1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the pathetic reminder of old fame of the jump-optimization pass
24 of the compiler. Now it contains basically set of utility function to
27 Each CODE_LABEL has a count of the times it is used
28 stored in the LABEL_NUSES internal field, and each JUMP_INSN
29 has one label that it refers to stored in the
30 JUMP_LABEL internal field. With this we can detect labels that
31 become unused because of the deletion of all the jumps that
32 formerly used them. The JUMP_LABEL info is sometimes looked
35 The subroutines redirect_jump and invert_jump are used
36 from other passes as well. */
40 #include "coretypes.h"
45 #include "hard-reg-set.h"
47 #include "insn-config.h"
48 #include "insn-attr.h"
54 #include "diagnostic.h"
59 #include "tree-pass.h"
62 /* Optimize jump y; x: ... y: jumpif... x?
63 Don't know if it is worth bothering with. */
64 /* Optimize two cases of conditional jump to conditional jump?
65 This can never delete any instruction or make anything dead,
66 or even change what is live at any point.
67 So perhaps let combiner do it. */
69 static void init_label_info (rtx
);
70 static void mark_all_labels (rtx
);
71 static void delete_computation (rtx
);
72 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
73 static int invert_exp_1 (rtx
, rtx
);
74 static int returnjump_p_1 (rtx
*, void *);
75 static void delete_prior_computation (rtx
, rtx
);
77 /* Alternate entry into the jump optimizer. This entry point only rebuilds
78 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
81 rebuild_jump_labels (rtx f
)
85 timevar_push (TV_REBUILD_JUMP
);
89 /* Keep track of labels used from static data; we don't track them
90 closely enough to delete them here, so make sure their reference
91 count doesn't drop to zero. */
93 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
94 if (LABEL_P (XEXP (insn
, 0)))
95 LABEL_NUSES (XEXP (insn
, 0))++;
96 timevar_pop (TV_REBUILD_JUMP
);
99 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
100 non-fallthru insn. This is not generally true, as multiple barriers
101 may have crept in, or the BARRIER may be separated from the last
102 real insn by one or more NOTEs.
104 This simple pass moves barriers and removes duplicates so that the
108 cleanup_barriers (void)
110 rtx insn
, next
, prev
;
111 for (insn
= get_insns (); insn
; insn
= next
)
113 next
= NEXT_INSN (insn
);
114 if (BARRIER_P (insn
))
116 prev
= prev_nonnote_insn (insn
);
117 if (BARRIER_P (prev
))
119 else if (prev
!= PREV_INSN (insn
))
120 reorder_insns (insn
, insn
, prev
);
125 struct tree_opt_pass pass_cleanup_barriers
=
127 "barriers", /* name */
129 cleanup_barriers
, /* execute */
132 0, /* static_pass_number */
134 0, /* properties_required */
135 0, /* properties_provided */
136 0, /* properties_destroyed */
137 0, /* todo_flags_start */
138 TODO_dump_func
, /* todo_flags_finish */
143 purge_line_number_notes (void)
147 /* Delete extraneous line number notes.
148 Note that two consecutive notes for different lines are not really
149 extraneous. There should be some indication where that line belonged,
150 even if it became empty. */
152 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
155 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
156 /* Any previous line note was for the prologue; gdb wants a new
157 note after the prologue even if it is for the same line. */
158 last_note
= NULL_RTX
;
159 else if (NOTE_LINE_NUMBER (insn
) >= 0)
161 /* Delete this note if it is identical to previous note. */
163 #ifdef USE_MAPPED_LOCATION
164 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last_note
)
166 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last_note
)
167 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last_note
)
171 delete_related_insns (insn
);
180 struct tree_opt_pass pass_purge_lineno_notes
=
182 "elnotes", /* name */
184 purge_line_number_notes
, /* execute */
187 0, /* static_pass_number */
189 0, /* properties_required */
190 0, /* properties_provided */
191 0, /* properties_destroyed */
192 0, /* todo_flags_start */
193 TODO_dump_func
, /* todo_flags_finish */
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
199 notes whose labels don't occur in the insn any more. Returns the
200 largest INSN_UID found. */
202 init_label_info (rtx f
)
206 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
208 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
209 else if (JUMP_P (insn
))
210 JUMP_LABEL (insn
) = 0;
211 else if (NONJUMP_INSN_P (insn
) || CALL_P (insn
))
215 for (note
= REG_NOTES (insn
); note
; note
= next
)
217 next
= XEXP (note
, 1);
218 if (REG_NOTE_KIND (note
) == REG_LABEL
219 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
220 remove_note (insn
, note
);
225 /* Mark the label each jump jumps to.
226 Combine consecutive labels, and count uses of labels. */
229 mark_all_labels (rtx f
)
233 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
236 mark_jump_label (PATTERN (insn
), insn
, 0);
237 if (! INSN_DELETED_P (insn
) && JUMP_P (insn
))
239 /* When we know the LABEL_REF contained in a REG used in
240 an indirect jump, we'll have a REG_LABEL note so that
241 flow can tell where it's going. */
242 if (JUMP_LABEL (insn
) == 0)
244 rtx label_note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
247 /* But a LABEL_REF around the REG_LABEL note, so
248 that we can canonicalize it. */
249 rtx label_ref
= gen_rtx_LABEL_REF (Pmode
,
250 XEXP (label_note
, 0));
252 mark_jump_label (label_ref
, insn
, 0);
253 XEXP (label_note
, 0) = XEXP (label_ref
, 0);
254 JUMP_LABEL (insn
) = XEXP (label_note
, 0);
261 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
262 notes between START and END out before START. START and END may be such
263 notes. Returns the values of the new starting and ending insns, which
264 may be different if the original ones were such notes.
265 Return true if there were only such notes and no real instructions. */
268 squeeze_notes (rtx
* startp
, rtx
* endp
)
276 rtx past_end
= NEXT_INSN (end
);
278 for (insn
= start
; insn
!= past_end
; insn
= next
)
280 next
= NEXT_INSN (insn
);
282 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
283 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
284 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
285 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
))
287 /* BLOCK_BEG or BLOCK_END notes only exist in the `final' pass. */
288 gcc_assert (NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BLOCK_BEG
289 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BLOCK_END
);
295 rtx prev
= PREV_INSN (insn
);
296 PREV_INSN (insn
) = PREV_INSN (start
);
297 NEXT_INSN (insn
) = start
;
298 NEXT_INSN (PREV_INSN (insn
)) = insn
;
299 PREV_INSN (NEXT_INSN (insn
)) = insn
;
300 NEXT_INSN (prev
) = next
;
301 PREV_INSN (next
) = prev
;
308 /* There were no real instructions. */
309 if (start
== past_end
)
319 /* Return the label before INSN, or put a new label there. */
322 get_label_before (rtx insn
)
326 /* Find an existing label at this point
327 or make a new one if there is none. */
328 label
= prev_nonnote_insn (insn
);
330 if (label
== 0 || !LABEL_P (label
))
332 rtx prev
= PREV_INSN (insn
);
334 label
= gen_label_rtx ();
335 emit_label_after (label
, prev
);
336 LABEL_NUSES (label
) = 0;
341 /* Return the label after INSN, or put a new label there. */
344 get_label_after (rtx insn
)
348 /* Find an existing label at this point
349 or make a new one if there is none. */
350 label
= next_nonnote_insn (insn
);
352 if (label
== 0 || !LABEL_P (label
))
354 label
= gen_label_rtx ();
355 emit_label_after (label
, insn
);
356 LABEL_NUSES (label
) = 0;
361 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
362 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
363 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
364 know whether it's source is floating point or integer comparison. Machine
365 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
366 to help this function avoid overhead in these cases. */
368 reversed_comparison_code_parts (enum rtx_code code
, rtx arg0
, rtx arg1
, rtx insn
)
370 enum machine_mode mode
;
372 /* If this is not actually a comparison, we can't reverse it. */
373 if (GET_RTX_CLASS (code
) != RTX_COMPARE
374 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
377 mode
= GET_MODE (arg0
);
378 if (mode
== VOIDmode
)
379 mode
= GET_MODE (arg1
);
381 /* First see if machine description supplies us way to reverse the
382 comparison. Give it priority over everything else to allow
383 machine description to do tricks. */
384 if (GET_MODE_CLASS (mode
) == MODE_CC
385 && REVERSIBLE_CC_MODE (mode
))
387 #ifdef REVERSE_CONDITION
388 return REVERSE_CONDITION (code
, mode
);
390 return reverse_condition (code
);
393 /* Try a few special cases based on the comparison code. */
402 /* It is always safe to reverse EQ and NE, even for the floating
403 point. Similarly the unsigned comparisons are never used for
404 floating point so we can reverse them in the default way. */
405 return reverse_condition (code
);
410 /* In case we already see unordered comparison, we can be sure to
411 be dealing with floating point so we don't need any more tests. */
412 return reverse_condition_maybe_unordered (code
);
417 /* We don't have safe way to reverse these yet. */
423 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
426 /* Try to search for the comparison to determine the real mode.
427 This code is expensive, but with sane machine description it
428 will be never used, since REVERSIBLE_CC_MODE will return true
433 for (prev
= prev_nonnote_insn (insn
);
434 prev
!= 0 && !LABEL_P (prev
);
435 prev
= prev_nonnote_insn (prev
))
437 rtx set
= set_of (arg0
, prev
);
438 if (set
&& GET_CODE (set
) == SET
439 && rtx_equal_p (SET_DEST (set
), arg0
))
441 rtx src
= SET_SRC (set
);
443 if (GET_CODE (src
) == COMPARE
)
445 rtx comparison
= src
;
446 arg0
= XEXP (src
, 0);
447 mode
= GET_MODE (arg0
);
448 if (mode
== VOIDmode
)
449 mode
= GET_MODE (XEXP (comparison
, 1));
452 /* We can get past reg-reg moves. This may be useful for model
453 of i387 comparisons that first move flag registers around. */
460 /* If register is clobbered in some ununderstandable way,
467 /* Test for an integer condition, or a floating-point comparison
468 in which NaNs can be ignored. */
469 if (GET_CODE (arg0
) == CONST_INT
470 || (GET_MODE (arg0
) != VOIDmode
471 && GET_MODE_CLASS (mode
) != MODE_CC
472 && !HONOR_NANS (mode
)))
473 return reverse_condition (code
);
478 /* A wrapper around the previous function to take COMPARISON as rtx
479 expression. This simplifies many callers. */
481 reversed_comparison_code (rtx comparison
, rtx insn
)
483 if (!COMPARISON_P (comparison
))
485 return reversed_comparison_code_parts (GET_CODE (comparison
),
486 XEXP (comparison
, 0),
487 XEXP (comparison
, 1), insn
);
490 /* Return comparison with reversed code of EXP.
491 Return NULL_RTX in case we fail to do the reversal. */
493 reversed_comparison (rtx exp
, enum machine_mode mode
)
495 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
496 if (reversed_code
== UNKNOWN
)
499 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
500 XEXP (exp
, 0), XEXP (exp
, 1));
504 /* Given an rtx-code for a comparison, return the code for the negated
505 comparison. If no such code exists, return UNKNOWN.
507 WATCH OUT! reverse_condition is not safe to use on a jump that might
508 be acting on the results of an IEEE floating point comparison, because
509 of the special treatment of non-signaling nans in comparisons.
510 Use reversed_comparison_code instead. */
513 reverse_condition (enum rtx_code code
)
555 /* Similar, but we're allowed to generate unordered comparisons, which
556 makes it safe for IEEE floating-point. Of course, we have to recognize
557 that the target will support them too... */
560 reverse_condition_maybe_unordered (enum rtx_code code
)
598 /* Similar, but return the code when two operands of a comparison are swapped.
599 This IS safe for IEEE floating-point. */
602 swap_condition (enum rtx_code code
)
644 /* Given a comparison CODE, return the corresponding unsigned comparison.
645 If CODE is an equality comparison or already an unsigned comparison,
649 unsigned_condition (enum rtx_code code
)
675 /* Similarly, return the signed version of a comparison. */
678 signed_condition (enum rtx_code code
)
704 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
705 truth of CODE1 implies the truth of CODE2. */
708 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
710 /* UNKNOWN comparison codes can happen as a result of trying to revert
712 They can't match anything, so we have to reject them here. */
713 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
722 if (code2
== UNLE
|| code2
== UNGE
)
727 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
733 if (code2
== UNLE
|| code2
== NE
)
738 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
743 if (code2
== UNGE
|| code2
== NE
)
748 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
754 if (code2
== ORDERED
)
759 if (code2
== NE
|| code2
== ORDERED
)
764 if (code2
== LEU
|| code2
== NE
)
769 if (code2
== GEU
|| code2
== NE
)
774 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
775 || code2
== UNGE
|| code2
== UNGT
)
786 /* Return 1 if INSN is an unconditional jump and nothing else. */
789 simplejump_p (rtx insn
)
791 return (JUMP_P (insn
)
792 && GET_CODE (PATTERN (insn
)) == SET
793 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
794 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
797 /* Return nonzero if INSN is a (possibly) conditional jump
800 Use of this function is deprecated, since we need to support combined
801 branch and compare insns. Use any_condjump_p instead whenever possible. */
804 condjump_p (rtx insn
)
806 rtx x
= PATTERN (insn
);
808 if (GET_CODE (x
) != SET
809 || GET_CODE (SET_DEST (x
)) != PC
)
813 if (GET_CODE (x
) == LABEL_REF
)
816 return (GET_CODE (x
) == IF_THEN_ELSE
817 && ((GET_CODE (XEXP (x
, 2)) == PC
818 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
819 || GET_CODE (XEXP (x
, 1)) == RETURN
))
820 || (GET_CODE (XEXP (x
, 1)) == PC
821 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
822 || GET_CODE (XEXP (x
, 2)) == RETURN
))));
825 /* Return nonzero if INSN is a (possibly) conditional jump inside a
828 Use this function is deprecated, since we need to support combined
829 branch and compare insns. Use any_condjump_p instead whenever possible. */
832 condjump_in_parallel_p (rtx insn
)
834 rtx x
= PATTERN (insn
);
836 if (GET_CODE (x
) != PARALLEL
)
839 x
= XVECEXP (x
, 0, 0);
841 if (GET_CODE (x
) != SET
)
843 if (GET_CODE (SET_DEST (x
)) != PC
)
845 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
847 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
849 if (XEXP (SET_SRC (x
), 2) == pc_rtx
850 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
851 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
853 if (XEXP (SET_SRC (x
), 1) == pc_rtx
854 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
855 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
860 /* Return set of PC, otherwise NULL. */
868 pat
= PATTERN (insn
);
870 /* The set is allowed to appear either as the insn pattern or
871 the first set in a PARALLEL. */
872 if (GET_CODE (pat
) == PARALLEL
)
873 pat
= XVECEXP (pat
, 0, 0);
874 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
880 /* Return true when insn is an unconditional direct jump,
881 possibly bundled inside a PARALLEL. */
884 any_uncondjump_p (rtx insn
)
886 rtx x
= pc_set (insn
);
889 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
891 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
896 /* Return true when insn is a conditional jump. This function works for
897 instructions containing PC sets in PARALLELs. The instruction may have
898 various other effects so before removing the jump you must verify
901 Note that unlike condjump_p it returns false for unconditional jumps. */
904 any_condjump_p (rtx insn
)
906 rtx x
= pc_set (insn
);
911 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
914 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
915 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
917 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
))
918 || (a
== PC
&& (b
== LABEL_REF
|| b
== RETURN
)));
921 /* Return the label of a conditional jump. */
924 condjump_label (rtx insn
)
926 rtx x
= pc_set (insn
);
931 if (GET_CODE (x
) == LABEL_REF
)
933 if (GET_CODE (x
) != IF_THEN_ELSE
)
935 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
937 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
942 /* Return true if INSN is a (possibly conditional) return insn. */
945 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
949 return x
&& (GET_CODE (x
) == RETURN
950 || (GET_CODE (x
) == SET
&& SET_IS_RETURN_P (x
)));
954 returnjump_p (rtx insn
)
958 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
961 /* Return true if INSN is a jump that only transfers control and
965 onlyjump_p (rtx insn
)
972 set
= single_set (insn
);
975 if (GET_CODE (SET_DEST (set
)) != PC
)
977 if (side_effects_p (SET_SRC (set
)))
985 /* Return nonzero if X is an RTX that only sets the condition codes
986 and has no side effects. */
989 only_sets_cc0_p (rtx x
)
997 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1000 /* Return 1 if X is an RTX that does nothing but set the condition codes
1001 and CLOBBER or USE registers.
1002 Return -1 if X does explicitly set the condition codes,
1003 but also does other things. */
1014 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1016 if (GET_CODE (x
) == PARALLEL
)
1020 int other_things
= 0;
1021 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1023 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1024 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1026 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1029 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1035 /* Follow any unconditional jump at LABEL;
1036 return the ultimate label reached by any such chain of jumps.
1037 Return null if the chain ultimately leads to a return instruction.
1038 If LABEL is not followed by a jump, return LABEL.
1039 If the chain loops or we can't find end, return LABEL,
1040 since that tells caller to avoid changing the insn.
1042 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
1043 a USE or CLOBBER. */
1046 follow_jumps (rtx label
)
1055 && (insn
= next_active_insn (value
)) != 0
1057 && ((JUMP_LABEL (insn
) != 0 && any_uncondjump_p (insn
)
1058 && onlyjump_p (insn
))
1059 || GET_CODE (PATTERN (insn
)) == RETURN
)
1060 && (next
= NEXT_INSN (insn
))
1061 && BARRIER_P (next
));
1064 /* Don't chain through the insn that jumps into a loop
1065 from outside the loop,
1066 since that would create multiple loop entry jumps
1067 and prevent loop optimization. */
1069 if (!reload_completed
)
1070 for (tem
= value
; tem
!= insn
; tem
= NEXT_INSN (tem
))
1072 && (NOTE_LINE_NUMBER (tem
) == NOTE_INSN_LOOP_BEG
1073 /* ??? Optional. Disables some optimizations, but makes
1074 gcov output more accurate with -O. */
1075 || (flag_test_coverage
&& NOTE_LINE_NUMBER (tem
) > 0)))
1078 /* If we have found a cycle, make the insn jump to itself. */
1079 if (JUMP_LABEL (insn
) == label
)
1082 tem
= next_active_insn (JUMP_LABEL (insn
));
1083 if (tem
&& (GET_CODE (PATTERN (tem
)) == ADDR_VEC
1084 || GET_CODE (PATTERN (tem
)) == ADDR_DIFF_VEC
))
1087 value
= JUMP_LABEL (insn
);
1095 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1096 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1097 in INSN, then store one of them in JUMP_LABEL (INSN).
1098 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1099 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1100 Also, when there are consecutive labels, canonicalize on the last of them.
1102 Note that two labels separated by a loop-beginning note
1103 must be kept distinct if we have not yet done loop-optimization,
1104 because the gap between them is where loop-optimize
1105 will want to move invariant code to. CROSS_JUMP tells us
1106 that loop-optimization is done with. */
1109 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
1111 RTX_CODE code
= GET_CODE (x
);
1134 /* If this is a constant-pool reference, see if it is a label. */
1135 if (CONSTANT_POOL_ADDRESS_P (x
))
1136 mark_jump_label (get_pool_constant (x
), insn
, in_mem
);
1141 rtx label
= XEXP (x
, 0);
1143 /* Ignore remaining references to unreachable labels that
1144 have been deleted. */
1146 && NOTE_LINE_NUMBER (label
) == NOTE_INSN_DELETED_LABEL
)
1149 gcc_assert (LABEL_P (label
));
1151 /* Ignore references to labels of containing functions. */
1152 if (LABEL_REF_NONLOCAL_P (x
))
1155 XEXP (x
, 0) = label
;
1156 if (! insn
|| ! INSN_DELETED_P (insn
))
1157 ++LABEL_NUSES (label
);
1162 JUMP_LABEL (insn
) = label
;
1165 /* Add a REG_LABEL note for LABEL unless there already
1166 is one. All uses of a label, except for labels
1167 that are the targets of jumps, must have a
1169 if (! find_reg_note (insn
, REG_LABEL
, label
))
1170 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, label
,
1177 /* Do walk the labels in a vector, but not the first operand of an
1178 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1181 if (! INSN_DELETED_P (insn
))
1183 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1185 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1186 mark_jump_label (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
);
1194 fmt
= GET_RTX_FORMAT (code
);
1195 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1198 mark_jump_label (XEXP (x
, i
), insn
, in_mem
);
1199 else if (fmt
[i
] == 'E')
1202 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1203 mark_jump_label (XVECEXP (x
, i
, j
), insn
, in_mem
);
1208 /* If all INSN does is set the pc, delete it,
1209 and delete the insn that set the condition codes for it
1210 if that's what the previous thing was. */
1213 delete_jump (rtx insn
)
1215 rtx set
= single_set (insn
);
1217 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
1218 delete_computation (insn
);
1221 /* Recursively delete prior insns that compute the value (used only by INSN
1222 which the caller is deleting) stored in the register mentioned by NOTE
1223 which is a REG_DEAD note associated with INSN. */
1226 delete_prior_computation (rtx note
, rtx insn
)
1229 rtx reg
= XEXP (note
, 0);
1231 for (our_prev
= prev_nonnote_insn (insn
);
1232 our_prev
&& (NONJUMP_INSN_P (our_prev
)
1233 || CALL_P (our_prev
));
1234 our_prev
= prev_nonnote_insn (our_prev
))
1236 rtx pat
= PATTERN (our_prev
);
1238 /* If we reach a CALL which is not calling a const function
1239 or the callee pops the arguments, then give up. */
1240 if (CALL_P (our_prev
)
1241 && (! CONST_OR_PURE_CALL_P (our_prev
)
1242 || GET_CODE (pat
) != SET
|| GET_CODE (SET_SRC (pat
)) != CALL
))
1245 /* If we reach a SEQUENCE, it is too complex to try to
1246 do anything with it, so give up. We can be run during
1247 and after reorg, so SEQUENCE rtl can legitimately show
1249 if (GET_CODE (pat
) == SEQUENCE
)
1252 if (GET_CODE (pat
) == USE
1253 && NONJUMP_INSN_P (XEXP (pat
, 0)))
1254 /* reorg creates USEs that look like this. We leave them
1255 alone because reorg needs them for its own purposes. */
1258 if (reg_set_p (reg
, pat
))
1260 if (side_effects_p (pat
) && !CALL_P (our_prev
))
1263 if (GET_CODE (pat
) == PARALLEL
)
1265 /* If we find a SET of something else, we can't
1270 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1272 rtx part
= XVECEXP (pat
, 0, i
);
1274 if (GET_CODE (part
) == SET
1275 && SET_DEST (part
) != reg
)
1279 if (i
== XVECLEN (pat
, 0))
1280 delete_computation (our_prev
);
1282 else if (GET_CODE (pat
) == SET
1283 && REG_P (SET_DEST (pat
)))
1285 int dest_regno
= REGNO (SET_DEST (pat
));
1288 + (dest_regno
< FIRST_PSEUDO_REGISTER
1289 ? hard_regno_nregs
[dest_regno
]
1290 [GET_MODE (SET_DEST (pat
))] : 1));
1291 int regno
= REGNO (reg
);
1294 + (regno
< FIRST_PSEUDO_REGISTER
1295 ? hard_regno_nregs
[regno
][GET_MODE (reg
)] : 1));
1297 if (dest_regno
>= regno
1298 && dest_endregno
<= endregno
)
1299 delete_computation (our_prev
);
1301 /* We may have a multi-word hard register and some, but not
1302 all, of the words of the register are needed in subsequent
1303 insns. Write REG_UNUSED notes for those parts that were not
1305 else if (dest_regno
<= regno
1306 && dest_endregno
>= endregno
)
1310 REG_NOTES (our_prev
)
1311 = gen_rtx_EXPR_LIST (REG_UNUSED
, reg
,
1312 REG_NOTES (our_prev
));
1314 for (i
= dest_regno
; i
< dest_endregno
; i
++)
1315 if (! find_regno_note (our_prev
, REG_UNUSED
, i
))
1318 if (i
== dest_endregno
)
1319 delete_computation (our_prev
);
1326 /* If PAT references the register that dies here, it is an
1327 additional use. Hence any prior SET isn't dead. However, this
1328 insn becomes the new place for the REG_DEAD note. */
1329 if (reg_overlap_mentioned_p (reg
, pat
))
1331 XEXP (note
, 1) = REG_NOTES (our_prev
);
1332 REG_NOTES (our_prev
) = note
;
1338 /* Delete INSN and recursively delete insns that compute values used only
1339 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1340 If we are running before flow.c, we need do nothing since flow.c will
1341 delete dead code. We also can't know if the registers being used are
1342 dead or not at this point.
1344 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1345 nothing other than set a register that dies in this insn, we can delete
1348 On machines with CC0, if CC0 is used in this insn, we may be able to
1349 delete the insn that set it. */
1352 delete_computation (rtx insn
)
1357 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1359 rtx prev
= prev_nonnote_insn (insn
);
1360 /* We assume that at this stage
1361 CC's are always set explicitly
1362 and always immediately before the jump that
1363 will use them. So if the previous insn
1364 exists to set the CC's, delete it
1365 (unless it performs auto-increments, etc.). */
1366 if (prev
&& NONJUMP_INSN_P (prev
)
1367 && sets_cc0_p (PATTERN (prev
)))
1369 if (sets_cc0_p (PATTERN (prev
)) > 0
1370 && ! side_effects_p (PATTERN (prev
)))
1371 delete_computation (prev
);
1373 /* Otherwise, show that cc0 won't be used. */
1374 REG_NOTES (prev
) = gen_rtx_EXPR_LIST (REG_UNUSED
,
1375 cc0_rtx
, REG_NOTES (prev
));
1380 for (note
= REG_NOTES (insn
); note
; note
= next
)
1382 next
= XEXP (note
, 1);
1384 if (REG_NOTE_KIND (note
) != REG_DEAD
1385 /* Verify that the REG_NOTE is legitimate. */
1386 || !REG_P (XEXP (note
, 0)))
1389 delete_prior_computation (note
, insn
);
1392 delete_related_insns (insn
);
1395 /* Delete insn INSN from the chain of insns and update label ref counts
1396 and delete insns now unreachable.
1398 Returns the first insn after INSN that was not deleted.
1400 Usage of this instruction is deprecated. Use delete_insn instead and
1401 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1404 delete_related_insns (rtx insn
)
1406 int was_code_label
= (LABEL_P (insn
));
1408 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1410 while (next
&& INSN_DELETED_P (next
))
1411 next
= NEXT_INSN (next
);
1413 /* This insn is already deleted => return first following nondeleted. */
1414 if (INSN_DELETED_P (insn
))
1419 /* If instruction is followed by a barrier,
1420 delete the barrier too. */
1422 if (next
!= 0 && BARRIER_P (next
))
1425 /* If deleting a jump, decrement the count of the label,
1426 and delete the label if it is now unused. */
1428 if (JUMP_P (insn
) && JUMP_LABEL (insn
))
1430 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1432 if (LABEL_NUSES (lab
) == 0)
1434 /* This can delete NEXT or PREV,
1435 either directly if NEXT is JUMP_LABEL (INSN),
1436 or indirectly through more levels of jumps. */
1437 delete_related_insns (lab
);
1439 /* I feel a little doubtful about this loop,
1440 but I see no clean and sure alternative way
1441 to find the first insn after INSN that is not now deleted.
1442 I hope this works. */
1443 while (next
&& INSN_DELETED_P (next
))
1444 next
= NEXT_INSN (next
);
1447 else if (tablejump_p (insn
, NULL
, &lab_next
))
1449 /* If we're deleting the tablejump, delete the dispatch table.
1450 We may not be able to kill the label immediately preceding
1451 just yet, as it might be referenced in code leading up to
1453 delete_related_insns (lab_next
);
1457 /* Likewise if we're deleting a dispatch table. */
1460 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
1461 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
1463 rtx pat
= PATTERN (insn
);
1464 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1465 int len
= XVECLEN (pat
, diff_vec_p
);
1467 for (i
= 0; i
< len
; i
++)
1468 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1469 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1470 while (next
&& INSN_DELETED_P (next
))
1471 next
= NEXT_INSN (next
);
1475 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1476 if (NONJUMP_INSN_P (insn
) || CALL_P (insn
))
1477 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1478 if (REG_NOTE_KIND (note
) == REG_LABEL
1479 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1480 && LABEL_P (XEXP (note
, 0)))
1481 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1482 delete_related_insns (XEXP (note
, 0));
1484 while (prev
&& (INSN_DELETED_P (prev
) || NOTE_P (prev
)))
1485 prev
= PREV_INSN (prev
);
1487 /* If INSN was a label and a dispatch table follows it,
1488 delete the dispatch table. The tablejump must have gone already.
1489 It isn't useful to fall through into a table. */
1492 && NEXT_INSN (insn
) != 0
1493 && JUMP_P (NEXT_INSN (insn
))
1494 && (GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_VEC
1495 || GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_DIFF_VEC
))
1496 next
= delete_related_insns (NEXT_INSN (insn
));
1498 /* If INSN was a label, delete insns following it if now unreachable. */
1500 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1505 code
= GET_CODE (next
);
1507 && NOTE_LINE_NUMBER (next
) != NOTE_INSN_FUNCTION_END
)
1508 next
= NEXT_INSN (next
);
1509 /* Keep going past other deleted labels to delete what follows. */
1510 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1511 next
= NEXT_INSN (next
);
1512 else if (code
== BARRIER
|| INSN_P (next
))
1513 /* Note: if this deletes a jump, it can cause more
1514 deletion of unreachable code, after a different label.
1515 As long as the value from this recursive call is correct,
1516 this invocation functions correctly. */
1517 next
= delete_related_insns (next
);
1526 /* Delete a range of insns from FROM to TO, inclusive.
1527 This is for the sake of peephole optimization, so assume
1528 that whatever these insns do will still be done by a new
1529 peephole insn that will replace them. */
1532 delete_for_peephole (rtx from
, rtx to
)
1538 rtx next
= NEXT_INSN (insn
);
1539 rtx prev
= PREV_INSN (insn
);
1543 INSN_DELETED_P (insn
) = 1;
1545 /* Patch this insn out of the chain. */
1546 /* We don't do this all at once, because we
1547 must preserve all NOTEs. */
1549 NEXT_INSN (prev
) = next
;
1552 PREV_INSN (next
) = prev
;
1560 /* Note that if TO is an unconditional jump
1561 we *do not* delete the BARRIER that follows,
1562 since the peephole that replaces this sequence
1563 is also an unconditional jump in that case. */
1566 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1567 NLABEL as a return. Accrue modifications into the change group. */
1570 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1573 RTX_CODE code
= GET_CODE (x
);
1577 if (code
== LABEL_REF
)
1579 if (XEXP (x
, 0) == olabel
)
1583 n
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1585 n
= gen_rtx_RETURN (VOIDmode
);
1587 validate_change (insn
, loc
, n
, 1);
1591 else if (code
== RETURN
&& olabel
== 0)
1594 x
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1596 x
= gen_rtx_RETURN (VOIDmode
);
1597 if (loc
== &PATTERN (insn
))
1598 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1599 validate_change (insn
, loc
, x
, 1);
1603 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
1604 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1605 && XEXP (SET_SRC (x
), 0) == olabel
)
1607 validate_change (insn
, loc
, gen_rtx_RETURN (VOIDmode
), 1);
1611 fmt
= GET_RTX_FORMAT (code
);
1612 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1615 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1616 else if (fmt
[i
] == 'E')
1619 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1620 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1625 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1626 the modifications into the change group. Return false if we did
1627 not see how to do that. */
1630 redirect_jump_1 (rtx jump
, rtx nlabel
)
1632 int ochanges
= num_validated_changes ();
1635 if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1636 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1638 loc
= &PATTERN (jump
);
1640 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1641 return num_validated_changes () > ochanges
;
1644 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1645 jump target label is unused as a result, it and the code following
1648 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1651 The return value will be 1 if the change was made, 0 if it wasn't
1652 (this can only occur for NLABEL == 0). */
1655 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1657 rtx olabel
= JUMP_LABEL (jump
);
1659 if (nlabel
== olabel
)
1662 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1665 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1669 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1670 NLABEL in JUMP. If DELETE_UNUSED is non-negative, copy a
1671 NOTE_INSN_FUNCTION_END found after OLABEL to the place after NLABEL.
1672 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1673 count has dropped to zero. */
1675 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1680 JUMP_LABEL (jump
) = nlabel
;
1682 ++LABEL_NUSES (nlabel
);
1684 /* Update labels in any REG_EQUAL note. */
1685 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1687 if (!nlabel
|| (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1688 remove_note (jump
, note
);
1691 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1692 confirm_change_group ();
1696 /* If we're eliding the jump over exception cleanups at the end of a
1697 function, move the function end note so that -Wreturn-type works. */
1698 if (olabel
&& nlabel
1699 && NEXT_INSN (olabel
)
1700 && NOTE_P (NEXT_INSN (olabel
))
1701 && NOTE_LINE_NUMBER (NEXT_INSN (olabel
)) == NOTE_INSN_FUNCTION_END
1702 && delete_unused
>= 0)
1703 emit_note_after (NOTE_INSN_FUNCTION_END
, nlabel
);
1705 if (olabel
&& --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1706 /* Undefined labels will remain outside the insn stream. */
1707 && INSN_UID (olabel
))
1708 delete_related_insns (olabel
);
1710 invert_br_probabilities (jump
);
1713 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1714 modifications into the change group. Return nonzero for success. */
1716 invert_exp_1 (rtx x
, rtx insn
)
1718 RTX_CODE code
= GET_CODE (x
);
1720 if (code
== IF_THEN_ELSE
)
1722 rtx comp
= XEXP (x
, 0);
1724 enum rtx_code reversed_code
;
1726 /* We can do this in two ways: The preferable way, which can only
1727 be done if this is not an integer comparison, is to reverse
1728 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1729 of the IF_THEN_ELSE. If we can't do either, fail. */
1731 reversed_code
= reversed_comparison_code (comp
, insn
);
1733 if (reversed_code
!= UNKNOWN
)
1735 validate_change (insn
, &XEXP (x
, 0),
1736 gen_rtx_fmt_ee (reversed_code
,
1737 GET_MODE (comp
), XEXP (comp
, 0),
1744 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1745 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1752 /* Invert the condition of the jump JUMP, and make it jump to label
1753 NLABEL instead of where it jumps now. Accrue changes into the
1754 change group. Return false if we didn't see how to perform the
1755 inversion and redirection. */
1758 invert_jump_1 (rtx jump
, rtx nlabel
)
1760 rtx x
= pc_set (jump
);
1764 ochanges
= num_validated_changes ();
1766 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1769 if (num_validated_changes () == ochanges
)
1772 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1773 in Pmode, so checking this is not merely an optimization. */
1774 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1777 /* Invert the condition of the jump JUMP, and make it jump to label
1778 NLABEL instead of where it jumps now. Return true if successful. */
1781 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1783 rtx olabel
= JUMP_LABEL (jump
);
1785 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1787 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1795 /* Like rtx_equal_p except that it considers two REGs as equal
1796 if they renumber to the same value and considers two commutative
1797 operations to be the same if the order of the operands has been
1801 rtx_renumbered_equal_p (rtx x
, rtx y
)
1804 enum rtx_code code
= GET_CODE (x
);
1810 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1811 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1812 && REG_P (SUBREG_REG (y
)))))
1814 int reg_x
= -1, reg_y
= -1;
1815 int byte_x
= 0, byte_y
= 0;
1817 if (GET_MODE (x
) != GET_MODE (y
))
1820 /* If we haven't done any renumbering, don't
1821 make any assumptions. */
1822 if (reg_renumber
== 0)
1823 return rtx_equal_p (x
, y
);
1827 reg_x
= REGNO (SUBREG_REG (x
));
1828 byte_x
= SUBREG_BYTE (x
);
1830 if (reg_renumber
[reg_x
] >= 0)
1832 reg_x
= subreg_regno_offset (reg_renumber
[reg_x
],
1833 GET_MODE (SUBREG_REG (x
)),
1842 if (reg_renumber
[reg_x
] >= 0)
1843 reg_x
= reg_renumber
[reg_x
];
1846 if (GET_CODE (y
) == SUBREG
)
1848 reg_y
= REGNO (SUBREG_REG (y
));
1849 byte_y
= SUBREG_BYTE (y
);
1851 if (reg_renumber
[reg_y
] >= 0)
1853 reg_y
= subreg_regno_offset (reg_renumber
[reg_y
],
1854 GET_MODE (SUBREG_REG (y
)),
1863 if (reg_renumber
[reg_y
] >= 0)
1864 reg_y
= reg_renumber
[reg_y
];
1867 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1870 /* Now we have disposed of all the cases
1871 in which different rtx codes can match. */
1872 if (code
!= GET_CODE (y
))
1886 /* We can't assume nonlocal labels have their following insns yet. */
1887 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1888 return XEXP (x
, 0) == XEXP (y
, 0);
1890 /* Two label-refs are equivalent if they point at labels
1891 in the same position in the instruction stream. */
1892 return (next_real_insn (XEXP (x
, 0))
1893 == next_real_insn (XEXP (y
, 0)));
1896 return XSTR (x
, 0) == XSTR (y
, 0);
1899 /* If we didn't match EQ equality above, they aren't the same. */
1906 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1908 if (GET_MODE (x
) != GET_MODE (y
))
1911 /* For commutative operations, the RTX match if the operand match in any
1912 order. Also handle the simple binary and unary cases without a loop. */
1913 if (targetm
.commutative_p (x
, UNKNOWN
))
1914 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1915 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1916 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1917 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1918 else if (NON_COMMUTATIVE_P (x
))
1919 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1920 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1921 else if (UNARY_P (x
))
1922 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1924 /* Compare the elements. If any pair of corresponding elements
1925 fail to match, return 0 for the whole things. */
1927 fmt
= GET_RTX_FORMAT (code
);
1928 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1934 if (XWINT (x
, i
) != XWINT (y
, i
))
1939 if (XINT (x
, i
) != XINT (y
, i
))
1944 if (XTREE (x
, i
) != XTREE (y
, i
))
1949 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1954 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1959 if (XEXP (x
, i
) != XEXP (y
, i
))
1966 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1968 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1969 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1980 /* If X is a hard register or equivalent to one or a subregister of one,
1981 return the hard register number. If X is a pseudo register that was not
1982 assigned a hard register, return the pseudo register number. Otherwise,
1983 return -1. Any rtx is valid for X. */
1990 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
1991 return reg_renumber
[REGNO (x
)];
1994 if (GET_CODE (x
) == SUBREG
)
1996 int base
= true_regnum (SUBREG_REG (x
));
1998 && base
< FIRST_PSEUDO_REGISTER
1999 && subreg_offset_representable_p (REGNO (SUBREG_REG (x
)),
2000 GET_MODE (SUBREG_REG (x
)),
2001 SUBREG_BYTE (x
), GET_MODE (x
)))
2002 return base
+ subreg_regno_offset (REGNO (SUBREG_REG (x
)),
2003 GET_MODE (SUBREG_REG (x
)),
2004 SUBREG_BYTE (x
), GET_MODE (x
));
2009 /* Return regno of the register REG and handle subregs too. */
2011 reg_or_subregno (rtx reg
)
2013 if (GET_CODE (reg
) == SUBREG
)
2014 reg
= SUBREG_REG (reg
);
2015 gcc_assert (REG_P (reg
));