info
);
2099 reg_avail_info
= NULL
;
2102 /* Allocate space for the set/expr hash TABLE.
2103 N_INSNS is the number of instructions in the function.
2104 It is used to determine the number of buckets to use.
2105 SET_P determines whether set or expression table will
2109 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2113 table
->size
= n_insns
/ 4;
2114 if (table
->size
< 11)
2117 /* Attempt to maintain efficient use of hash table.
2118 Making it an odd number is simplest for now.
2119 ??? Later take some measurements. */
2121 n
= table
->size
* sizeof (struct expr
*);
2122 table
->table
= gmalloc (n
);
2123 table
->set_p
= set_p
;
2126 /* Free things allocated by alloc_hash_table. */
2129 free_hash_table (struct hash_table
*table
)
2131 free (table
->table
);
2134 /* Compute the hash TABLE for doing copy/const propagation or
2135 expression hash table. */
2138 compute_hash_table (struct hash_table
*table
)
2140 /* Initialize count of number of entries in hash table. */
2142 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2144 compute_hash_table_work (table
);
2147 /* Expression tracking support. */
2149 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2150 table entry, or NULL if not found. */
2152 static struct expr
*
2153 lookup_set (unsigned int regno
, struct hash_table
*table
)
2155 unsigned int hash
= hash_set (regno
, table
->size
);
2158 expr
= table
->table
[hash
];
2160 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2161 expr
= expr
->next_same_hash
;
2166 /* Return the next entry for REGNO in list EXPR. */
2168 static struct expr
*
2169 next_set (unsigned int regno
, struct expr
*expr
)
2172 expr
= expr
->next_same_hash
;
2173 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2178 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2179 types may be mixed. */
2182 free_insn_expr_list_list (rtx
*listp
)
2186 for (list
= *listp
; list
; list
= next
)
2188 next
= XEXP (list
, 1);
2189 if (GET_CODE (list
) == EXPR_LIST
)
2190 free_EXPR_LIST_node (list
);
2192 free_INSN_LIST_node (list
);
2198 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2200 clear_modify_mem_tables (void)
2205 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2207 free_INSN_LIST_list (modify_mem_list
+ i
);
2208 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2210 bitmap_clear (modify_mem_list_set
);
2211 bitmap_clear (blocks_with_calls
);
2214 /* Release memory used by modify_mem_list_set. */
2217 free_modify_mem_tables (void)
2219 clear_modify_mem_tables ();
2220 free (modify_mem_list
);
2221 free (canon_modify_mem_list
);
2222 modify_mem_list
= 0;
2223 canon_modify_mem_list
= 0;
2226 /* Reset tables used to keep track of what's still available [since the
2227 start of the block]. */
2230 reset_opr_set_tables (void)
2232 /* Maintain a bitmap of which regs have been set since beginning of
2234 CLEAR_REG_SET (reg_set_bitmap
);
2236 /* Also keep a record of the last instruction to modify memory.
2237 For now this is very trivial, we only record whether any memory
2238 location has been modified. */
2239 clear_modify_mem_tables ();
2242 /* Return nonzero if the operands of X are not set before INSN in
2243 INSN's basic block. */
2246 oprs_not_set_p (rtx x
, rtx insn
)
2255 code
= GET_CODE (x
);
2271 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2272 INSN_CUID (insn
), x
, 0))
2275 return oprs_not_set_p (XEXP (x
, 0), insn
);
2278 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2284 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2288 /* If we are about to do the last recursive call
2289 needed at this level, change it into iteration.
2290 This function is called enough to be worth it. */
2292 return oprs_not_set_p (XEXP (x
, i
), insn
);
2294 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2297 else if (fmt
[i
] == 'E')
2298 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2299 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2306 /* Mark things set by a CALL. */
2309 mark_call (rtx insn
)
2311 if (! CONST_OR_PURE_CALL_P (insn
))
2312 record_last_mem_set_info (insn
);
2315 /* Mark things set by a SET. */
2318 mark_set (rtx pat
, rtx insn
)
2320 rtx dest
= SET_DEST (pat
);
2322 while (GET_CODE (dest
) == SUBREG
2323 || GET_CODE (dest
) == ZERO_EXTRACT
2324 || GET_CODE (dest
) == STRICT_LOW_PART
)
2325 dest
= XEXP (dest
, 0);
2328 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2329 else if (MEM_P (dest
))
2330 record_last_mem_set_info (insn
);
2332 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2336 /* Record things set by a CLOBBER. */
2339 mark_clobber (rtx pat
, rtx insn
)
2341 rtx clob
= XEXP (pat
, 0);
2343 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2344 clob
= XEXP (clob
, 0);
2347 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2349 record_last_mem_set_info (insn
);
2352 /* Record things set by INSN.
2353 This data is used by oprs_not_set_p. */
2356 mark_oprs_set (rtx insn
)
2358 rtx pat
= PATTERN (insn
);
2361 if (GET_CODE (pat
) == SET
)
2362 mark_set (pat
, insn
);
2363 else if (GET_CODE (pat
) == PARALLEL
)
2364 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2366 rtx x
= XVECEXP (pat
, 0, i
);
2368 if (GET_CODE (x
) == SET
)
2370 else if (GET_CODE (x
) == CLOBBER
)
2371 mark_clobber (x
, insn
);
2372 else if (GET_CODE (x
) == CALL
)
2376 else if (GET_CODE (pat
) == CLOBBER
)
2377 mark_clobber (pat
, insn
);
2378 else if (GET_CODE (pat
) == CALL
)
2383 /* Compute copy/constant propagation working variables. */
2385 /* Local properties of assignments. */
2386 static sbitmap
*cprop_pavloc
;
2387 static sbitmap
*cprop_absaltered
;
2389 /* Global properties of assignments (computed from the local properties). */
2390 static sbitmap
*cprop_avin
;
2391 static sbitmap
*cprop_avout
;
2393 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2394 basic blocks. N_SETS is the number of sets. */
2397 alloc_cprop_mem (int n_blocks
, int n_sets
)
2399 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2400 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2402 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2403 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2406 /* Free vars used by copy/const propagation. */
2409 free_cprop_mem (void)
2411 sbitmap_vector_free (cprop_pavloc
);
2412 sbitmap_vector_free (cprop_absaltered
);
2413 sbitmap_vector_free (cprop_avin
);
2414 sbitmap_vector_free (cprop_avout
);
2417 /* For each block, compute whether X is transparent. X is either an
2418 expression or an assignment [though we don't care which, for this context
2419 an assignment is treated as an expression]. For each block where an
2420 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2424 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2432 /* repeat is used to turn tail-recursion into iteration since GCC
2433 can't do it when there's no return value. */
2439 code
= GET_CODE (x
);
2445 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2448 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2449 SET_BIT (bmap
[bb
->index
], indx
);
2453 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2454 SET_BIT (bmap
[r
->bb_index
], indx
);
2459 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2462 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2463 RESET_BIT (bmap
[bb
->index
], indx
);
2467 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2468 RESET_BIT (bmap
[r
->bb_index
], indx
);
2475 if (! MEM_READONLY_P (x
))
2480 /* First handle all the blocks with calls. We don't need to
2481 do any list walking for them. */
2482 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2485 SET_BIT (bmap
[bb_index
], indx
);
2487 RESET_BIT (bmap
[bb_index
], indx
);
2490 /* Now iterate over the blocks which have memory modifications
2491 but which do not have any calls. */
2492 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
2496 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2500 rtx dest
, dest_addr
;
2502 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2503 Examine each hunk of memory that is modified. */
2505 dest
= XEXP (list_entry
, 0);
2506 list_entry
= XEXP (list_entry
, 1);
2507 dest_addr
= XEXP (list_entry
, 0);
2509 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2510 x
, rtx_addr_varies_p
))
2513 SET_BIT (bmap
[bb_index
], indx
);
2515 RESET_BIT (bmap
[bb_index
], indx
);
2518 list_entry
= XEXP (list_entry
, 1);
2542 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2546 /* If we are about to do the last recursive call
2547 needed at this level, change it into iteration.
2548 This function is called enough to be worth it. */
2555 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2557 else if (fmt
[i
] == 'E')
2558 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2559 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2563 /* Top level routine to do the dataflow analysis needed by copy/const
2567 compute_cprop_data (void)
2569 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2570 compute_available (cprop_pavloc
, cprop_absaltered
,
2571 cprop_avout
, cprop_avin
);
2574 /* Copy/constant propagation. */
2576 /* Maximum number of register uses in an insn that we handle. */
2579 /* Table of uses found in an insn.
2580 Allocated statically to avoid alloc/free complexity and overhead. */
2581 static struct reg_use reg_use_table
[MAX_USES
];
2583 /* Index into `reg_use_table' while building it. */
2584 static int reg_use_count
;
2586 /* Set up a list of register numbers used in INSN. The found uses are stored
2587 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2588 and contains the number of uses in the table upon exit.
2590 ??? If a register appears multiple times we will record it multiple times.
2591 This doesn't hurt anything but it will slow things down. */
2594 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2601 /* repeat is used to turn tail-recursion into iteration since GCC
2602 can't do it when there's no return value. */
2607 code
= GET_CODE (x
);
2610 if (reg_use_count
== MAX_USES
)
2613 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2617 /* Recursively scan the operands of this expression. */
2619 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2623 /* If we are about to do the last recursive call
2624 needed at this level, change it into iteration.
2625 This function is called enough to be worth it. */
2632 find_used_regs (&XEXP (x
, i
), data
);
2634 else if (fmt
[i
] == 'E')
2635 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2636 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2640 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2641 Returns nonzero is successful. */
2644 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2646 rtx note
= find_reg_equal_equiv_note (insn
);
2649 rtx set
= single_set (insn
);
2651 validate_replace_src_group (from
, to
, insn
);
2652 if (num_changes_pending () && apply_change_group ())
2655 /* Try to simplify SET_SRC if we have substituted a constant. */
2656 if (success
&& set
&& CONSTANT_P (to
))
2658 src
= simplify_rtx (SET_SRC (set
));
2661 validate_change (insn
, &SET_SRC (set
), src
, 0);
2664 /* If there is already a NOTE, update the expression in it with our
2667 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
2669 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2671 /* If above failed and this is a single set, try to simplify the source of
2672 the set given our substitution. We could perhaps try this for multiple
2673 SETs, but it probably won't buy us anything. */
2674 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2676 if (!rtx_equal_p (src
, SET_SRC (set
))
2677 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2680 /* If we've failed to do replacement, have a single SET, don't already
2681 have a note, and have no special SET, add a REG_EQUAL note to not
2682 lose information. */
2683 if (!success
&& note
== 0 && set
!= 0
2684 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2685 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2686 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2689 /* REG_EQUAL may get simplified into register.
2690 We don't allow that. Remove that note. This code ought
2691 not to happen, because previous code ought to synthesize
2692 reg-reg move, but be on the safe side. */
2693 if (note
&& REG_P (XEXP (note
, 0)))
2694 remove_note (insn
, note
);
2699 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2700 NULL no such set is found. */
2702 static struct expr
*
2703 find_avail_set (int regno
, rtx insn
)
2705 /* SET1 contains the last set found that can be returned to the caller for
2706 use in a substitution. */
2707 struct expr
*set1
= 0;
2709 /* Loops are not possible here. To get a loop we would need two sets
2710 available at the start of the block containing INSN. i.e. we would
2711 need two sets like this available at the start of the block:
2713 (set (reg X) (reg Y))
2714 (set (reg Y) (reg X))
2716 This can not happen since the set of (reg Y) would have killed the
2717 set of (reg X) making it unavailable at the start of this block. */
2721 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2723 /* Find a set that is available at the start of the block
2724 which contains INSN. */
2727 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2729 set
= next_set (regno
, set
);
2732 /* If no available set was found we've reached the end of the
2733 (possibly empty) copy chain. */
2737 gcc_assert (GET_CODE (set
->expr
) == SET
);
2739 src
= SET_SRC (set
->expr
);
2741 /* We know the set is available.
2742 Now check that SRC is ANTLOC (i.e. none of the source operands
2743 have changed since the start of the block).
2745 If the source operand changed, we may still use it for the next
2746 iteration of this loop, but we may not use it for substitutions. */
2748 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2751 /* If the source of the set is anything except a register, then
2752 we have reached the end of the copy chain. */
2756 /* Follow the copy chain, i.e. start another iteration of the loop
2757 and see if we have an available copy into SRC. */
2758 regno
= REGNO (src
);
2761 /* SET1 holds the last set that was available and anticipatable at
2766 /* Subroutine of cprop_insn that tries to propagate constants into
2767 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2768 it is the instruction that immediately precedes JUMP, and must be a
2769 single SET of a register. FROM is what we will try to replace,
2770 SRC is the constant we will try to substitute for it. Returns nonzero
2771 if a change was made. */
2774 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2776 rtx
new, set_src
, note_src
;
2777 rtx set
= pc_set (jump
);
2778 rtx note
= find_reg_equal_equiv_note (jump
);
2782 note_src
= XEXP (note
, 0);
2783 if (GET_CODE (note_src
) == EXPR_LIST
)
2784 note_src
= NULL_RTX
;
2786 else note_src
= NULL_RTX
;
2788 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2789 set_src
= note_src
? note_src
: SET_SRC (set
);
2791 /* First substitute the SETCC condition into the JUMP instruction,
2792 then substitute that given values into this expanded JUMP. */
2793 if (setcc
!= NULL_RTX
2794 && !modified_between_p (from
, setcc
, jump
)
2795 && !modified_between_p (src
, setcc
, jump
))
2798 rtx setcc_set
= single_set (setcc
);
2799 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2800 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2801 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2802 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2808 new = simplify_replace_rtx (set_src
, from
, src
);
2810 /* If no simplification can be made, then try the next register. */
2811 if (rtx_equal_p (new, SET_SRC (set
)))
2814 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2819 /* Ensure the value computed inside the jump insn to be equivalent
2820 to one computed by setcc. */
2821 if (setcc
&& modified_in_p (new, setcc
))
2823 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
2825 /* When (some) constants are not valid in a comparison, and there
2826 are two registers to be replaced by constants before the entire
2827 comparison can be folded into a constant, we need to keep
2828 intermediate information in REG_EQUAL notes. For targets with
2829 separate compare insns, such notes are added by try_replace_reg.
2830 When we have a combined compare-and-branch instruction, however,
2831 we need to attach a note to the branch itself to make this
2832 optimization work. */
2834 if (!rtx_equal_p (new, note_src
))
2835 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2839 /* Remove REG_EQUAL note after simplification. */
2841 remove_note (jump
, note
);
2843 /* If this has turned into an unconditional jump,
2844 then put a barrier after it so that the unreachable
2845 code will be deleted. */
2846 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
2847 emit_barrier_after (jump
);
2851 /* Delete the cc0 setter. */
2852 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2853 delete_insn (setcc
);
2856 run_jump_opt_after_gcse
= 1;
2858 global_const_prop_count
++;
2859 if (gcse_file
!= NULL
)
2862 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2863 REGNO (from
), INSN_UID (jump
));
2864 print_rtl (gcse_file
, src
);
2865 fprintf (gcse_file
, "\n");
2867 purge_dead_edges (bb
);
2873 constprop_register (rtx insn
, rtx from
, rtx to
, bool alter_jumps
)
2877 /* Check for reg or cc0 setting instructions followed by
2878 conditional branch instructions first. */
2880 && (sset
= single_set (insn
)) != NULL
2882 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2884 rtx dest
= SET_DEST (sset
);
2885 if ((REG_P (dest
) || CC0_P (dest
))
2886 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2890 /* Handle normal insns next. */
2891 if (NONJUMP_INSN_P (insn
)
2892 && try_replace_reg (from
, to
, insn
))
2895 /* Try to propagate a CONST_INT into a conditional jump.
2896 We're pretty specific about what we will handle in this
2897 code, we can extend this as necessary over time.
2899 Right now the insn in question must look like
2900 (set (pc) (if_then_else ...)) */
2901 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2902 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2906 /* Perform constant and copy propagation on INSN.
2907 The result is nonzero if a change was made. */
2910 cprop_insn (rtx insn
, int alter_jumps
)
2912 struct reg_use
*reg_used
;
2920 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2922 note
= find_reg_equal_equiv_note (insn
);
2924 /* We may win even when propagating constants into notes. */
2926 find_used_regs (&XEXP (note
, 0), NULL
);
2928 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2929 reg_used
++, reg_use_count
--)
2931 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2935 /* Ignore registers created by GCSE.
2936 We do this because ... */
2937 if (regno
>= max_gcse_regno
)
2940 /* If the register has already been set in this block, there's
2941 nothing we can do. */
2942 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2945 /* Find an assignment that sets reg_used and is available
2946 at the start of the block. */
2947 set
= find_avail_set (regno
, insn
);
2952 /* ??? We might be able to handle PARALLELs. Later. */
2953 gcc_assert (GET_CODE (pat
) == SET
);
2955 src
= SET_SRC (pat
);
2957 /* Constant propagation. */
2958 if (gcse_constant_p (src
))
2960 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2963 global_const_prop_count
++;
2964 if (gcse_file
!= NULL
)
2966 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2967 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
2968 print_rtl (gcse_file
, src
);
2969 fprintf (gcse_file
, "\n");
2971 if (INSN_DELETED_P (insn
))
2975 else if (REG_P (src
)
2976 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2977 && REGNO (src
) != regno
)
2979 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2982 global_copy_prop_count
++;
2983 if (gcse_file
!= NULL
)
2985 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2986 regno
, INSN_UID (insn
));
2987 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
2990 /* The original insn setting reg_used may or may not now be
2991 deletable. We leave the deletion to flow. */
2992 /* FIXME: If it turns out that the insn isn't deletable,
2993 then we may have unnecessarily extended register lifetimes
2994 and made things worse. */
3002 /* Like find_used_regs, but avoid recording uses that appear in
3003 input-output contexts such as zero_extract or pre_dec. This
3004 restricts the cases we consider to those for which local cprop
3005 can legitimately make replacements. */
3008 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
3015 switch (GET_CODE (x
))
3019 case STRICT_LOW_PART
:
3028 /* Can only legitimately appear this early in the context of
3029 stack pushes for function arguments, but handle all of the
3030 codes nonetheless. */
3034 /* Setting a subreg of a register larger than word_mode leaves
3035 the non-written words unchanged. */
3036 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3044 find_used_regs (xptr
, data
);
3047 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3048 their REG_EQUAL notes need updating. */
3051 do_local_cprop (rtx x
, rtx insn
, bool alter_jumps
, rtx
*libcall_sp
)
3053 rtx newreg
= NULL
, newcnst
= NULL
;
3055 /* Rule out USE instructions and ASM statements as we don't want to
3056 change the hard registers mentioned. */
3058 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3059 || (GET_CODE (PATTERN (insn
)) != USE
3060 && asm_noperands (PATTERN (insn
)) < 0)))
3062 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3063 struct elt_loc_list
*l
;
3067 for (l
= val
->locs
; l
; l
= l
->next
)
3069 rtx this_rtx
= l
->loc
;
3072 /* Don't CSE non-constant values out of libcall blocks. */
3073 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3076 if (gcse_constant_p (this_rtx
))
3078 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3079 /* Don't copy propagate if it has attached REG_EQUIV note.
3080 At this point this only function parameters should have
3081 REG_EQUIV notes and if the argument slot is used somewhere
3082 explicitly, it means address of parameter has been taken,
3083 so we should not extend the lifetime of the pseudo. */
3084 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3085 || ! MEM_P (XEXP (note
, 0))))
3088 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3090 /* If we find a case where we can't fix the retval REG_EQUAL notes
3091 match the new register, we either have to abandon this replacement
3092 or fix delete_trivially_dead_insns to preserve the setting insn,
3093 or make it delete the REG_EUAQL note, and fix up all passes that
3094 require the REG_EQUAL note there. */
3097 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3098 gcc_assert (adjusted
);
3100 if (gcse_file
!= NULL
)
3102 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3104 fprintf (gcse_file
, "insn %d with constant ",
3106 print_rtl (gcse_file
, newcnst
);
3107 fprintf (gcse_file
, "\n");
3109 local_const_prop_count
++;
3112 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3114 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3115 if (gcse_file
!= NULL
)
3118 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3119 REGNO (x
), INSN_UID (insn
));
3120 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
3122 local_copy_prop_count
++;
3129 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3130 their REG_EQUAL notes need updating to reflect that OLDREG has been
3131 replaced with NEWVAL in INSN. Return true if all substitutions could
3134 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3138 while ((end
= *libcall_sp
++))
3140 rtx note
= find_reg_equal_equiv_note (end
);
3147 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3151 note
= find_reg_equal_equiv_note (end
);
3154 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3157 while ((end
= *libcall_sp
++));
3161 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3167 #define MAX_NESTED_LIBCALLS 9
3169 /* Do local const/copy propagation (i.e. within each basic block).
3170 If ALTER_JUMPS is true, allow propagating into jump insns, which
3171 could modify the CFG. */
3174 local_cprop_pass (bool alter_jumps
)
3178 struct reg_use
*reg_used
;
3179 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3180 bool changed
= false;
3182 cselib_init (false);
3183 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3187 FOR_BB_INSNS (bb
, insn
)
3191 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3195 gcc_assert (libcall_sp
!= libcall_stack
);
3196 *--libcall_sp
= XEXP (note
, 0);
3198 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3201 note
= find_reg_equal_equiv_note (insn
);
3205 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
3208 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3210 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3211 reg_used
++, reg_use_count
--)
3212 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3218 if (INSN_DELETED_P (insn
))
3221 while (reg_use_count
);
3223 cselib_process_insn (insn
);
3226 /* Forget everything at the end of a basic block. Make sure we are
3227 not inside a libcall, they should never cross basic blocks. */
3228 cselib_clear_table ();
3229 gcc_assert (libcall_sp
== &libcall_stack
[MAX_NESTED_LIBCALLS
]);
3234 /* Global analysis may get into infinite loops for unreachable blocks. */
3235 if (changed
&& alter_jumps
)
3237 delete_unreachable_blocks ();
3238 free_reg_set_mem ();
3239 alloc_reg_set_mem (max_reg_num ());
3244 /* Forward propagate copies. This includes copies and constants. Return
3245 nonzero if a change was made. */
3248 cprop (int alter_jumps
)
3254 /* Note we start at block 1. */
3255 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3257 if (gcse_file
!= NULL
)
3258 fprintf (gcse_file
, "\n");
3263 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3265 /* Reset tables used to keep track of what's still valid [since the
3266 start of the block]. */
3267 reset_opr_set_tables ();
3269 FOR_BB_INSNS (bb
, insn
)
3272 changed
|= cprop_insn (insn
, alter_jumps
);
3274 /* Keep track of everything modified by this insn. */
3275 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3276 call mark_oprs_set if we turned the insn into a NOTE. */
3277 if (! NOTE_P (insn
))
3278 mark_oprs_set (insn
);
3282 if (gcse_file
!= NULL
)
3283 fprintf (gcse_file
, "\n");
3288 /* Similar to get_condition, only the resulting condition must be
3289 valid at JUMP, instead of at EARLIEST.
3291 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3292 settle for the condition variable in the jump instruction being integral.
3293 We prefer to be able to record the value of a user variable, rather than
3294 the value of a temporary used in a condition. This could be solved by
3295 recording the value of *every* register scanned by canonicalize_condition,
3296 but this would require some code reorganization. */
3299 fis_get_condition (rtx jump
)
3301 return get_condition (jump
, NULL
, false, true);
3304 /* Check the comparison COND to see if we can safely form an implicit set from
3305 it. COND is either an EQ or NE comparison. */
3308 implicit_set_cond_p (rtx cond
)
3310 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3311 rtx cst
= XEXP (cond
, 1);
3313 /* We can't perform this optimization if either operand might be or might
3314 contain a signed zero. */
3315 if (HONOR_SIGNED_ZEROS (mode
))
3317 /* It is sufficient to check if CST is or contains a zero. We must
3318 handle float, complex, and vector. If any subpart is a zero, then
3319 the optimization can't be performed. */
3320 /* ??? The complex and vector checks are not implemented yet. We just
3321 always return zero for them. */
3322 if (GET_CODE (cst
) == CONST_DOUBLE
)
3325 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3326 if (REAL_VALUES_EQUAL (d
, dconst0
))
3333 return gcse_constant_p (cst
);
3336 /* Find the implicit sets of a function. An "implicit set" is a constraint
3337 on the value of a variable, implied by a conditional jump. For example,
3338 following "if (x == 2)", the then branch may be optimized as though the
3339 conditional performed an "explicit set", in this example, "x = 2". This
3340 function records the set patterns that are implicit at the start of each
3344 find_implicit_sets (void)
3346 basic_block bb
, dest
;
3352 /* Check for more than one successor. */
3353 if (EDGE_COUNT (bb
->succs
) > 1)
3355 cond
= fis_get_condition (BB_END (bb
));
3358 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3359 && REG_P (XEXP (cond
, 0))
3360 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3361 && implicit_set_cond_p (cond
))
3363 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3364 : FALLTHRU_EDGE (bb
)->dest
;
3366 if (dest
&& single_pred_p (dest
)
3367 && dest
!= EXIT_BLOCK_PTR
)
3369 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3371 implicit_sets
[dest
->index
] = new;
3374 fprintf(gcse_file
, "Implicit set of reg %d in ",
3375 REGNO (XEXP (cond
, 0)));
3376 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
3384 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
3387 /* Perform one copy/constant propagation pass.
3388 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3389 propagation into conditional jumps. If BYPASS_JUMPS is true,
3390 perform conditional jump bypassing optimizations. */
3393 one_cprop_pass (int pass
, bool cprop_jumps
, bool bypass_jumps
)
3397 global_const_prop_count
= local_const_prop_count
= 0;
3398 global_copy_prop_count
= local_copy_prop_count
= 0;
3400 local_cprop_pass (cprop_jumps
);
3402 /* Determine implicit sets. */
3403 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
3404 find_implicit_sets ();
3406 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3407 compute_hash_table (&set_hash_table
);
3409 /* Free implicit_sets before peak usage. */
3410 free (implicit_sets
);
3411 implicit_sets
= NULL
;
3414 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
3415 if (set_hash_table
.n_elems
> 0)
3417 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3418 compute_cprop_data ();
3419 changed
= cprop (cprop_jumps
);
3421 changed
|= bypass_conditional_jumps ();
3425 free_hash_table (&set_hash_table
);
3429 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3430 current_function_name (), pass
, bytes_used
);
3431 fprintf (gcse_file
, "%d local const props, %d local copy props, ",
3432 local_const_prop_count
, local_copy_prop_count
);
3433 fprintf (gcse_file
, "%d global const props, %d global copy props\n\n",
3434 global_const_prop_count
, global_copy_prop_count
);
3436 /* Global analysis may get into infinite loops for unreachable blocks. */
3437 if (changed
&& cprop_jumps
)
3438 delete_unreachable_blocks ();
3443 /* Bypass conditional jumps. */
3445 /* The value of last_basic_block at the beginning of the jump_bypass
3446 pass. The use of redirect_edge_and_branch_force may introduce new
3447 basic blocks, but the data flow analysis is only valid for basic
3448 block indices less than bypass_last_basic_block. */
3450 static int bypass_last_basic_block
;
3452 /* Find a set of REGNO to a constant that is available at the end of basic
3453 block BB. Returns NULL if no such set is found. Based heavily upon
3456 static struct expr
*
3457 find_bypass_set (int regno
, int bb
)
3459 struct expr
*result
= 0;
3464 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3468 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3470 set
= next_set (regno
, set
);
3476 gcc_assert (GET_CODE (set
->expr
) == SET
);
3478 src
= SET_SRC (set
->expr
);
3479 if (gcse_constant_p (src
))
3485 regno
= REGNO (src
);
3491 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3492 any of the instructions inserted on an edge. Jump bypassing places
3493 condition code setters on CFG edges using insert_insn_on_edge. This
3494 function is required to check that our data flow analysis is still
3495 valid prior to commit_edge_insertions. */
3498 reg_killed_on_edge (rtx reg
, edge e
)
3502 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3503 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3509 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3510 basic block BB which has more than one predecessor. If not NULL, SETCC
3511 is the first instruction of BB, which is immediately followed by JUMP_INSN
3512 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3513 Returns nonzero if a change was made.
3515 During the jump bypassing pass, we may place copies of SETCC instructions
3516 on CFG edges. The following routine must be careful to pay attention to
3517 these inserted insns when performing its transformations. */
3520 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3525 int may_be_loop_header
;
3529 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3531 /* Determine set of register uses in INSN. */
3533 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3534 note
= find_reg_equal_equiv_note (insn
);
3536 find_used_regs (&XEXP (note
, 0), NULL
);
3538 may_be_loop_header
= false;
3539 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3540 if (e
->flags
& EDGE_DFS_BACK
)
3542 may_be_loop_header
= true;
3547 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3551 if (e
->flags
& EDGE_COMPLEX
)
3557 /* We can't redirect edges from new basic blocks. */
3558 if (e
->src
->index
>= bypass_last_basic_block
)
3564 /* The irreducible loops created by redirecting of edges entering the
3565 loop from outside would decrease effectiveness of some of the following
3566 optimizations, so prevent this. */
3567 if (may_be_loop_header
3568 && !(e
->flags
& EDGE_DFS_BACK
))
3574 for (i
= 0; i
< reg_use_count
; i
++)
3576 struct reg_use
*reg_used
= ®_use_table
[i
];
3577 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3578 basic_block dest
, old_dest
;
3582 if (regno
>= max_gcse_regno
)
3585 set
= find_bypass_set (regno
, e
->src
->index
);
3590 /* Check the data flow is valid after edge insertions. */
3591 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3594 src
= SET_SRC (pc_set (jump
));
3597 src
= simplify_replace_rtx (src
,
3598 SET_DEST (PATTERN (setcc
)),
3599 SET_SRC (PATTERN (setcc
)));
3601 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3602 SET_SRC (set
->expr
));
3604 /* Jump bypassing may have already placed instructions on
3605 edges of the CFG. We can't bypass an outgoing edge that
3606 has instructions associated with it, as these insns won't
3607 get executed if the incoming edge is redirected. */
3611 edest
= FALLTHRU_EDGE (bb
);
3612 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3614 else if (GET_CODE (new) == LABEL_REF
)
3616 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3617 /* Don't bypass edges containing instructions. */
3618 edest
= find_edge (bb
, dest
);
3619 if (edest
&& edest
->insns
.r
)
3625 /* Avoid unification of the edge with other edges from original
3626 branch. We would end up emitting the instruction on "both"
3629 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3630 && find_edge (e
->src
, dest
))
3636 && dest
!= EXIT_BLOCK_PTR
)
3638 redirect_edge_and_branch_force (e
, dest
);
3640 /* Copy the register setter to the redirected edge.
3641 Don't copy CC0 setters, as CC0 is dead after jump. */
3644 rtx pat
= PATTERN (setcc
);
3645 if (!CC0_P (SET_DEST (pat
)))
3646 insert_insn_on_edge (copy_insn (pat
), e
);
3649 if (gcse_file
!= NULL
)
3651 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d "
3652 "in jump_insn %d equals constant ",
3653 regno
, INSN_UID (jump
));
3654 print_rtl (gcse_file
, SET_SRC (set
->expr
));
3655 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
3656 e
->src
->index
, old_dest
->index
, dest
->index
);
3669 /* Find basic blocks with more than one predecessor that only contain a
3670 single conditional jump. If the result of the comparison is known at
3671 compile-time from any incoming edge, redirect that edge to the
3672 appropriate target. Returns nonzero if a change was made.
3674 This function is now mis-named, because we also handle indirect jumps. */
3677 bypass_conditional_jumps (void)
3685 /* Note we start at block 1. */
3686 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3689 bypass_last_basic_block
= last_basic_block
;
3690 mark_dfs_back_edges ();
3693 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3694 EXIT_BLOCK_PTR
, next_bb
)
3696 /* Check for more than one predecessor. */
3697 if (!single_pred_p (bb
))
3700 FOR_BB_INSNS (bb
, insn
)
3701 if (NONJUMP_INSN_P (insn
))
3705 if (GET_CODE (PATTERN (insn
)) != SET
)
3708 dest
= SET_DEST (PATTERN (insn
));
3709 if (REG_P (dest
) || CC0_P (dest
))
3714 else if (JUMP_P (insn
))
3716 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3717 && onlyjump_p (insn
))
3718 changed
|= bypass_block (bb
, setcc
, insn
);
3721 else if (INSN_P (insn
))
3726 /* If we bypassed any register setting insns, we inserted a
3727 copy on the redirected edge. These need to be committed. */
3729 commit_edge_insertions();
3734 /* Compute PRE+LCM working variables. */
3736 /* Local properties of expressions. */
3737 /* Nonzero for expressions that are transparent in the block. */
3738 static sbitmap
*transp
;
3740 /* Nonzero for expressions that are transparent at the end of the block.
3741 This is only zero for expressions killed by abnormal critical edge
3742 created by a calls. */
3743 static sbitmap
*transpout
;
3745 /* Nonzero for expressions that are computed (available) in the block. */
3746 static sbitmap
*comp
;
3748 /* Nonzero for expressions that are locally anticipatable in the block. */
3749 static sbitmap
*antloc
;
3751 /* Nonzero for expressions where this block is an optimal computation
3753 static sbitmap
*pre_optimal
;
3755 /* Nonzero for expressions which are redundant in a particular block. */
3756 static sbitmap
*pre_redundant
;
3758 /* Nonzero for expressions which should be inserted on a specific edge. */
3759 static sbitmap
*pre_insert_map
;
3761 /* Nonzero for expressions which should be deleted in a specific block. */
3762 static sbitmap
*pre_delete_map
;
3764 /* Contains the edge_list returned by pre_edge_lcm. */
3765 static struct edge_list
*edge_list
;
3767 /* Redundant insns. */
3768 static sbitmap pre_redundant_insns
;
3770 /* Allocate vars used for PRE analysis. */
3773 alloc_pre_mem (int n_blocks
, int n_exprs
)
3775 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3776 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3777 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3780 pre_redundant
= NULL
;
3781 pre_insert_map
= NULL
;
3782 pre_delete_map
= NULL
;
3783 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3785 /* pre_insert and pre_delete are allocated later. */
3788 /* Free vars used for PRE analysis. */
3793 sbitmap_vector_free (transp
);
3794 sbitmap_vector_free (comp
);
3796 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3799 sbitmap_vector_free (pre_optimal
);
3801 sbitmap_vector_free (pre_redundant
);
3803 sbitmap_vector_free (pre_insert_map
);
3805 sbitmap_vector_free (pre_delete_map
);
3807 transp
= comp
= NULL
;
3808 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3811 /* Top level routine to do the dataflow analysis needed by PRE. */
3814 compute_pre_data (void)
3816 sbitmap trapping_expr
;
3820 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3821 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3823 /* Collect expressions which might trap. */
3824 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3825 sbitmap_zero (trapping_expr
);
3826 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3829 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3830 if (may_trap_p (e
->expr
))
3831 SET_BIT (trapping_expr
, e
->bitmap_index
);
3834 /* Compute ae_kill for each basic block using:
3844 /* If the current block is the destination of an abnormal edge, we
3845 kill all trapping expressions because we won't be able to properly
3846 place the instruction on the edge. So make them neither
3847 anticipatable nor transparent. This is fairly conservative. */
3848 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3849 if (e
->flags
& EDGE_ABNORMAL
)
3851 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3852 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3856 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3857 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3860 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3861 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3862 sbitmap_vector_free (antloc
);
3864 sbitmap_vector_free (ae_kill
);
3866 sbitmap_free (trapping_expr
);
3871 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3874 VISITED is a pointer to a working buffer for tracking which BB's have
3875 been visited. It is NULL for the top-level call.
3877 We treat reaching expressions that go through blocks containing the same
3878 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3879 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3880 2 as not reaching. The intent is to improve the probability of finding
3881 only one reaching expression and to reduce register lifetimes by picking
3882 the closest such expression. */
3885 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3890 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3892 basic_block pred_bb
= pred
->src
;
3894 if (pred
->src
== ENTRY_BLOCK_PTR
3895 /* Has predecessor has already been visited? */
3896 || visited
[pred_bb
->index
])
3897 ;/* Nothing to do. */
3899 /* Does this predecessor generate this expression? */
3900 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3902 /* Is this the occurrence we're looking for?
3903 Note that there's only one generating occurrence per block
3904 so we just need to check the block number. */
3905 if (occr_bb
== pred_bb
)
3908 visited
[pred_bb
->index
] = 1;
3910 /* Ignore this predecessor if it kills the expression. */
3911 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3912 visited
[pred_bb
->index
] = 1;
3914 /* Neither gen nor kill. */
3917 visited
[pred_bb
->index
] = 1;
3918 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3923 /* All paths have been checked. */
3927 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3928 memory allocated for that function is returned. */
3931 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3934 char *visited
= xcalloc (last_basic_block
, 1);
3936 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3943 /* Given an expr, generate RTL which we can insert at the end of a BB,
3944 or on an edge. Set the block number of any insns generated to
3948 process_insert_insn (struct expr
*expr
)
3950 rtx reg
= expr
->reaching_reg
;
3951 rtx exp
= copy_rtx (expr
->expr
);
3956 /* If the expression is something that's an operand, like a constant,
3957 just copy it to a register. */
3958 if (general_operand (exp
, GET_MODE (reg
)))
3959 emit_move_insn (reg
, exp
);
3961 /* Otherwise, make a new insn to compute this expression and make sure the
3962 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3963 expression to make sure we don't have any sharing issues. */
3966 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3968 if (insn_invalid_p (insn
))
3979 /* Add EXPR to the end of basic block BB.
3981 This is used by both the PRE and code hoisting.
3983 For PRE, we want to verify that the expr is either transparent
3984 or locally anticipatable in the target block. This check makes
3985 no sense for code hoisting. */
3988 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
3990 rtx insn
= BB_END (bb
);
3992 rtx reg
= expr
->reaching_reg
;
3993 int regno
= REGNO (reg
);
3996 pat
= process_insert_insn (expr
);
3997 gcc_assert (pat
&& INSN_P (pat
));
4000 while (NEXT_INSN (pat_end
) != NULL_RTX
)
4001 pat_end
= NEXT_INSN (pat_end
);
4003 /* If the last insn is a jump, insert EXPR in front [taking care to
4004 handle cc0, etc. properly]. Similarly we need to care trapping
4005 instructions in presence of non-call exceptions. */
4008 || (NONJUMP_INSN_P (insn
)
4009 && (!single_succ_p (bb
)
4010 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
4015 /* It should always be the case that we can put these instructions
4016 anywhere in the basic block with performing PRE optimizations.
4018 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
4019 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4020 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4022 /* If this is a jump table, then we can't insert stuff here. Since
4023 we know the previous real insn must be the tablejump, we insert
4024 the new instruction just before the tablejump. */
4025 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4026 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4027 insn
= prev_real_insn (insn
);
4030 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4031 if cc0 isn't set. */
4032 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4034 insn
= XEXP (note
, 0);
4037 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4038 if (maybe_cc0_setter
4039 && INSN_P (maybe_cc0_setter
)
4040 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4041 insn
= maybe_cc0_setter
;
4044 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4045 new_insn
= emit_insn_before_noloc (pat
, insn
);
4048 /* Likewise if the last insn is a call, as will happen in the presence
4049 of exception handling. */
4050 else if (CALL_P (insn
)
4051 && (!single_succ_p (bb
)
4052 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
4054 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4055 we search backward and place the instructions before the first
4056 parameter is loaded. Do this for everyone for consistency and a
4057 presumption that we'll get better code elsewhere as well.
4059 It should always be the case that we can put these instructions
4060 anywhere in the basic block with performing PRE optimizations.
4064 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4065 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4067 /* Since different machines initialize their parameter registers
4068 in different orders, assume nothing. Collect the set of all
4069 parameter registers. */
4070 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4072 /* If we found all the parameter loads, then we want to insert
4073 before the first parameter load.
4075 If we did not find all the parameter loads, then we might have
4076 stopped on the head of the block, which could be a CODE_LABEL.
4077 If we inserted before the CODE_LABEL, then we would be putting
4078 the insn in the wrong basic block. In that case, put the insn
4079 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4080 while (LABEL_P (insn
)
4081 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4082 insn
= NEXT_INSN (insn
);
4084 new_insn
= emit_insn_before_noloc (pat
, insn
);
4087 new_insn
= emit_insn_after_noloc (pat
, insn
);
4093 add_label_notes (PATTERN (pat
), new_insn
);
4094 note_stores (PATTERN (pat
), record_set_info
, pat
);
4098 pat
= NEXT_INSN (pat
);
4101 gcse_create_count
++;
4105 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4106 bb
->index
, INSN_UID (new_insn
));
4107 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4108 expr
->bitmap_index
, regno
);
4112 /* Insert partially redundant expressions on edges in the CFG to make
4113 the expressions fully redundant. */
4116 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4118 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4121 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4122 if it reaches any of the deleted expressions. */
4124 set_size
= pre_insert_map
[0]->size
;
4125 num_edges
= NUM_EDGES (edge_list
);
4126 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4127 sbitmap_vector_zero (inserted
, num_edges
);
4129 for (e
= 0; e
< num_edges
; e
++)
4132 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4134 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4136 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4138 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4139 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4141 struct expr
*expr
= index_map
[j
];
4144 /* Now look at each deleted occurrence of this expression. */
4145 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4147 if (! occr
->deleted_p
)
4150 /* Insert this expression on this edge if it would
4151 reach the deleted occurrence in BB. */
4152 if (!TEST_BIT (inserted
[e
], j
))
4155 edge eg
= INDEX_EDGE (edge_list
, e
);
4157 /* We can't insert anything on an abnormal and
4158 critical edge, so we insert the insn at the end of
4159 the previous block. There are several alternatives
4160 detailed in Morgans book P277 (sec 10.5) for
4161 handling this situation. This one is easiest for
4164 if (eg
->flags
& EDGE_ABNORMAL
)
4165 insert_insn_end_bb (index_map
[j
], bb
, 0);
4168 insn
= process_insert_insn (index_map
[j
]);
4169 insert_insn_on_edge (insn
, eg
);
4174 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4176 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4177 fprintf (gcse_file
, "copy expression %d\n",
4178 expr
->bitmap_index
);
4181 update_ld_motion_stores (expr
);
4182 SET_BIT (inserted
[e
], j
);
4184 gcse_create_count
++;
4191 sbitmap_vector_free (inserted
);
4195 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4196 Given "old_reg <- expr" (INSN), instead of adding after it
4197 reaching_reg <- old_reg
4198 it's better to do the following:
4199 reaching_reg <- expr
4200 old_reg <- reaching_reg
4201 because this way copy propagation can discover additional PRE
4202 opportunities. But if this fails, we try the old way.
4203 When "expr" is a store, i.e.
4204 given "MEM <- old_reg", instead of adding after it
4205 reaching_reg <- old_reg
4206 it's better to add it before as follows:
4207 reaching_reg <- old_reg
4208 MEM <- reaching_reg. */
4211 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4213 rtx reg
= expr
->reaching_reg
;
4214 int regno
= REGNO (reg
);
4215 int indx
= expr
->bitmap_index
;
4216 rtx pat
= PATTERN (insn
);
4221 /* This block matches the logic in hash_scan_insn. */
4222 switch (GET_CODE (pat
))
4229 /* Search through the parallel looking for the set whose
4230 source was the expression that we're interested in. */
4232 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4234 rtx x
= XVECEXP (pat
, 0, i
);
4235 if (GET_CODE (x
) == SET
4236 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
4248 if (REG_P (SET_DEST (set
)))
4250 old_reg
= SET_DEST (set
);
4251 /* Check if we can modify the set destination in the original insn. */
4252 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4254 new_insn
= gen_move_insn (old_reg
, reg
);
4255 new_insn
= emit_insn_after (new_insn
, insn
);
4257 /* Keep register set table up to date. */
4258 record_one_set (regno
, insn
);
4262 new_insn
= gen_move_insn (reg
, old_reg
);
4263 new_insn
= emit_insn_after (new_insn
, insn
);
4265 /* Keep register set table up to date. */
4266 record_one_set (regno
, new_insn
);
4269 else /* This is possible only in case of a store to memory. */
4271 old_reg
= SET_SRC (set
);
4272 new_insn
= gen_move_insn (reg
, old_reg
);
4274 /* Check if we can modify the set source in the original insn. */
4275 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4276 new_insn
= emit_insn_before (new_insn
, insn
);
4278 new_insn
= emit_insn_after (new_insn
, insn
);
4280 /* Keep register set table up to date. */
4281 record_one_set (regno
, new_insn
);
4284 gcse_create_count
++;
4288 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4289 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4290 INSN_UID (insn
), regno
);
4293 /* Copy available expressions that reach the redundant expression
4294 to `reaching_reg'. */
4297 pre_insert_copies (void)
4299 unsigned int i
, added_copy
;
4304 /* For each available expression in the table, copy the result to
4305 `reaching_reg' if the expression reaches a deleted one.
4307 ??? The current algorithm is rather brute force.
4308 Need to do some profiling. */
4310 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4311 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4313 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4314 we don't want to insert a copy here because the expression may not
4315 really be redundant. So only insert an insn if the expression was
4316 deleted. This test also avoids further processing if the
4317 expression wasn't deleted anywhere. */
4318 if (expr
->reaching_reg
== NULL
)
4321 /* Set when we add a copy for that expression. */
4324 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4326 if (! occr
->deleted_p
)
4329 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4331 rtx insn
= avail
->insn
;
4333 /* No need to handle this one if handled already. */
4334 if (avail
->copied_p
)
4337 /* Don't handle this one if it's a redundant one. */
4338 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4341 /* Or if the expression doesn't reach the deleted one. */
4342 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4344 BLOCK_FOR_INSN (occr
->insn
)))
4349 /* Copy the result of avail to reaching_reg. */
4350 pre_insert_copy_insn (expr
, insn
);
4351 avail
->copied_p
= 1;
4356 update_ld_motion_stores (expr
);
4360 /* Emit move from SRC to DEST noting the equivalence with expression computed
4363 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4366 rtx set
= single_set (insn
), set2
;
4370 /* This should never fail since we're creating a reg->reg copy
4371 we've verified to be valid. */
4373 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4375 /* Note the equivalence for local CSE pass. */
4376 set2
= single_set (new);
4377 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4379 if ((note
= find_reg_equal_equiv_note (insn
)))
4380 eqv
= XEXP (note
, 0);
4382 eqv
= SET_SRC (set
);
4384 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4389 /* Delete redundant computations.
4390 Deletion is done by changing the insn to copy the `reaching_reg' of
4391 the expression into the result of the SET. It is left to later passes
4392 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4394 Returns nonzero if a change is made. */
4405 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4406 for (expr
= expr_hash_table
.table
[i
];
4408 expr
= expr
->next_same_hash
)
4410 int indx
= expr
->bitmap_index
;
4412 /* We only need to search antic_occr since we require
4415 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4417 rtx insn
= occr
->insn
;
4419 basic_block bb
= BLOCK_FOR_INSN (insn
);
4421 /* We only delete insns that have a single_set. */
4422 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4423 && (set
= single_set (insn
)) != 0)
4425 /* Create a pseudo-reg to store the result of reaching
4426 expressions into. Get the mode for the new pseudo from
4427 the mode of the original destination pseudo. */
4428 if (expr
->reaching_reg
== NULL
)
4430 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4432 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4434 occr
->deleted_p
= 1;
4435 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4442 "PRE: redundant insn %d (expression %d) in ",
4443 INSN_UID (insn
), indx
);
4444 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
4445 bb
->index
, REGNO (expr
->reaching_reg
));
4454 /* Perform GCSE optimizations using PRE.
4455 This is called by one_pre_gcse_pass after all the dataflow analysis
4458 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4459 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4460 Compiler Design and Implementation.
4462 ??? A new pseudo reg is created to hold the reaching expression. The nice
4463 thing about the classical approach is that it would try to use an existing
4464 reg. If the register can't be adequately optimized [i.e. we introduce
4465 reload problems], one could add a pass here to propagate the new register
4468 ??? We don't handle single sets in PARALLELs because we're [currently] not
4469 able to copy the rest of the parallel when we insert copies to create full
4470 redundancies from partial redundancies. However, there's no reason why we
4471 can't handle PARALLELs in the cases where there are no partial
4478 int did_insert
, changed
;
4479 struct expr
**index_map
;
4482 /* Compute a mapping from expression number (`bitmap_index') to
4483 hash table entry. */
4485 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4486 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4487 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4488 index_map
[expr
->bitmap_index
] = expr
;
4490 /* Reset bitmap used to track which insns are redundant. */
4491 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4492 sbitmap_zero (pre_redundant_insns
);
4494 /* Delete the redundant insns first so that
4495 - we know what register to use for the new insns and for the other
4496 ones with reaching expressions
4497 - we know which insns are redundant when we go to create copies */
4499 changed
= pre_delete ();
4501 did_insert
= pre_edge_insert (edge_list
, index_map
);
4503 /* In other places with reaching expressions, copy the expression to the
4504 specially allocated pseudo-reg that reaches the redundant expr. */
4505 pre_insert_copies ();
4508 commit_edge_insertions ();
4513 sbitmap_free (pre_redundant_insns
);
4517 /* Top level routine to perform one PRE GCSE pass.
4519 Return nonzero if a change was made. */
4522 one_pre_gcse_pass (int pass
)
4526 gcse_subst_count
= 0;
4527 gcse_create_count
= 0;
4529 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4530 add_noreturn_fake_exit_edges ();
4532 compute_ld_motion_mems ();
4534 compute_hash_table (&expr_hash_table
);
4535 trim_ld_motion_mems ();
4537 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
4539 if (expr_hash_table
.n_elems
> 0)
4541 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4542 compute_pre_data ();
4543 changed
|= pre_gcse ();
4544 free_edge_list (edge_list
);
4549 remove_fake_exit_edges ();
4550 free_hash_table (&expr_hash_table
);
4554 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4555 current_function_name (), pass
, bytes_used
);
4556 fprintf (gcse_file
, "%d substs, %d insns created\n",
4557 gcse_subst_count
, gcse_create_count
);
4563 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4564 If notes are added to an insn which references a CODE_LABEL, the
4565 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4566 because the following loop optimization pass requires them. */
4568 /* ??? This is very similar to the loop.c add_label_notes function. We
4569 could probably share code here. */
4571 /* ??? If there was a jump optimization pass after gcse and before loop,
4572 then we would not need to do this here, because jump would add the
4573 necessary REG_LABEL notes. */
4576 add_label_notes (rtx x
, rtx insn
)
4578 enum rtx_code code
= GET_CODE (x
);
4582 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4584 /* This code used to ignore labels that referred to dispatch tables to
4585 avoid flow generating (slightly) worse code.
4587 We no longer ignore such label references (see LABEL_REF handling in
4588 mark_jump_label for additional information). */
4590 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
4592 if (LABEL_P (XEXP (x
, 0)))
4593 LABEL_NUSES (XEXP (x
, 0))++;
4597 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4600 add_label_notes (XEXP (x
, i
), insn
);
4601 else if (fmt
[i
] == 'E')
4602 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4603 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4607 /* Compute transparent outgoing information for each block.
4609 An expression is transparent to an edge unless it is killed by
4610 the edge itself. This can only happen with abnormal control flow,
4611 when the edge is traversed through a call. This happens with
4612 non-local labels and exceptions.
4614 This would not be necessary if we split the edge. While this is
4615 normally impossible for abnormal critical edges, with some effort
4616 it should be possible with exception handling, since we still have
4617 control over which handler should be invoked. But due to increased
4618 EH table sizes, this may not be worthwhile. */
4621 compute_transpout (void)
4627 sbitmap_vector_ones (transpout
, last_basic_block
);
4631 /* Note that flow inserted a nop a the end of basic blocks that
4632 end in call instructions for reasons other than abnormal
4634 if (! CALL_P (BB_END (bb
)))
4637 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4638 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4639 if (MEM_P (expr
->expr
))
4641 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4642 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4645 /* ??? Optimally, we would use interprocedural alias
4646 analysis to determine if this mem is actually killed
4648 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4653 /* Code Hoisting variables and subroutines. */
4655 /* Very busy expressions. */
4656 static sbitmap
*hoist_vbein
;
4657 static sbitmap
*hoist_vbeout
;
4659 /* Hoistable expressions. */
4660 static sbitmap
*hoist_exprs
;
4662 /* ??? We could compute post dominators and run this algorithm in
4663 reverse to perform tail merging, doing so would probably be
4664 more effective than the tail merging code in jump.c.
4666 It's unclear if tail merging could be run in parallel with
4667 code hoisting. It would be nice. */
4669 /* Allocate vars used for code hoisting analysis. */
4672 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4674 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4675 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4676 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4678 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4679 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4680 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4681 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4684 /* Free vars used for code hoisting analysis. */
4687 free_code_hoist_mem (void)
4689 sbitmap_vector_free (antloc
);
4690 sbitmap_vector_free (transp
);
4691 sbitmap_vector_free (comp
);
4693 sbitmap_vector_free (hoist_vbein
);
4694 sbitmap_vector_free (hoist_vbeout
);
4695 sbitmap_vector_free (hoist_exprs
);
4696 sbitmap_vector_free (transpout
);
4698 free_dominance_info (CDI_DOMINATORS
);
4701 /* Compute the very busy expressions at entry/exit from each block.
4703 An expression is very busy if all paths from a given point
4704 compute the expression. */
4707 compute_code_hoist_vbeinout (void)
4709 int changed
, passes
;
4712 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4713 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4722 /* We scan the blocks in the reverse order to speed up
4724 FOR_EACH_BB_REVERSE (bb
)
4726 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
4727 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
4728 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4729 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
4736 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4739 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4742 compute_code_hoist_data (void)
4744 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4745 compute_transpout ();
4746 compute_code_hoist_vbeinout ();
4747 calculate_dominance_info (CDI_DOMINATORS
);
4749 fprintf (gcse_file
, "\n");
4752 /* Determine if the expression identified by EXPR_INDEX would
4753 reach BB unimpared if it was placed at the end of EXPR_BB.
4755 It's unclear exactly what Muchnick meant by "unimpared". It seems
4756 to me that the expression must either be computed or transparent in
4757 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4758 would allow the expression to be hoisted out of loops, even if
4759 the expression wasn't a loop invariant.
4761 Contrast this to reachability for PRE where an expression is
4762 considered reachable if *any* path reaches instead of *all*
4766 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4770 int visited_allocated_locally
= 0;
4773 if (visited
== NULL
)
4775 visited_allocated_locally
= 1;
4776 visited
= xcalloc (last_basic_block
, 1);
4779 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4781 basic_block pred_bb
= pred
->src
;
4783 if (pred
->src
== ENTRY_BLOCK_PTR
)
4785 else if (pred_bb
== expr_bb
)
4787 else if (visited
[pred_bb
->index
])
4790 /* Does this predecessor generate this expression? */
4791 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4793 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4799 visited
[pred_bb
->index
] = 1;
4800 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4805 if (visited_allocated_locally
)
4808 return (pred
== NULL
);
4811 /* Actually perform code hoisting. */
4816 basic_block bb
, dominated
;
4818 unsigned int domby_len
;
4820 struct expr
**index_map
;
4823 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4825 /* Compute a mapping from expression number (`bitmap_index') to
4826 hash table entry. */
4828 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4829 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4830 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4831 index_map
[expr
->bitmap_index
] = expr
;
4833 /* Walk over each basic block looking for potentially hoistable
4834 expressions, nothing gets hoisted from the entry block. */
4838 int insn_inserted_p
;
4840 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
4841 /* Examine each expression that is very busy at the exit of this
4842 block. These are the potentially hoistable expressions. */
4843 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4847 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4848 && TEST_BIT (transpout
[bb
->index
], i
))
4850 /* We've found a potentially hoistable expression, now
4851 we look at every block BB dominates to see if it
4852 computes the expression. */
4853 for (j
= 0; j
< domby_len
; j
++)
4855 dominated
= domby
[j
];
4856 /* Ignore self dominance. */
4857 if (bb
== dominated
)
4859 /* We've found a dominated block, now see if it computes
4860 the busy expression and whether or not moving that
4861 expression to the "beginning" of that block is safe. */
4862 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4865 /* Note if the expression would reach the dominated block
4866 unimpared if it was placed at the end of BB.
4868 Keep track of how many times this expression is hoistable
4869 from a dominated block into BB. */
4870 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4874 /* If we found more than one hoistable occurrence of this
4875 expression, then note it in the bitmap of expressions to
4876 hoist. It makes no sense to hoist things which are computed
4877 in only one BB, and doing so tends to pessimize register
4878 allocation. One could increase this value to try harder
4879 to avoid any possible code expansion due to register
4880 allocation issues; however experiments have shown that
4881 the vast majority of hoistable expressions are only movable
4882 from two successors, so raising this threshold is likely
4883 to nullify any benefit we get from code hoisting. */
4886 SET_BIT (hoist_exprs
[bb
->index
], i
);
4891 /* If we found nothing to hoist, then quit now. */
4898 /* Loop over all the hoistable expressions. */
4899 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4901 /* We want to insert the expression into BB only once, so
4902 note when we've inserted it. */
4903 insn_inserted_p
= 0;
4905 /* These tests should be the same as the tests above. */
4906 if (TEST_BIT (hoist_exprs
[bb
->index
], i
))
4908 /* We've found a potentially hoistable expression, now
4909 we look at every block BB dominates to see if it
4910 computes the expression. */
4911 for (j
= 0; j
< domby_len
; j
++)
4913 dominated
= domby
[j
];
4914 /* Ignore self dominance. */
4915 if (bb
== dominated
)
4918 /* We've found a dominated block, now see if it computes
4919 the busy expression and whether or not moving that
4920 expression to the "beginning" of that block is safe. */
4921 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4924 /* The expression is computed in the dominated block and
4925 it would be safe to compute it at the start of the
4926 dominated block. Now we have to determine if the
4927 expression would reach the dominated block if it was
4928 placed at the end of BB. */
4929 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4931 struct expr
*expr
= index_map
[i
];
4932 struct occr
*occr
= expr
->antic_occr
;
4936 /* Find the right occurrence of this expression. */
4937 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4942 set
= single_set (insn
);
4945 /* Create a pseudo-reg to store the result of reaching
4946 expressions into. Get the mode for the new pseudo
4947 from the mode of the original destination pseudo. */
4948 if (expr
->reaching_reg
== NULL
)
4950 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4952 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4954 occr
->deleted_p
= 1;
4955 if (!insn_inserted_p
)
4957 insert_insn_end_bb (index_map
[i
], bb
, 0);
4958 insn_inserted_p
= 1;
4970 /* Top level routine to perform one code hoisting (aka unification) pass
4972 Return nonzero if a change was made. */
4975 one_code_hoisting_pass (void)
4979 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4980 compute_hash_table (&expr_hash_table
);
4982 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
4984 if (expr_hash_table
.n_elems
> 0)
4986 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4987 compute_code_hoist_data ();
4989 free_code_hoist_mem ();
4992 free_hash_table (&expr_hash_table
);
4997 /* Here we provide the things required to do store motion towards
4998 the exit. In order for this to be effective, gcse also needed to
4999 be taught how to move a load when it is kill only by a store to itself.
5004 void foo(float scale)
5006 for (i=0; i<10; i++)
5010 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5011 the load out since its live around the loop, and stored at the bottom
5014 The 'Load Motion' referred to and implemented in this file is
5015 an enhancement to gcse which when using edge based lcm, recognizes
5016 this situation and allows gcse to move the load out of the loop.
5018 Once gcse has hoisted the load, store motion can then push this
5019 load towards the exit, and we end up with no loads or stores of 'i'
5023 pre_ldst_expr_hash (const void *p
)
5025 int do_not_record_p
= 0;
5026 const struct ls_expr
*x
= p
;
5027 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
5031 pre_ldst_expr_eq (const void *p1
, const void *p2
)
5033 const struct ls_expr
*ptr1
= p1
, *ptr2
= p2
;
5034 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
5037 /* This will search the ldst list for a matching expression. If it
5038 doesn't find one, we create one and initialize it. */
5040 static struct ls_expr
*
5043 int do_not_record_p
= 0;
5044 struct ls_expr
* ptr
;
5049 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5050 NULL
, /*have_reg_qty=*/false);
5053 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
5055 return (struct ls_expr
*)*slot
;
5057 ptr
= xmalloc (sizeof (struct ls_expr
));
5059 ptr
->next
= pre_ldst_mems
;
5062 ptr
->pattern_regs
= NULL_RTX
;
5063 ptr
->loads
= NULL_RTX
;
5064 ptr
->stores
= NULL_RTX
;
5065 ptr
->reaching_reg
= NULL_RTX
;
5068 ptr
->hash_index
= hash
;
5069 pre_ldst_mems
= ptr
;
5075 /* Free up an individual ldst entry. */
5078 free_ldst_entry (struct ls_expr
* ptr
)
5080 free_INSN_LIST_list (& ptr
->loads
);
5081 free_INSN_LIST_list (& ptr
->stores
);
5086 /* Free up all memory associated with the ldst list. */
5089 free_ldst_mems (void)
5092 htab_delete (pre_ldst_table
);
5093 pre_ldst_table
= NULL
;
5095 while (pre_ldst_mems
)
5097 struct ls_expr
* tmp
= pre_ldst_mems
;
5099 pre_ldst_mems
= pre_ldst_mems
->next
;
5101 free_ldst_entry (tmp
);
5104 pre_ldst_mems
= NULL
;
5107 /* Dump debugging info about the ldst list. */
5110 print_ldst_list (FILE * file
)
5112 struct ls_expr
* ptr
;
5114 fprintf (file
, "LDST list: \n");
5116 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5118 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5120 print_rtl (file
, ptr
->pattern
);
5122 fprintf (file
, "\n Loads : ");
5125 print_rtl (file
, ptr
->loads
);
5127 fprintf (file
, "(nil)");
5129 fprintf (file
, "\n Stores : ");
5132 print_rtl (file
, ptr
->stores
);
5134 fprintf (file
, "(nil)");
5136 fprintf (file
, "\n\n");
5139 fprintf (file
, "\n");
5142 /* Returns 1 if X is in the list of ldst only expressions. */
5144 static struct ls_expr
*
5145 find_rtx_in_ldst (rtx x
)
5149 if (!pre_ldst_table
)
5152 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
5153 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
5158 /* Assign each element of the list of mems a monotonically increasing value. */
5161 enumerate_ldsts (void)
5163 struct ls_expr
* ptr
;
5166 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5172 /* Return first item in the list. */
5174 static inline struct ls_expr
*
5175 first_ls_expr (void)
5177 return pre_ldst_mems
;
5180 /* Return the next item in the list after the specified one. */
5182 static inline struct ls_expr
*
5183 next_ls_expr (struct ls_expr
* ptr
)
5188 /* Load Motion for loads which only kill themselves. */
5190 /* Return true if x is a simple MEM operation, with no registers or
5191 side effects. These are the types of loads we consider for the
5192 ld_motion list, otherwise we let the usual aliasing take care of it. */
5200 if (MEM_VOLATILE_P (x
))
5203 if (GET_MODE (x
) == BLKmode
)
5206 /* If we are handling exceptions, we must be careful with memory references
5207 that may trap. If we are not, the behavior is undefined, so we may just
5209 if (flag_non_call_exceptions
&& may_trap_p (x
))
5212 if (side_effects_p (x
))
5215 /* Do not consider function arguments passed on stack. */
5216 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5219 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5225 /* Make sure there isn't a buried reference in this pattern anywhere.
5226 If there is, invalidate the entry for it since we're not capable
5227 of fixing it up just yet.. We have to be sure we know about ALL
5228 loads since the aliasing code will allow all entries in the
5229 ld_motion list to not-alias itself. If we miss a load, we will get
5230 the wrong value since gcse might common it and we won't know to
5234 invalidate_any_buried_refs (rtx x
)
5238 struct ls_expr
* ptr
;
5240 /* Invalidate it in the list. */
5241 if (MEM_P (x
) && simple_mem (x
))
5243 ptr
= ldst_entry (x
);
5247 /* Recursively process the insn. */
5248 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5250 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5253 invalidate_any_buried_refs (XEXP (x
, i
));
5254 else if (fmt
[i
] == 'E')
5255 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5256 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5260 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5261 being defined as MEM loads and stores to symbols, with no side effects
5262 and no registers in the expression. For a MEM destination, we also
5263 check that the insn is still valid if we replace the destination with a
5264 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5265 which don't match this criteria, they are invalidated and trimmed out
5269 compute_ld_motion_mems (void)
5271 struct ls_expr
* ptr
;
5275 pre_ldst_mems
= NULL
;
5276 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5277 pre_ldst_expr_eq
, NULL
);
5281 FOR_BB_INSNS (bb
, insn
)
5285 if (GET_CODE (PATTERN (insn
)) == SET
)
5287 rtx src
= SET_SRC (PATTERN (insn
));
5288 rtx dest
= SET_DEST (PATTERN (insn
));
5290 /* Check for a simple LOAD... */
5291 if (MEM_P (src
) && simple_mem (src
))
5293 ptr
= ldst_entry (src
);
5295 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5301 /* Make sure there isn't a buried load somewhere. */
5302 invalidate_any_buried_refs (src
);
5305 /* Check for stores. Don't worry about aliased ones, they
5306 will block any movement we might do later. We only care
5307 about this exact pattern since those are the only
5308 circumstance that we will ignore the aliasing info. */
5309 if (MEM_P (dest
) && simple_mem (dest
))
5311 ptr
= ldst_entry (dest
);
5314 && GET_CODE (src
) != ASM_OPERANDS
5315 /* Check for REG manually since want_to_gcse_p
5316 returns 0 for all REGs. */
5317 && can_assign_to_reg_p (src
))
5318 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5324 invalidate_any_buried_refs (PATTERN (insn
));
5330 /* Remove any references that have been either invalidated or are not in the
5331 expression list for pre gcse. */
5334 trim_ld_motion_mems (void)
5336 struct ls_expr
* * last
= & pre_ldst_mems
;
5337 struct ls_expr
* ptr
= pre_ldst_mems
;
5343 /* Delete if entry has been made invalid. */
5346 /* Delete if we cannot find this mem in the expression list. */
5347 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5349 for (expr
= expr_hash_table
.table
[hash
];
5351 expr
= expr
->next_same_hash
)
5352 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5356 expr
= (struct expr
*) 0;
5360 /* Set the expression field if we are keeping it. */
5368 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5369 free_ldst_entry (ptr
);
5374 /* Show the world what we've found. */
5375 if (gcse_file
&& pre_ldst_mems
!= NULL
)
5376 print_ldst_list (gcse_file
);
5379 /* This routine will take an expression which we are replacing with
5380 a reaching register, and update any stores that are needed if
5381 that expression is in the ld_motion list. Stores are updated by
5382 copying their SRC to the reaching register, and then storing
5383 the reaching register into the store location. These keeps the
5384 correct value in the reaching register for the loads. */
5387 update_ld_motion_stores (struct expr
* expr
)
5389 struct ls_expr
* mem_ptr
;
5391 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5393 /* We can try to find just the REACHED stores, but is shouldn't
5394 matter to set the reaching reg everywhere... some might be
5395 dead and should be eliminated later. */
5397 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5398 where reg is the reaching reg used in the load. We checked in
5399 compute_ld_motion_mems that we can replace (set mem expr) with
5400 (set reg expr) in that insn. */
5401 rtx list
= mem_ptr
->stores
;
5403 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5405 rtx insn
= XEXP (list
, 0);
5406 rtx pat
= PATTERN (insn
);
5407 rtx src
= SET_SRC (pat
);
5408 rtx reg
= expr
->reaching_reg
;
5411 /* If we've already copied it, continue. */
5412 if (expr
->reaching_reg
== src
)
5417 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
5418 print_rtl (gcse_file
, expr
->reaching_reg
);
5419 fprintf (gcse_file
, ":\n ");
5420 print_inline_rtx (gcse_file
, insn
, 8);
5421 fprintf (gcse_file
, "\n");
5424 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5425 new = emit_insn_before (copy
, insn
);
5426 record_one_set (REGNO (reg
), new);
5427 SET_SRC (pat
) = reg
;
5429 /* un-recognize this pattern since it's probably different now. */
5430 INSN_CODE (insn
) = -1;
5431 gcse_create_count
++;
5436 /* Store motion code. */
5438 #define ANTIC_STORE_LIST(x) ((x)->loads)
5439 #define AVAIL_STORE_LIST(x) ((x)->stores)
5440 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5442 /* This is used to communicate the target bitvector we want to use in the
5443 reg_set_info routine when called via the note_stores mechanism. */
5444 static int * regvec
;
5446 /* And current insn, for the same routine. */
5447 static rtx compute_store_table_current_insn
;
5449 /* Used in computing the reverse edge graph bit vectors. */
5450 static sbitmap
* st_antloc
;
5452 /* Global holding the number of store expressions we are dealing with. */
5453 static int num_stores
;
5455 /* Checks to set if we need to mark a register set. Called from
5459 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5462 sbitmap bb_reg
= data
;
5464 if (GET_CODE (dest
) == SUBREG
)
5465 dest
= SUBREG_REG (dest
);
5469 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5471 SET_BIT (bb_reg
, REGNO (dest
));
5475 /* Clear any mark that says that this insn sets dest. Called from
5479 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5482 int *dead_vec
= data
;
5484 if (GET_CODE (dest
) == SUBREG
)
5485 dest
= SUBREG_REG (dest
);
5488 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5489 dead_vec
[REGNO (dest
)] = 0;
5492 /* Return zero if some of the registers in list X are killed
5493 due to set of registers in bitmap REGS_SET. */
5496 store_ops_ok (rtx x
, int *regs_set
)
5500 for (; x
; x
= XEXP (x
, 1))
5503 if (regs_set
[REGNO(reg
)])
5510 /* Returns a list of registers mentioned in X. */
5512 extract_mentioned_regs (rtx x
)
5514 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5517 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5520 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5526 /* Repeat is used to turn tail-recursion into iteration. */
5532 code
= GET_CODE (x
);
5536 return alloc_EXPR_LIST (0, x
, accum
);
5546 /* We do not run this function with arguments having side effects. */
5565 i
= GET_RTX_LENGTH (code
) - 1;
5566 fmt
= GET_RTX_FORMAT (code
);
5572 rtx tem
= XEXP (x
, i
);
5574 /* If we are about to do the last recursive call
5575 needed at this level, change it into iteration. */
5582 accum
= extract_mentioned_regs_helper (tem
, accum
);
5584 else if (fmt
[i
] == 'E')
5588 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5589 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5596 /* Determine whether INSN is MEM store pattern that we will consider moving.
5597 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5598 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5599 including) the insn in this basic block. We must be passing through BB from
5600 head to end, as we are using this fact to speed things up.
5602 The results are stored this way:
5604 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5605 -- if the processed expression is not anticipatable, NULL_RTX is added
5606 there instead, so that we can use it as indicator that no further
5607 expression of this type may be anticipatable
5608 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5609 consequently, all of them but this head are dead and may be deleted.
5610 -- if the expression is not available, the insn due to that it fails to be
5611 available is stored in reaching_reg.
5613 The things are complicated a bit by fact that there already may be stores
5614 to the same MEM from other blocks; also caller must take care of the
5615 necessary cleanup of the temporary markers after end of the basic block.
5619 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5621 struct ls_expr
* ptr
;
5623 int check_anticipatable
, check_available
;
5624 basic_block bb
= BLOCK_FOR_INSN (insn
);
5626 set
= single_set (insn
);
5630 dest
= SET_DEST (set
);
5632 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5633 || GET_MODE (dest
) == BLKmode
)
5636 if (side_effects_p (dest
))
5639 /* If we are handling exceptions, we must be careful with memory references
5640 that may trap. If we are not, the behavior is undefined, so we may just
5642 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5645 /* Even if the destination cannot trap, the source may. In this case we'd
5646 need to handle updating the REG_EH_REGION note. */
5647 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5650 /* Make sure that the SET_SRC of this store insns can be assigned to
5651 a register, or we will fail later on in replace_store_insn, which
5652 assumes that we can do this. But sometimes the target machine has
5653 oddities like MEM read-modify-write instruction. See for example
5655 if (!can_assign_to_reg_p (SET_SRC (set
)))
5658 ptr
= ldst_entry (dest
);
5659 if (!ptr
->pattern_regs
)
5660 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5662 /* Do not check for anticipatability if we either found one anticipatable
5663 store already, or tested for one and found out that it was killed. */
5664 check_anticipatable
= 0;
5665 if (!ANTIC_STORE_LIST (ptr
))
5666 check_anticipatable
= 1;
5669 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5671 && BLOCK_FOR_INSN (tmp
) != bb
)
5672 check_anticipatable
= 1;
5674 if (check_anticipatable
)
5676 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5680 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5681 ANTIC_STORE_LIST (ptr
));
5684 /* It is not necessary to check whether store is available if we did
5685 it successfully before; if we failed before, do not bother to check
5686 until we reach the insn that caused us to fail. */
5687 check_available
= 0;
5688 if (!AVAIL_STORE_LIST (ptr
))
5689 check_available
= 1;
5692 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5693 if (BLOCK_FOR_INSN (tmp
) != bb
)
5694 check_available
= 1;
5696 if (check_available
)
5698 /* Check that we have already reached the insn at that the check
5699 failed last time. */
5700 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5702 for (tmp
= BB_END (bb
);
5703 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5704 tmp
= PREV_INSN (tmp
))
5707 check_available
= 0;
5710 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5712 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5714 if (!check_available
)
5715 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5718 /* Find available and anticipatable stores. */
5721 compute_store_table (void)
5727 int *last_set_in
, *already_set
;
5728 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5730 max_gcse_regno
= max_reg_num ();
5732 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5734 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5736 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5737 pre_ldst_expr_eq
, NULL
);
5738 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
5739 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
5741 /* Find all the stores we care about. */
5744 /* First compute the registers set in this block. */
5745 regvec
= last_set_in
;
5747 FOR_BB_INSNS (bb
, insn
)
5749 if (! INSN_P (insn
))
5754 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5755 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5757 last_set_in
[regno
] = INSN_UID (insn
);
5758 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5762 pat
= PATTERN (insn
);
5763 compute_store_table_current_insn
= insn
;
5764 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5767 /* Now find the stores. */
5768 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5769 regvec
= already_set
;
5770 FOR_BB_INSNS (bb
, insn
)
5772 if (! INSN_P (insn
))
5777 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5778 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5779 already_set
[regno
] = 1;
5782 pat
= PATTERN (insn
);
5783 note_stores (pat
, reg_set_info
, NULL
);
5785 /* Now that we've marked regs, look for stores. */
5786 find_moveable_store (insn
, already_set
, last_set_in
);
5788 /* Unmark regs that are no longer set. */
5789 compute_store_table_current_insn
= insn
;
5790 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5793 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5794 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5795 && last_set_in
[regno
] == INSN_UID (insn
))
5796 last_set_in
[regno
] = 0;
5800 #ifdef ENABLE_CHECKING
5801 /* last_set_in should now be all-zero. */
5802 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5803 gcc_assert (!last_set_in
[regno
]);
5806 /* Clear temporary marks. */
5807 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5809 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5810 if (ANTIC_STORE_LIST (ptr
)
5811 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5812 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5816 /* Remove the stores that are not available anywhere, as there will
5817 be no opportunity to optimize them. */
5818 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5820 ptr
= *prev_next_ptr_ptr
)
5822 if (!AVAIL_STORE_LIST (ptr
))
5824 *prev_next_ptr_ptr
= ptr
->next
;
5825 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5826 free_ldst_entry (ptr
);
5829 prev_next_ptr_ptr
= &ptr
->next
;
5832 ret
= enumerate_ldsts ();
5836 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
5837 print_ldst_list (gcse_file
);
5845 /* Check to see if the load X is aliased with STORE_PATTERN.
5846 AFTER is true if we are checking the case when STORE_PATTERN occurs
5850 load_kills_store (rtx x
, rtx store_pattern
, int after
)
5853 return anti_dependence (x
, store_pattern
);
5855 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5859 /* Go through the entire insn X, looking for any loads which might alias
5860 STORE_PATTERN. Return true if found.
5861 AFTER is true if we are checking the case when STORE_PATTERN occurs
5862 after the insn X. */
5865 find_loads (rtx x
, rtx store_pattern
, int after
)
5874 if (GET_CODE (x
) == SET
)
5879 if (load_kills_store (x
, store_pattern
, after
))
5883 /* Recursively process the insn. */
5884 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5886 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5889 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5890 else if (fmt
[i
] == 'E')
5891 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5892 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5897 /* Check if INSN kills the store pattern X (is aliased with it).
5898 AFTER is true if we are checking the case when store X occurs
5899 after the insn. Return true if it does. */
5902 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
5904 rtx reg
, base
, note
;
5911 /* A normal or pure call might read from pattern,
5912 but a const call will not. */
5913 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5916 /* But even a const call reads its parameters. Check whether the
5917 base of some of registers used in mem is stack pointer. */
5918 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5920 base
= find_base_term (XEXP (reg
, 0));
5922 || (GET_CODE (base
) == ADDRESS
5923 && GET_MODE (base
) == Pmode
5924 && XEXP (base
, 0) == stack_pointer_rtx
))
5931 if (GET_CODE (PATTERN (insn
)) == SET
)
5933 rtx pat
= PATTERN (insn
);
5934 rtx dest
= SET_DEST (pat
);
5936 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5937 dest
= XEXP (dest
, 0);
5939 /* Check for memory stores to aliased objects. */
5941 && !expr_equiv_p (dest
, x
))
5945 if (output_dependence (dest
, x
))
5950 if (output_dependence (x
, dest
))
5954 if (find_loads (SET_SRC (pat
), x
, after
))
5957 else if (find_loads (PATTERN (insn
), x
, after
))
5960 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5961 location aliased with X, then this insn kills X. */
5962 note
= find_reg_equal_equiv_note (insn
);
5965 note
= XEXP (note
, 0);
5967 /* However, if the note represents a must alias rather than a may
5968 alias relationship, then it does not kill X. */
5969 if (expr_equiv_p (note
, x
))
5972 /* See if there are any aliased loads in the note. */
5973 return find_loads (note
, x
, after
);
5976 /* Returns true if the expression X is loaded or clobbered on or after INSN
5977 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5978 or after the insn. X_REGS is list of registers mentioned in X. If the store
5979 is killed, return the last insn in that it occurs in FAIL_INSN. */
5982 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5983 int *regs_set_after
, rtx
*fail_insn
)
5985 rtx last
= BB_END (bb
), act
;
5987 if (!store_ops_ok (x_regs
, regs_set_after
))
5989 /* We do not know where it will happen. */
5991 *fail_insn
= NULL_RTX
;
5995 /* Scan from the end, so that fail_insn is determined correctly. */
5996 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
5997 if (store_killed_in_insn (x
, x_regs
, act
, false))
6007 /* Returns true if the expression X is loaded or clobbered on or before INSN
6008 within basic block BB. X_REGS is list of registers mentioned in X.
6009 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6011 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
6012 int *regs_set_before
)
6014 rtx first
= BB_HEAD (bb
);
6016 if (!store_ops_ok (x_regs
, regs_set_before
))
6019 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
6020 if (store_killed_in_insn (x
, x_regs
, insn
, true))
6026 /* Fill in available, anticipatable, transparent and kill vectors in
6027 STORE_DATA, based on lists of available and anticipatable stores. */
6029 build_store_vectors (void)
6032 int *regs_set_in_block
;
6034 struct ls_expr
* ptr
;
6037 /* Build the gen_vector. This is any store in the table which is not killed
6038 by aliasing later in its block. */
6039 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6040 sbitmap_vector_zero (ae_gen
, last_basic_block
);
6042 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6043 sbitmap_vector_zero (st_antloc
, last_basic_block
);
6045 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6047 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6049 insn
= XEXP (st
, 0);
6050 bb
= BLOCK_FOR_INSN (insn
);
6052 /* If we've already seen an available expression in this block,
6053 we can delete this one (It occurs earlier in the block). We'll
6054 copy the SRC expression to an unused register in case there
6055 are any side effects. */
6056 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6058 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6060 fprintf (gcse_file
, "Removing redundant store:\n");
6061 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6064 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6067 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6069 insn
= XEXP (st
, 0);
6070 bb
= BLOCK_FOR_INSN (insn
);
6071 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6075 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6076 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6078 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6079 sbitmap_vector_zero (transp
, last_basic_block
);
6080 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
6084 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6085 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6087 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6089 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6090 bb
, regs_set_in_block
, NULL
))
6092 /* It should not be necessary to consider the expression
6093 killed if it is both anticipatable and available. */
6094 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6095 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6096 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6099 SET_BIT (transp
[bb
->index
], ptr
->index
);
6103 free (regs_set_in_block
);
6107 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6108 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
6109 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
6110 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6114 /* Insert an instruction at the beginning of a basic block, and update
6115 the BB_HEAD if needed. */
6118 insert_insn_start_bb (rtx insn
, basic_block bb
)
6120 /* Insert at start of successor block. */
6121 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6122 rtx before
= BB_HEAD (bb
);
6125 if (! LABEL_P (before
)
6126 && (! NOTE_P (before
)
6127 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6130 if (prev
== BB_END (bb
))
6132 before
= NEXT_INSN (before
);
6135 insn
= emit_insn_after_noloc (insn
, prev
);
6139 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6141 print_inline_rtx (gcse_file
, insn
, 6);
6142 fprintf (gcse_file
, "\n");
6146 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6147 the memory reference, and E is the edge to insert it on. Returns nonzero
6148 if an edge insertion was performed. */
6151 insert_store (struct ls_expr
* expr
, edge e
)
6158 /* We did all the deleted before this insert, so if we didn't delete a
6159 store, then we haven't set the reaching reg yet either. */
6160 if (expr
->reaching_reg
== NULL_RTX
)
6163 if (e
->flags
& EDGE_FAKE
)
6166 reg
= expr
->reaching_reg
;
6167 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6169 /* If we are inserting this expression on ALL predecessor edges of a BB,
6170 insert it at the start of the BB, and reset the insert bits on the other
6171 edges so we don't try to insert it on the other edges. */
6173 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6174 if (!(tmp
->flags
& EDGE_FAKE
))
6176 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6178 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6179 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6183 /* If tmp is NULL, we found an insertion on every edge, blank the
6184 insertion vector for these edges, and insert at the start of the BB. */
6185 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6187 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6189 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6190 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6192 insert_insn_start_bb (insn
, bb
);
6196 /* We can't put stores in the front of blocks pointed to by abnormal
6197 edges since that may put a store where one didn't used to be. */
6198 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6200 insert_insn_on_edge (insn
, e
);
6204 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6205 e
->src
->index
, e
->dest
->index
);
6206 print_inline_rtx (gcse_file
, insn
, 6);
6207 fprintf (gcse_file
, "\n");
6213 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6214 memory location in SMEXPR set in basic block BB.
6216 This could be rather expensive. */
6219 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6221 edge_iterator
*stack
, ei
;
6224 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6225 rtx last
, insn
, note
;
6226 rtx mem
= smexpr
->pattern
;
6228 stack
= xmalloc (sizeof (edge_iterator
) * n_basic_blocks
);
6230 ei
= ei_start (bb
->succs
);
6232 sbitmap_zero (visited
);
6234 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6242 sbitmap_free (visited
);
6245 act
= ei_edge (stack
[--sp
]);
6249 if (bb
== EXIT_BLOCK_PTR
6250 || TEST_BIT (visited
, bb
->index
))
6254 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6257 SET_BIT (visited
, bb
->index
);
6259 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6261 for (last
= ANTIC_STORE_LIST (smexpr
);
6262 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6263 last
= XEXP (last
, 1))
6265 last
= XEXP (last
, 0);
6268 last
= NEXT_INSN (BB_END (bb
));
6270 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6273 note
= find_reg_equal_equiv_note (insn
);
6274 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6278 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6280 remove_note (insn
, note
);
6285 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6287 if (EDGE_COUNT (bb
->succs
) > 0)
6291 ei
= ei_start (bb
->succs
);
6292 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6297 /* This routine will replace a store with a SET to a specified register. */
6300 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6302 rtx insn
, mem
, note
, set
, ptr
, pair
;
6304 mem
= smexpr
->pattern
;
6305 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6306 insn
= emit_insn_after (insn
, del
);
6311 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6312 print_inline_rtx (gcse_file
, del
, 6);
6313 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
6314 print_inline_rtx (gcse_file
, insn
, 6);
6315 fprintf (gcse_file
, "\n");
6318 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6319 if (XEXP (ptr
, 0) == del
)
6321 XEXP (ptr
, 0) = insn
;
6325 /* Move the notes from the deleted insn to its replacement, and patch
6326 up the LIBCALL notes. */
6327 REG_NOTES (insn
) = REG_NOTES (del
);
6329 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6332 pair
= XEXP (note
, 0);
6333 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6334 XEXP (note
, 0) = insn
;
6336 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6339 pair
= XEXP (note
, 0);
6340 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6341 XEXP (note
, 0) = insn
;
6346 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6347 they are no longer accurate provided that they are reached by this
6348 definition, so drop them. */
6349 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6352 set
= single_set (insn
);
6355 if (expr_equiv_p (SET_DEST (set
), mem
))
6357 note
= find_reg_equal_equiv_note (insn
);
6358 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6362 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6364 remove_note (insn
, note
);
6366 remove_reachable_equiv_notes (bb
, smexpr
);
6370 /* Delete a store, but copy the value that would have been stored into
6371 the reaching_reg for later storing. */
6374 delete_store (struct ls_expr
* expr
, basic_block bb
)
6378 if (expr
->reaching_reg
== NULL_RTX
)
6379 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6381 reg
= expr
->reaching_reg
;
6383 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6386 if (BLOCK_FOR_INSN (del
) == bb
)
6388 /* We know there is only one since we deleted redundant
6389 ones during the available computation. */
6390 replace_store_insn (reg
, del
, bb
, expr
);
6396 /* Free memory used by store motion. */
6399 free_store_memory (void)
6404 sbitmap_vector_free (ae_gen
);
6406 sbitmap_vector_free (ae_kill
);
6408 sbitmap_vector_free (transp
);
6410 sbitmap_vector_free (st_antloc
);
6412 sbitmap_vector_free (pre_insert_map
);
6414 sbitmap_vector_free (pre_delete_map
);
6415 if (reg_set_in_block
)
6416 sbitmap_vector_free (reg_set_in_block
);
6418 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6419 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6422 /* Perform store motion. Much like gcse, except we move expressions the
6423 other way by looking at the flowgraph in reverse. */
6430 struct ls_expr
* ptr
;
6431 int update_flow
= 0;
6435 fprintf (gcse_file
, "before store motion\n");
6436 print_rtl (gcse_file
, get_insns ());
6439 init_alias_analysis ();
6441 /* Find all the available and anticipatable stores. */
6442 num_stores
= compute_store_table ();
6443 if (num_stores
== 0)
6445 htab_delete (pre_ldst_table
);
6446 pre_ldst_table
= NULL
;
6447 sbitmap_vector_free (reg_set_in_block
);
6448 end_alias_analysis ();
6452 /* Now compute kill & transp vectors. */
6453 build_store_vectors ();
6454 add_noreturn_fake_exit_edges ();
6455 connect_infinite_loops_to_exit ();
6457 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
6458 st_antloc
, ae_kill
, &pre_insert_map
,
6461 /* Now we want to insert the new stores which are going to be needed. */
6462 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6464 /* If any of the edges we have above are abnormal, we can't move this
6466 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6467 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6468 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6473 if (gcse_file
!= NULL
)
6475 "Can't replace store %d: abnormal edge from %d to %d\n",
6476 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6477 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6481 /* Now we want to insert the new stores which are going to be needed. */
6484 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6485 delete_store (ptr
, bb
);
6487 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6488 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6489 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6493 commit_edge_insertions ();
6495 free_store_memory ();
6496 free_edge_list (edge_list
);
6497 remove_fake_exit_edges ();
6498 end_alias_analysis ();
6502 /* Entry point for jump bypassing optimization pass. */
6505 bypass_jumps (FILE *file
)
6509 /* We do not construct an accurate cfg in functions which call
6510 setjmp, so just punt to be safe. */
6511 if (current_function_calls_setjmp
)
6514 /* For calling dump_foo fns from gdb. */
6515 debug_stderr
= stderr
;
6518 /* Identify the basic block information for this function, including
6519 successors and predecessors. */
6520 max_gcse_regno
= max_reg_num ();
6523 dump_flow_info (file
);
6525 /* Return if there's nothing to do, or it is too expensive. */
6526 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6529 gcc_obstack_init (&gcse_obstack
);
6532 /* We need alias. */
6533 init_alias_analysis ();
6535 /* Record where pseudo-registers are set. This data is kept accurate
6536 during each pass. ??? We could also record hard-reg information here
6537 [since it's unchanging], however it is currently done during hash table
6540 It may be tempting to compute MEM set information here too, but MEM sets
6541 will be subject to code motion one day and thus we need to compute
6542 information about memory sets when we build the hash tables. */
6544 alloc_reg_set_mem (max_gcse_regno
);
6547 max_gcse_regno
= max_reg_num ();
6549 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, true, true);
6554 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
6555 current_function_name (), n_basic_blocks
);
6556 fprintf (file
, "%d bytes\n\n", bytes_used
);
6559 obstack_free (&gcse_obstack
, NULL
);
6560 free_reg_set_mem ();
6562 /* We are finished with alias. */
6563 end_alias_analysis ();
6564 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
6569 /* Return true if the graph is too expensive to optimize. PASS is the
6570 optimization about to be performed. */
6573 is_too_expensive (const char *pass
)
6575 /* Trying to perform global optimizations on flow graphs which have
6576 a high connectivity will take a long time and is unlikely to be
6577 particularly useful.
6579 In normal circumstances a cfg should have about twice as many
6580 edges as blocks. But we do not want to punish small functions
6581 which have a couple switch statements. Rather than simply
6582 threshold the number of blocks, uses something with a more
6583 graceful degradation. */
6584 if (n_edges
> 20000 + n_basic_blocks
* 4)
6586 warning (OPT_Wdisabled_optimization
,
6587 "%s: %d basic blocks and %d edges/basic block",
6588 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6593 /* If allocating memory for the cprop bitmap would take up too much
6594 storage it's better just to disable the optimization. */
6596 * SBITMAP_SET_SIZE (max_reg_num ())
6597 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6599 warning (OPT_Wdisabled_optimization
,
6600 "%s: %d basic blocks and %d registers",
6601 pass
, n_basic_blocks
, max_reg_num ());
6610 gate_handle_jump_bypass (void)
6612 return optimize
> 0 && flag_gcse
;
6615 /* Perform jump bypassing and control flow optimizations. */
6617 rest_of_handle_jump_bypass (void)
6619 cleanup_cfg (CLEANUP_EXPENSIVE
);
6620 reg_scan (get_insns (), max_reg_num ());
6622 if (bypass_jumps (dump_file
))
6624 rebuild_jump_labels (get_insns ());
6625 cleanup_cfg (CLEANUP_EXPENSIVE
);
6626 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6630 struct tree_opt_pass pass_jump_bypass
=
6632 "bypass", /* name */
6633 gate_handle_jump_bypass
, /* gate */
6634 rest_of_handle_jump_bypass
, /* execute */
6637 0, /* static_pass_number */
6638 TV_BYPASS
, /* tv_id */
6639 0, /* properties_required */
6640 0, /* properties_provided */
6641 0, /* properties_destroyed */
6642 0, /* todo_flags_start */
6644 TODO_ggc_collect
| TODO_verify_flow
, /* todo_flags_finish */
6650 gate_handle_gcse (void)
6652 return optimize
> 0 && flag_gcse
;
6657 rest_of_handle_gcse (void)
6659 int save_csb
, save_cfj
;
6662 tem
= gcse_main (get_insns (), dump_file
);
6663 rebuild_jump_labels (get_insns ());
6664 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6666 save_csb
= flag_cse_skip_blocks
;
6667 save_cfj
= flag_cse_follow_jumps
;
6668 flag_cse_skip_blocks
= flag_cse_follow_jumps
= 0;
6670 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6672 if (flag_expensive_optimizations
)
6674 timevar_push (TV_CSE
);
6675 reg_scan (get_insns (), max_reg_num ());
6676 tem2
= cse_main (get_insns (), max_reg_num (), dump_file
);
6677 purge_all_dead_edges ();
6678 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6679 timevar_pop (TV_CSE
);
6680 cse_not_expected
= !flag_rerun_cse_after_loop
;
6683 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6687 timevar_push (TV_JUMP
);
6688 rebuild_jump_labels (get_insns ());
6689 delete_dead_jumptables ();
6690 cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_PRE_LOOP
);
6691 timevar_pop (TV_JUMP
);
6694 flag_cse_skip_blocks
= save_csb
;
6695 flag_cse_follow_jumps
= save_cfj
;
6698 struct tree_opt_pass pass_gcse
=
6701 gate_handle_gcse
, /* gate */
6702 rest_of_handle_gcse
, /* execute */
6705 0, /* static_pass_number */
6706 TV_GCSE
, /* tv_id */
6707 0, /* properties_required */
6708 0, /* properties_provided */
6709 0, /* properties_destroyed */
6710 0, /* todo_flags_start */
6712 TODO_verify_flow
| TODO_ggc_collect
, /* todo_flags_finish */
6717 #include "gt-gcse.h"