1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 #include "coretypes.h"
26 #include "hard-reg-set.h"
28 #include "basic-block.h"
30 #include "cfglayout.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
77 rtx insn
; /* The insn in that the induction variable occurs. */
78 rtx base_var
; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step
; /* Step of the induction variable. */
82 unsigned loc
[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
89 DEF_VEC_ALLOC_P(rtx
,heap
);
91 /* Information about accumulators to expand. */
95 rtx insn
; /* The insn in that the variable expansion occurs. */
96 rtx reg
; /* The accumulator which is expanded. */
97 VEC(rtx
,heap
) *var_expansions
; /* The copies of the accumulator which is expanded. */
98 enum rtx_code op
; /* The type of the accumulation - addition, subtraction
100 int expansion_count
; /* Count the number of expansions generated so far. */
101 int reuse_expansion
; /* The expansion we intend to reuse to expand
102 the accumulator. If REUSE_EXPANSION is 0 reuse
103 the original accumulator. Else use
104 var_expansions[REUSE_EXPANSION - 1]. */
107 /* Information about optimization applied in
108 the unrolled loop. */
112 htab_t insns_to_split
; /* A hashtable of insns to split. */
113 htab_t insns_with_var_to_expand
; /* A hashtable of insns with accumulators
115 unsigned first_new_block
; /* The first basic block that was
117 basic_block loop_exit
; /* The loop exit basic block. */
118 basic_block loop_preheader
; /* The loop preheader basic block. */
121 static void decide_unrolling_and_peeling (struct loops
*, int);
122 static void peel_loops_completely (struct loops
*, int);
123 static void decide_peel_simple (struct loop
*, int);
124 static void decide_peel_once_rolling (struct loop
*, int);
125 static void decide_peel_completely (struct loop
*, int);
126 static void decide_unroll_stupid (struct loop
*, int);
127 static void decide_unroll_constant_iterations (struct loop
*, int);
128 static void decide_unroll_runtime_iterations (struct loop
*, int);
129 static void peel_loop_simple (struct loops
*, struct loop
*);
130 static void peel_loop_completely (struct loops
*, struct loop
*);
131 static void unroll_loop_stupid (struct loops
*, struct loop
*);
132 static void unroll_loop_constant_iterations (struct loops
*, struct loop
*);
133 static void unroll_loop_runtime_iterations (struct loops
*, struct loop
*);
134 static struct opt_info
*analyze_insns_in_loop (struct loop
*);
135 static void opt_info_start_duplication (struct opt_info
*);
136 static void apply_opt_in_copies (struct opt_info
*, unsigned, bool, bool);
137 static void free_opt_info (struct opt_info
*);
138 static struct var_to_expand
*analyze_insn_to_expand_var (struct loop
*, rtx
);
139 static bool referenced_in_one_insn_in_loop_p (struct loop
*, rtx
);
140 static struct iv_to_split
*analyze_iv_to_split_insn (rtx
);
141 static void expand_var_during_unrolling (struct var_to_expand
*, rtx
);
142 static int insert_var_expansion_initialization (void **, void *);
143 static int combine_var_copies_in_loop_exit (void **, void *);
144 static int release_var_copies (void **, void *);
145 static rtx
get_expansion (struct var_to_expand
*);
147 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
149 unroll_and_peel_loops (struct loops
*loops
, int flags
)
151 struct loop
*loop
, *next
;
154 /* First perform complete loop peeling (it is almost surely a win,
155 and affects parameters for further decision a lot). */
156 peel_loops_completely (loops
, flags
);
158 /* Now decide rest of unrolling and peeling. */
159 decide_unrolling_and_peeling (loops
, flags
);
161 loop
= loops
->tree_root
;
165 /* Scan the loops, inner ones first. */
166 while (loop
!= loops
->tree_root
)
178 /* And perform the appropriate transformations. */
179 switch (loop
->lpt_decision
.decision
)
181 case LPT_PEEL_COMPLETELY
:
184 case LPT_PEEL_SIMPLE
:
185 peel_loop_simple (loops
, loop
);
187 case LPT_UNROLL_CONSTANT
:
188 unroll_loop_constant_iterations (loops
, loop
);
190 case LPT_UNROLL_RUNTIME
:
191 unroll_loop_runtime_iterations (loops
, loop
);
193 case LPT_UNROLL_STUPID
:
194 unroll_loop_stupid (loops
, loop
);
204 #ifdef ENABLE_CHECKING
205 verify_dominators (CDI_DOMINATORS
);
206 verify_loop_structure (loops
);
215 /* Check whether exit of the LOOP is at the end of loop body. */
218 loop_exit_at_end_p (struct loop
*loop
)
220 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
223 if (desc
->in_edge
->dest
!= loop
->latch
)
226 /* Check that the latch is empty. */
227 FOR_BB_INSNS (loop
->latch
, insn
)
236 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
238 peel_loops_completely (struct loops
*loops
, int flags
)
243 /* Scan the loops, the inner ones first. */
244 for (i
= loops
->num
- 1; i
> 0; i
--)
246 loop
= loops
->parray
[i
];
250 loop
->lpt_decision
.decision
= LPT_NONE
;
254 "\n;; *** Considering loop %d for complete peeling ***\n",
257 loop
->ninsns
= num_loop_insns (loop
);
259 decide_peel_once_rolling (loop
, flags
);
260 if (loop
->lpt_decision
.decision
== LPT_NONE
)
261 decide_peel_completely (loop
, flags
);
263 if (loop
->lpt_decision
.decision
== LPT_PEEL_COMPLETELY
)
265 peel_loop_completely (loops
, loop
);
266 #ifdef ENABLE_CHECKING
267 verify_dominators (CDI_DOMINATORS
);
268 verify_loop_structure (loops
);
274 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
276 decide_unrolling_and_peeling (struct loops
*loops
, int flags
)
278 struct loop
*loop
= loops
->tree_root
, *next
;
283 /* Scan the loops, inner ones first. */
284 while (loop
!= loops
->tree_root
)
295 loop
->lpt_decision
.decision
= LPT_NONE
;
298 fprintf (dump_file
, "\n;; *** Considering loop %d ***\n", loop
->num
);
300 /* Do not peel cold areas. */
301 if (!maybe_hot_bb_p (loop
->header
))
304 fprintf (dump_file
, ";; Not considering loop, cold area\n");
309 /* Can the loop be manipulated? */
310 if (!can_duplicate_loop_p (loop
))
314 ";; Not considering loop, cannot duplicate\n");
319 /* Skip non-innermost loops. */
323 fprintf (dump_file
, ";; Not considering loop, is not innermost\n");
328 loop
->ninsns
= num_loop_insns (loop
);
329 loop
->av_ninsns
= average_num_loop_insns (loop
);
331 /* Try transformations one by one in decreasing order of
334 decide_unroll_constant_iterations (loop
, flags
);
335 if (loop
->lpt_decision
.decision
== LPT_NONE
)
336 decide_unroll_runtime_iterations (loop
, flags
);
337 if (loop
->lpt_decision
.decision
== LPT_NONE
)
338 decide_unroll_stupid (loop
, flags
);
339 if (loop
->lpt_decision
.decision
== LPT_NONE
)
340 decide_peel_simple (loop
, flags
);
346 /* Decide whether the LOOP is once rolling and suitable for complete
349 decide_peel_once_rolling (struct loop
*loop
, int flags ATTRIBUTE_UNUSED
)
351 struct niter_desc
*desc
;
354 fprintf (dump_file
, "\n;; Considering peeling once rolling loop\n");
356 /* Is the loop small enough? */
357 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS
) < loop
->ninsns
)
360 fprintf (dump_file
, ";; Not considering loop, is too big\n");
364 /* Check for simple loops. */
365 desc
= get_simple_loop_desc (loop
);
367 /* Check number of iterations. */
376 ";; Unable to prove that the loop rolls exactly once\n");
382 fprintf (dump_file
, ";; Decided to peel exactly once rolling loop\n");
383 loop
->lpt_decision
.decision
= LPT_PEEL_COMPLETELY
;
386 /* Decide whether the LOOP is suitable for complete peeling. */
388 decide_peel_completely (struct loop
*loop
, int flags ATTRIBUTE_UNUSED
)
391 struct niter_desc
*desc
;
394 fprintf (dump_file
, "\n;; Considering peeling completely\n");
396 /* Skip non-innermost loops. */
400 fprintf (dump_file
, ";; Not considering loop, is not innermost\n");
404 /* Do not peel cold areas. */
405 if (!maybe_hot_bb_p (loop
->header
))
408 fprintf (dump_file
, ";; Not considering loop, cold area\n");
412 /* Can the loop be manipulated? */
413 if (!can_duplicate_loop_p (loop
))
417 ";; Not considering loop, cannot duplicate\n");
421 /* npeel = number of iterations to peel. */
422 npeel
= PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS
) / loop
->ninsns
;
423 if (npeel
> (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES
))
424 npeel
= PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES
);
426 /* Is the loop small enough? */
430 fprintf (dump_file
, ";; Not considering loop, is too big\n");
434 /* Check for simple loops. */
435 desc
= get_simple_loop_desc (loop
);
437 /* Check number of iterations. */
445 ";; Unable to prove that the loop iterates constant times\n");
449 if (desc
->niter
> npeel
- 1)
454 ";; Not peeling loop completely, rolls too much (");
455 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
, desc
->niter
);
456 fprintf (dump_file
, " iterations > %d [maximum peelings])\n", npeel
);
463 fprintf (dump_file
, ";; Decided to peel loop completely\n");
464 loop
->lpt_decision
.decision
= LPT_PEEL_COMPLETELY
;
467 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
468 completely. The transformation done:
470 for (i = 0; i < 4; i++)
482 peel_loop_completely (struct loops
*loops
, struct loop
*loop
)
485 unsigned HOST_WIDE_INT npeel
;
486 unsigned n_remove_edges
, i
;
487 edge
*remove_edges
, ein
;
488 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
489 struct opt_info
*opt_info
= NULL
;
497 wont_exit
= sbitmap_alloc (npeel
+ 1);
498 sbitmap_ones (wont_exit
);
499 RESET_BIT (wont_exit
, 0);
500 if (desc
->noloop_assumptions
)
501 RESET_BIT (wont_exit
, 1);
503 remove_edges
= xcalloc (npeel
, sizeof (edge
));
506 if (flag_split_ivs_in_unroller
)
507 opt_info
= analyze_insns_in_loop (loop
);
509 opt_info_start_duplication (opt_info
);
510 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
512 wont_exit
, desc
->out_edge
,
513 remove_edges
, &n_remove_edges
,
514 DLTHE_FLAG_UPDATE_FREQ
515 | DLTHE_FLAG_COMPLETTE_PEEL
517 ? DLTHE_RECORD_COPY_NUMBER
: 0));
524 apply_opt_in_copies (opt_info
, npeel
, false, true);
525 free_opt_info (opt_info
);
528 /* Remove the exit edges. */
529 for (i
= 0; i
< n_remove_edges
; i
++)
530 remove_path (loops
, remove_edges
[i
]);
535 free_simple_loop_desc (loop
);
537 /* Now remove the unreachable part of the last iteration and cancel
539 remove_path (loops
, ein
);
542 fprintf (dump_file
, ";; Peeled loop completely, %d times\n", (int) npeel
);
545 /* Decide whether to unroll LOOP iterating constant number of times
549 decide_unroll_constant_iterations (struct loop
*loop
, int flags
)
551 unsigned nunroll
, nunroll_by_av
, best_copies
, best_unroll
= 0, n_copies
, i
;
552 struct niter_desc
*desc
;
554 if (!(flags
& UAP_UNROLL
))
556 /* We were not asked to, just return back silently. */
562 "\n;; Considering unrolling loop with constant "
563 "number of iterations\n");
565 /* nunroll = total number of copies of the original loop body in
566 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
567 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
569 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
570 if (nunroll
> nunroll_by_av
)
571 nunroll
= nunroll_by_av
;
572 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
573 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
575 /* Skip big loops. */
579 fprintf (dump_file
, ";; Not considering loop, is too big\n");
583 /* Check for simple loops. */
584 desc
= get_simple_loop_desc (loop
);
586 /* Check number of iterations. */
587 if (!desc
->simple_p
|| !desc
->const_iter
|| desc
->assumptions
)
591 ";; Unable to prove that the loop iterates constant times\n");
595 /* Check whether the loop rolls enough to consider. */
596 if (desc
->niter
< 2 * nunroll
)
599 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
603 /* Success; now compute number of iterations to unroll. We alter
604 nunroll so that as few as possible copies of loop body are
605 necessary, while still not decreasing the number of unrollings
606 too much (at most by 1). */
607 best_copies
= 2 * nunroll
+ 10;
610 if (i
- 1 >= desc
->niter
)
613 for (; i
>= nunroll
- 1; i
--)
615 unsigned exit_mod
= desc
->niter
% (i
+ 1);
617 if (!loop_exit_at_end_p (loop
))
618 n_copies
= exit_mod
+ i
+ 1;
619 else if (exit_mod
!= (unsigned) i
620 || desc
->noloop_assumptions
!= NULL_RTX
)
621 n_copies
= exit_mod
+ i
+ 2;
625 if (n_copies
< best_copies
)
627 best_copies
= n_copies
;
633 fprintf (dump_file
, ";; max_unroll %d (%d copies, initial %d).\n",
634 best_unroll
+ 1, best_copies
, nunroll
);
636 loop
->lpt_decision
.decision
= LPT_UNROLL_CONSTANT
;
637 loop
->lpt_decision
.times
= best_unroll
;
641 ";; Decided to unroll the constant times rolling loop, %d times.\n",
642 loop
->lpt_decision
.times
);
645 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
646 times. The transformation does this:
648 for (i = 0; i < 102; i++)
665 unroll_loop_constant_iterations (struct loops
*loops
, struct loop
*loop
)
667 unsigned HOST_WIDE_INT niter
;
670 unsigned n_remove_edges
, i
;
672 unsigned max_unroll
= loop
->lpt_decision
.times
;
673 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
674 bool exit_at_end
= loop_exit_at_end_p (loop
);
675 struct opt_info
*opt_info
= NULL
;
680 /* Should not get here (such loop should be peeled instead). */
681 gcc_assert (niter
> max_unroll
+ 1);
683 exit_mod
= niter
% (max_unroll
+ 1);
685 wont_exit
= sbitmap_alloc (max_unroll
+ 1);
686 sbitmap_ones (wont_exit
);
688 remove_edges
= xcalloc (max_unroll
+ exit_mod
+ 1, sizeof (edge
));
690 if (flag_split_ivs_in_unroller
691 || flag_variable_expansion_in_unroller
)
692 opt_info
= analyze_insns_in_loop (loop
);
696 /* The exit is not at the end of the loop; leave exit test
697 in the first copy, so that the loops that start with test
698 of exit condition have continuous body after unrolling. */
701 fprintf (dump_file
, ";; Condition on beginning of loop.\n");
703 /* Peel exit_mod iterations. */
704 RESET_BIT (wont_exit
, 0);
705 if (desc
->noloop_assumptions
)
706 RESET_BIT (wont_exit
, 1);
710 opt_info_start_duplication (opt_info
);
711 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
713 wont_exit
, desc
->out_edge
,
714 remove_edges
, &n_remove_edges
,
715 DLTHE_FLAG_UPDATE_FREQ
716 | (opt_info
&& exit_mod
> 1
717 ? DLTHE_RECORD_COPY_NUMBER
721 if (opt_info
&& exit_mod
> 1)
722 apply_opt_in_copies (opt_info
, exit_mod
, false, false);
724 desc
->noloop_assumptions
= NULL_RTX
;
725 desc
->niter
-= exit_mod
;
726 desc
->niter_max
-= exit_mod
;
729 SET_BIT (wont_exit
, 1);
733 /* Leave exit test in last copy, for the same reason as above if
734 the loop tests the condition at the end of loop body. */
737 fprintf (dump_file
, ";; Condition on end of loop.\n");
739 /* We know that niter >= max_unroll + 2; so we do not need to care of
740 case when we would exit before reaching the loop. So just peel
741 exit_mod + 1 iterations. */
742 if (exit_mod
!= max_unroll
743 || desc
->noloop_assumptions
)
745 RESET_BIT (wont_exit
, 0);
746 if (desc
->noloop_assumptions
)
747 RESET_BIT (wont_exit
, 1);
749 opt_info_start_duplication (opt_info
);
750 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
752 wont_exit
, desc
->out_edge
,
753 remove_edges
, &n_remove_edges
,
754 DLTHE_FLAG_UPDATE_FREQ
755 | (opt_info
&& exit_mod
> 0
756 ? DLTHE_RECORD_COPY_NUMBER
760 if (opt_info
&& exit_mod
> 0)
761 apply_opt_in_copies (opt_info
, exit_mod
+ 1, false, false);
763 desc
->niter
-= exit_mod
+ 1;
764 desc
->niter_max
-= exit_mod
+ 1;
765 desc
->noloop_assumptions
= NULL_RTX
;
767 SET_BIT (wont_exit
, 0);
768 SET_BIT (wont_exit
, 1);
771 RESET_BIT (wont_exit
, max_unroll
);
774 /* Now unroll the loop. */
776 opt_info_start_duplication (opt_info
);
777 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
779 wont_exit
, desc
->out_edge
,
780 remove_edges
, &n_remove_edges
,
781 DLTHE_FLAG_UPDATE_FREQ
783 ? DLTHE_RECORD_COPY_NUMBER
789 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
790 free_opt_info (opt_info
);
797 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
798 /* Find a new in and out edge; they are in the last copy we have made. */
800 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
802 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
803 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
807 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
808 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
812 desc
->niter
/= max_unroll
+ 1;
813 desc
->niter_max
/= max_unroll
+ 1;
814 desc
->niter_expr
= GEN_INT (desc
->niter
);
816 /* Remove the edges. */
817 for (i
= 0; i
< n_remove_edges
; i
++)
818 remove_path (loops
, remove_edges
[i
]);
823 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
824 max_unroll
, num_loop_insns (loop
));
827 /* Decide whether to unroll LOOP iterating runtime computable number of times
830 decide_unroll_runtime_iterations (struct loop
*loop
, int flags
)
832 unsigned nunroll
, nunroll_by_av
, i
;
833 struct niter_desc
*desc
;
835 if (!(flags
& UAP_UNROLL
))
837 /* We were not asked to, just return back silently. */
843 "\n;; Considering unrolling loop with runtime "
844 "computable number of iterations\n");
846 /* nunroll = total number of copies of the original loop body in
847 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
848 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
849 nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
850 if (nunroll
> nunroll_by_av
)
851 nunroll
= nunroll_by_av
;
852 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
853 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
855 /* Skip big loops. */
859 fprintf (dump_file
, ";; Not considering loop, is too big\n");
863 /* Check for simple loops. */
864 desc
= get_simple_loop_desc (loop
);
866 /* Check simpleness. */
867 if (!desc
->simple_p
|| desc
->assumptions
)
871 ";; Unable to prove that the number of iterations "
872 "can be counted in runtime\n");
876 if (desc
->const_iter
)
879 fprintf (dump_file
, ";; Loop iterates constant times\n");
883 /* If we have profile feedback, check whether the loop rolls. */
884 if (loop
->header
->count
&& expected_loop_iterations (loop
) < 2 * nunroll
)
887 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
891 /* Success; now force nunroll to be power of 2, as we are unable to
892 cope with overflows in computation of number of iterations. */
893 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
896 loop
->lpt_decision
.decision
= LPT_UNROLL_RUNTIME
;
897 loop
->lpt_decision
.times
= i
- 1;
901 ";; Decided to unroll the runtime computable "
902 "times rolling loop, %d times.\n",
903 loop
->lpt_decision
.times
);
906 /* Unroll LOOP for that we are able to count number of iterations in runtime
907 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
908 extra care for case n < 0):
910 for (i = 0; i < n; i++)
938 unroll_loop_runtime_iterations (struct loops
*loops
, struct loop
*loop
)
940 rtx old_niter
, niter
, init_code
, branch_code
, tmp
;
942 basic_block preheader
, *body
, *dom_bbs
, swtch
, ezc_swtch
;
946 unsigned n_peel
, n_remove_edges
;
947 edge
*remove_edges
, e
;
948 bool extra_zero_check
, last_may_exit
;
949 unsigned max_unroll
= loop
->lpt_decision
.times
;
950 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
951 bool exit_at_end
= loop_exit_at_end_p (loop
);
952 struct opt_info
*opt_info
= NULL
;
955 if (flag_split_ivs_in_unroller
956 || flag_variable_expansion_in_unroller
)
957 opt_info
= analyze_insns_in_loop (loop
);
959 /* Remember blocks whose dominators will have to be updated. */
960 dom_bbs
= xcalloc (n_basic_blocks
, sizeof (basic_block
));
963 body
= get_loop_body (loop
);
964 for (i
= 0; i
< loop
->num_nodes
; i
++)
969 nldom
= get_dominated_by (CDI_DOMINATORS
, body
[i
], &ldom
);
970 for (j
= 0; j
< nldom
; j
++)
971 if (!flow_bb_inside_loop_p (loop
, ldom
[j
]))
972 dom_bbs
[n_dom_bbs
++] = ldom
[j
];
980 /* Leave exit in first copy (for explanation why see comment in
981 unroll_loop_constant_iterations). */
983 n_peel
= max_unroll
- 1;
984 extra_zero_check
= true;
985 last_may_exit
= false;
989 /* Leave exit in last copy (for explanation why see comment in
990 unroll_loop_constant_iterations). */
991 may_exit_copy
= max_unroll
;
993 extra_zero_check
= false;
994 last_may_exit
= true;
997 /* Get expression for number of iterations. */
999 old_niter
= niter
= gen_reg_rtx (desc
->mode
);
1000 tmp
= force_operand (copy_rtx (desc
->niter_expr
), niter
);
1002 emit_move_insn (niter
, tmp
);
1004 /* Count modulo by ANDing it with max_unroll; we use the fact that
1005 the number of unrollings is a power of two, and thus this is correct
1006 even if there is overflow in the computation. */
1007 niter
= expand_simple_binop (desc
->mode
, AND
,
1009 GEN_INT (max_unroll
),
1010 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
1012 init_code
= get_insns ();
1015 /* Precondition the loop. */
1016 loop_split_edge_with (loop_preheader_edge (loop
), init_code
);
1018 remove_edges
= xcalloc (max_unroll
+ n_peel
+ 1, sizeof (edge
));
1021 wont_exit
= sbitmap_alloc (max_unroll
+ 2);
1023 /* Peel the first copy of loop body (almost always we must leave exit test
1024 here; the only exception is when we have extra zero check and the number
1025 of iterations is reliable. Also record the place of (possible) extra
1027 sbitmap_zero (wont_exit
);
1028 if (extra_zero_check
1029 && !desc
->noloop_assumptions
)
1030 SET_BIT (wont_exit
, 1);
1031 ezc_swtch
= loop_preheader_edge (loop
)->src
;
1032 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1034 wont_exit
, desc
->out_edge
,
1035 remove_edges
, &n_remove_edges
,
1036 DLTHE_FLAG_UPDATE_FREQ
);
1039 /* Record the place where switch will be built for preconditioning. */
1040 swtch
= loop_split_edge_with (loop_preheader_edge (loop
),
1043 for (i
= 0; i
< n_peel
; i
++)
1045 /* Peel the copy. */
1046 sbitmap_zero (wont_exit
);
1047 if (i
!= n_peel
- 1 || !last_may_exit
)
1048 SET_BIT (wont_exit
, 1);
1049 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1051 wont_exit
, desc
->out_edge
,
1052 remove_edges
, &n_remove_edges
,
1053 DLTHE_FLAG_UPDATE_FREQ
);
1056 /* Create item for switch. */
1057 j
= n_peel
- i
- (extra_zero_check
? 0 : 1);
1058 p
= REG_BR_PROB_BASE
/ (i
+ 2);
1060 preheader
= loop_split_edge_with (loop_preheader_edge (loop
), NULL_RTX
);
1061 branch_code
= compare_and_jump_seq (copy_rtx (niter
), GEN_INT (j
), EQ
,
1062 block_label (preheader
), p
,
1065 swtch
= loop_split_edge_with (single_pred_edge (swtch
), branch_code
);
1066 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1067 single_pred_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1068 e
= make_edge (swtch
, preheader
,
1069 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1073 if (extra_zero_check
)
1075 /* Add branch for zero iterations. */
1076 p
= REG_BR_PROB_BASE
/ (max_unroll
+ 1);
1078 preheader
= loop_split_edge_with (loop_preheader_edge (loop
), NULL_RTX
);
1079 branch_code
= compare_and_jump_seq (copy_rtx (niter
), const0_rtx
, EQ
,
1080 block_label (preheader
), p
,
1083 swtch
= loop_split_edge_with (single_succ_edge (swtch
), branch_code
);
1084 set_immediate_dominator (CDI_DOMINATORS
, preheader
, swtch
);
1085 single_succ_edge (swtch
)->probability
= REG_BR_PROB_BASE
- p
;
1086 e
= make_edge (swtch
, preheader
,
1087 single_succ_edge (swtch
)->flags
& EDGE_IRREDUCIBLE_LOOP
);
1091 /* Recount dominators for outer blocks. */
1092 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, n_dom_bbs
);
1094 /* And unroll loop. */
1096 sbitmap_ones (wont_exit
);
1097 RESET_BIT (wont_exit
, may_exit_copy
);
1098 opt_info_start_duplication (opt_info
);
1100 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1102 wont_exit
, desc
->out_edge
,
1103 remove_edges
, &n_remove_edges
,
1104 DLTHE_FLAG_UPDATE_FREQ
1106 ? DLTHE_RECORD_COPY_NUMBER
1112 apply_opt_in_copies (opt_info
, max_unroll
, true, true);
1113 free_opt_info (opt_info
);
1120 basic_block exit_block
= get_bb_copy (desc
->in_edge
->src
);
1121 /* Find a new in and out edge; they are in the last copy we have
1124 if (EDGE_SUCC (exit_block
, 0)->dest
== desc
->out_edge
->dest
)
1126 desc
->out_edge
= EDGE_SUCC (exit_block
, 0);
1127 desc
->in_edge
= EDGE_SUCC (exit_block
, 1);
1131 desc
->out_edge
= EDGE_SUCC (exit_block
, 1);
1132 desc
->in_edge
= EDGE_SUCC (exit_block
, 0);
1136 /* Remove the edges. */
1137 for (i
= 0; i
< n_remove_edges
; i
++)
1138 remove_path (loops
, remove_edges
[i
]);
1139 free (remove_edges
);
1141 /* We must be careful when updating the number of iterations due to
1142 preconditioning and the fact that the value must be valid at entry
1143 of the loop. After passing through the above code, we see that
1144 the correct new number of iterations is this: */
1145 gcc_assert (!desc
->const_iter
);
1147 simplify_gen_binary (UDIV
, desc
->mode
, old_niter
,
1148 GEN_INT (max_unroll
+ 1));
1149 desc
->niter_max
/= max_unroll
+ 1;
1153 simplify_gen_binary (MINUS
, desc
->mode
, desc
->niter_expr
, const1_rtx
);
1154 desc
->noloop_assumptions
= NULL_RTX
;
1160 ";; Unrolled loop %d times, counting # of iterations "
1161 "in runtime, %i insns\n",
1162 max_unroll
, num_loop_insns (loop
));
1165 /* Decide whether to simply peel LOOP and how much. */
1167 decide_peel_simple (struct loop
*loop
, int flags
)
1170 struct niter_desc
*desc
;
1172 if (!(flags
& UAP_PEEL
))
1174 /* We were not asked to, just return back silently. */
1179 fprintf (dump_file
, "\n;; Considering simply peeling loop\n");
1181 /* npeel = number of iterations to peel. */
1182 npeel
= PARAM_VALUE (PARAM_MAX_PEELED_INSNS
) / loop
->ninsns
;
1183 if (npeel
> (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES
))
1184 npeel
= PARAM_VALUE (PARAM_MAX_PEEL_TIMES
);
1186 /* Skip big loops. */
1190 fprintf (dump_file
, ";; Not considering loop, is too big\n");
1194 /* Check for simple loops. */
1195 desc
= get_simple_loop_desc (loop
);
1197 /* Check number of iterations. */
1198 if (desc
->simple_p
&& !desc
->assumptions
&& desc
->const_iter
)
1201 fprintf (dump_file
, ";; Loop iterates constant times\n");
1205 /* Do not simply peel loops with branches inside -- it increases number
1207 if (num_loop_branches (loop
) > 1)
1210 fprintf (dump_file
, ";; Not peeling, contains branches\n");
1214 if (loop
->header
->count
)
1216 unsigned niter
= expected_loop_iterations (loop
);
1217 if (niter
+ 1 > npeel
)
1221 fprintf (dump_file
, ";; Not peeling loop, rolls too much (");
1222 fprintf (dump_file
, HOST_WIDEST_INT_PRINT_DEC
,
1223 (HOST_WIDEST_INT
) (niter
+ 1));
1224 fprintf (dump_file
, " iterations > %d [maximum peelings])\n",
1233 /* For now we have no good heuristics to decide whether loop peeling
1234 will be effective, so disable it. */
1237 ";; Not peeling loop, no evidence it will be profitable\n");
1242 loop
->lpt_decision
.decision
= LPT_PEEL_SIMPLE
;
1243 loop
->lpt_decision
.times
= npeel
;
1246 fprintf (dump_file
, ";; Decided to simply peel the loop, %d times.\n",
1247 loop
->lpt_decision
.times
);
1250 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1256 if (!cond) goto end;
1258 if (!cond) goto end;
1265 peel_loop_simple (struct loops
*loops
, struct loop
*loop
)
1268 unsigned npeel
= loop
->lpt_decision
.times
;
1269 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
1270 struct opt_info
*opt_info
= NULL
;
1273 if (flag_split_ivs_in_unroller
&& npeel
> 1)
1274 opt_info
= analyze_insns_in_loop (loop
);
1276 wont_exit
= sbitmap_alloc (npeel
+ 1);
1277 sbitmap_zero (wont_exit
);
1279 opt_info_start_duplication (opt_info
);
1281 ok
= duplicate_loop_to_header_edge (loop
, loop_preheader_edge (loop
),
1282 loops
, npeel
, wont_exit
,
1284 NULL
, DLTHE_FLAG_UPDATE_FREQ
1286 ? DLTHE_RECORD_COPY_NUMBER
1294 apply_opt_in_copies (opt_info
, npeel
, false, false);
1295 free_opt_info (opt_info
);
1300 if (desc
->const_iter
)
1302 desc
->niter
-= npeel
;
1303 desc
->niter_expr
= GEN_INT (desc
->niter
);
1304 desc
->noloop_assumptions
= NULL_RTX
;
1308 /* We cannot just update niter_expr, as its value might be clobbered
1309 inside loop. We could handle this by counting the number into
1310 temporary just like we do in runtime unrolling, but it does not
1312 free_simple_loop_desc (loop
);
1316 fprintf (dump_file
, ";; Peeling loop %d times\n", npeel
);
1319 /* Decide whether to unroll LOOP stupidly and how much. */
1321 decide_unroll_stupid (struct loop
*loop
, int flags
)
1323 unsigned nunroll
, nunroll_by_av
, i
;
1324 struct niter_desc
*desc
;
1326 if (!(flags
& UAP_UNROLL_ALL
))
1328 /* We were not asked to, just return back silently. */
1333 fprintf (dump_file
, "\n;; Considering unrolling loop stupidly\n");
1335 /* nunroll = total number of copies of the original loop body in
1336 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1337 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / loop
->ninsns
;
1339 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS
) / loop
->av_ninsns
;
1340 if (nunroll
> nunroll_by_av
)
1341 nunroll
= nunroll_by_av
;
1342 if (nunroll
> (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
))
1343 nunroll
= PARAM_VALUE (PARAM_MAX_UNROLL_TIMES
);
1345 /* Skip big loops. */
1349 fprintf (dump_file
, ";; Not considering loop, is too big\n");
1353 /* Check for simple loops. */
1354 desc
= get_simple_loop_desc (loop
);
1356 /* Check simpleness. */
1357 if (desc
->simple_p
&& !desc
->assumptions
)
1360 fprintf (dump_file
, ";; The loop is simple\n");
1364 /* Do not unroll loops with branches inside -- it increases number
1366 if (num_loop_branches (loop
) > 1)
1369 fprintf (dump_file
, ";; Not unrolling, contains branches\n");
1373 /* If we have profile feedback, check whether the loop rolls. */
1374 if (loop
->header
->count
1375 && expected_loop_iterations (loop
) < 2 * nunroll
)
1378 fprintf (dump_file
, ";; Not unrolling loop, doesn't roll\n");
1382 /* Success. Now force nunroll to be power of 2, as it seems that this
1383 improves results (partially because of better alignments, partially
1384 because of some dark magic). */
1385 for (i
= 1; 2 * i
<= nunroll
; i
*= 2)
1388 loop
->lpt_decision
.decision
= LPT_UNROLL_STUPID
;
1389 loop
->lpt_decision
.times
= i
- 1;
1393 ";; Decided to unroll the loop stupidly, %d times.\n",
1394 loop
->lpt_decision
.times
);
1397 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1415 unroll_loop_stupid (struct loops
*loops
, struct loop
*loop
)
1418 unsigned nunroll
= loop
->lpt_decision
.times
;
1419 struct niter_desc
*desc
= get_simple_loop_desc (loop
);
1420 struct opt_info
*opt_info
= NULL
;
1423 if (flag_split_ivs_in_unroller
1424 || flag_variable_expansion_in_unroller
)
1425 opt_info
= analyze_insns_in_loop (loop
);
1428 wont_exit
= sbitmap_alloc (nunroll
+ 1);
1429 sbitmap_zero (wont_exit
);
1430 opt_info_start_duplication (opt_info
);
1432 ok
= duplicate_loop_to_header_edge (loop
, loop_latch_edge (loop
),
1433 loops
, nunroll
, wont_exit
,
1435 DLTHE_FLAG_UPDATE_FREQ
1437 ? DLTHE_RECORD_COPY_NUMBER
1443 apply_opt_in_copies (opt_info
, nunroll
, true, true);
1444 free_opt_info (opt_info
);
1451 /* We indeed may get here provided that there are nontrivial assumptions
1452 for a loop to be really simple. We could update the counts, but the
1453 problem is that we are unable to decide which exit will be taken
1454 (not really true in case the number of iterations is constant,
1455 but noone will do anything with this information, so we do not
1457 desc
->simple_p
= false;
1461 fprintf (dump_file
, ";; Unrolled loop %d times, %i insns\n",
1462 nunroll
, num_loop_insns (loop
));
1465 /* A hash function for information about insns to split. */
1468 si_info_hash (const void *ivts
)
1470 return htab_hash_pointer (((struct iv_to_split
*) ivts
)->insn
);
1473 /* An equality functions for information about insns to split. */
1476 si_info_eq (const void *ivts1
, const void *ivts2
)
1478 const struct iv_to_split
*i1
= ivts1
;
1479 const struct iv_to_split
*i2
= ivts2
;
1481 return i1
->insn
== i2
->insn
;
1484 /* Return a hash for VES, which is really a "var_to_expand *". */
1487 ve_info_hash (const void *ves
)
1489 return htab_hash_pointer (((struct var_to_expand
*) ves
)->insn
);
1492 /* Return true if IVTS1 and IVTS2 (which are really both of type
1493 "var_to_expand *") refer to the same instruction. */
1496 ve_info_eq (const void *ivts1
, const void *ivts2
)
1498 const struct var_to_expand
*i1
= ivts1
;
1499 const struct var_to_expand
*i2
= ivts2
;
1501 return i1
->insn
== i2
->insn
;
1504 /* Returns true if REG is referenced in one insn in LOOP. */
1507 referenced_in_one_insn_in_loop_p (struct loop
*loop
, rtx reg
)
1509 basic_block
*body
, bb
;
1514 body
= get_loop_body (loop
);
1515 for (i
= 0; i
< loop
->num_nodes
; i
++)
1519 FOR_BB_INSNS (bb
, insn
)
1521 if (rtx_referenced_p (reg
, insn
))
1525 return (count_ref
== 1);
1528 /* Determine whether INSN contains an accumulator
1529 which can be expanded into separate copies,
1530 one for each copy of the LOOP body.
1532 for (i = 0 ; i < n; i++)
1546 Return NULL if INSN contains no opportunity for expansion of accumulator.
1547 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1548 information and return a pointer to it.
1551 static struct var_to_expand
*
1552 analyze_insn_to_expand_var (struct loop
*loop
, rtx insn
)
1554 rtx set
, dest
, src
, op1
;
1555 struct var_to_expand
*ves
;
1556 enum machine_mode mode1
, mode2
;
1558 set
= single_set (insn
);
1562 dest
= SET_DEST (set
);
1563 src
= SET_SRC (set
);
1565 if (GET_CODE (src
) != PLUS
1566 && GET_CODE (src
) != MINUS
1567 && GET_CODE (src
) != MULT
)
1570 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1571 in MD. But if there is no optab to generate the insn, we can not
1572 perform the variable expansion. This can happen if an MD provides
1573 an insn but not a named pattern to generate it, for example to avoid
1574 producing code that needs additional mode switches like for x87/mmx.
1576 So we check have_insn_for which looks for an optab for the operation
1577 in SRC. If it doesn't exist, we can't perform the expansion even
1578 though INSN is valid. */
1579 if (!have_insn_for (GET_CODE (src
), GET_MODE (src
)))
1585 op1
= XEXP (src
, 0);
1588 && !(GET_CODE (dest
) == SUBREG
1589 && REG_P (SUBREG_REG (dest
))))
1592 if (!rtx_equal_p (dest
, op1
))
1595 if (!referenced_in_one_insn_in_loop_p (loop
, dest
))
1598 if (rtx_referenced_p (dest
, XEXP (src
, 1)))
1601 mode1
= GET_MODE (dest
);
1602 mode2
= GET_MODE (XEXP (src
, 1));
1603 if ((FLOAT_MODE_P (mode1
)
1604 || FLOAT_MODE_P (mode2
))
1605 && !flag_unsafe_math_optimizations
)
1608 /* Record the accumulator to expand. */
1609 ves
= xmalloc (sizeof (struct var_to_expand
));
1611 ves
->var_expansions
= VEC_alloc (rtx
, heap
, 1);
1612 ves
->reg
= copy_rtx (dest
);
1613 ves
->op
= GET_CODE (src
);
1614 ves
->expansion_count
= 0;
1615 ves
->reuse_expansion
= 0;
1619 /* Determine whether there is an induction variable in INSN that
1620 we would like to split during unrolling.
1640 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1641 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1644 static struct iv_to_split
*
1645 analyze_iv_to_split_insn (rtx insn
)
1649 struct iv_to_split
*ivts
;
1652 /* For now we just split the basic induction variables. Later this may be
1653 extended for example by selecting also addresses of memory references. */
1654 set
= single_set (insn
);
1658 dest
= SET_DEST (set
);
1662 if (!biv_p (insn
, dest
))
1665 ok
= iv_analyze (insn
, dest
, &iv
);
1668 if (iv
.step
== const0_rtx
1669 || iv
.mode
!= iv
.extend_mode
)
1672 /* Record the insn to split. */
1673 ivts
= xmalloc (sizeof (struct iv_to_split
));
1675 ivts
->base_var
= NULL_RTX
;
1676 ivts
->step
= iv
.step
;
1683 /* Determines which of insns in LOOP can be optimized.
1684 Return a OPT_INFO struct with the relevant hash tables filled
1685 with all insns to be optimized. The FIRST_NEW_BLOCK field
1686 is undefined for the return value. */
1688 static struct opt_info
*
1689 analyze_insns_in_loop (struct loop
*loop
)
1691 basic_block
*body
, bb
;
1692 unsigned i
, num_edges
= 0;
1693 struct opt_info
*opt_info
= xcalloc (1, sizeof (struct opt_info
));
1695 struct iv_to_split
*ivts
= NULL
;
1696 struct var_to_expand
*ves
= NULL
;
1699 edge
*edges
= get_loop_exit_edges (loop
, &num_edges
);
1700 bool can_apply
= false;
1702 iv_analysis_loop_init (loop
);
1704 body
= get_loop_body (loop
);
1706 if (flag_split_ivs_in_unroller
)
1707 opt_info
->insns_to_split
= htab_create (5 * loop
->num_nodes
,
1708 si_info_hash
, si_info_eq
, free
);
1710 /* Record the loop exit bb and loop preheader before the unrolling. */
1711 if (!loop_preheader_edge (loop
)->src
)
1713 loop_split_edge_with (loop_preheader_edge (loop
), NULL_RTX
);
1714 opt_info
->loop_preheader
= loop_split_edge_with (loop_preheader_edge (loop
), NULL_RTX
);
1717 opt_info
->loop_preheader
= loop_preheader_edge (loop
)->src
;
1720 && !(edges
[0]->flags
& EDGE_COMPLEX
))
1722 opt_info
->loop_exit
= loop_split_edge_with (edges
[0], NULL_RTX
);
1726 if (flag_variable_expansion_in_unroller
1728 opt_info
->insns_with_var_to_expand
= htab_create (5 * loop
->num_nodes
,
1729 ve_info_hash
, ve_info_eq
, free
);
1731 for (i
= 0; i
< loop
->num_nodes
; i
++)
1734 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
1737 FOR_BB_INSNS (bb
, insn
)
1742 if (opt_info
->insns_to_split
)
1743 ivts
= analyze_iv_to_split_insn (insn
);
1747 slot1
= htab_find_slot (opt_info
->insns_to_split
, ivts
, INSERT
);
1752 if (opt_info
->insns_with_var_to_expand
)
1753 ves
= analyze_insn_to_expand_var (loop
, insn
);
1757 slot2
= htab_find_slot (opt_info
->insns_with_var_to_expand
, ves
, INSERT
);
1768 /* Called just before loop duplication. Records start of duplicated area
1772 opt_info_start_duplication (struct opt_info
*opt_info
)
1775 opt_info
->first_new_block
= last_basic_block
;
1778 /* Determine the number of iterations between initialization of the base
1779 variable and the current copy (N_COPY). N_COPIES is the total number
1780 of newly created copies. UNROLLING is true if we are unrolling
1781 (not peeling) the loop. */
1784 determine_split_iv_delta (unsigned n_copy
, unsigned n_copies
, bool unrolling
)
1788 /* If we are unrolling, initialization is done in the original loop
1794 /* If we are peeling, the copy in that the initialization occurs has
1795 number 1. The original loop (number 0) is the last. */
1803 /* Locate in EXPR the expression corresponding to the location recorded
1804 in IVTS, and return a pointer to the RTX for this location. */
1807 get_ivts_expr (rtx expr
, struct iv_to_split
*ivts
)
1812 for (i
= 0; i
< ivts
->n_loc
; i
++)
1813 ret
= &XEXP (*ret
, ivts
->loc
[i
]);
1818 /* Allocate basic variable for the induction variable chain. Callback for
1822 allocate_basic_variable (void **slot
, void *data ATTRIBUTE_UNUSED
)
1824 struct iv_to_split
*ivts
= *slot
;
1825 rtx expr
= *get_ivts_expr (single_set (ivts
->insn
), ivts
);
1827 ivts
->base_var
= gen_reg_rtx (GET_MODE (expr
));
1832 /* Insert initialization of basic variable of IVTS before INSN, taking
1833 the initial value from INSN. */
1836 insert_base_initialization (struct iv_to_split
*ivts
, rtx insn
)
1838 rtx expr
= copy_rtx (*get_ivts_expr (single_set (insn
), ivts
));
1842 expr
= force_operand (expr
, ivts
->base_var
);
1843 if (expr
!= ivts
->base_var
)
1844 emit_move_insn (ivts
->base_var
, expr
);
1848 emit_insn_before (seq
, insn
);
1851 /* Replace the use of induction variable described in IVTS in INSN
1852 by base variable + DELTA * step. */
1855 split_iv (struct iv_to_split
*ivts
, rtx insn
, unsigned delta
)
1857 rtx expr
, *loc
, seq
, incr
, var
;
1858 enum machine_mode mode
= GET_MODE (ivts
->base_var
);
1861 /* Construct base + DELTA * step. */
1863 expr
= ivts
->base_var
;
1866 incr
= simplify_gen_binary (MULT
, mode
,
1867 ivts
->step
, gen_int_mode (delta
, mode
));
1868 expr
= simplify_gen_binary (PLUS
, GET_MODE (ivts
->base_var
),
1869 ivts
->base_var
, incr
);
1872 /* Figure out where to do the replacement. */
1873 loc
= get_ivts_expr (single_set (insn
), ivts
);
1875 /* If we can make the replacement right away, we're done. */
1876 if (validate_change (insn
, loc
, expr
, 0))
1879 /* Otherwise, force EXPR into a register and try again. */
1881 var
= gen_reg_rtx (mode
);
1882 expr
= force_operand (expr
, var
);
1884 emit_move_insn (var
, expr
);
1887 emit_insn_before (seq
, insn
);
1889 if (validate_change (insn
, loc
, var
, 0))
1892 /* The last chance. Try recreating the assignment in insn
1893 completely from scratch. */
1894 set
= single_set (insn
);
1899 src
= copy_rtx (SET_SRC (set
));
1900 dest
= copy_rtx (SET_DEST (set
));
1901 src
= force_operand (src
, dest
);
1903 emit_move_insn (dest
, src
);
1907 emit_insn_before (seq
, insn
);
1912 /* Return one expansion of the accumulator recorded in struct VE. */
1915 get_expansion (struct var_to_expand
*ve
)
1919 if (ve
->reuse_expansion
== 0)
1922 reg
= VEC_index (rtx
, ve
->var_expansions
, ve
->reuse_expansion
- 1);
1924 if (VEC_length (rtx
, ve
->var_expansions
) == (unsigned) ve
->reuse_expansion
)
1925 ve
->reuse_expansion
= 0;
1927 ve
->reuse_expansion
++;
1933 /* Given INSN replace the uses of the accumulator recorded in VE
1934 with a new register. */
1937 expand_var_during_unrolling (struct var_to_expand
*ve
, rtx insn
)
1940 bool really_new_expansion
= false;
1942 set
= single_set (insn
);
1945 /* Generate a new register only if the expansion limit has not been
1946 reached. Else reuse an already existing expansion. */
1947 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS
) > ve
->expansion_count
)
1949 really_new_expansion
= true;
1950 new_reg
= gen_reg_rtx (GET_MODE (ve
->reg
));
1953 new_reg
= get_expansion (ve
);
1955 validate_change (insn
, &SET_DEST (set
), new_reg
, 1);
1956 validate_change (insn
, &XEXP (SET_SRC (set
), 0), new_reg
, 1);
1958 if (apply_change_group ())
1959 if (really_new_expansion
)
1961 VEC_safe_push (rtx
, heap
, ve
->var_expansions
, new_reg
);
1962 ve
->expansion_count
++;
1966 /* Initialize the variable expansions in loop preheader.
1967 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1968 basic block where the initialization of the expansions
1969 should take place. */
1972 insert_var_expansion_initialization (void **slot
, void *place_p
)
1974 struct var_to_expand
*ve
= *slot
;
1975 basic_block place
= (basic_block
)place_p
;
1976 rtx seq
, var
, zero_init
, insn
;
1979 if (VEC_length (rtx
, ve
->var_expansions
) == 0)
1983 if (ve
->op
== PLUS
|| ve
->op
== MINUS
)
1984 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
1986 zero_init
= CONST0_RTX (GET_MODE (var
));
1987 emit_move_insn (var
, zero_init
);
1989 else if (ve
->op
== MULT
)
1990 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
1992 zero_init
= CONST1_RTX (GET_MODE (var
));
1993 emit_move_insn (var
, zero_init
);
1999 insn
= BB_HEAD (place
);
2000 while (!NOTE_INSN_BASIC_BLOCK_P (insn
))
2001 insn
= NEXT_INSN (insn
);
2003 emit_insn_after (seq
, insn
);
2004 /* Continue traversing the hash table. */
2008 /* Combine the variable expansions at the loop exit.
2009 Callbacks for htab_traverse. PLACE_P is the loop exit
2010 basic block where the summation of the expansions should
2014 combine_var_copies_in_loop_exit (void **slot
, void *place_p
)
2016 struct var_to_expand
*ve
= *slot
;
2017 basic_block place
= (basic_block
)place_p
;
2019 rtx expr
, seq
, var
, insn
;
2022 if (VEC_length (rtx
, ve
->var_expansions
) == 0)
2026 if (ve
->op
== PLUS
|| ve
->op
== MINUS
)
2027 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
2029 sum
= simplify_gen_binary (PLUS
, GET_MODE (ve
->reg
),
2032 else if (ve
->op
== MULT
)
2033 for (i
= 0; VEC_iterate (rtx
, ve
->var_expansions
, i
, var
); i
++)
2035 sum
= simplify_gen_binary (MULT
, GET_MODE (ve
->reg
),
2039 expr
= force_operand (sum
, ve
->reg
);
2040 if (expr
!= ve
->reg
)
2041 emit_move_insn (ve
->reg
, expr
);
2045 insn
= BB_HEAD (place
);
2046 while (!NOTE_INSN_BASIC_BLOCK_P (insn
))
2047 insn
= NEXT_INSN (insn
);
2049 emit_insn_after (seq
, insn
);
2051 /* Continue traversing the hash table. */
2055 /* Apply loop optimizations in loop copies using the
2056 data which gathered during the unrolling. Structure
2057 OPT_INFO record that data.
2059 UNROLLING is true if we unrolled (not peeled) the loop.
2060 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2061 the loop (as it should happen in complete unrolling, but not in ordinary
2062 peeling of the loop). */
2065 apply_opt_in_copies (struct opt_info
*opt_info
,
2066 unsigned n_copies
, bool unrolling
,
2067 bool rewrite_original_loop
)
2070 basic_block bb
, orig_bb
;
2071 rtx insn
, orig_insn
, next
;
2072 struct iv_to_split ivts_templ
, *ivts
;
2073 struct var_to_expand ve_templ
, *ves
;
2075 /* Sanity check -- we need to put initialization in the original loop
2077 gcc_assert (!unrolling
|| rewrite_original_loop
);
2079 /* Allocate the basic variables (i0). */
2080 if (opt_info
->insns_to_split
)
2081 htab_traverse (opt_info
->insns_to_split
, allocate_basic_variable
, NULL
);
2083 for (i
= opt_info
->first_new_block
; i
< (unsigned) last_basic_block
; i
++)
2085 bb
= BASIC_BLOCK (i
);
2086 orig_bb
= get_bb_original (bb
);
2088 /* bb->aux holds position in copy sequence initialized by
2089 duplicate_loop_to_header_edge. */
2090 delta
= determine_split_iv_delta ((size_t)bb
->aux
, n_copies
,
2093 orig_insn
= BB_HEAD (orig_bb
);
2094 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
2096 next
= NEXT_INSN (insn
);
2100 while (!INSN_P (orig_insn
))
2101 orig_insn
= NEXT_INSN (orig_insn
);
2103 ivts_templ
.insn
= orig_insn
;
2104 ve_templ
.insn
= orig_insn
;
2106 /* Apply splitting iv optimization. */
2107 if (opt_info
->insns_to_split
)
2109 ivts
= htab_find (opt_info
->insns_to_split
, &ivts_templ
);
2113 gcc_assert (GET_CODE (PATTERN (insn
))
2114 == GET_CODE (PATTERN (orig_insn
)));
2117 insert_base_initialization (ivts
, insn
);
2118 split_iv (ivts
, insn
, delta
);
2121 /* Apply variable expansion optimization. */
2122 if (unrolling
&& opt_info
->insns_with_var_to_expand
)
2124 ves
= htab_find (opt_info
->insns_with_var_to_expand
, &ve_templ
);
2127 gcc_assert (GET_CODE (PATTERN (insn
))
2128 == GET_CODE (PATTERN (orig_insn
)));
2129 expand_var_during_unrolling (ves
, insn
);
2132 orig_insn
= NEXT_INSN (orig_insn
);
2136 if (!rewrite_original_loop
)
2139 /* Initialize the variable expansions in the loop preheader
2140 and take care of combining them at the loop exit. */
2141 if (opt_info
->insns_with_var_to_expand
)
2143 htab_traverse (opt_info
->insns_with_var_to_expand
,
2144 insert_var_expansion_initialization
,
2145 opt_info
->loop_preheader
);
2146 htab_traverse (opt_info
->insns_with_var_to_expand
,
2147 combine_var_copies_in_loop_exit
,
2148 opt_info
->loop_exit
);
2151 /* Rewrite also the original loop body. Find them as originals of the blocks
2152 in the last copied iteration, i.e. those that have
2153 get_bb_copy (get_bb_original (bb)) == bb. */
2154 for (i
= opt_info
->first_new_block
; i
< (unsigned) last_basic_block
; i
++)
2156 bb
= BASIC_BLOCK (i
);
2157 orig_bb
= get_bb_original (bb
);
2158 if (get_bb_copy (orig_bb
) != bb
)
2161 delta
= determine_split_iv_delta (0, n_copies
, unrolling
);
2162 for (orig_insn
= BB_HEAD (orig_bb
);
2163 orig_insn
!= NEXT_INSN (BB_END (bb
));
2166 next
= NEXT_INSN (orig_insn
);
2168 if (!INSN_P (orig_insn
))
2171 ivts_templ
.insn
= orig_insn
;
2172 if (opt_info
->insns_to_split
)
2174 ivts
= htab_find (opt_info
->insns_to_split
, &ivts_templ
);
2178 insert_base_initialization (ivts
, orig_insn
);
2179 split_iv (ivts
, orig_insn
, delta
);
2188 /* Release the data structures used for the variable expansion
2189 optimization. Callbacks for htab_traverse. */
2192 release_var_copies (void **slot
, void *data ATTRIBUTE_UNUSED
)
2194 struct var_to_expand
*ve
= *slot
;
2196 VEC_free (rtx
, heap
, ve
->var_expansions
);
2198 /* Continue traversing the hash table. */
2202 /* Release OPT_INFO. */
2205 free_opt_info (struct opt_info
*opt_info
)
2207 if (opt_info
->insns_to_split
)
2208 htab_delete (opt_info
->insns_to_split
);
2209 if (opt_info
->insns_with_var_to_expand
)
2211 htab_traverse (opt_info
->insns_with_var_to_expand
,
2212 release_var_copies
, NULL
);
2213 htab_delete (opt_info
->insns_with_var_to_expand
);