1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the loop optimization pass of the compiler.
24 It finds invariant computations within loops and moves them
25 to the beginning of the loop. Then it identifies basic and
26 general induction variables.
28 Basic induction variables (BIVs) are a pseudo registers which are set within
29 a loop only by incrementing or decrementing its value. General induction
30 variables (GIVs) are pseudo registers with a value which is a linear function
31 of a basic induction variable. BIVs are recognized by `basic_induction_var';
32 GIVs by `general_induction_var'.
34 Once induction variables are identified, strength reduction is applied to the
35 general induction variables, and induction variable elimination is applied to
36 the basic induction variables.
38 It also finds cases where
39 a register is set within the loop by zero-extending a narrower value
40 and changes these to zero the entire register once before the loop
41 and merely copy the low part within the loop.
43 Most of the complexity is in heuristics to decide when it is worth
44 while to do these things. */
48 #include "coretypes.h"
54 #include "hard-reg-set.h"
55 #include "basic-block.h"
56 #include "insn-config.h"
65 #include "insn-flags.h"
70 #include "tree-pass.h"
72 /* Get the loop info pointer of a loop. */
73 #define LOOP_INFO(LOOP) ((struct loop_info *) (LOOP)->aux)
75 /* Get a pointer to the loop movables structure. */
76 #define LOOP_MOVABLES(LOOP) (&LOOP_INFO (LOOP)->movables)
78 /* Get a pointer to the loop registers structure. */
79 #define LOOP_REGS(LOOP) (&LOOP_INFO (LOOP)->regs)
81 /* Get a pointer to the loop induction variables structure. */
82 #define LOOP_IVS(LOOP) (&LOOP_INFO (LOOP)->ivs)
84 /* Get the luid of an insn. Catch the error of trying to reference the LUID
85 of an insn added during loop, since these don't have LUIDs. */
87 #define INSN_LUID(INSN) \
88 (gcc_assert (INSN_UID (INSN) < max_uid_for_loop), uid_luid[INSN_UID (INSN)])
90 #define REGNO_FIRST_LUID(REGNO) \
91 (REGNO_FIRST_UID (REGNO) < max_uid_for_loop \
92 ? uid_luid[REGNO_FIRST_UID (REGNO)] \
94 #define REGNO_LAST_LUID(REGNO) \
95 (REGNO_LAST_UID (REGNO) < max_uid_for_loop \
96 ? uid_luid[REGNO_LAST_UID (REGNO)] \
99 /* A "basic induction variable" or biv is a pseudo reg that is set
100 (within this loop) only by incrementing or decrementing it. */
101 /* A "general induction variable" or giv is a pseudo reg whose
102 value is a linear function of a biv. */
104 /* Bivs are recognized by `basic_induction_var';
105 Givs by `general_induction_var'. */
107 /* An enum for the two different types of givs, those that are used
108 as memory addresses and those that are calculated into registers. */
116 /* A `struct induction' is created for every instruction that sets
117 an induction variable (either a biv or a giv). */
121 rtx insn
; /* The insn that sets a biv or giv */
122 rtx new_reg
; /* New register, containing strength reduced
123 version of this giv. */
124 rtx src_reg
; /* Biv from which this giv is computed.
125 (If this is a biv, then this is the biv.) */
126 enum g_types giv_type
; /* Indicate whether DEST_ADDR or DEST_REG */
127 rtx dest_reg
; /* Destination register for insn: this is the
128 register which was the biv or giv.
129 For a biv, this equals src_reg.
130 For a DEST_ADDR type giv, this is 0. */
131 rtx
*location
; /* Place in the insn where this giv occurs.
132 If GIV_TYPE is DEST_REG, this is 0. */
133 /* For a biv, this is the place where add_val
135 enum machine_mode mode
; /* The mode of this biv or giv */
136 rtx mem
; /* For DEST_ADDR, the memory object. */
137 rtx mult_val
; /* Multiplicative factor for src_reg. */
138 rtx add_val
; /* Additive constant for that product. */
139 int benefit
; /* Gain from eliminating this insn. */
140 rtx final_value
; /* If the giv is used outside the loop, and its
141 final value could be calculated, it is put
142 here, and the giv is made replaceable. Set
143 the giv to this value before the loop. */
144 unsigned combined_with
; /* The number of givs this giv has been
145 combined with. If nonzero, this giv
146 cannot combine with any other giv. */
147 unsigned replaceable
: 1; /* 1 if we can substitute the strength-reduced
148 variable for the original variable.
149 0 means they must be kept separate and the
150 new one must be copied into the old pseudo
151 reg each time the old one is set. */
152 unsigned not_replaceable
: 1; /* Used to prevent duplicating work. This is
153 1 if we know that the giv definitely can
154 not be made replaceable, in which case we
155 don't bother checking the variable again
156 even if further info is available.
157 Both this and the above can be zero. */
158 unsigned ignore
: 1; /* 1 prohibits further processing of giv */
159 unsigned always_computable
: 1;/* 1 if this value is computable every
161 unsigned always_executed
: 1; /* 1 if this set occurs each iteration. */
162 unsigned maybe_multiple
: 1; /* Only used for a biv and 1 if this biv
163 update may be done multiple times per
165 unsigned cant_derive
: 1; /* For giv's, 1 if this giv cannot derive
166 another giv. This occurs in many cases
167 where a giv's lifetime spans an update to
169 unsigned maybe_dead
: 1; /* 1 if this giv might be dead. In that case,
170 we won't use it to eliminate a biv, it
171 would probably lose. */
172 unsigned auto_inc_opt
: 1; /* 1 if this giv had its increment output next
173 to it to try to form an auto-inc address. */
175 unsigned no_const_addval
: 1; /* 1 if add_val does not contain a const. */
176 int lifetime
; /* Length of life of this giv */
177 rtx derive_adjustment
; /* If nonzero, is an adjustment to be
178 subtracted from add_val when this giv
179 derives another. This occurs when the
180 giv spans a biv update by incrementation. */
181 rtx ext_dependent
; /* If nonzero, is a sign or zero extension
182 if a biv on which this giv is dependent. */
183 struct induction
*next_iv
; /* For givs, links together all givs that are
184 based on the same biv. For bivs, links
185 together all biv entries that refer to the
186 same biv register. */
187 struct induction
*same
; /* For givs, if the giv has been combined with
188 another giv, this points to the base giv.
189 The base giv will have COMBINED_WITH nonzero.
190 For bivs, if the biv has the same LOCATION
191 than another biv, this points to the base
193 struct induction
*same_insn
; /* If there are multiple identical givs in
194 the same insn, then all but one have this
195 field set, and they all point to the giv
196 that doesn't have this field set. */
197 rtx last_use
; /* For a giv made from a biv increment, this is
198 a substitute for the lifetime information. */
202 /* A `struct iv_class' is created for each biv. */
206 unsigned int regno
; /* Pseudo reg which is the biv. */
207 int biv_count
; /* Number of insns setting this reg. */
208 struct induction
*biv
; /* List of all insns that set this reg. */
209 int giv_count
; /* Number of DEST_REG givs computed from this
210 biv. The resulting count is only used in
212 struct induction
*giv
; /* List of all insns that compute a giv
214 int total_benefit
; /* Sum of BENEFITs of all those givs. */
215 rtx initial_value
; /* Value of reg at loop start. */
216 rtx initial_test
; /* Test performed on BIV before loop. */
217 rtx final_value
; /* Value of reg at loop end, if known. */
218 struct iv_class
*next
; /* Links all class structures together. */
219 rtx init_insn
; /* insn which initializes biv, 0 if none. */
220 rtx init_set
; /* SET of INIT_INSN, if any. */
221 unsigned incremented
: 1; /* 1 if somewhere incremented/decremented */
222 unsigned eliminable
: 1; /* 1 if plausible candidate for
224 unsigned nonneg
: 1; /* 1 if we added a REG_NONNEG note for
226 unsigned reversed
: 1; /* 1 if we reversed the loop that this
228 unsigned all_reduced
: 1; /* 1 if all givs using this biv have
233 /* Definitions used by the basic induction variable discovery code. */
243 /* A `struct iv' is created for every register. */
250 struct iv_class
*class;
251 struct induction
*info
;
256 #define REG_IV_TYPE(ivs, n) ivs->regs[n].type
257 #define REG_IV_INFO(ivs, n) ivs->regs[n].iv.info
258 #define REG_IV_CLASS(ivs, n) ivs->regs[n].iv.class
263 /* Indexed by register number, contains pointer to `struct
264 iv' if register is an induction variable. */
267 /* Size of regs array. */
270 /* The head of a list which links together (via the next field)
271 every iv class for the current loop. */
272 struct iv_class
*list
;
276 typedef struct loop_mem_info
278 rtx mem
; /* The MEM itself. */
279 rtx reg
; /* Corresponding pseudo, if any. */
280 int optimize
; /* Nonzero if we can optimize access to this MEM. */
287 /* Number of times the reg is set during the loop being scanned.
288 During code motion, a negative value indicates a reg that has
289 been made a candidate; in particular -2 means that it is an
290 candidate that we know is equal to a constant and -1 means that
291 it is a candidate not known equal to a constant. After code
292 motion, regs moved have 0 (which is accurate now) while the
293 failed candidates have the original number of times set.
295 Therefore, at all times, == 0 indicates an invariant register;
296 < 0 a conditionally invariant one. */
299 /* Original value of set_in_loop; same except that this value
300 is not set negative for a reg whose sets have been made candidates
301 and not set to 0 for a reg that is moved. */
304 /* Contains the insn in which a register was used if it was used
305 exactly once; contains const0_rtx if it was used more than once. */
308 /* Nonzero indicates that the register cannot be moved or strength
310 char may_not_optimize
;
312 /* Nonzero means reg N has already been moved out of one loop.
313 This reduces the desire to move it out of another. */
320 int num
; /* Number of regs used in table. */
321 int size
; /* Size of table. */
322 struct loop_reg
*array
; /* Register usage info. array. */
323 int multiple_uses
; /* Nonzero if a reg has multiple uses. */
330 /* Head of movable chain. */
331 struct movable
*head
;
332 /* Last movable in chain. */
333 struct movable
*last
;
337 /* Information pertaining to a loop. */
341 /* Nonzero if there is a subroutine call in the current loop. */
343 /* Nonzero if there is a libcall in the current loop. */
345 /* Nonzero if there is a non constant call in the current loop. */
346 int has_nonconst_call
;
347 /* Nonzero if there is a prefetch instruction in the current loop. */
349 /* Nonzero if there is a volatile memory reference in the current
352 /* Nonzero if there is a tablejump in the current loop. */
354 /* Nonzero if there are ways to leave the loop other than falling
356 int has_multiple_exit_targets
;
357 /* Nonzero if there is an indirect jump in the current function. */
358 int has_indirect_jump
;
359 /* Register or constant initial loop value. */
361 /* Register or constant value used for comparison test. */
362 rtx comparison_value
;
363 /* Register or constant approximate final value. */
365 /* Register or constant initial loop value with term common to
366 final_value removed. */
367 rtx initial_equiv_value
;
368 /* Register or constant final loop value with term common to
369 initial_value removed. */
370 rtx final_equiv_value
;
371 /* Register corresponding to iteration variable. */
373 /* Constant loop increment. */
375 enum rtx_code comparison_code
;
376 /* Holds the number of loop iterations. It is zero if the number
377 could not be calculated. Must be unsigned since the number of
378 iterations can be as high as 2^wordsize - 1. For loops with a
379 wider iterator, this number will be zero if the number of loop
380 iterations is too large for an unsigned integer to hold. */
381 unsigned HOST_WIDE_INT n_iterations
;
382 int used_count_register
;
383 /* The loop iterator induction variable. */
385 /* List of MEMs that are stored in this loop. */
387 /* Array of MEMs that are used (read or written) in this loop, but
388 cannot be aliased by anything in this loop, except perhaps
389 themselves. In other words, if mems[i] is altered during
390 the loop, it is altered by an expression that is rtx_equal_p to
393 /* The index of the next available slot in MEMS. */
395 /* The number of elements allocated in MEMS. */
397 /* Nonzero if we don't know what MEMs were changed in the current
398 loop. This happens if the loop contains a call (in which case
399 `has_call' will also be set) or if we store into more than
401 int unknown_address_altered
;
402 /* The above doesn't count any readonly memory locations that are
403 stored. This does. */
404 int unknown_constant_address_altered
;
405 /* Count of memory write instructions discovered in the loop. */
407 /* The insn where the first of these was found. */
408 rtx first_loop_store_insn
;
409 /* The chain of movable insns in loop. */
410 struct loop_movables movables
;
411 /* The registers used the in loop. */
412 struct loop_regs regs
;
413 /* The induction variable information in loop. */
415 /* Nonzero if call is in pre_header extended basic block. */
416 int pre_header_has_call
;
419 /* Not really meaningful values, but at least something. */
420 #ifndef SIMULTANEOUS_PREFETCHES
421 #define SIMULTANEOUS_PREFETCHES 3
423 #ifndef PREFETCH_BLOCK
424 #define PREFETCH_BLOCK 32
426 #ifndef HAVE_prefetch
427 #define HAVE_prefetch 0
428 #define CODE_FOR_prefetch 0
429 #define gen_prefetch(a,b,c) (gcc_unreachable (), NULL_RTX)
432 /* Give up the prefetch optimizations once we exceed a given threshold.
433 It is unlikely that we would be able to optimize something in a loop
434 with so many detected prefetches. */
435 #define MAX_PREFETCHES 100
436 /* The number of prefetch blocks that are beneficial to fetch at once before
437 a loop with a known (and low) iteration count. */
438 #define PREFETCH_BLOCKS_BEFORE_LOOP_MAX 6
439 /* For very tiny loops it is not worthwhile to prefetch even before the loop,
440 since it is likely that the data are already in the cache. */
441 #define PREFETCH_BLOCKS_BEFORE_LOOP_MIN 2
443 /* Parameterize some prefetch heuristics so they can be turned on and off
444 easily for performance testing on new architectures. These can be
445 defined in target-dependent files. */
447 /* Prefetch is worthwhile only when loads/stores are dense. */
448 #ifndef PREFETCH_ONLY_DENSE_MEM
449 #define PREFETCH_ONLY_DENSE_MEM 1
452 /* Define what we mean by "dense" loads and stores; This value divided by 256
453 is the minimum percentage of memory references that worth prefetching. */
454 #ifndef PREFETCH_DENSE_MEM
455 #define PREFETCH_DENSE_MEM 220
458 /* Do not prefetch for a loop whose iteration count is known to be low. */
459 #ifndef PREFETCH_NO_LOW_LOOPCNT
460 #define PREFETCH_NO_LOW_LOOPCNT 1
463 /* Define what we mean by a "low" iteration count. */
464 #ifndef PREFETCH_LOW_LOOPCNT
465 #define PREFETCH_LOW_LOOPCNT 32
468 /* Do not prefetch for a loop that contains a function call; such a loop is
469 probably not an internal loop. */
470 #ifndef PREFETCH_NO_CALL
471 #define PREFETCH_NO_CALL 1
474 /* Do not prefetch accesses with an extreme stride. */
475 #ifndef PREFETCH_NO_EXTREME_STRIDE
476 #define PREFETCH_NO_EXTREME_STRIDE 1
479 /* Define what we mean by an "extreme" stride. */
480 #ifndef PREFETCH_EXTREME_STRIDE
481 #define PREFETCH_EXTREME_STRIDE 4096
484 /* Define a limit to how far apart indices can be and still be merged
485 into a single prefetch. */
486 #ifndef PREFETCH_EXTREME_DIFFERENCE
487 #define PREFETCH_EXTREME_DIFFERENCE 4096
490 /* Issue prefetch instructions before the loop to fetch data to be used
491 in the first few loop iterations. */
492 #ifndef PREFETCH_BEFORE_LOOP
493 #define PREFETCH_BEFORE_LOOP 1
496 /* Do not handle reversed order prefetches (negative stride). */
497 #ifndef PREFETCH_NO_REVERSE_ORDER
498 #define PREFETCH_NO_REVERSE_ORDER 1
501 /* Prefetch even if the GIV is in conditional code. */
502 #ifndef PREFETCH_CONDITIONAL
503 #define PREFETCH_CONDITIONAL 1
506 #define LOOP_REG_LIFETIME(LOOP, REGNO) \
507 ((REGNO_LAST_LUID (REGNO) - REGNO_FIRST_LUID (REGNO)))
509 #define LOOP_REG_GLOBAL_P(LOOP, REGNO) \
510 ((REGNO_LAST_LUID (REGNO) > INSN_LUID ((LOOP)->end) \
511 || REGNO_FIRST_LUID (REGNO) < INSN_LUID ((LOOP)->start)))
513 #define LOOP_REGNO_NREGS(REGNO, SET_DEST) \
514 ((REGNO) < FIRST_PSEUDO_REGISTER \
515 ? (int) hard_regno_nregs[(REGNO)][GET_MODE (SET_DEST)] : 1)
518 /* Vector mapping INSN_UIDs to luids.
519 The luids are like uids but increase monotonically always.
520 We use them to see whether a jump comes from outside a given loop. */
522 static int *uid_luid
;
524 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
525 number the insn is contained in. */
527 static struct loop
**uid_loop
;
529 /* 1 + largest uid of any insn. */
531 static int max_uid_for_loop
;
533 /* Number of loops detected in current function. Used as index to the
536 static int max_loop_num
;
538 /* Bound on pseudo register number before loop optimization.
539 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
540 static unsigned int max_reg_before_loop
;
542 /* The value to pass to the next call of reg_scan_update. */
543 static int loop_max_reg
;
545 /* During the analysis of a loop, a chain of `struct movable's
546 is made to record all the movable insns found.
547 Then the entire chain can be scanned to decide which to move. */
551 rtx insn
; /* A movable insn */
552 rtx set_src
; /* The expression this reg is set from. */
553 rtx set_dest
; /* The destination of this SET. */
554 rtx dependencies
; /* When INSN is libcall, this is an EXPR_LIST
555 of any registers used within the LIBCALL. */
556 int consec
; /* Number of consecutive following insns
557 that must be moved with this one. */
558 unsigned int regno
; /* The register it sets */
559 short lifetime
; /* lifetime of that register;
560 may be adjusted when matching movables
561 that load the same value are found. */
562 short savings
; /* Number of insns we can move for this reg,
563 including other movables that force this
564 or match this one. */
565 ENUM_BITFIELD(machine_mode
) savemode
: 8; /* Nonzero means it is a mode for
566 a low part that we should avoid changing when
567 clearing the rest of the reg. */
568 unsigned int cond
: 1; /* 1 if only conditionally movable */
569 unsigned int force
: 1; /* 1 means MUST move this insn */
570 unsigned int global
: 1; /* 1 means reg is live outside this loop */
571 /* If PARTIAL is 1, GLOBAL means something different:
572 that the reg is live outside the range from where it is set
573 to the following label. */
574 unsigned int done
: 1; /* 1 inhibits further processing of this */
576 unsigned int partial
: 1; /* 1 means this reg is used for zero-extending.
577 In particular, moving it does not make it
579 unsigned int move_insn
: 1; /* 1 means that we call emit_move_insn to
580 load SRC, rather than copying INSN. */
581 unsigned int move_insn_first
:1;/* Same as above, if this is necessary for the
582 first insn of a consecutive sets group. */
583 unsigned int is_equiv
: 1; /* 1 means a REG_EQUIV is present on INSN. */
584 unsigned int insert_temp
: 1; /* 1 means we copy to a new pseudo and replace
585 the original insn with a copy from that
586 pseudo, rather than deleting it. */
587 struct movable
*match
; /* First entry for same value */
588 struct movable
*forces
; /* An insn that must be moved if this is */
589 struct movable
*next
;
593 static FILE *loop_dump_stream
;
595 /* Forward declarations. */
597 static void invalidate_loops_containing_label (rtx
);
598 static void find_and_verify_loops (rtx
, struct loops
*);
599 static void mark_loop_jump (rtx
, struct loop
*);
600 static void prescan_loop (struct loop
*);
601 static int reg_in_basic_block_p (rtx
, rtx
);
602 static int consec_sets_invariant_p (const struct loop
*, rtx
, int, rtx
);
603 static int labels_in_range_p (rtx
, int);
604 static void count_one_set (struct loop_regs
*, rtx
, rtx
, rtx
*);
605 static void note_addr_stored (rtx
, rtx
, void *);
606 static void note_set_pseudo_multiple_uses (rtx
, rtx
, void *);
607 static int loop_reg_used_before_p (const struct loop
*, rtx
, rtx
);
608 static rtx
find_regs_nested (rtx
, rtx
);
609 static void scan_loop (struct loop
*, int);
611 static void replace_call_address (rtx
, rtx
, rtx
);
613 static rtx
skip_consec_insns (rtx
, int);
614 static int libcall_benefit (rtx
);
615 static rtx
libcall_other_reg (rtx
, rtx
);
616 static void record_excess_regs (rtx
, rtx
, rtx
*);
617 static void ignore_some_movables (struct loop_movables
*);
618 static void force_movables (struct loop_movables
*);
619 static void combine_movables (struct loop_movables
*, struct loop_regs
*);
620 static int num_unmoved_movables (const struct loop
*);
621 static int regs_match_p (rtx
, rtx
, struct loop_movables
*);
622 static int rtx_equal_for_loop_p (rtx
, rtx
, struct loop_movables
*,
624 static void add_label_notes (rtx
, rtx
);
625 static void move_movables (struct loop
*loop
, struct loop_movables
*, int,
627 static void loop_movables_add (struct loop_movables
*, struct movable
*);
628 static void loop_movables_free (struct loop_movables
*);
629 static int count_nonfixed_reads (const struct loop
*, rtx
);
630 static void loop_bivs_find (struct loop
*);
631 static void loop_bivs_init_find (struct loop
*);
632 static void loop_bivs_check (struct loop
*);
633 static void loop_givs_find (struct loop
*);
634 static void loop_givs_check (struct loop
*);
635 static int loop_biv_eliminable_p (struct loop
*, struct iv_class
*, int, int);
636 static int loop_giv_reduce_benefit (struct loop
*, struct iv_class
*,
637 struct induction
*, rtx
);
638 static void loop_givs_dead_check (struct loop
*, struct iv_class
*);
639 static void loop_givs_reduce (struct loop
*, struct iv_class
*);
640 static void loop_givs_rescan (struct loop
*, struct iv_class
*, rtx
*);
641 static void loop_ivs_free (struct loop
*);
642 static void strength_reduce (struct loop
*, int);
643 static void find_single_use_in_loop (struct loop_regs
*, rtx
, rtx
);
644 static int valid_initial_value_p (rtx
, rtx
, int, rtx
);
645 static void find_mem_givs (const struct loop
*, rtx
, rtx
, int, int);
646 static void record_biv (struct loop
*, struct induction
*, rtx
, rtx
, rtx
,
647 rtx
, rtx
*, int, int);
648 static void check_final_value (const struct loop
*, struct induction
*);
649 static void loop_ivs_dump (const struct loop
*, FILE *, int);
650 static void loop_iv_class_dump (const struct iv_class
*, FILE *, int);
651 static void loop_biv_dump (const struct induction
*, FILE *, int);
652 static void loop_giv_dump (const struct induction
*, FILE *, int);
653 static void record_giv (const struct loop
*, struct induction
*, rtx
, rtx
,
654 rtx
, rtx
, rtx
, rtx
, int, enum g_types
, int, int,
656 static void update_giv_derive (const struct loop
*, rtx
);
657 static HOST_WIDE_INT
get_monotonic_increment (struct iv_class
*);
658 static bool biased_biv_fits_mode_p (const struct loop
*, struct iv_class
*,
659 HOST_WIDE_INT
, enum machine_mode
,
660 unsigned HOST_WIDE_INT
);
661 static bool biv_fits_mode_p (const struct loop
*, struct iv_class
*,
662 HOST_WIDE_INT
, enum machine_mode
, bool);
663 static bool extension_within_bounds_p (const struct loop
*, struct iv_class
*,
665 static void check_ext_dependent_givs (const struct loop
*, struct iv_class
*);
666 static int basic_induction_var (const struct loop
*, rtx
, enum machine_mode
,
667 rtx
, rtx
, rtx
*, rtx
*, rtx
**,
669 static rtx
simplify_giv_expr (const struct loop
*, rtx
, rtx
*, int *);
670 static int general_induction_var (const struct loop
*loop
, rtx
, rtx
*, rtx
*,
671 rtx
*, rtx
*, int, int *, enum machine_mode
);
672 static int consec_sets_giv (const struct loop
*, int, rtx
, rtx
, rtx
, rtx
*,
673 rtx
*, rtx
*, rtx
*);
674 static int check_dbra_loop (struct loop
*, int);
675 static rtx
express_from_1 (rtx
, rtx
, rtx
);
676 static rtx
combine_givs_p (struct induction
*, struct induction
*);
677 static int cmp_combine_givs_stats (const void *, const void *);
678 static void combine_givs (struct loop_regs
*, struct iv_class
*);
679 static int product_cheap_p (rtx
, rtx
);
680 static int maybe_eliminate_biv (const struct loop
*, struct iv_class
*, int,
682 static int maybe_eliminate_biv_1 (const struct loop
*, rtx
, rtx
,
683 struct iv_class
*, int, basic_block
, rtx
);
684 static int last_use_this_basic_block (rtx
, rtx
);
685 static void record_initial (rtx
, rtx
, void *);
686 static void update_reg_last_use (rtx
, rtx
);
687 static rtx
next_insn_in_loop (const struct loop
*, rtx
);
688 static void loop_regs_scan (const struct loop
*, int);
689 static int count_insns_in_loop (const struct loop
*);
690 static int find_mem_in_note_1 (rtx
*, void *);
691 static rtx
find_mem_in_note (rtx
);
692 static void load_mems (const struct loop
*);
693 static int insert_loop_mem (rtx
*, void *);
694 static int replace_loop_mem (rtx
*, void *);
695 static void replace_loop_mems (rtx
, rtx
, rtx
, int);
696 static int replace_loop_reg (rtx
*, void *);
697 static void replace_loop_regs (rtx insn
, rtx
, rtx
);
698 static void note_reg_stored (rtx
, rtx
, void *);
699 static void try_copy_prop (const struct loop
*, rtx
, unsigned int);
700 static void try_swap_copy_prop (const struct loop
*, rtx
, unsigned int);
701 static rtx
check_insn_for_givs (struct loop
*, rtx
, int, int);
702 static rtx
check_insn_for_bivs (struct loop
*, rtx
, int, int);
703 static rtx
gen_add_mult (rtx
, rtx
, rtx
, rtx
);
704 static void loop_regs_update (const struct loop
*, rtx
);
705 static int iv_add_mult_cost (rtx
, rtx
, rtx
, rtx
);
706 static int loop_invariant_p (const struct loop
*, rtx
);
707 static rtx
loop_insn_hoist (const struct loop
*, rtx
);
708 static void loop_iv_add_mult_emit_before (const struct loop
*, rtx
, rtx
, rtx
,
709 rtx
, basic_block
, rtx
);
710 static rtx
loop_insn_emit_before (const struct loop
*, basic_block
,
712 static int loop_insn_first_p (rtx
, rtx
);
713 static rtx
get_condition_for_loop (const struct loop
*, rtx
);
714 static void loop_iv_add_mult_sink (const struct loop
*, rtx
, rtx
, rtx
, rtx
);
715 static void loop_iv_add_mult_hoist (const struct loop
*, rtx
, rtx
, rtx
, rtx
);
716 static rtx
extend_value_for_giv (struct induction
*, rtx
);
717 static rtx
loop_insn_sink (const struct loop
*, rtx
);
719 static rtx
loop_insn_emit_after (const struct loop
*, basic_block
, rtx
, rtx
);
720 static rtx
loop_call_insn_emit_before (const struct loop
*, basic_block
,
722 static rtx
loop_call_insn_hoist (const struct loop
*, rtx
);
723 static rtx
loop_insn_sink_or_swim (const struct loop
*, rtx
);
725 static void loop_dump_aux (const struct loop
*, FILE *, int);
726 static void loop_delete_insns (rtx
, rtx
);
727 static HOST_WIDE_INT
remove_constant_addition (rtx
*);
728 static rtx
gen_load_of_final_value (rtx
, rtx
);
729 void debug_ivs (const struct loop
*);
730 void debug_iv_class (const struct iv_class
*);
731 void debug_biv (const struct induction
*);
732 void debug_giv (const struct induction
*);
733 void debug_loop (const struct loop
*);
734 void debug_loops (const struct loops
*);
736 typedef struct loop_replace_args
743 /* Nonzero iff INSN is between START and END, inclusive. */
744 #define INSN_IN_RANGE_P(INSN, START, END) \
745 (INSN_UID (INSN) < max_uid_for_loop \
746 && INSN_LUID (INSN) >= INSN_LUID (START) \
747 && INSN_LUID (INSN) <= INSN_LUID (END))
749 /* Indirect_jump_in_function is computed once per function. */
750 static int indirect_jump_in_function
;
751 static int indirect_jump_in_function_p (rtx
);
753 static int compute_luids (rtx
, rtx
, int);
755 static int biv_elimination_giv_has_0_offset (struct induction
*,
756 struct induction
*, rtx
);
758 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
759 copy the value of the strength reduced giv to its original register. */
760 static int copy_cost
;
762 /* Cost of using a register, to normalize the benefits of a giv. */
763 static int reg_address_cost
;
768 rtx reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
770 reg_address_cost
= address_cost (reg
, SImode
);
772 copy_cost
= COSTS_N_INSNS (1);
775 /* Compute the mapping from uids to luids.
776 LUIDs are numbers assigned to insns, like uids,
777 except that luids increase monotonically through the code.
778 Start at insn START and stop just before END. Assign LUIDs
779 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
781 compute_luids (rtx start
, rtx end
, int prev_luid
)
786 for (insn
= start
, i
= prev_luid
; insn
!= end
; insn
= NEXT_INSN (insn
))
788 if (INSN_UID (insn
) >= max_uid_for_loop
)
790 /* Don't assign luids to line-number NOTEs, so that the distance in
791 luids between two insns is not affected by -g. */
793 || NOTE_LINE_NUMBER (insn
) <= 0)
794 uid_luid
[INSN_UID (insn
)] = ++i
;
796 /* Give a line number note the same luid as preceding insn. */
797 uid_luid
[INSN_UID (insn
)] = i
;
802 /* Entry point of this file. Perform loop optimization
803 on the current function. F is the first insn of the function
804 and DUMPFILE is a stream for output of a trace of actions taken
805 (or 0 if none should be output). */
808 loop_optimize (rtx f
, FILE *dumpfile
, int flags
)
812 struct loops loops_data
;
813 struct loops
*loops
= &loops_data
;
814 struct loop_info
*loops_info
;
816 loop_dump_stream
= dumpfile
;
818 init_recog_no_volatile ();
820 max_reg_before_loop
= max_reg_num ();
821 loop_max_reg
= max_reg_before_loop
;
825 /* Count the number of loops. */
828 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
831 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
835 /* Don't waste time if no loops. */
836 if (max_loop_num
== 0)
839 loops
->num
= max_loop_num
;
841 /* Get size to use for tables indexed by uids.
842 Leave some space for labels allocated by find_and_verify_loops. */
843 max_uid_for_loop
= get_max_uid () + 1 + max_loop_num
* 32;
845 uid_luid
= xcalloc (max_uid_for_loop
, sizeof (int));
846 uid_loop
= xcalloc (max_uid_for_loop
, sizeof (struct loop
*));
848 /* Allocate storage for array of loops. */
849 loops
->array
= xcalloc (loops
->num
, sizeof (struct loop
));
851 /* Find and process each loop.
852 First, find them, and record them in order of their beginnings. */
853 find_and_verify_loops (f
, loops
);
855 /* Allocate and initialize auxiliary loop information. */
856 loops_info
= xcalloc (loops
->num
, sizeof (struct loop_info
));
857 for (i
= 0; i
< (int) loops
->num
; i
++)
858 loops
->array
[i
].aux
= loops_info
+ i
;
860 /* Now find all register lifetimes. This must be done after
861 find_and_verify_loops, because it might reorder the insns in the
863 reg_scan (f
, max_reg_before_loop
);
865 /* This must occur after reg_scan so that registers created by gcse
866 will have entries in the register tables.
868 We could have added a call to reg_scan after gcse_main in toplev.c,
869 but moving this call to init_alias_analysis is more efficient. */
870 init_alias_analysis ();
872 /* See if we went too far. Note that get_max_uid already returns
873 one more that the maximum uid of all insn. */
874 gcc_assert (get_max_uid () <= max_uid_for_loop
);
875 /* Now reset it to the actual size we need. See above. */
876 max_uid_for_loop
= get_max_uid ();
878 /* find_and_verify_loops has already called compute_luids, but it
879 might have rearranged code afterwards, so we need to recompute
881 compute_luids (f
, NULL_RTX
, 0);
883 /* Don't leave gaps in uid_luid for insns that have been
884 deleted. It is possible that the first or last insn
885 using some register has been deleted by cross-jumping.
886 Make sure that uid_luid for that former insn's uid
887 points to the general area where that insn used to be. */
888 for (i
= 0; i
< max_uid_for_loop
; i
++)
890 uid_luid
[0] = uid_luid
[i
];
891 if (uid_luid
[0] != 0)
894 for (i
= 0; i
< max_uid_for_loop
; i
++)
895 if (uid_luid
[i
] == 0)
896 uid_luid
[i
] = uid_luid
[i
- 1];
898 /* Determine if the function has indirect jump. On some systems
899 this prevents low overhead loop instructions from being used. */
900 indirect_jump_in_function
= indirect_jump_in_function_p (f
);
902 /* Now scan the loops, last ones first, since this means inner ones are done
903 before outer ones. */
904 for (i
= max_loop_num
- 1; i
>= 0; i
--)
906 struct loop
*loop
= &loops
->array
[i
];
908 if (! loop
->invalid
&& loop
->end
)
910 scan_loop (loop
, flags
);
915 end_alias_analysis ();
918 for (i
= 0; i
< (int) loops
->num
; i
++)
919 free (loops_info
[i
].mems
);
927 /* Returns the next insn, in execution order, after INSN. START and
928 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
929 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
930 insn-stream; it is used with loops that are entered near the
934 next_insn_in_loop (const struct loop
*loop
, rtx insn
)
936 insn
= NEXT_INSN (insn
);
938 if (insn
== loop
->end
)
941 /* Go to the top of the loop, and continue there. */
948 if (insn
== loop
->scan_start
)
955 /* Find any register references hidden inside X and add them to
956 the dependency list DEPS. This is used to look inside CLOBBER (MEM
957 when checking whether a PARALLEL can be pulled out of a loop. */
960 find_regs_nested (rtx deps
, rtx x
)
962 enum rtx_code code
= GET_CODE (x
);
964 deps
= gen_rtx_EXPR_LIST (VOIDmode
, x
, deps
);
967 const char *fmt
= GET_RTX_FORMAT (code
);
969 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
972 deps
= find_regs_nested (deps
, XEXP (x
, i
));
973 else if (fmt
[i
] == 'E')
974 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
975 deps
= find_regs_nested (deps
, XVECEXP (x
, i
, j
));
981 /* Optimize one loop described by LOOP. */
983 /* ??? Could also move memory writes out of loops if the destination address
984 is invariant, the source is invariant, the memory write is not volatile,
985 and if we can prove that no read inside the loop can read this address
986 before the write occurs. If there is a read of this address after the
987 write, then we can also mark the memory read as invariant. */
990 scan_loop (struct loop
*loop
, int flags
)
992 struct loop_info
*loop_info
= LOOP_INFO (loop
);
993 struct loop_regs
*regs
= LOOP_REGS (loop
);
995 rtx loop_start
= loop
->start
;
996 rtx loop_end
= loop
->end
;
998 /* 1 if we are scanning insns that could be executed zero times. */
1000 /* 1 if we are scanning insns that might never be executed
1001 due to a subroutine call which might exit before they are reached. */
1002 int call_passed
= 0;
1003 /* Number of insns in the loop. */
1006 rtx temp
, update_start
, update_end
;
1007 /* The SET from an insn, if it is the only SET in the insn. */
1009 /* Chain describing insns movable in current loop. */
1010 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
1011 /* Ratio of extra register life span we can justify
1012 for saving an instruction. More if loop doesn't call subroutines
1013 since in that case saving an insn makes more difference
1014 and more registers are available. */
1023 /* Determine whether this loop starts with a jump down to a test at
1024 the end. This will occur for a small number of loops with a test
1025 that is too complex to duplicate in front of the loop.
1027 We search for the first insn or label in the loop, skipping NOTEs.
1028 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
1029 (because we might have a loop executed only once that contains a
1030 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
1031 (in case we have a degenerate loop).
1033 Note that if we mistakenly think that a loop is entered at the top
1034 when, in fact, it is entered at the exit test, the only effect will be
1035 slightly poorer optimization. Making the opposite error can generate
1036 incorrect code. Since very few loops now start with a jump to the
1037 exit test, the code here to detect that case is very conservative. */
1039 for (p
= NEXT_INSN (loop_start
);
1041 && !LABEL_P (p
) && ! INSN_P (p
)
1043 || (NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_BEG
1044 && NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_END
));
1048 loop
->scan_start
= p
;
1050 /* If loop end is the end of the current function, then emit a
1051 NOTE_INSN_DELETED after loop_end and set loop->sink to the dummy
1052 note insn. This is the position we use when sinking insns out of
1054 if (NEXT_INSN (loop
->end
) != 0)
1055 loop
->sink
= NEXT_INSN (loop
->end
);
1057 loop
->sink
= emit_note_after (NOTE_INSN_DELETED
, loop
->end
);
1059 /* Set up variables describing this loop. */
1060 prescan_loop (loop
);
1061 threshold
= (loop_info
->has_call
? 1 : 2) * (1 + n_non_fixed_regs
);
1063 /* If loop has a jump before the first label,
1064 the true entry is the target of that jump.
1065 Start scan from there.
1066 But record in LOOP->TOP the place where the end-test jumps
1067 back to so we can scan that after the end of the loop. */
1069 /* Loop entry must be unconditional jump (and not a RETURN) */
1070 && any_uncondjump_p (p
)
1071 && JUMP_LABEL (p
) != 0
1072 /* Check to see whether the jump actually
1073 jumps out of the loop (meaning it's no loop).
1074 This case can happen for things like
1075 do {..} while (0). If this label was generated previously
1076 by loop, we can't tell anything about it and have to reject
1078 && INSN_IN_RANGE_P (JUMP_LABEL (p
), loop_start
, loop_end
))
1080 loop
->top
= next_label (loop
->scan_start
);
1081 loop
->scan_start
= JUMP_LABEL (p
);
1084 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
1085 as required by loop_reg_used_before_p. So skip such loops. (This
1086 test may never be true, but it's best to play it safe.)
1088 Also, skip loops where we do not start scanning at a label. This
1089 test also rejects loops starting with a JUMP_INSN that failed the
1092 if (INSN_UID (loop
->scan_start
) >= max_uid_for_loop
1093 || !LABEL_P (loop
->scan_start
))
1095 if (loop_dump_stream
)
1096 fprintf (loop_dump_stream
, "\nLoop from %d to %d is phony.\n\n",
1097 INSN_UID (loop_start
), INSN_UID (loop_end
));
1101 /* Allocate extra space for REGs that might be created by load_mems.
1102 We allocate a little extra slop as well, in the hopes that we
1103 won't have to reallocate the regs array. */
1104 loop_regs_scan (loop
, loop_info
->mems_idx
+ 16);
1105 insn_count
= count_insns_in_loop (loop
);
1107 if (loop_dump_stream
)
1108 fprintf (loop_dump_stream
, "\nLoop from %d to %d: %d real insns.\n",
1109 INSN_UID (loop_start
), INSN_UID (loop_end
), insn_count
);
1111 /* Scan through the loop finding insns that are safe to move.
1112 Set REGS->ARRAY[I].SET_IN_LOOP negative for the reg I being set, so that
1113 this reg will be considered invariant for subsequent insns.
1114 We consider whether subsequent insns use the reg
1115 in deciding whether it is worth actually moving.
1117 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
1118 and therefore it is possible that the insns we are scanning
1119 would never be executed. At such times, we must make sure
1120 that it is safe to execute the insn once instead of zero times.
1121 When MAYBE_NEVER is 0, all insns will be executed at least once
1122 so that is not a problem. */
1124 for (in_libcall
= 0, p
= next_insn_in_loop (loop
, loop
->scan_start
);
1126 p
= next_insn_in_loop (loop
, p
))
1128 if (in_libcall
&& INSN_P (p
) && find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
1130 if (NONJUMP_INSN_P (p
))
1132 /* Do not scan past an optimization barrier. */
1133 if (GET_CODE (PATTERN (p
)) == ASM_INPUT
)
1135 temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
1139 && (set
= single_set (p
))
1140 && REG_P (SET_DEST (set
))
1141 && SET_DEST (set
) != frame_pointer_rtx
1142 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1143 && SET_DEST (set
) != pic_offset_table_rtx
1145 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
1150 int insert_temp
= 0;
1151 rtx src
= SET_SRC (set
);
1152 rtx dependencies
= 0;
1154 /* Figure out what to use as a source of this insn. If a
1155 REG_EQUIV note is given or if a REG_EQUAL note with a
1156 constant operand is specified, use it as the source and
1157 mark that we should move this insn by calling
1158 emit_move_insn rather that duplicating the insn.
1160 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL
1162 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
1164 src
= XEXP (temp
, 0), move_insn
= 1;
1167 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1168 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
1169 src
= XEXP (temp
, 0), move_insn
= 1;
1170 if (temp
&& find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
1172 src
= XEXP (temp
, 0);
1173 /* A libcall block can use regs that don't appear in
1174 the equivalent expression. To move the libcall,
1175 we must move those regs too. */
1176 dependencies
= libcall_other_reg (p
, src
);
1180 /* For parallels, add any possible uses to the dependencies, as
1181 we can't move the insn without resolving them first.
1182 MEMs inside CLOBBERs may also reference registers; these
1183 count as implicit uses. */
1184 if (GET_CODE (PATTERN (p
)) == PARALLEL
)
1186 for (i
= 0; i
< XVECLEN (PATTERN (p
), 0); i
++)
1188 rtx x
= XVECEXP (PATTERN (p
), 0, i
);
1189 if (GET_CODE (x
) == USE
)
1191 = gen_rtx_EXPR_LIST (VOIDmode
, XEXP (x
, 0),
1193 else if (GET_CODE (x
) == CLOBBER
1194 && MEM_P (XEXP (x
, 0)))
1195 dependencies
= find_regs_nested (dependencies
,
1196 XEXP (XEXP (x
, 0), 0));
1200 if (/* The register is used in basic blocks other
1201 than the one where it is set (meaning that
1202 something after this point in the loop might
1203 depend on its value before the set). */
1204 ! reg_in_basic_block_p (p
, SET_DEST (set
))
1205 /* And the set is not guaranteed to be executed once
1206 the loop starts, or the value before the set is
1207 needed before the set occurs...
1209 ??? Note we have quadratic behavior here, mitigated
1210 by the fact that the previous test will often fail for
1211 large loops. Rather than re-scanning the entire loop
1212 each time for register usage, we should build tables
1213 of the register usage and use them here instead. */
1215 || loop_reg_used_before_p (loop
, set
, p
)))
1216 /* It is unsafe to move the set. However, it may be OK to
1217 move the source into a new pseudo, and substitute a
1218 reg-to-reg copy for the original insn.
1220 This code used to consider it OK to move a set of a variable
1221 which was not created by the user and not used in an exit
1223 That behavior is incorrect and was removed. */
1226 /* Don't try to optimize a MODE_CC set with a constant
1227 source. It probably will be combined with a conditional
1229 if (GET_MODE_CLASS (GET_MODE (SET_DEST (set
))) == MODE_CC
1230 && CONSTANT_P (src
))
1232 /* Don't try to optimize a register that was made
1233 by loop-optimization for an inner loop.
1234 We don't know its life-span, so we can't compute
1236 else if (REGNO (SET_DEST (set
)) >= max_reg_before_loop
)
1238 /* Don't move the source and add a reg-to-reg copy:
1239 - with -Os (this certainly increases size),
1240 - if the mode doesn't support copy operations (obviously),
1241 - if the source is already a reg (the motion will gain nothing),
1242 - if the source is a legitimate constant (likewise),
1243 - if the dest is a hard register (may be unrecognizable). */
1244 else if (insert_temp
1246 || ! can_copy_p (GET_MODE (SET_SRC (set
)))
1247 || REG_P (SET_SRC (set
))
1248 || (CONSTANT_P (SET_SRC (set
))
1249 && LEGITIMATE_CONSTANT_P (SET_SRC (set
)))
1250 || REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
))
1252 else if ((tem
= loop_invariant_p (loop
, src
))
1253 && (dependencies
== 0
1255 = loop_invariant_p (loop
, dependencies
)) != 0)
1256 && (regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
== 1
1258 = consec_sets_invariant_p
1259 (loop
, SET_DEST (set
),
1260 regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
,
1262 /* If the insn can cause a trap (such as divide by zero),
1263 can't move it unless it's guaranteed to be executed
1264 once loop is entered. Even a function call might
1265 prevent the trap insn from being reached
1266 (since it might exit!) */
1267 && ! ((maybe_never
|| call_passed
)
1268 && may_trap_p (src
)))
1271 int regno
= REGNO (SET_DEST (set
));
1274 /* A potential lossage is where we have a case where two
1275 insns can be combined as long as they are both in the
1276 loop, but we move one of them outside the loop. For
1277 large loops, this can lose. The most common case of
1278 this is the address of a function being called.
1280 Therefore, if this register is marked as being used
1281 exactly once if we are in a loop with calls
1282 (a "large loop"), see if we can replace the usage of
1283 this register with the source of this SET. If we can,
1287 (1) P has a REG_RETVAL note or
1288 (2) if we have SMALL_REGISTER_CLASSES and
1289 (a) SET_SRC is a hard register or
1290 (b) the destination of the user is a hard register. */
1292 if (loop_info
->has_call
1293 && regno
>= FIRST_PSEUDO_REGISTER
1294 && (user
= regs
->array
[regno
].single_usage
) != NULL
1295 && user
!= const0_rtx
1296 && REGNO_FIRST_UID (regno
) == INSN_UID (p
)
1297 && REGNO_LAST_UID (regno
) == INSN_UID (user
)
1298 && regs
->array
[regno
].set_in_loop
== 1
1299 && GET_CODE (SET_SRC (set
)) != ASM_OPERANDS
1300 && ! side_effects_p (SET_SRC (set
))
1301 && ! find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
1302 && (!SMALL_REGISTER_CLASSES
1303 || !REG_P (SET_SRC (set
))
1304 || !HARD_REGISTER_P (SET_SRC (set
)))
1305 && (!SMALL_REGISTER_CLASSES
1306 || !NONJUMP_INSN_P (user
)
1307 || !(user_set
= single_set (user
))
1308 || !REG_P (SET_DEST (user_set
))
1309 || !HARD_REGISTER_P (SET_DEST (user_set
)))
1310 /* This test is not redundant; SET_SRC (set) might be
1311 a call-clobbered register and the life of REGNO
1312 might span a call. */
1313 && ! modified_between_p (SET_SRC (set
), p
, user
)
1314 && no_labels_between_p (p
, user
)
1315 && validate_replace_rtx (SET_DEST (set
),
1316 SET_SRC (set
), user
))
1318 /* Replace any usage in a REG_EQUAL note. Must copy
1319 the new source, so that we don't get rtx sharing
1320 between the SET_SOURCE and REG_NOTES of insn p. */
1322 = replace_rtx (REG_NOTES (user
), SET_DEST (set
),
1323 copy_rtx (SET_SRC (set
)));
1326 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
1328 regs
->array
[regno
+i
].set_in_loop
= 0;
1332 m
= xmalloc (sizeof (struct movable
));
1336 m
->dependencies
= dependencies
;
1337 m
->set_dest
= SET_DEST (set
);
1340 = regs
->array
[REGNO (SET_DEST (set
))].set_in_loop
- 1;
1344 m
->move_insn
= move_insn
;
1345 m
->move_insn_first
= 0;
1346 m
->insert_temp
= insert_temp
;
1347 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
1348 m
->savemode
= VOIDmode
;
1350 /* Set M->cond if either loop_invariant_p
1351 or consec_sets_invariant_p returned 2
1352 (only conditionally invariant). */
1353 m
->cond
= ((tem
| tem1
| tem2
) > 1);
1354 m
->global
= LOOP_REG_GLOBAL_P (loop
, regno
);
1356 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
1357 m
->savings
= regs
->array
[regno
].n_times_set
;
1358 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
1359 m
->savings
+= libcall_benefit (p
);
1360 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
)); i
++)
1361 regs
->array
[regno
+i
].set_in_loop
= move_insn
? -2 : -1;
1362 /* Add M to the end of the chain MOVABLES. */
1363 loop_movables_add (movables
, m
);
1367 /* It is possible for the first instruction to have a
1368 REG_EQUAL note but a non-invariant SET_SRC, so we must
1369 remember the status of the first instruction in case
1370 the last instruction doesn't have a REG_EQUAL note. */
1371 m
->move_insn_first
= m
->move_insn
;
1373 /* Skip this insn, not checking REG_LIBCALL notes. */
1374 p
= next_nonnote_insn (p
);
1375 /* Skip the consecutive insns, if there are any. */
1376 p
= skip_consec_insns (p
, m
->consec
);
1377 /* Back up to the last insn of the consecutive group. */
1378 p
= prev_nonnote_insn (p
);
1380 /* We must now reset m->move_insn, m->is_equiv, and
1381 possibly m->set_src to correspond to the effects of
1383 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
1385 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1388 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1389 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
1390 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
1396 = (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
1399 /* If this register is always set within a STRICT_LOW_PART
1400 or set to zero, then its high bytes are constant.
1401 So clear them outside the loop and within the loop
1402 just load the low bytes.
1403 We must check that the machine has an instruction to do so.
1404 Also, if the value loaded into the register
1405 depends on the same register, this cannot be done. */
1406 else if (SET_SRC (set
) == const0_rtx
1407 && NONJUMP_INSN_P (NEXT_INSN (p
))
1408 && (set1
= single_set (NEXT_INSN (p
)))
1409 && GET_CODE (set1
) == SET
1410 && (GET_CODE (SET_DEST (set1
)) == STRICT_LOW_PART
)
1411 && (GET_CODE (XEXP (SET_DEST (set1
), 0)) == SUBREG
)
1412 && (SUBREG_REG (XEXP (SET_DEST (set1
), 0))
1414 && !reg_mentioned_p (SET_DEST (set
), SET_SRC (set1
)))
1416 int regno
= REGNO (SET_DEST (set
));
1417 if (regs
->array
[regno
].set_in_loop
== 2)
1420 m
= xmalloc (sizeof (struct movable
));
1423 m
->set_dest
= SET_DEST (set
);
1424 m
->dependencies
= 0;
1430 m
->move_insn_first
= 0;
1431 m
->insert_temp
= insert_temp
;
1433 /* If the insn may not be executed on some cycles,
1434 we can't clear the whole reg; clear just high part.
1435 Not even if the reg is used only within this loop.
1442 Clearing x before the inner loop could clobber a value
1443 being saved from the last time around the outer loop.
1444 However, if the reg is not used outside this loop
1445 and all uses of the register are in the same
1446 basic block as the store, there is no problem.
1448 If this insn was made by loop, we don't know its
1449 INSN_LUID and hence must make a conservative
1451 m
->global
= (INSN_UID (p
) >= max_uid_for_loop
1452 || LOOP_REG_GLOBAL_P (loop
, regno
)
1453 || (labels_in_range_p
1454 (p
, REGNO_FIRST_LUID (regno
))));
1455 if (maybe_never
&& m
->global
)
1456 m
->savemode
= GET_MODE (SET_SRC (set1
));
1458 m
->savemode
= VOIDmode
;
1462 m
->lifetime
= LOOP_REG_LIFETIME (loop
, regno
);
1465 i
< LOOP_REGNO_NREGS (regno
, SET_DEST (set
));
1467 regs
->array
[regno
+i
].set_in_loop
= -1;
1468 /* Add M to the end of the chain MOVABLES. */
1469 loop_movables_add (movables
, m
);
1474 /* Past a call insn, we get to insns which might not be executed
1475 because the call might exit. This matters for insns that trap.
1476 Constant and pure call insns always return, so they don't count. */
1477 else if (CALL_P (p
) && ! CONST_OR_PURE_CALL_P (p
))
1479 /* Past a label or a jump, we get to insns for which we
1480 can't count on whether or how many times they will be
1481 executed during each iteration. Therefore, we can
1482 only move out sets of trivial variables
1483 (those not used after the loop). */
1484 /* Similar code appears twice in strength_reduce. */
1485 else if ((LABEL_P (p
) || JUMP_P (p
))
1486 /* If we enter the loop in the middle, and scan around to the
1487 beginning, don't set maybe_never for that. This must be an
1488 unconditional jump, otherwise the code at the top of the
1489 loop might never be executed. Unconditional jumps are
1490 followed by a barrier then the loop_end. */
1491 && ! (JUMP_P (p
) && JUMP_LABEL (p
) == loop
->top
1492 && NEXT_INSN (NEXT_INSN (p
)) == loop_end
1493 && any_uncondjump_p (p
)))
1497 /* If one movable subsumes another, ignore that other. */
1499 ignore_some_movables (movables
);
1501 /* For each movable insn, see if the reg that it loads
1502 leads when it dies right into another conditionally movable insn.
1503 If so, record that the second insn "forces" the first one,
1504 since the second can be moved only if the first is. */
1506 force_movables (movables
);
1508 /* See if there are multiple movable insns that load the same value.
1509 If there are, make all but the first point at the first one
1510 through the `match' field, and add the priorities of them
1511 all together as the priority of the first. */
1513 combine_movables (movables
, regs
);
1515 /* Now consider each movable insn to decide whether it is worth moving.
1516 Store 0 in regs->array[I].set_in_loop for each reg I that is moved.
1518 For machines with few registers this increases code size, so do not
1519 move moveables when optimizing for code size on such machines.
1520 (The 18 below is the value for i386.) */
1523 || (reg_class_size
[GENERAL_REGS
] > 18 && !loop_info
->has_call
))
1525 move_movables (loop
, movables
, threshold
, insn_count
);
1527 /* Recalculate regs->array if move_movables has created new
1529 if (max_reg_num () > regs
->num
)
1531 loop_regs_scan (loop
, 0);
1532 for (update_start
= loop_start
;
1533 PREV_INSN (update_start
)
1534 && !LABEL_P (PREV_INSN (update_start
));
1535 update_start
= PREV_INSN (update_start
))
1537 update_end
= NEXT_INSN (loop_end
);
1539 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1540 loop_max_reg
= max_reg_num ();
1544 /* Now candidates that still are negative are those not moved.
1545 Change regs->array[I].set_in_loop to indicate that those are not actually
1547 for (i
= 0; i
< regs
->num
; i
++)
1548 if (regs
->array
[i
].set_in_loop
< 0)
1549 regs
->array
[i
].set_in_loop
= regs
->array
[i
].n_times_set
;
1551 /* Now that we've moved some things out of the loop, we might be able to
1552 hoist even more memory references. */
1555 /* Recalculate regs->array if load_mems has created new registers. */
1556 if (max_reg_num () > regs
->num
)
1557 loop_regs_scan (loop
, 0);
1559 for (update_start
= loop_start
;
1560 PREV_INSN (update_start
)
1561 && !LABEL_P (PREV_INSN (update_start
));
1562 update_start
= PREV_INSN (update_start
))
1564 update_end
= NEXT_INSN (loop_end
);
1566 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1567 loop_max_reg
= max_reg_num ();
1569 if (flag_strength_reduce
)
1571 if (update_end
&& LABEL_P (update_end
))
1572 /* Ensure our label doesn't go away. */
1573 LABEL_NUSES (update_end
)++;
1575 strength_reduce (loop
, flags
);
1577 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1578 loop_max_reg
= max_reg_num ();
1580 if (update_end
&& LABEL_P (update_end
)
1581 && --LABEL_NUSES (update_end
) == 0)
1582 delete_related_insns (update_end
);
1586 /* The movable information is required for strength reduction. */
1587 loop_movables_free (movables
);
1594 /* Add elements to *OUTPUT to record all the pseudo-regs
1595 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1598 record_excess_regs (rtx in_this
, rtx not_in_this
, rtx
*output
)
1604 code
= GET_CODE (in_this
);
1618 if (REGNO (in_this
) >= FIRST_PSEUDO_REGISTER
1619 && ! reg_mentioned_p (in_this
, not_in_this
))
1620 *output
= gen_rtx_EXPR_LIST (VOIDmode
, in_this
, *output
);
1627 fmt
= GET_RTX_FORMAT (code
);
1628 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1635 for (j
= 0; j
< XVECLEN (in_this
, i
); j
++)
1636 record_excess_regs (XVECEXP (in_this
, i
, j
), not_in_this
, output
);
1640 record_excess_regs (XEXP (in_this
, i
), not_in_this
, output
);
1646 /* Check what regs are referred to in the libcall block ending with INSN,
1647 aside from those mentioned in the equivalent value.
1648 If there are none, return 0.
1649 If there are one or more, return an EXPR_LIST containing all of them. */
1652 libcall_other_reg (rtx insn
, rtx equiv
)
1654 rtx note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1655 rtx p
= XEXP (note
, 0);
1658 /* First, find all the regs used in the libcall block
1659 that are not mentioned as inputs to the result. */
1664 record_excess_regs (PATTERN (p
), equiv
, &output
);
1671 /* Return 1 if all uses of REG
1672 are between INSN and the end of the basic block. */
1675 reg_in_basic_block_p (rtx insn
, rtx reg
)
1677 int regno
= REGNO (reg
);
1680 if (REGNO_FIRST_UID (regno
) != INSN_UID (insn
))
1683 /* Search this basic block for the already recorded last use of the reg. */
1684 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1686 switch (GET_CODE (p
))
1693 /* Ordinary insn: if this is the last use, we win. */
1694 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1699 /* Jump insn: if this is the last use, we win. */
1700 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1702 /* Otherwise, it's the end of the basic block, so we lose. */
1707 /* It's the end of the basic block, so we lose. */
1715 /* The "last use" that was recorded can't be found after the first
1716 use. This can happen when the last use was deleted while
1717 processing an inner loop, this inner loop was then completely
1718 unrolled, and the outer loop is always exited after the inner loop,
1719 so that everything after the first use becomes a single basic block. */
1723 /* Compute the benefit of eliminating the insns in the block whose
1724 last insn is LAST. This may be a group of insns used to compute a
1725 value directly or can contain a library call. */
1728 libcall_benefit (rtx last
)
1733 for (insn
= XEXP (find_reg_note (last
, REG_RETVAL
, NULL_RTX
), 0);
1734 insn
!= last
; insn
= NEXT_INSN (insn
))
1737 benefit
+= 10; /* Assume at least this many insns in a library
1739 else if (NONJUMP_INSN_P (insn
)
1740 && GET_CODE (PATTERN (insn
)) != USE
1741 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
1748 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1751 skip_consec_insns (rtx insn
, int count
)
1753 for (; count
> 0; count
--)
1757 /* If first insn of libcall sequence, skip to end. */
1758 /* Do this at start of loop, since INSN is guaranteed to
1761 && (temp
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
1762 insn
= XEXP (temp
, 0);
1765 insn
= NEXT_INSN (insn
);
1766 while (NOTE_P (insn
));
1772 /* Ignore any movable whose insn falls within a libcall
1773 which is part of another movable.
1774 We make use of the fact that the movable for the libcall value
1775 was made later and so appears later on the chain. */
1778 ignore_some_movables (struct loop_movables
*movables
)
1780 struct movable
*m
, *m1
;
1782 for (m
= movables
->head
; m
; m
= m
->next
)
1784 /* Is this a movable for the value of a libcall? */
1785 rtx note
= find_reg_note (m
->insn
, REG_RETVAL
, NULL_RTX
);
1789 /* Check for earlier movables inside that range,
1790 and mark them invalid. We cannot use LUIDs here because
1791 insns created by loop.c for prior loops don't have LUIDs.
1792 Rather than reject all such insns from movables, we just
1793 explicitly check each insn in the libcall (since invariant
1794 libcalls aren't that common). */
1795 for (insn
= XEXP (note
, 0); insn
!= m
->insn
; insn
= NEXT_INSN (insn
))
1796 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1797 if (m1
->insn
== insn
)
1803 /* For each movable insn, see if the reg that it loads
1804 leads when it dies right into another conditionally movable insn.
1805 If so, record that the second insn "forces" the first one,
1806 since the second can be moved only if the first is. */
1809 force_movables (struct loop_movables
*movables
)
1811 struct movable
*m
, *m1
;
1813 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
1814 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1815 if (!m1
->partial
&& !m1
->done
)
1817 int regno
= m1
->regno
;
1818 for (m
= m1
->next
; m
; m
= m
->next
)
1819 /* ??? Could this be a bug? What if CSE caused the
1820 register of M1 to be used after this insn?
1821 Since CSE does not update regno_last_uid,
1822 this insn M->insn might not be where it dies.
1823 But very likely this doesn't matter; what matters is
1824 that M's reg is computed from M1's reg. */
1825 if (INSN_UID (m
->insn
) == REGNO_LAST_UID (regno
)
1828 if (m
!= 0 && m
->set_src
== m1
->set_dest
1829 /* If m->consec, m->set_src isn't valid. */
1833 /* Increase the priority of the moving the first insn
1834 since it permits the second to be moved as well.
1835 Likewise for insns already forced by the first insn. */
1841 for (m2
= m1
; m2
; m2
= m2
->forces
)
1843 m2
->lifetime
+= m
->lifetime
;
1844 m2
->savings
+= m
->savings
;
1850 /* Find invariant expressions that are equal and can be combined into
1854 combine_movables (struct loop_movables
*movables
, struct loop_regs
*regs
)
1857 char *matched_regs
= xmalloc (regs
->num
);
1858 enum machine_mode mode
;
1860 /* Regs that are set more than once are not allowed to match
1861 or be matched. I'm no longer sure why not. */
1862 /* Only pseudo registers are allowed to match or be matched,
1863 since move_movables does not validate the change. */
1864 /* Perhaps testing m->consec_sets would be more appropriate here? */
1866 for (m
= movables
->head
; m
; m
= m
->next
)
1867 if (m
->match
== 0 && regs
->array
[m
->regno
].n_times_set
== 1
1868 && m
->regno
>= FIRST_PSEUDO_REGISTER
1873 int regno
= m
->regno
;
1875 memset (matched_regs
, 0, regs
->num
);
1876 matched_regs
[regno
] = 1;
1878 /* We want later insns to match the first one. Don't make the first
1879 one match any later ones. So start this loop at m->next. */
1880 for (m1
= m
->next
; m1
; m1
= m1
->next
)
1881 if (m
!= m1
&& m1
->match
== 0
1883 && regs
->array
[m1
->regno
].n_times_set
== 1
1884 && m1
->regno
>= FIRST_PSEUDO_REGISTER
1885 /* A reg used outside the loop mustn't be eliminated. */
1887 /* A reg used for zero-extending mustn't be eliminated. */
1889 && (matched_regs
[m1
->regno
]
1891 (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
)
1892 /* See if the source of M1 says it matches M. */
1893 && ((REG_P (m1
->set_src
)
1894 && matched_regs
[REGNO (m1
->set_src
)])
1895 || rtx_equal_for_loop_p (m
->set_src
, m1
->set_src
,
1897 && ((m
->dependencies
== m1
->dependencies
)
1898 || rtx_equal_p (m
->dependencies
, m1
->dependencies
)))
1900 m
->lifetime
+= m1
->lifetime
;
1901 m
->savings
+= m1
->savings
;
1904 matched_regs
[m1
->regno
] = 1;
1908 /* Now combine the regs used for zero-extension.
1909 This can be done for those not marked `global'
1910 provided their lives don't overlap. */
1912 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1913 mode
= GET_MODE_WIDER_MODE (mode
))
1915 struct movable
*m0
= 0;
1917 /* Combine all the registers for extension from mode MODE.
1918 Don't combine any that are used outside this loop. */
1919 for (m
= movables
->head
; m
; m
= m
->next
)
1920 if (m
->partial
&& ! m
->global
1921 && mode
== GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m
->insn
)))))
1925 int first
= REGNO_FIRST_LUID (m
->regno
);
1926 int last
= REGNO_LAST_LUID (m
->regno
);
1930 /* First one: don't check for overlap, just record it. */
1935 /* Make sure they extend to the same mode.
1936 (Almost always true.) */
1937 if (GET_MODE (m
->set_dest
) != GET_MODE (m0
->set_dest
))
1940 /* We already have one: check for overlap with those
1941 already combined together. */
1942 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1943 if (m1
== m0
|| (m1
->partial
&& m1
->match
== m0
))
1944 if (! (REGNO_FIRST_LUID (m1
->regno
) > last
1945 || REGNO_LAST_LUID (m1
->regno
) < first
))
1948 /* No overlap: we can combine this with the others. */
1949 m0
->lifetime
+= m
->lifetime
;
1950 m0
->savings
+= m
->savings
;
1960 free (matched_regs
);
1963 /* Returns the number of movable instructions in LOOP that were not
1964 moved outside the loop. */
1967 num_unmoved_movables (const struct loop
*loop
)
1972 for (m
= LOOP_MOVABLES (loop
)->head
; m
; m
= m
->next
)
1980 /* Return 1 if regs X and Y will become the same if moved. */
1983 regs_match_p (rtx x
, rtx y
, struct loop_movables
*movables
)
1985 unsigned int xn
= REGNO (x
);
1986 unsigned int yn
= REGNO (y
);
1987 struct movable
*mx
, *my
;
1989 for (mx
= movables
->head
; mx
; mx
= mx
->next
)
1990 if (mx
->regno
== xn
)
1993 for (my
= movables
->head
; my
; my
= my
->next
)
1994 if (my
->regno
== yn
)
1998 && ((mx
->match
== my
->match
&& mx
->match
!= 0)
2000 || mx
== my
->match
));
2003 /* Return 1 if X and Y are identical-looking rtx's.
2004 This is the Lisp function EQUAL for rtx arguments.
2006 If two registers are matching movables or a movable register and an
2007 equivalent constant, consider them equal. */
2010 rtx_equal_for_loop_p (rtx x
, rtx y
, struct loop_movables
*movables
,
2011 struct loop_regs
*regs
)
2021 if (x
== 0 || y
== 0)
2024 code
= GET_CODE (x
);
2026 /* If we have a register and a constant, they may sometimes be
2028 if (REG_P (x
) && regs
->array
[REGNO (x
)].set_in_loop
== -2
2031 for (m
= movables
->head
; m
; m
= m
->next
)
2032 if (m
->move_insn
&& m
->regno
== REGNO (x
)
2033 && rtx_equal_p (m
->set_src
, y
))
2036 else if (REG_P (y
) && regs
->array
[REGNO (y
)].set_in_loop
== -2
2039 for (m
= movables
->head
; m
; m
= m
->next
)
2040 if (m
->move_insn
&& m
->regno
== REGNO (y
)
2041 && rtx_equal_p (m
->set_src
, x
))
2045 /* Otherwise, rtx's of different codes cannot be equal. */
2046 if (code
!= GET_CODE (y
))
2049 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
2050 (REG:SI x) and (REG:HI x) are NOT equivalent. */
2052 if (GET_MODE (x
) != GET_MODE (y
))
2055 /* These types of rtx's can be compared nonrecursively. */
2065 return (REGNO (x
) == REGNO (y
) || regs_match_p (x
, y
, movables
));
2068 return XEXP (x
, 0) == XEXP (y
, 0);
2070 return XSTR (x
, 0) == XSTR (y
, 0);
2076 /* Compare the elements. If any pair of corresponding elements
2077 fail to match, return 0 for the whole things. */
2079 fmt
= GET_RTX_FORMAT (code
);
2080 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2085 if (XWINT (x
, i
) != XWINT (y
, i
))
2090 if (XINT (x
, i
) != XINT (y
, i
))
2095 /* Two vectors must have the same length. */
2096 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2099 /* And the corresponding elements must match. */
2100 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2101 if (rtx_equal_for_loop_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2102 movables
, regs
) == 0)
2107 if (rtx_equal_for_loop_p (XEXP (x
, i
), XEXP (y
, i
), movables
, regs
)
2113 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2118 /* These are just backpointers, so they don't matter. */
2124 /* It is believed that rtx's at this level will never
2125 contain anything but integers and other rtx's,
2126 except for within LABEL_REFs and SYMBOL_REFs. */
2134 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
2135 insns in INSNS which use the reference. LABEL_NUSES for CODE_LABEL
2136 references is incremented once for each added note. */
2139 add_label_notes (rtx x
, rtx insns
)
2141 enum rtx_code code
= GET_CODE (x
);
2146 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
2148 /* This code used to ignore labels that referred to dispatch tables to
2149 avoid flow generating (slightly) worse code.
2151 We no longer ignore such label references (see LABEL_REF handling in
2152 mark_jump_label for additional information). */
2153 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
2154 if (reg_mentioned_p (XEXP (x
, 0), insn
))
2156 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
2158 if (LABEL_P (XEXP (x
, 0)))
2159 LABEL_NUSES (XEXP (x
, 0))++;
2163 fmt
= GET_RTX_FORMAT (code
);
2164 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2167 add_label_notes (XEXP (x
, i
), insns
);
2168 else if (fmt
[i
] == 'E')
2169 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2170 add_label_notes (XVECEXP (x
, i
, j
), insns
);
2174 /* Scan MOVABLES, and move the insns that deserve to be moved.
2175 If two matching movables are combined, replace one reg with the
2176 other throughout. */
2179 move_movables (struct loop
*loop
, struct loop_movables
*movables
,
2180 int threshold
, int insn_count
)
2182 struct loop_regs
*regs
= LOOP_REGS (loop
);
2183 int nregs
= regs
->num
;
2187 rtx loop_start
= loop
->start
;
2188 rtx loop_end
= loop
->end
;
2189 /* Map of pseudo-register replacements to handle combining
2190 when we move several insns that load the same value
2191 into different pseudo-registers. */
2192 rtx
*reg_map
= xcalloc (nregs
, sizeof (rtx
));
2193 char *already_moved
= xcalloc (nregs
, sizeof (char));
2195 for (m
= movables
->head
; m
; m
= m
->next
)
2197 /* Describe this movable insn. */
2199 if (loop_dump_stream
)
2201 fprintf (loop_dump_stream
, "Insn %d: regno %d (life %d), ",
2202 INSN_UID (m
->insn
), m
->regno
, m
->lifetime
);
2204 fprintf (loop_dump_stream
, "consec %d, ", m
->consec
);
2206 fprintf (loop_dump_stream
, "cond ");
2208 fprintf (loop_dump_stream
, "force ");
2210 fprintf (loop_dump_stream
, "global ");
2212 fprintf (loop_dump_stream
, "done ");
2214 fprintf (loop_dump_stream
, "move-insn ");
2216 fprintf (loop_dump_stream
, "matches %d ",
2217 INSN_UID (m
->match
->insn
));
2219 fprintf (loop_dump_stream
, "forces %d ",
2220 INSN_UID (m
->forces
->insn
));
2223 /* Ignore the insn if it's already done (it matched something else).
2224 Otherwise, see if it is now safe to move. */
2228 || (1 == loop_invariant_p (loop
, m
->set_src
)
2229 && (m
->dependencies
== 0
2230 || 1 == loop_invariant_p (loop
, m
->dependencies
))
2232 || 1 == consec_sets_invariant_p (loop
, m
->set_dest
,
2235 && (! m
->forces
|| m
->forces
->done
))
2239 int savings
= m
->savings
;
2241 /* We have an insn that is safe to move.
2242 Compute its desirability. */
2247 if (loop_dump_stream
)
2248 fprintf (loop_dump_stream
, "savings %d ", savings
);
2250 if (regs
->array
[regno
].moved_once
&& loop_dump_stream
)
2251 fprintf (loop_dump_stream
, "halved since already moved ");
2253 /* An insn MUST be moved if we already moved something else
2254 which is safe only if this one is moved too: that is,
2255 if already_moved[REGNO] is nonzero. */
2257 /* An insn is desirable to move if the new lifetime of the
2258 register is no more than THRESHOLD times the old lifetime.
2259 If it's not desirable, it means the loop is so big
2260 that moving won't speed things up much,
2261 and it is liable to make register usage worse. */
2263 /* It is also desirable to move if it can be moved at no
2264 extra cost because something else was already moved. */
2266 if (already_moved
[regno
]
2267 || (threshold
* savings
* m
->lifetime
) >=
2268 (regs
->array
[regno
].moved_once
? insn_count
* 2 : insn_count
)
2269 || (m
->forces
&& m
->forces
->done
2270 && regs
->array
[m
->forces
->regno
].n_times_set
== 1))
2274 rtx first
= NULL_RTX
;
2275 rtx newreg
= NULL_RTX
;
2278 newreg
= gen_reg_rtx (GET_MODE (m
->set_dest
));
2280 /* Now move the insns that set the reg. */
2282 if (m
->partial
&& m
->match
)
2286 /* Find the end of this chain of matching regs.
2287 Thus, we load each reg in the chain from that one reg.
2288 And that reg is loaded with 0 directly,
2289 since it has ->match == 0. */
2290 for (m1
= m
; m1
->match
; m1
= m1
->match
);
2291 newpat
= gen_move_insn (SET_DEST (PATTERN (m
->insn
)),
2292 SET_DEST (PATTERN (m1
->insn
)));
2293 i1
= loop_insn_hoist (loop
, newpat
);
2295 /* Mark the moved, invariant reg as being allowed to
2296 share a hard reg with the other matching invariant. */
2297 REG_NOTES (i1
) = REG_NOTES (m
->insn
);
2298 r1
= SET_DEST (PATTERN (m
->insn
));
2299 r2
= SET_DEST (PATTERN (m1
->insn
));
2301 = gen_rtx_EXPR_LIST (VOIDmode
, r1
,
2302 gen_rtx_EXPR_LIST (VOIDmode
, r2
,
2304 delete_insn (m
->insn
);
2309 if (loop_dump_stream
)
2310 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
2312 /* If we are to re-generate the item being moved with a
2313 new move insn, first delete what we have and then emit
2314 the move insn before the loop. */
2315 else if (m
->move_insn
)
2319 for (count
= m
->consec
; count
>= 0; count
--)
2323 /* If this is the first insn of a library
2324 call sequence, something is very
2326 gcc_assert (!find_reg_note
2327 (p
, REG_LIBCALL
, NULL_RTX
));
2329 /* If this is the last insn of a libcall
2330 sequence, then delete every insn in the
2331 sequence except the last. The last insn
2332 is handled in the normal manner. */
2333 temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
);
2337 temp
= XEXP (temp
, 0);
2339 temp
= delete_insn (temp
);
2344 p
= delete_insn (p
);
2346 /* simplify_giv_expr expects that it can walk the insns
2347 at m->insn forwards and see this old sequence we are
2348 tossing here. delete_insn does preserve the next
2349 pointers, but when we skip over a NOTE we must fix
2350 it up. Otherwise that code walks into the non-deleted
2352 while (p
&& NOTE_P (p
))
2353 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2357 /* Replace the original insn with a move from
2358 our newly created temp. */
2360 emit_move_insn (m
->set_dest
, newreg
);
2363 emit_insn_before (seq
, p
);
2368 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2373 add_label_notes (m
->set_src
, seq
);
2375 i1
= loop_insn_hoist (loop
, seq
);
2376 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2377 set_unique_reg_note (i1
,
2378 m
->is_equiv
? REG_EQUIV
: REG_EQUAL
,
2381 if (loop_dump_stream
)
2382 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
2384 /* The more regs we move, the less we like moving them. */
2389 for (count
= m
->consec
; count
>= 0; count
--)
2393 /* If first insn of libcall sequence, skip to end. */
2394 /* Do this at start of loop, since p is guaranteed to
2397 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
2400 /* If last insn of libcall sequence, move all
2401 insns except the last before the loop. The last
2402 insn is handled in the normal manner. */
2404 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
2408 rtx fn_address_insn
= 0;
2411 for (temp
= XEXP (temp
, 0); temp
!= p
;
2412 temp
= NEXT_INSN (temp
))
2421 body
= PATTERN (temp
);
2423 /* Find the next insn after TEMP,
2424 not counting USE or NOTE insns. */
2425 for (next
= NEXT_INSN (temp
); next
!= p
;
2426 next
= NEXT_INSN (next
))
2427 if (! (NONJUMP_INSN_P (next
)
2428 && GET_CODE (PATTERN (next
)) == USE
)
2432 /* If that is the call, this may be the insn
2433 that loads the function address.
2435 Extract the function address from the insn
2436 that loads it into a register.
2437 If this insn was cse'd, we get incorrect code.
2439 So emit a new move insn that copies the
2440 function address into the register that the
2441 call insn will use. flow.c will delete any
2442 redundant stores that we have created. */
2444 && GET_CODE (body
) == SET
2445 && REG_P (SET_DEST (body
))
2446 && (n
= find_reg_note (temp
, REG_EQUAL
,
2449 fn_reg
= SET_SRC (body
);
2450 if (!REG_P (fn_reg
))
2451 fn_reg
= SET_DEST (body
);
2452 fn_address
= XEXP (n
, 0);
2453 fn_address_insn
= temp
;
2455 /* We have the call insn.
2456 If it uses the register we suspect it might,
2457 load it with the correct address directly. */
2460 && reg_referenced_p (fn_reg
, body
))
2461 loop_insn_emit_after (loop
, 0, fn_address_insn
,
2463 (fn_reg
, fn_address
));
2467 i1
= loop_call_insn_hoist (loop
, body
);
2468 /* Because the USAGE information potentially
2469 contains objects other than hard registers
2470 we need to copy it. */
2471 if (CALL_INSN_FUNCTION_USAGE (temp
))
2472 CALL_INSN_FUNCTION_USAGE (i1
)
2473 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp
));
2476 i1
= loop_insn_hoist (loop
, body
);
2479 if (temp
== fn_address_insn
)
2480 fn_address_insn
= i1
;
2481 REG_NOTES (i1
) = REG_NOTES (temp
);
2482 REG_NOTES (temp
) = NULL
;
2488 if (m
->savemode
!= VOIDmode
)
2490 /* P sets REG to zero; but we should clear only
2491 the bits that are not covered by the mode
2493 rtx reg
= m
->set_dest
;
2498 tem
= expand_simple_binop
2499 (GET_MODE (reg
), AND
, reg
,
2500 GEN_INT ((((HOST_WIDE_INT
) 1
2501 << GET_MODE_BITSIZE (m
->savemode
)))
2503 reg
, 1, OPTAB_LIB_WIDEN
);
2506 emit_move_insn (reg
, tem
);
2507 sequence
= get_insns ();
2509 i1
= loop_insn_hoist (loop
, sequence
);
2511 else if (CALL_P (p
))
2513 i1
= loop_call_insn_hoist (loop
, PATTERN (p
));
2514 /* Because the USAGE information potentially
2515 contains objects other than hard registers
2516 we need to copy it. */
2517 if (CALL_INSN_FUNCTION_USAGE (p
))
2518 CALL_INSN_FUNCTION_USAGE (i1
)
2519 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p
));
2521 else if (count
== m
->consec
&& m
->move_insn_first
)
2524 /* The SET_SRC might not be invariant, so we must
2525 use the REG_EQUAL note. */
2527 emit_move_insn (m
->insert_temp
? newreg
: m
->set_dest
,
2532 add_label_notes (m
->set_src
, seq
);
2534 i1
= loop_insn_hoist (loop
, seq
);
2535 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2536 set_unique_reg_note (i1
, m
->is_equiv
? REG_EQUIV
2537 : REG_EQUAL
, m
->set_src
);
2539 else if (m
->insert_temp
)
2541 rtx
*reg_map2
= xcalloc (REGNO (newreg
),
2543 reg_map2
[m
->regno
] = newreg
;
2545 i1
= loop_insn_hoist (loop
, copy_rtx (PATTERN (p
)));
2546 replace_regs (i1
, reg_map2
, REGNO (newreg
), 1);
2550 i1
= loop_insn_hoist (loop
, PATTERN (p
));
2552 if (REG_NOTES (i1
) == 0)
2554 REG_NOTES (i1
) = REG_NOTES (p
);
2555 REG_NOTES (p
) = NULL
;
2557 /* If there is a REG_EQUAL note present whose value
2558 is not loop invariant, then delete it, since it
2559 may cause problems with later optimization passes.
2560 It is possible for cse to create such notes
2561 like this as a result of record_jump_cond. */
2563 if ((temp
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
2564 && loop_invariant_p (loop
, XEXP (temp
, 0)) != 1)
2565 remove_note (i1
, temp
);
2571 if (loop_dump_stream
)
2572 fprintf (loop_dump_stream
, " moved to %d",
2575 /* If library call, now fix the REG_NOTES that contain
2576 insn pointers, namely REG_LIBCALL on FIRST
2577 and REG_RETVAL on I1. */
2578 if ((temp
= find_reg_note (i1
, REG_RETVAL
, NULL_RTX
)))
2580 XEXP (temp
, 0) = first
;
2581 temp
= find_reg_note (first
, REG_LIBCALL
, NULL_RTX
);
2582 XEXP (temp
, 0) = i1
;
2589 /* simplify_giv_expr expects that it can walk the insns
2590 at m->insn forwards and see this old sequence we are
2591 tossing here. delete_insn does preserve the next
2592 pointers, but when we skip over a NOTE we must fix
2593 it up. Otherwise that code walks into the non-deleted
2595 while (p
&& NOTE_P (p
))
2596 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2601 /* Replace the original insn with a move from
2602 our newly created temp. */
2604 emit_move_insn (m
->set_dest
, newreg
);
2607 emit_insn_before (seq
, p
);
2611 /* The more regs we move, the less we like moving them. */
2617 if (!m
->insert_temp
)
2619 /* Any other movable that loads the same register
2621 already_moved
[regno
] = 1;
2623 /* This reg has been moved out of one loop. */
2624 regs
->array
[regno
].moved_once
= 1;
2626 /* The reg set here is now invariant. */
2630 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, m
->set_dest
); i
++)
2631 regs
->array
[regno
+i
].set_in_loop
= 0;
2634 /* Change the length-of-life info for the register
2635 to say it lives at least the full length of this loop.
2636 This will help guide optimizations in outer loops. */
2638 if (REGNO_FIRST_LUID (regno
) > INSN_LUID (loop_start
))
2639 /* This is the old insn before all the moved insns.
2640 We can't use the moved insn because it is out of range
2641 in uid_luid. Only the old insns have luids. */
2642 REGNO_FIRST_UID (regno
) = INSN_UID (loop_start
);
2643 if (REGNO_LAST_LUID (regno
) < INSN_LUID (loop_end
))
2644 REGNO_LAST_UID (regno
) = INSN_UID (loop_end
);
2647 /* Combine with this moved insn any other matching movables. */
2650 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
2655 reg_map
[m1
->regno
] = m
->set_dest
;
2657 /* Get rid of the matching insn
2658 and prevent further processing of it. */
2661 /* If library call, delete all insns. */
2662 if ((temp
= find_reg_note (m1
->insn
, REG_RETVAL
,
2664 delete_insn_chain (XEXP (temp
, 0), m1
->insn
);
2666 delete_insn (m1
->insn
);
2668 /* Any other movable that loads the same register
2670 already_moved
[m1
->regno
] = 1;
2672 /* The reg merged here is now invariant,
2673 if the reg it matches is invariant. */
2678 i
< LOOP_REGNO_NREGS (regno
, m1
->set_dest
);
2680 regs
->array
[m1
->regno
+i
].set_in_loop
= 0;
2684 else if (loop_dump_stream
)
2685 fprintf (loop_dump_stream
, "not desirable");
2687 else if (loop_dump_stream
&& !m
->match
)
2688 fprintf (loop_dump_stream
, "not safe");
2690 if (loop_dump_stream
)
2691 fprintf (loop_dump_stream
, "\n");
2695 new_start
= loop_start
;
2697 /* Go through all the instructions in the loop, making
2698 all the register substitutions scheduled in REG_MAP. */
2699 for (p
= new_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
2702 replace_regs (PATTERN (p
), reg_map
, nregs
, 0);
2703 replace_regs (REG_NOTES (p
), reg_map
, nregs
, 0);
2709 free (already_moved
);
2714 loop_movables_add (struct loop_movables
*movables
, struct movable
*m
)
2716 if (movables
->head
== 0)
2719 movables
->last
->next
= m
;
2725 loop_movables_free (struct loop_movables
*movables
)
2728 struct movable
*m_next
;
2730 for (m
= movables
->head
; m
; m
= m_next
)
2738 /* Scan X and replace the address of any MEM in it with ADDR.
2739 REG is the address that MEM should have before the replacement. */
2742 replace_call_address (rtx x
, rtx reg
, rtx addr
)
2750 code
= GET_CODE (x
);
2764 /* Short cut for very common case. */
2765 replace_call_address (XEXP (x
, 1), reg
, addr
);
2769 /* Short cut for very common case. */
2770 replace_call_address (XEXP (x
, 0), reg
, addr
);
2774 /* If this MEM uses a reg other than the one we expected,
2775 something is wrong. */
2776 gcc_assert (XEXP (x
, 0) == reg
);
2784 fmt
= GET_RTX_FORMAT (code
);
2785 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2788 replace_call_address (XEXP (x
, i
), reg
, addr
);
2789 else if (fmt
[i
] == 'E')
2792 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2793 replace_call_address (XVECEXP (x
, i
, j
), reg
, addr
);
2799 /* Return the number of memory refs to addresses that vary
2803 count_nonfixed_reads (const struct loop
*loop
, rtx x
)
2813 code
= GET_CODE (x
);
2827 return ((loop_invariant_p (loop
, XEXP (x
, 0)) != 1)
2828 + count_nonfixed_reads (loop
, XEXP (x
, 0)));
2835 fmt
= GET_RTX_FORMAT (code
);
2836 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2839 value
+= count_nonfixed_reads (loop
, XEXP (x
, i
));
2843 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2844 value
+= count_nonfixed_reads (loop
, XVECEXP (x
, i
, j
));
2850 /* Scan a loop setting the elements `loops_enclosed',
2851 `has_call', `has_nonconst_call', `has_volatile', `has_tablejump',
2852 `unknown_address_altered', `unknown_constant_address_altered', and
2853 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2854 list `store_mems' in LOOP. */
2857 prescan_loop (struct loop
*loop
)
2861 struct loop_info
*loop_info
= LOOP_INFO (loop
);
2862 rtx start
= loop
->start
;
2863 rtx end
= loop
->end
;
2864 /* The label after END. Jumping here is just like falling off the
2865 end of the loop. We use next_nonnote_insn instead of next_label
2866 as a hedge against the (pathological) case where some actual insn
2867 might end up between the two. */
2868 rtx exit_target
= next_nonnote_insn (end
);
2870 loop_info
->has_indirect_jump
= indirect_jump_in_function
;
2871 loop_info
->pre_header_has_call
= 0;
2872 loop_info
->has_call
= 0;
2873 loop_info
->has_nonconst_call
= 0;
2874 loop_info
->has_prefetch
= 0;
2875 loop_info
->has_volatile
= 0;
2876 loop_info
->has_tablejump
= 0;
2877 loop_info
->has_multiple_exit_targets
= 0;
2880 loop_info
->unknown_address_altered
= 0;
2881 loop_info
->unknown_constant_address_altered
= 0;
2882 loop_info
->store_mems
= NULL_RTX
;
2883 loop_info
->first_loop_store_insn
= NULL_RTX
;
2884 loop_info
->mems_idx
= 0;
2885 loop_info
->num_mem_sets
= 0;
2887 for (insn
= start
; insn
&& !LABEL_P (insn
);
2888 insn
= PREV_INSN (insn
))
2892 loop_info
->pre_header_has_call
= 1;
2897 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2898 insn
= NEXT_INSN (insn
))
2900 switch (GET_CODE (insn
))
2903 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2906 /* Count number of loops contained in this one. */
2909 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2914 if (! CONST_OR_PURE_CALL_P (insn
))
2916 loop_info
->unknown_address_altered
= 1;
2917 loop_info
->has_nonconst_call
= 1;
2919 else if (pure_call_p (insn
))
2920 loop_info
->has_nonconst_call
= 1;
2921 loop_info
->has_call
= 1;
2922 if (can_throw_internal (insn
))
2923 loop_info
->has_multiple_exit_targets
= 1;
2927 if (! loop_info
->has_multiple_exit_targets
)
2929 rtx set
= pc_set (insn
);
2933 rtx src
= SET_SRC (set
);
2936 if (GET_CODE (src
) == IF_THEN_ELSE
)
2938 label1
= XEXP (src
, 1);
2939 label2
= XEXP (src
, 2);
2949 if (label1
&& label1
!= pc_rtx
)
2951 if (GET_CODE (label1
) != LABEL_REF
)
2953 /* Something tricky. */
2954 loop_info
->has_multiple_exit_targets
= 1;
2957 else if (XEXP (label1
, 0) != exit_target
2958 && LABEL_OUTSIDE_LOOP_P (label1
))
2960 /* A jump outside the current loop. */
2961 loop_info
->has_multiple_exit_targets
= 1;
2973 /* A return, or something tricky. */
2974 loop_info
->has_multiple_exit_targets
= 1;
2980 if (volatile_refs_p (PATTERN (insn
)))
2981 loop_info
->has_volatile
= 1;
2984 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2985 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
2986 loop_info
->has_tablejump
= 1;
2988 note_stores (PATTERN (insn
), note_addr_stored
, loop_info
);
2989 if (! loop_info
->first_loop_store_insn
&& loop_info
->store_mems
)
2990 loop_info
->first_loop_store_insn
= insn
;
2992 if (flag_non_call_exceptions
&& can_throw_internal (insn
))
2993 loop_info
->has_multiple_exit_targets
= 1;
3001 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
3002 if (/* An exception thrown by a called function might land us
3004 ! loop_info
->has_nonconst_call
3005 /* We don't want loads for MEMs moved to a location before the
3006 one at which their stack memory becomes allocated. (Note
3007 that this is not a problem for malloc, etc., since those
3008 require actual function calls. */
3009 && ! current_function_calls_alloca
3010 /* There are ways to leave the loop other than falling off the
3012 && ! loop_info
->has_multiple_exit_targets
)
3013 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
3014 insn
= NEXT_INSN (insn
))
3015 for_each_rtx (&insn
, insert_loop_mem
, loop_info
);
3017 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
3018 that loop_invariant_p and load_mems can use true_dependence
3019 to determine what is really clobbered. */
3020 if (loop_info
->unknown_address_altered
)
3022 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
3024 loop_info
->store_mems
3025 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
3027 if (loop_info
->unknown_constant_address_altered
)
3029 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
3030 MEM_READONLY_P (mem
) = 1;
3031 loop_info
->store_mems
3032 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
3036 /* Invalidate all loops containing LABEL. */
3039 invalidate_loops_containing_label (rtx label
)
3042 for (loop
= uid_loop
[INSN_UID (label
)]; loop
; loop
= loop
->outer
)
3046 /* Scan the function looking for loops. Record the start and end of each loop.
3047 Also mark as invalid loops any loops that contain a setjmp or are branched
3048 to from outside the loop. */
3051 find_and_verify_loops (rtx f
, struct loops
*loops
)
3056 struct loop
*current_loop
;
3057 struct loop
*next_loop
;
3060 num_loops
= loops
->num
;
3062 compute_luids (f
, NULL_RTX
, 0);
3064 /* If there are jumps to undefined labels,
3065 treat them as jumps out of any/all loops.
3066 This also avoids writing past end of tables when there are no loops. */
3069 /* Find boundaries of loops, mark which loops are contained within
3070 loops, and invalidate loops that have setjmp. */
3073 current_loop
= NULL
;
3074 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
3077 switch (NOTE_LINE_NUMBER (insn
))
3079 case NOTE_INSN_LOOP_BEG
:
3080 next_loop
= loops
->array
+ num_loops
;
3081 next_loop
->num
= num_loops
;
3083 next_loop
->start
= insn
;
3084 next_loop
->outer
= current_loop
;
3085 current_loop
= next_loop
;
3088 case NOTE_INSN_LOOP_END
:
3089 gcc_assert (current_loop
);
3091 current_loop
->end
= insn
;
3092 current_loop
= current_loop
->outer
;
3100 && find_reg_note (insn
, REG_SETJMP
, NULL
))
3102 /* In this case, we must invalidate our current loop and any
3104 for (loop
= current_loop
; loop
; loop
= loop
->outer
)
3107 if (loop_dump_stream
)
3108 fprintf (loop_dump_stream
,
3109 "\nLoop at %d ignored due to setjmp.\n",
3110 INSN_UID (loop
->start
));
3114 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
3115 enclosing loop, but this doesn't matter. */
3116 uid_loop
[INSN_UID (insn
)] = current_loop
;
3119 /* Any loop containing a label used in an initializer must be invalidated,
3120 because it can be jumped into from anywhere. */
3121 for (label
= forced_labels
; label
; label
= XEXP (label
, 1))
3122 invalidate_loops_containing_label (XEXP (label
, 0));
3124 /* Any loop containing a label used for an exception handler must be
3125 invalidated, because it can be jumped into from anywhere. */
3126 for_each_eh_label (invalidate_loops_containing_label
);
3128 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
3129 loop that it is not contained within, that loop is marked invalid.
3130 If any INSN or CALL_INSN uses a label's address, then the loop containing
3131 that label is marked invalid, because it could be jumped into from
3134 Also look for blocks of code ending in an unconditional branch that
3135 exits the loop. If such a block is surrounded by a conditional
3136 branch around the block, move the block elsewhere (see below) and
3137 invert the jump to point to the code block. This may eliminate a
3138 label in our loop and will simplify processing by both us and a
3139 possible second cse pass. */
3141 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
3144 struct loop
*this_loop
= uid_loop
[INSN_UID (insn
)];
3146 if (NONJUMP_INSN_P (insn
) || CALL_P (insn
))
3148 rtx note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
3150 invalidate_loops_containing_label (XEXP (note
, 0));
3156 mark_loop_jump (PATTERN (insn
), this_loop
);
3158 /* See if this is an unconditional branch outside the loop. */
3160 && (GET_CODE (PATTERN (insn
)) == RETURN
3161 || (any_uncondjump_p (insn
)
3162 && onlyjump_p (insn
)
3163 && (uid_loop
[INSN_UID (JUMP_LABEL (insn
))]
3165 && get_max_uid () < max_uid_for_loop
)
3168 rtx our_next
= next_real_insn (insn
);
3169 rtx last_insn_to_move
= NEXT_INSN (insn
);
3170 struct loop
*dest_loop
;
3171 struct loop
*outer_loop
= NULL
;
3173 /* Go backwards until we reach the start of the loop, a label,
3175 for (p
= PREV_INSN (insn
);
3178 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
3183 /* Check for the case where we have a jump to an inner nested
3184 loop, and do not perform the optimization in that case. */
3186 if (JUMP_LABEL (insn
))
3188 dest_loop
= uid_loop
[INSN_UID (JUMP_LABEL (insn
))];
3191 for (outer_loop
= dest_loop
; outer_loop
;
3192 outer_loop
= outer_loop
->outer
)
3193 if (outer_loop
== this_loop
)
3198 /* Make sure that the target of P is within the current loop. */
3200 if (JUMP_P (p
) && JUMP_LABEL (p
)
3201 && uid_loop
[INSN_UID (JUMP_LABEL (p
))] != this_loop
)
3202 outer_loop
= this_loop
;
3204 /* If we stopped on a JUMP_INSN to the next insn after INSN,
3205 we have a block of code to try to move.
3207 We look backward and then forward from the target of INSN
3208 to find a BARRIER at the same loop depth as the target.
3209 If we find such a BARRIER, we make a new label for the start
3210 of the block, invert the jump in P and point it to that label,
3211 and move the block of code to the spot we found. */
3215 && JUMP_LABEL (p
) != 0
3216 /* Just ignore jumps to labels that were never emitted.
3217 These always indicate compilation errors. */
3218 && INSN_UID (JUMP_LABEL (p
)) != 0
3219 && any_condjump_p (p
) && onlyjump_p (p
)
3220 && next_real_insn (JUMP_LABEL (p
)) == our_next
3221 /* If it's not safe to move the sequence, then we
3223 && insns_safe_to_move_p (p
, NEXT_INSN (insn
),
3224 &last_insn_to_move
))
3227 = JUMP_LABEL (insn
) ? JUMP_LABEL (insn
) : get_last_insn ();
3228 struct loop
*target_loop
= uid_loop
[INSN_UID (target
)];
3232 /* Search for possible garbage past the conditional jumps
3233 and look for the last barrier. */
3234 for (tmp
= last_insn_to_move
;
3235 tmp
&& !LABEL_P (tmp
); tmp
= NEXT_INSN (tmp
))
3236 if (BARRIER_P (tmp
))
3237 last_insn_to_move
= tmp
;
3239 for (loc
= target
; loc
; loc
= PREV_INSN (loc
))
3241 /* Don't move things inside a tablejump. */
3242 && ((loc2
= next_nonnote_insn (loc
)) == 0
3244 || (loc2
= next_nonnote_insn (loc2
)) == 0
3246 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
3247 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
3248 && uid_loop
[INSN_UID (loc
)] == target_loop
)
3252 for (loc
= target
; loc
; loc
= NEXT_INSN (loc
))
3254 /* Don't move things inside a tablejump. */
3255 && ((loc2
= next_nonnote_insn (loc
)) == 0
3257 || (loc2
= next_nonnote_insn (loc2
)) == 0
3259 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
3260 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
3261 && uid_loop
[INSN_UID (loc
)] == target_loop
)
3266 rtx cond_label
= JUMP_LABEL (p
);
3267 rtx new_label
= get_label_after (p
);
3269 /* Ensure our label doesn't go away. */
3270 LABEL_NUSES (cond_label
)++;
3272 /* Verify that uid_loop is large enough and that
3274 if (invert_jump (p
, new_label
, 1))
3279 /* If no suitable BARRIER was found, create a suitable
3280 one before TARGET. Since TARGET is a fall through
3281 path, we'll need to insert a jump around our block
3282 and add a BARRIER before TARGET.
3284 This creates an extra unconditional jump outside
3285 the loop. However, the benefits of removing rarely
3286 executed instructions from inside the loop usually
3287 outweighs the cost of the extra unconditional jump
3288 outside the loop. */
3293 temp
= gen_jump (JUMP_LABEL (insn
));
3294 temp
= emit_jump_insn_before (temp
, target
);
3295 JUMP_LABEL (temp
) = JUMP_LABEL (insn
);
3296 LABEL_NUSES (JUMP_LABEL (insn
))++;
3297 loc
= emit_barrier_before (target
);
3300 /* Include the BARRIER after INSN and copy the
3302 only_notes
= squeeze_notes (&new_label
,
3303 &last_insn_to_move
);
3304 gcc_assert (!only_notes
);
3306 reorder_insns (new_label
, last_insn_to_move
, loc
);
3308 /* All those insns are now in TARGET_LOOP. */
3310 q
!= NEXT_INSN (last_insn_to_move
);
3312 uid_loop
[INSN_UID (q
)] = target_loop
;
3314 /* The label jumped to by INSN is no longer a loop
3315 exit. Unless INSN does not have a label (e.g.,
3316 it is a RETURN insn), search loop->exit_labels
3317 to find its label_ref, and remove it. Also turn
3318 off LABEL_OUTSIDE_LOOP_P bit. */
3319 if (JUMP_LABEL (insn
))
3321 for (q
= 0, r
= this_loop
->exit_labels
;
3323 q
= r
, r
= LABEL_NEXTREF (r
))
3324 if (XEXP (r
, 0) == JUMP_LABEL (insn
))
3326 LABEL_OUTSIDE_LOOP_P (r
) = 0;
3328 LABEL_NEXTREF (q
) = LABEL_NEXTREF (r
);
3330 this_loop
->exit_labels
= LABEL_NEXTREF (r
);
3334 for (loop
= this_loop
; loop
&& loop
!= target_loop
;
3338 /* If we didn't find it, then something is
3343 /* P is now a jump outside the loop, so it must be put
3344 in loop->exit_labels, and marked as such.
3345 The easiest way to do this is to just call
3346 mark_loop_jump again for P. */
3347 mark_loop_jump (PATTERN (p
), this_loop
);
3349 /* If INSN now jumps to the insn after it,
3351 if (JUMP_LABEL (insn
) != 0
3352 && (next_real_insn (JUMP_LABEL (insn
))
3353 == next_real_insn (insn
)))
3354 delete_related_insns (insn
);
3357 /* Continue the loop after where the conditional
3358 branch used to jump, since the only branch insn
3359 in the block (if it still remains) is an inter-loop
3360 branch and hence needs no processing. */
3361 insn
= NEXT_INSN (cond_label
);
3363 if (--LABEL_NUSES (cond_label
) == 0)
3364 delete_related_insns (cond_label
);
3366 /* This loop will be continued with NEXT_INSN (insn). */
3367 insn
= PREV_INSN (insn
);
3374 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
3375 loops it is contained in, mark the target loop invalid.
3377 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
3380 mark_loop_jump (rtx x
, struct loop
*loop
)
3382 struct loop
*dest_loop
;
3383 struct loop
*outer_loop
;
3386 switch (GET_CODE (x
))
3399 /* There could be a label reference in here. */
3400 mark_loop_jump (XEXP (x
, 0), loop
);
3406 mark_loop_jump (XEXP (x
, 0), loop
);
3407 mark_loop_jump (XEXP (x
, 1), loop
);
3411 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3412 mark_loop_jump (XEXP (x
, 1), loop
);
3417 mark_loop_jump (XEXP (x
, 0), loop
);
3421 dest_loop
= uid_loop
[INSN_UID (XEXP (x
, 0))];
3423 /* Link together all labels that branch outside the loop. This
3424 is used by final_[bg]iv_value and the loop unrolling code. Also
3425 mark this LABEL_REF so we know that this branch should predict
3428 /* A check to make sure the label is not in an inner nested loop,
3429 since this does not count as a loop exit. */
3432 for (outer_loop
= dest_loop
; outer_loop
;
3433 outer_loop
= outer_loop
->outer
)
3434 if (outer_loop
== loop
)
3440 if (loop
&& ! outer_loop
)
3442 LABEL_OUTSIDE_LOOP_P (x
) = 1;
3443 LABEL_NEXTREF (x
) = loop
->exit_labels
;
3444 loop
->exit_labels
= x
;
3446 for (outer_loop
= loop
;
3447 outer_loop
&& outer_loop
!= dest_loop
;
3448 outer_loop
= outer_loop
->outer
)
3449 outer_loop
->exit_count
++;
3452 /* If this is inside a loop, but not in the current loop or one enclosed
3453 by it, it invalidates at least one loop. */
3458 /* We must invalidate every nested loop containing the target of this
3459 label, except those that also contain the jump insn. */
3461 for (; dest_loop
; dest_loop
= dest_loop
->outer
)
3463 /* Stop when we reach a loop that also contains the jump insn. */
3464 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3465 if (dest_loop
== outer_loop
)
3468 /* If we get here, we know we need to invalidate a loop. */
3469 if (loop_dump_stream
&& ! dest_loop
->invalid
)
3470 fprintf (loop_dump_stream
,
3471 "\nLoop at %d ignored due to multiple entry points.\n",
3472 INSN_UID (dest_loop
->start
));
3474 dest_loop
->invalid
= 1;
3479 /* If this is not setting pc, ignore. */
3480 if (SET_DEST (x
) == pc_rtx
)
3481 mark_loop_jump (SET_SRC (x
), loop
);
3485 mark_loop_jump (XEXP (x
, 1), loop
);
3486 mark_loop_jump (XEXP (x
, 2), loop
);
3491 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
3492 mark_loop_jump (XVECEXP (x
, 0, i
), loop
);
3496 for (i
= 0; i
< XVECLEN (x
, 1); i
++)
3497 mark_loop_jump (XVECEXP (x
, 1, i
), loop
);
3501 /* Strictly speaking this is not a jump into the loop, only a possible
3502 jump out of the loop. However, we have no way to link the destination
3503 of this jump onto the list of exit labels. To be safe we mark this
3504 loop and any containing loops as invalid. */
3507 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
3509 if (loop_dump_stream
&& ! outer_loop
->invalid
)
3510 fprintf (loop_dump_stream
,
3511 "\nLoop at %d ignored due to unknown exit jump.\n",
3512 INSN_UID (outer_loop
->start
));
3513 outer_loop
->invalid
= 1;
3520 /* Return nonzero if there is a label in the range from
3521 insn INSN to and including the insn whose luid is END
3522 INSN must have an assigned luid (i.e., it must not have
3523 been previously created by loop.c). */
3526 labels_in_range_p (rtx insn
, int end
)
3528 while (insn
&& INSN_LUID (insn
) <= end
)
3532 insn
= NEXT_INSN (insn
);
3538 /* Record that a memory reference X is being set. */
3541 note_addr_stored (rtx x
, rtx y ATTRIBUTE_UNUSED
,
3542 void *data ATTRIBUTE_UNUSED
)
3544 struct loop_info
*loop_info
= data
;
3546 if (x
== 0 || !MEM_P (x
))
3549 /* Count number of memory writes.
3550 This affects heuristics in strength_reduce. */
3551 loop_info
->num_mem_sets
++;
3553 /* BLKmode MEM means all memory is clobbered. */
3554 if (GET_MODE (x
) == BLKmode
)
3556 if (MEM_READONLY_P (x
))
3557 loop_info
->unknown_constant_address_altered
= 1;
3559 loop_info
->unknown_address_altered
= 1;
3564 loop_info
->store_mems
= gen_rtx_EXPR_LIST (VOIDmode
, x
,
3565 loop_info
->store_mems
);
3568 /* X is a value modified by an INSN that references a biv inside a loop
3569 exit test (i.e., X is somehow related to the value of the biv). If X
3570 is a pseudo that is used more than once, then the biv is (effectively)
3571 used more than once. DATA is a pointer to a loop_regs structure. */
3574 note_set_pseudo_multiple_uses (rtx x
, rtx y ATTRIBUTE_UNUSED
, void *data
)
3576 struct loop_regs
*regs
= (struct loop_regs
*) data
;
3581 while (GET_CODE (x
) == STRICT_LOW_PART
3582 || GET_CODE (x
) == SIGN_EXTRACT
3583 || GET_CODE (x
) == ZERO_EXTRACT
3584 || GET_CODE (x
) == SUBREG
)
3587 if (!REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
)
3590 /* If we do not have usage information, or if we know the register
3591 is used more than once, note that fact for check_dbra_loop. */
3592 if (REGNO (x
) >= max_reg_before_loop
3593 || ! regs
->array
[REGNO (x
)].single_usage
3594 || regs
->array
[REGNO (x
)].single_usage
== const0_rtx
)
3595 regs
->multiple_uses
= 1;
3598 /* Return nonzero if the rtx X is invariant over the current loop.
3600 The value is 2 if we refer to something only conditionally invariant.
3602 A memory ref is invariant if it is not volatile and does not conflict
3603 with anything stored in `loop_info->store_mems'. */
3606 loop_invariant_p (const struct loop
*loop
, rtx x
)
3608 struct loop_info
*loop_info
= LOOP_INFO (loop
);
3609 struct loop_regs
*regs
= LOOP_REGS (loop
);
3613 int conditional
= 0;
3618 code
= GET_CODE (x
);
3632 case UNSPEC_VOLATILE
:
3636 if ((x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
3637 || x
== arg_pointer_rtx
|| x
== pic_offset_table_rtx
)
3638 && ! current_function_has_nonlocal_goto
)
3641 if (LOOP_INFO (loop
)->has_call
3642 && REGNO (x
) < FIRST_PSEUDO_REGISTER
&& call_used_regs
[REGNO (x
)])
3645 /* Out-of-range regs can occur when we are called from unrolling.
3646 These registers created by the unroller are set in the loop,
3647 hence are never invariant.
3648 Other out-of-range regs can be generated by load_mems; those that
3649 are written to in the loop are not invariant, while those that are
3650 not written to are invariant. It would be easy for load_mems
3651 to set n_times_set correctly for these registers, however, there
3652 is no easy way to distinguish them from registers created by the
3655 if (REGNO (x
) >= (unsigned) regs
->num
)
3658 if (regs
->array
[REGNO (x
)].set_in_loop
< 0)
3661 return regs
->array
[REGNO (x
)].set_in_loop
== 0;
3664 /* Volatile memory references must be rejected. Do this before
3665 checking for read-only items, so that volatile read-only items
3666 will be rejected also. */
3667 if (MEM_VOLATILE_P (x
))
3670 /* See if there is any dependence between a store and this load. */
3671 mem_list_entry
= loop_info
->store_mems
;
3672 while (mem_list_entry
)
3674 if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
3678 mem_list_entry
= XEXP (mem_list_entry
, 1);
3681 /* It's not invalidated by a store in memory
3682 but we must still verify the address is invariant. */
3686 /* Don't mess with insns declared volatile. */
3687 if (MEM_VOLATILE_P (x
))
3695 fmt
= GET_RTX_FORMAT (code
);
3696 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3700 int tem
= loop_invariant_p (loop
, XEXP (x
, i
));
3706 else if (fmt
[i
] == 'E')
3709 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3711 int tem
= loop_invariant_p (loop
, XVECEXP (x
, i
, j
));
3721 return 1 + conditional
;
3724 /* Return nonzero if all the insns in the loop that set REG
3725 are INSN and the immediately following insns,
3726 and if each of those insns sets REG in an invariant way
3727 (not counting uses of REG in them).
3729 The value is 2 if some of these insns are only conditionally invariant.
3731 We assume that INSN itself is the first set of REG
3732 and that its source is invariant. */
3735 consec_sets_invariant_p (const struct loop
*loop
, rtx reg
, int n_sets
,
3738 struct loop_regs
*regs
= LOOP_REGS (loop
);
3740 unsigned int regno
= REGNO (reg
);
3742 /* Number of sets we have to insist on finding after INSN. */
3743 int count
= n_sets
- 1;
3744 int old
= regs
->array
[regno
].set_in_loop
;
3748 /* If N_SETS hit the limit, we can't rely on its value. */
3752 regs
->array
[regno
].set_in_loop
= 0;
3760 code
= GET_CODE (p
);
3762 /* If library call, skip to end of it. */
3763 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
3768 && (set
= single_set (p
))
3769 && REG_P (SET_DEST (set
))
3770 && REGNO (SET_DEST (set
)) == regno
)
3772 this = loop_invariant_p (loop
, SET_SRC (set
));
3775 else if ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)))
3777 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3778 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3780 this = (CONSTANT_P (XEXP (temp
, 0))
3781 || (find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
3782 && loop_invariant_p (loop
, XEXP (temp
, 0))));
3789 else if (code
!= NOTE
)
3791 regs
->array
[regno
].set_in_loop
= old
;
3796 regs
->array
[regno
].set_in_loop
= old
;
3797 /* If loop_invariant_p ever returned 2, we return 2. */
3798 return 1 + (value
& 2);
3801 /* Look at all uses (not sets) of registers in X. For each, if it is
3802 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3803 a different insn, set USAGE[REGNO] to const0_rtx. */
3806 find_single_use_in_loop (struct loop_regs
*regs
, rtx insn
, rtx x
)
3808 enum rtx_code code
= GET_CODE (x
);
3809 const char *fmt
= GET_RTX_FORMAT (code
);
3813 regs
->array
[REGNO (x
)].single_usage
3814 = (regs
->array
[REGNO (x
)].single_usage
!= 0
3815 && regs
->array
[REGNO (x
)].single_usage
!= insn
)
3816 ? const0_rtx
: insn
;
3818 else if (code
== SET
)
3820 /* Don't count SET_DEST if it is a REG; otherwise count things
3821 in SET_DEST because if a register is partially modified, it won't
3822 show up as a potential movable so we don't care how USAGE is set
3824 if (!REG_P (SET_DEST (x
)))
3825 find_single_use_in_loop (regs
, insn
, SET_DEST (x
));
3826 find_single_use_in_loop (regs
, insn
, SET_SRC (x
));
3829 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3831 if (fmt
[i
] == 'e' && XEXP (x
, i
) != 0)
3832 find_single_use_in_loop (regs
, insn
, XEXP (x
, i
));
3833 else if (fmt
[i
] == 'E')
3834 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3835 find_single_use_in_loop (regs
, insn
, XVECEXP (x
, i
, j
));
3839 /* Count and record any set in X which is contained in INSN. Update
3840 REGS->array[I].MAY_NOT_OPTIMIZE and LAST_SET for any register I set
3844 count_one_set (struct loop_regs
*regs
, rtx insn
, rtx x
, rtx
*last_set
)
3846 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
3847 /* Don't move a reg that has an explicit clobber.
3848 It's not worth the pain to try to do it correctly. */
3849 regs
->array
[REGNO (XEXP (x
, 0))].may_not_optimize
= 1;
3851 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
3853 rtx dest
= SET_DEST (x
);
3854 while (GET_CODE (dest
) == SUBREG
3855 || GET_CODE (dest
) == ZERO_EXTRACT
3856 || GET_CODE (dest
) == STRICT_LOW_PART
)
3857 dest
= XEXP (dest
, 0);
3861 int regno
= REGNO (dest
);
3862 for (i
= 0; i
< LOOP_REGNO_NREGS (regno
, dest
); i
++)
3864 /* If this is the first setting of this reg
3865 in current basic block, and it was set before,
3866 it must be set in two basic blocks, so it cannot
3867 be moved out of the loop. */
3868 if (regs
->array
[regno
].set_in_loop
> 0
3869 && last_set
[regno
] == 0)
3870 regs
->array
[regno
+i
].may_not_optimize
= 1;
3871 /* If this is not first setting in current basic block,
3872 see if reg was used in between previous one and this.
3873 If so, neither one can be moved. */
3874 if (last_set
[regno
] != 0
3875 && reg_used_between_p (dest
, last_set
[regno
], insn
))
3876 regs
->array
[regno
+i
].may_not_optimize
= 1;
3877 if (regs
->array
[regno
+i
].set_in_loop
< 127)
3878 ++regs
->array
[regno
+i
].set_in_loop
;
3879 last_set
[regno
+i
] = insn
;
3885 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3886 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3887 contained in insn INSN is used by any insn that precedes INSN in
3888 cyclic order starting from the loop entry point.
3890 We don't want to use INSN_LUID here because if we restrict INSN to those
3891 that have a valid INSN_LUID, it means we cannot move an invariant out
3892 from an inner loop past two loops. */
3895 loop_reg_used_before_p (const struct loop
*loop
, rtx set
, rtx insn
)
3897 rtx reg
= SET_DEST (set
);
3900 /* Scan forward checking for register usage. If we hit INSN, we
3901 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3902 for (p
= loop
->scan_start
; p
!= insn
; p
= NEXT_INSN (p
))
3904 if (INSN_P (p
) && reg_overlap_mentioned_p (reg
, PATTERN (p
)))
3915 /* Information we collect about arrays that we might want to prefetch. */
3916 struct prefetch_info
3918 struct iv_class
*class; /* Class this prefetch is based on. */
3919 struct induction
*giv
; /* GIV this prefetch is based on. */
3920 rtx base_address
; /* Start prefetching from this address plus
3922 HOST_WIDE_INT index
;
3923 HOST_WIDE_INT stride
; /* Prefetch stride in bytes in each
3925 unsigned int bytes_accessed
; /* Sum of sizes of all accesses to this
3926 prefetch area in one iteration. */
3927 unsigned int total_bytes
; /* Total bytes loop will access in this block.
3928 This is set only for loops with known
3929 iteration counts and is 0xffffffff
3931 int prefetch_in_loop
; /* Number of prefetch insns in loop. */
3932 int prefetch_before_loop
; /* Number of prefetch insns before loop. */
3933 unsigned int write
: 1; /* 1 for read/write prefetches. */
3936 /* Data used by check_store function. */
3937 struct check_store_data
3943 static void check_store (rtx
, rtx
, void *);
3944 static void emit_prefetch_instructions (struct loop
*);
3945 static int rtx_equal_for_prefetch_p (rtx
, rtx
);
3947 /* Set mem_write when mem_address is found. Used as callback to
3950 check_store (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3952 struct check_store_data
*d
= (struct check_store_data
*) data
;
3954 if ((MEM_P (x
)) && rtx_equal_p (d
->mem_address
, XEXP (x
, 0)))
3958 /* Like rtx_equal_p, but attempts to swap commutative operands. This is
3959 important to get some addresses combined. Later more sophisticated
3960 transformations can be added when necessary.
3962 ??? Same trick with swapping operand is done at several other places.
3963 It can be nice to develop some common way to handle this. */
3966 rtx_equal_for_prefetch_p (rtx x
, rtx y
)
3970 enum rtx_code code
= GET_CODE (x
);
3975 if (code
!= GET_CODE (y
))
3978 if (GET_MODE (x
) != GET_MODE (y
))
3990 return XEXP (x
, 0) == XEXP (y
, 0);
3996 if (COMMUTATIVE_ARITH_P (x
))
3998 return ((rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 0))
3999 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 1)))
4000 || (rtx_equal_for_prefetch_p (XEXP (x
, 0), XEXP (y
, 1))
4001 && rtx_equal_for_prefetch_p (XEXP (x
, 1), XEXP (y
, 0))));
4004 /* Compare the elements. If any pair of corresponding elements fails to
4005 match, return 0 for the whole thing. */
4007 fmt
= GET_RTX_FORMAT (code
);
4008 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4013 if (XWINT (x
, i
) != XWINT (y
, i
))
4018 if (XINT (x
, i
) != XINT (y
, i
))
4023 /* Two vectors must have the same length. */
4024 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
4027 /* And the corresponding elements must match. */
4028 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4029 if (rtx_equal_for_prefetch_p (XVECEXP (x
, i
, j
),
4030 XVECEXP (y
, i
, j
)) == 0)
4035 if (rtx_equal_for_prefetch_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
4040 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
4045 /* These are just backpointers, so they don't matter. */
4051 /* It is believed that rtx's at this level will never
4052 contain anything but integers and other rtx's,
4053 except for within LABEL_REFs and SYMBOL_REFs. */
4061 /* Remove constant addition value from the expression X (when present)
4064 static HOST_WIDE_INT
4065 remove_constant_addition (rtx
*x
)
4067 HOST_WIDE_INT addval
= 0;
4070 /* Avoid clobbering a shared CONST expression. */
4071 if (GET_CODE (exp
) == CONST
)
4073 if (GET_CODE (XEXP (exp
, 0)) == PLUS
4074 && GET_CODE (XEXP (XEXP (exp
, 0), 0)) == SYMBOL_REF
4075 && GET_CODE (XEXP (XEXP (exp
, 0), 1)) == CONST_INT
)
4077 *x
= XEXP (XEXP (exp
, 0), 0);
4078 return INTVAL (XEXP (XEXP (exp
, 0), 1));
4083 if (GET_CODE (exp
) == CONST_INT
)
4085 addval
= INTVAL (exp
);
4089 /* For plus expression recurse on ourself. */
4090 else if (GET_CODE (exp
) == PLUS
)
4092 addval
+= remove_constant_addition (&XEXP (exp
, 0));
4093 addval
+= remove_constant_addition (&XEXP (exp
, 1));
4095 /* In case our parameter was constant, remove extra zero from the
4097 if (XEXP (exp
, 0) == const0_rtx
)
4099 else if (XEXP (exp
, 1) == const0_rtx
)
4106 /* Attempt to identify accesses to arrays that are most likely to cause cache
4107 misses, and emit prefetch instructions a few prefetch blocks forward.
4109 To detect the arrays we use the GIV information that was collected by the
4110 strength reduction pass.
4112 The prefetch instructions are generated after the GIV information is done
4113 and before the strength reduction process. The new GIVs are injected into
4114 the strength reduction tables, so the prefetch addresses are optimized as
4117 GIVs are split into base address, stride, and constant addition values.
4118 GIVs with the same address, stride and close addition values are combined
4119 into a single prefetch. Also writes to GIVs are detected, so that prefetch
4120 for write instructions can be used for the block we write to, on machines
4121 that support write prefetches.
4123 Several heuristics are used to determine when to prefetch. They are
4124 controlled by defined symbols that can be overridden for each target. */
4127 emit_prefetch_instructions (struct loop
*loop
)
4129 int num_prefetches
= 0;
4130 int num_real_prefetches
= 0;
4131 int num_real_write_prefetches
= 0;
4132 int num_prefetches_before
= 0;
4133 int num_write_prefetches_before
= 0;
4136 struct iv_class
*bl
;
4137 struct induction
*iv
;
4138 struct prefetch_info info
[MAX_PREFETCHES
];
4139 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4141 if (!HAVE_prefetch
|| PREFETCH_BLOCK
== 0)
4144 /* Consider only loops w/o calls. When a call is done, the loop is probably
4145 slow enough to read the memory. */
4146 if (PREFETCH_NO_CALL
&& LOOP_INFO (loop
)->has_call
)
4148 if (loop_dump_stream
)
4149 fprintf (loop_dump_stream
, "Prefetch: ignoring loop: has call.\n");
4154 /* Don't prefetch in loops known to have few iterations. */
4155 if (PREFETCH_NO_LOW_LOOPCNT
4156 && LOOP_INFO (loop
)->n_iterations
4157 && LOOP_INFO (loop
)->n_iterations
<= PREFETCH_LOW_LOOPCNT
)
4159 if (loop_dump_stream
)
4160 fprintf (loop_dump_stream
,
4161 "Prefetch: ignoring loop: not enough iterations.\n");
4165 /* Search all induction variables and pick those interesting for the prefetch
4167 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
4169 struct induction
*biv
= bl
->biv
, *biv1
;
4174 /* Expect all BIVs to be executed in each iteration. This makes our
4175 analysis more conservative. */
4178 /* Discard non-constant additions that we can't handle well yet, and
4179 BIVs that are executed multiple times; such BIVs ought to be
4180 handled in the nested loop. We accept not_every_iteration BIVs,
4181 since these only result in larger strides and make our
4182 heuristics more conservative. */
4183 if (GET_CODE (biv
->add_val
) != CONST_INT
)
4185 if (loop_dump_stream
)
4187 fprintf (loop_dump_stream
,
4188 "Prefetch: ignoring biv %d: non-constant addition at insn %d:",
4189 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
4190 print_rtl (loop_dump_stream
, biv
->add_val
);
4191 fprintf (loop_dump_stream
, "\n");
4196 if (biv
->maybe_multiple
)
4198 if (loop_dump_stream
)
4200 fprintf (loop_dump_stream
,
4201 "Prefetch: ignoring biv %d: maybe_multiple at insn %i:",
4202 REGNO (biv
->src_reg
), INSN_UID (biv
->insn
));
4203 print_rtl (loop_dump_stream
, biv
->add_val
);
4204 fprintf (loop_dump_stream
, "\n");
4209 basestride
+= INTVAL (biv1
->add_val
);
4210 biv1
= biv1
->next_iv
;
4213 if (biv1
|| !basestride
)
4216 for (iv
= bl
->giv
; iv
; iv
= iv
->next_iv
)
4220 HOST_WIDE_INT index
= 0;
4222 HOST_WIDE_INT stride
= 0;
4223 int stride_sign
= 1;
4224 struct check_store_data d
;
4225 const char *ignore_reason
= NULL
;
4226 int size
= GET_MODE_SIZE (GET_MODE (iv
));
4228 /* See whether an induction variable is interesting to us and if
4229 not, report the reason. */
4230 if (iv
->giv_type
!= DEST_ADDR
)
4231 ignore_reason
= "giv is not a destination address";
4233 /* We are interested only in constant stride memory references
4234 in order to be able to compute density easily. */
4235 else if (GET_CODE (iv
->mult_val
) != CONST_INT
)
4236 ignore_reason
= "stride is not constant";
4240 stride
= INTVAL (iv
->mult_val
) * basestride
;
4247 /* On some targets, reversed order prefetches are not
4249 if (PREFETCH_NO_REVERSE_ORDER
&& stride_sign
< 0)
4250 ignore_reason
= "reversed order stride";
4252 /* Prefetch of accesses with an extreme stride might not be
4253 worthwhile, either. */
4254 else if (PREFETCH_NO_EXTREME_STRIDE
4255 && stride
> PREFETCH_EXTREME_STRIDE
)
4256 ignore_reason
= "extreme stride";
4258 /* Ignore GIVs with varying add values; we can't predict the
4259 value for the next iteration. */
4260 else if (!loop_invariant_p (loop
, iv
->add_val
))
4261 ignore_reason
= "giv has varying add value";
4263 /* Ignore GIVs in the nested loops; they ought to have been
4265 else if (iv
->maybe_multiple
)
4266 ignore_reason
= "giv is in nested loop";
4269 if (ignore_reason
!= NULL
)
4271 if (loop_dump_stream
)
4272 fprintf (loop_dump_stream
,
4273 "Prefetch: ignoring giv at %d: %s.\n",
4274 INSN_UID (iv
->insn
), ignore_reason
);
4278 /* Determine the pointer to the basic array we are examining. It is
4279 the sum of the BIV's initial value and the GIV's add_val. */
4280 address
= copy_rtx (iv
->add_val
);
4281 temp
= copy_rtx (bl
->initial_value
);
4283 address
= simplify_gen_binary (PLUS
, Pmode
, temp
, address
);
4284 index
= remove_constant_addition (&address
);
4287 d
.mem_address
= *iv
->location
;
4289 /* When the GIV is not always executed, we might be better off by
4290 not dirtying the cache pages. */
4291 if (PREFETCH_CONDITIONAL
|| iv
->always_executed
)
4292 note_stores (PATTERN (iv
->insn
), check_store
, &d
);
4295 if (loop_dump_stream
)
4296 fprintf (loop_dump_stream
, "Prefetch: Ignoring giv at %d: %s\n",
4297 INSN_UID (iv
->insn
), "in conditional code.");
4301 /* Attempt to find another prefetch to the same array and see if we
4302 can merge this one. */
4303 for (i
= 0; i
< num_prefetches
; i
++)
4304 if (rtx_equal_for_prefetch_p (address
, info
[i
].base_address
)
4305 && stride
== info
[i
].stride
)
4307 /* In case both access same array (same location
4308 just with small difference in constant indexes), merge
4309 the prefetches. Just do the later and the earlier will
4310 get prefetched from previous iteration.
4311 The artificial threshold should not be too small,
4312 but also not bigger than small portion of memory usually
4313 traversed by single loop. */
4314 if (index
>= info
[i
].index
4315 && index
- info
[i
].index
< PREFETCH_EXTREME_DIFFERENCE
)
4317 info
[i
].write
|= d
.mem_write
;
4318 info
[i
].bytes_accessed
+= size
;
4319 info
[i
].index
= index
;
4322 info
[num_prefetches
].base_address
= address
;
4327 if (index
< info
[i
].index
4328 && info
[i
].index
- index
< PREFETCH_EXTREME_DIFFERENCE
)
4330 info
[i
].write
|= d
.mem_write
;
4331 info
[i
].bytes_accessed
+= size
;
4337 /* Merging failed. */
4340 info
[num_prefetches
].giv
= iv
;
4341 info
[num_prefetches
].class = bl
;
4342 info
[num_prefetches
].index
= index
;
4343 info
[num_prefetches
].stride
= stride
;
4344 info
[num_prefetches
].base_address
= address
;
4345 info
[num_prefetches
].write
= d
.mem_write
;
4346 info
[num_prefetches
].bytes_accessed
= size
;
4348 if (num_prefetches
>= MAX_PREFETCHES
)
4350 if (loop_dump_stream
)
4351 fprintf (loop_dump_stream
,
4352 "Maximal number of prefetches exceeded.\n");
4359 for (i
= 0; i
< num_prefetches
; i
++)
4363 /* Attempt to calculate the total number of bytes fetched by all
4364 iterations of the loop. Avoid overflow. */
4365 if (LOOP_INFO (loop
)->n_iterations
4366 && ((unsigned HOST_WIDE_INT
) (0xffffffff / info
[i
].stride
)
4367 >= LOOP_INFO (loop
)->n_iterations
))
4368 info
[i
].total_bytes
= info
[i
].stride
* LOOP_INFO (loop
)->n_iterations
;
4370 info
[i
].total_bytes
= 0xffffffff;
4372 density
= info
[i
].bytes_accessed
* 100 / info
[i
].stride
;
4374 /* Prefetch might be worthwhile only when the loads/stores are dense. */
4375 if (PREFETCH_ONLY_DENSE_MEM
)
4376 if (density
* 256 > PREFETCH_DENSE_MEM
* 100
4377 && (info
[i
].total_bytes
/ PREFETCH_BLOCK
4378 >= PREFETCH_BLOCKS_BEFORE_LOOP_MIN
))
4380 info
[i
].prefetch_before_loop
= 1;
4381 info
[i
].prefetch_in_loop
4382 = (info
[i
].total_bytes
/ PREFETCH_BLOCK
4383 > PREFETCH_BLOCKS_BEFORE_LOOP_MAX
);
4387 info
[i
].prefetch_in_loop
= 0, info
[i
].prefetch_before_loop
= 0;
4388 if (loop_dump_stream
)
4389 fprintf (loop_dump_stream
,
4390 "Prefetch: ignoring giv at %d: %d%% density is too low.\n",
4391 INSN_UID (info
[i
].giv
->insn
), density
);
4394 info
[i
].prefetch_in_loop
= 1, info
[i
].prefetch_before_loop
= 1;
4396 /* Find how many prefetch instructions we'll use within the loop. */
4397 if (info
[i
].prefetch_in_loop
!= 0)
4399 info
[i
].prefetch_in_loop
= ((info
[i
].stride
+ PREFETCH_BLOCK
- 1)
4401 num_real_prefetches
+= info
[i
].prefetch_in_loop
;
4403 num_real_write_prefetches
+= info
[i
].prefetch_in_loop
;
4407 /* Determine how many iterations ahead to prefetch within the loop, based
4408 on how many prefetches we currently expect to do within the loop. */
4409 if (num_real_prefetches
!= 0)
4411 if ((ahead
= SIMULTANEOUS_PREFETCHES
/ num_real_prefetches
) == 0)
4413 if (loop_dump_stream
)
4414 fprintf (loop_dump_stream
,
4415 "Prefetch: ignoring prefetches within loop: ahead is zero; %d < %d\n",
4416 SIMULTANEOUS_PREFETCHES
, num_real_prefetches
);
4417 num_real_prefetches
= 0, num_real_write_prefetches
= 0;
4420 /* We'll also use AHEAD to determine how many prefetch instructions to
4421 emit before a loop, so don't leave it zero. */
4423 ahead
= PREFETCH_BLOCKS_BEFORE_LOOP_MAX
;
4425 for (i
= 0; i
< num_prefetches
; i
++)
4427 /* Update if we've decided not to prefetch anything within the loop. */
4428 if (num_real_prefetches
== 0)
4429 info
[i
].prefetch_in_loop
= 0;
4431 /* Find how many prefetch instructions we'll use before the loop. */
4432 if (info
[i
].prefetch_before_loop
!= 0)
4434 int n
= info
[i
].total_bytes
/ PREFETCH_BLOCK
;
4437 info
[i
].prefetch_before_loop
= n
;
4438 num_prefetches_before
+= n
;
4440 num_write_prefetches_before
+= n
;
4443 if (loop_dump_stream
)
4445 if (info
[i
].prefetch_in_loop
== 0
4446 && info
[i
].prefetch_before_loop
== 0)
4448 fprintf (loop_dump_stream
, "Prefetch insn: %d",
4449 INSN_UID (info
[i
].giv
->insn
));
4450 fprintf (loop_dump_stream
,
4451 "; in loop: %d; before: %d; %s\n",
4452 info
[i
].prefetch_in_loop
,
4453 info
[i
].prefetch_before_loop
,
4454 info
[i
].write
? "read/write" : "read only");
4455 fprintf (loop_dump_stream
,
4456 " density: %d%%; bytes_accessed: %u; total_bytes: %u\n",
4457 (int) (info
[i
].bytes_accessed
* 100 / info
[i
].stride
),
4458 info
[i
].bytes_accessed
, info
[i
].total_bytes
);
4459 fprintf (loop_dump_stream
, " index: " HOST_WIDE_INT_PRINT_DEC
4460 "; stride: " HOST_WIDE_INT_PRINT_DEC
"; address: ",
4461 info
[i
].index
, info
[i
].stride
);
4462 print_rtl (loop_dump_stream
, info
[i
].base_address
);
4463 fprintf (loop_dump_stream
, "\n");
4467 if (num_real_prefetches
+ num_prefetches_before
> 0)
4469 /* Record that this loop uses prefetch instructions. */
4470 LOOP_INFO (loop
)->has_prefetch
= 1;
4472 if (loop_dump_stream
)
4474 fprintf (loop_dump_stream
, "Real prefetches needed within loop: %d (write: %d)\n",
4475 num_real_prefetches
, num_real_write_prefetches
);
4476 fprintf (loop_dump_stream
, "Real prefetches needed before loop: %d (write: %d)\n",
4477 num_prefetches_before
, num_write_prefetches_before
);
4481 for (i
= 0; i
< num_prefetches
; i
++)
4485 for (y
= 0; y
< info
[i
].prefetch_in_loop
; y
++)
4487 rtx loc
= copy_rtx (*info
[i
].giv
->location
);
4489 int bytes_ahead
= PREFETCH_BLOCK
* (ahead
+ y
);
4490 rtx before_insn
= info
[i
].giv
->insn
;
4491 rtx prev_insn
= PREV_INSN (info
[i
].giv
->insn
);
4494 /* We can save some effort by offsetting the address on
4495 architectures with offsettable memory references. */
4496 if (offsettable_address_p (0, VOIDmode
, loc
))
4497 loc
= plus_constant (loc
, bytes_ahead
);
4500 rtx reg
= gen_reg_rtx (Pmode
);
4501 loop_iv_add_mult_emit_before (loop
, loc
, const1_rtx
,
4502 GEN_INT (bytes_ahead
), reg
,
4508 /* Make sure the address operand is valid for prefetch. */
4509 if (! (*insn_data
[(int)CODE_FOR_prefetch
].operand
[0].predicate
)
4510 (loc
, insn_data
[(int)CODE_FOR_prefetch
].operand
[0].mode
))
4511 loc
= force_reg (Pmode
, loc
);
4512 emit_insn (gen_prefetch (loc
, GEN_INT (info
[i
].write
),
4516 emit_insn_before (seq
, before_insn
);
4518 /* Check all insns emitted and record the new GIV
4520 insn
= NEXT_INSN (prev_insn
);
4521 while (insn
!= before_insn
)
4523 insn
= check_insn_for_givs (loop
, insn
,
4524 info
[i
].giv
->always_executed
,
4525 info
[i
].giv
->maybe_multiple
);
4526 insn
= NEXT_INSN (insn
);
4530 if (PREFETCH_BEFORE_LOOP
)
4532 /* Emit insns before the loop to fetch the first cache lines or,
4533 if we're not prefetching within the loop, everything we expect
4535 for (y
= 0; y
< info
[i
].prefetch_before_loop
; y
++)
4537 rtx reg
= gen_reg_rtx (Pmode
);
4538 rtx loop_start
= loop
->start
;
4539 rtx init_val
= info
[i
].class->initial_value
;
4540 rtx add_val
= simplify_gen_binary (PLUS
, Pmode
,
4541 info
[i
].giv
->add_val
,
4542 GEN_INT (y
* PREFETCH_BLOCK
));
4544 /* Functions called by LOOP_IV_ADD_EMIT_BEFORE expect a
4545 non-constant INIT_VAL to have the same mode as REG, which
4546 in this case we know to be Pmode. */
4547 if (GET_MODE (init_val
) != Pmode
&& !CONSTANT_P (init_val
))
4552 init_val
= convert_to_mode (Pmode
, init_val
, 0);
4555 loop_insn_emit_before (loop
, 0, loop_start
, seq
);
4557 loop_iv_add_mult_emit_before (loop
, init_val
,
4558 info
[i
].giv
->mult_val
,
4559 add_val
, reg
, 0, loop_start
);
4560 emit_insn_before (gen_prefetch (reg
, GEN_INT (info
[i
].write
),
4570 /* Communication with routines called via `note_stores'. */
4572 static rtx note_insn
;
4574 /* Dummy register to have nonzero DEST_REG for DEST_ADDR type givs. */
4576 static rtx addr_placeholder
;
4578 /* ??? Unfinished optimizations, and possible future optimizations,
4579 for the strength reduction code. */
4581 /* ??? The interaction of biv elimination, and recognition of 'constant'
4582 bivs, may cause problems. */
4584 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
4585 performance problems.
4587 Perhaps don't eliminate things that can be combined with an addressing
4588 mode. Find all givs that have the same biv, mult_val, and add_val;
4589 then for each giv, check to see if its only use dies in a following
4590 memory address. If so, generate a new memory address and check to see
4591 if it is valid. If it is valid, then store the modified memory address,
4592 otherwise, mark the giv as not done so that it will get its own iv. */
4594 /* ??? Could try to optimize branches when it is known that a biv is always
4597 /* ??? When replace a biv in a compare insn, we should replace with closest
4598 giv so that an optimized branch can still be recognized by the combiner,
4599 e.g. the VAX acb insn. */
4601 /* ??? Many of the checks involving uid_luid could be simplified if regscan
4602 was rerun in loop_optimize whenever a register was added or moved.
4603 Also, some of the optimizations could be a little less conservative. */
4605 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
4606 is a backward branch in that range that branches to somewhere between
4607 LOOP->START and INSN. Returns 0 otherwise. */
4609 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
4610 In practice, this is not a problem, because this function is seldom called,
4611 and uses a negligible amount of CPU time on average. */
4614 back_branch_in_range_p (const struct loop
*loop
, rtx insn
)
4616 rtx p
, q
, target_insn
;
4617 rtx loop_start
= loop
->start
;
4618 rtx loop_end
= loop
->end
;
4619 rtx orig_loop_end
= loop
->end
;
4621 /* Stop before we get to the backward branch at the end of the loop. */
4622 loop_end
= prev_nonnote_insn (loop_end
);
4623 if (BARRIER_P (loop_end
))
4624 loop_end
= PREV_INSN (loop_end
);
4626 /* Check in case insn has been deleted, search forward for first non
4627 deleted insn following it. */
4628 while (INSN_DELETED_P (insn
))
4629 insn
= NEXT_INSN (insn
);
4631 /* Check for the case where insn is the last insn in the loop. Deal
4632 with the case where INSN was a deleted loop test insn, in which case
4633 it will now be the NOTE_LOOP_END. */
4634 if (insn
== loop_end
|| insn
== orig_loop_end
)
4637 for (p
= NEXT_INSN (insn
); p
!= loop_end
; p
= NEXT_INSN (p
))
4641 target_insn
= JUMP_LABEL (p
);
4643 /* Search from loop_start to insn, to see if one of them is
4644 the target_insn. We can't use INSN_LUID comparisons here,
4645 since insn may not have an LUID entry. */
4646 for (q
= loop_start
; q
!= insn
; q
= NEXT_INSN (q
))
4647 if (q
== target_insn
)
4655 /* Scan the loop body and call FNCALL for each insn. In the addition to the
4656 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
4659 NOT_EVERY_ITERATION is 1 if current insn is not known to be executed at
4660 least once for every loop iteration except for the last one.
4662 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
4665 typedef rtx (*loop_insn_callback
) (struct loop
*, rtx
, int, int);
4667 for_each_insn_in_loop (struct loop
*loop
, loop_insn_callback fncall
)
4669 int not_every_iteration
= 0;
4670 int maybe_multiple
= 0;
4671 int past_loop_latch
= 0;
4672 bool exit_test_is_entry
= false;
4675 /* If loop_scan_start points to the loop exit test, the loop body
4676 cannot be counted on running on every iteration, and we have to
4677 be wary of subversive use of gotos inside expression
4679 if (prev_nonnote_insn (loop
->scan_start
) != prev_nonnote_insn (loop
->start
))
4681 exit_test_is_entry
= true;
4682 maybe_multiple
= back_branch_in_range_p (loop
, loop
->scan_start
);
4685 /* Scan through loop and update NOT_EVERY_ITERATION and MAYBE_MULTIPLE. */
4686 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
4688 p
= next_insn_in_loop (loop
, p
))
4690 p
= fncall (loop
, p
, not_every_iteration
, maybe_multiple
);
4692 /* Past CODE_LABEL, we get to insns that may be executed multiple
4693 times. The only way we can be sure that they can't is if every
4694 jump insn between here and the end of the loop either
4695 returns, exits the loop, is a jump to a location that is still
4696 behind the label, or is a jump to the loop start. */
4706 insn
= NEXT_INSN (insn
);
4707 if (insn
== loop
->scan_start
)
4709 if (insn
== loop
->end
)
4715 if (insn
== loop
->scan_start
)
4720 && GET_CODE (PATTERN (insn
)) != RETURN
4721 && (!any_condjump_p (insn
)
4722 || (JUMP_LABEL (insn
) != 0
4723 && JUMP_LABEL (insn
) != loop
->scan_start
4724 && !loop_insn_first_p (p
, JUMP_LABEL (insn
)))))
4732 /* Past a jump, we get to insns for which we can't count
4733 on whether they will be executed during each iteration. */
4734 /* This code appears twice in strength_reduce. There is also similar
4735 code in scan_loop. */
4737 /* If we enter the loop in the middle, and scan around to the
4738 beginning, don't set not_every_iteration for that.
4739 This can be any kind of jump, since we want to know if insns
4740 will be executed if the loop is executed. */
4741 && (exit_test_is_entry
4742 || !(JUMP_LABEL (p
) == loop
->top
4743 && ((NEXT_INSN (NEXT_INSN (p
)) == loop
->end
4744 && any_uncondjump_p (p
))
4745 || (NEXT_INSN (p
) == loop
->end
4746 && any_condjump_p (p
))))))
4750 /* If this is a jump outside the loop, then it also doesn't
4751 matter. Check to see if the target of this branch is on the
4752 loop->exits_labels list. */
4754 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
4755 if (XEXP (label
, 0) == JUMP_LABEL (p
))
4759 not_every_iteration
= 1;
4762 /* Note if we pass a loop latch. If we do, then we can not clear
4763 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
4764 a loop since a jump before the last CODE_LABEL may have started
4765 a new loop iteration.
4767 Note that LOOP_TOP is only set for rotated loops and we need
4768 this check for all loops, so compare against the CODE_LABEL
4769 which immediately follows LOOP_START. */
4771 && JUMP_LABEL (p
) == NEXT_INSN (loop
->start
))
4772 past_loop_latch
= 1;
4774 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
4775 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
4776 or not an insn is known to be executed each iteration of the
4777 loop, whether or not any iterations are known to occur.
4779 Therefore, if we have just passed a label and have no more labels
4780 between here and the test insn of the loop, and we have not passed
4781 a jump to the top of the loop, then we know these insns will be
4782 executed each iteration. */
4784 if (not_every_iteration
4787 && no_labels_between_p (p
, loop
->end
))
4788 not_every_iteration
= 0;
4793 loop_bivs_find (struct loop
*loop
)
4795 struct loop_regs
*regs
= LOOP_REGS (loop
);
4796 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4797 /* Temporary list pointers for traversing ivs->list. */
4798 struct iv_class
*bl
, **backbl
;
4802 for_each_insn_in_loop (loop
, check_insn_for_bivs
);
4804 /* Scan ivs->list to remove all regs that proved not to be bivs.
4805 Make a sanity check against regs->n_times_set. */
4806 for (backbl
= &ivs
->list
, bl
= *backbl
; bl
; bl
= bl
->next
)
4808 if (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4809 /* Above happens if register modified by subreg, etc. */
4810 /* Make sure it is not recognized as a basic induction var: */
4811 || regs
->array
[bl
->regno
].n_times_set
!= bl
->biv_count
4812 /* If never incremented, it is invariant that we decided not to
4813 move. So leave it alone. */
4814 || ! bl
->incremented
)
4816 if (loop_dump_stream
)
4817 fprintf (loop_dump_stream
, "Biv %d: discarded, %s\n",
4819 (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
4820 ? "not induction variable"
4821 : (! bl
->incremented
? "never incremented"
4824 REG_IV_TYPE (ivs
, bl
->regno
) = NOT_BASIC_INDUCT
;
4831 if (loop_dump_stream
)
4832 fprintf (loop_dump_stream
, "Biv %d: verified\n", bl
->regno
);
4838 /* Determine how BIVS are initialized by looking through pre-header
4839 extended basic block. */
4841 loop_bivs_init_find (struct loop
*loop
)
4843 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4844 /* Temporary list pointers for traversing ivs->list. */
4845 struct iv_class
*bl
;
4849 /* Find initial value for each biv by searching backwards from loop_start,
4850 halting at first label. Also record any test condition. */
4853 for (p
= loop
->start
; p
&& !LABEL_P (p
); p
= PREV_INSN (p
))
4863 note_stores (PATTERN (p
), record_initial
, ivs
);
4865 /* Record any test of a biv that branches around the loop if no store
4866 between it and the start of loop. We only care about tests with
4867 constants and registers and only certain of those. */
4869 && JUMP_LABEL (p
) != 0
4870 && next_real_insn (JUMP_LABEL (p
)) == next_real_insn (loop
->end
)
4871 && (test
= get_condition_for_loop (loop
, p
)) != 0
4872 && REG_P (XEXP (test
, 0))
4873 && REGNO (XEXP (test
, 0)) < max_reg_before_loop
4874 && (bl
= REG_IV_CLASS (ivs
, REGNO (XEXP (test
, 0)))) != 0
4875 && valid_initial_value_p (XEXP (test
, 1), p
, call_seen
, loop
->start
)
4876 && bl
->init_insn
== 0)
4878 /* If an NE test, we have an initial value! */
4879 if (GET_CODE (test
) == NE
)
4882 bl
->init_set
= gen_rtx_SET (VOIDmode
,
4883 XEXP (test
, 0), XEXP (test
, 1));
4886 bl
->initial_test
= test
;
4892 /* Look at the each biv and see if we can say anything better about its
4893 initial value from any initializing insns set up above. (This is done
4894 in two passes to avoid missing SETs in a PARALLEL.) */
4896 loop_bivs_check (struct loop
*loop
)
4898 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4899 /* Temporary list pointers for traversing ivs->list. */
4900 struct iv_class
*bl
;
4901 struct iv_class
**backbl
;
4903 for (backbl
= &ivs
->list
; (bl
= *backbl
); backbl
= &bl
->next
)
4908 if (! bl
->init_insn
)
4911 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4912 is a constant, use the value of that. */
4913 if (((note
= find_reg_note (bl
->init_insn
, REG_EQUAL
, 0)) != NULL
4914 && CONSTANT_P (XEXP (note
, 0)))
4915 || ((note
= find_reg_note (bl
->init_insn
, REG_EQUIV
, 0)) != NULL
4916 && CONSTANT_P (XEXP (note
, 0))))
4917 src
= XEXP (note
, 0);
4919 src
= SET_SRC (bl
->init_set
);
4921 if (loop_dump_stream
)
4922 fprintf (loop_dump_stream
,
4923 "Biv %d: initialized at insn %d: initial value ",
4924 bl
->regno
, INSN_UID (bl
->init_insn
));
4926 if ((GET_MODE (src
) == GET_MODE (regno_reg_rtx
[bl
->regno
])
4927 || GET_MODE (src
) == VOIDmode
)
4928 && valid_initial_value_p (src
, bl
->init_insn
,
4929 LOOP_INFO (loop
)->pre_header_has_call
,
4932 bl
->initial_value
= src
;
4934 if (loop_dump_stream
)
4936 print_simple_rtl (loop_dump_stream
, src
);
4937 fputc ('\n', loop_dump_stream
);
4940 /* If we can't make it a giv,
4941 let biv keep initial value of "itself". */
4942 else if (loop_dump_stream
)
4943 fprintf (loop_dump_stream
, "is complex\n");
4948 /* Search the loop for general induction variables. */
4951 loop_givs_find (struct loop
* loop
)
4953 for_each_insn_in_loop (loop
, check_insn_for_givs
);
4957 /* For each giv for which we still don't know whether or not it is
4958 replaceable, check to see if it is replaceable because its final value
4959 can be calculated. */
4962 loop_givs_check (struct loop
*loop
)
4964 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4965 struct iv_class
*bl
;
4967 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
4969 struct induction
*v
;
4971 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4972 if (! v
->replaceable
&& ! v
->not_replaceable
)
4973 check_final_value (loop
, v
);
4977 /* Try to generate the simplest rtx for the expression
4978 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
4982 fold_rtx_mult_add (rtx mult1
, rtx mult2
, rtx add1
, enum machine_mode mode
)
4987 /* The modes must all be the same. This should always be true. For now,
4988 check to make sure. */
4989 gcc_assert (GET_MODE (mult1
) == mode
|| GET_MODE (mult1
) == VOIDmode
);
4990 gcc_assert (GET_MODE (mult2
) == mode
|| GET_MODE (mult2
) == VOIDmode
);
4991 gcc_assert (GET_MODE (add1
) == mode
|| GET_MODE (add1
) == VOIDmode
);
4993 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
4994 will be a constant. */
4995 if (GET_CODE (mult1
) == CONST_INT
)
5002 mult_res
= simplify_binary_operation (MULT
, mode
, mult1
, mult2
);
5004 mult_res
= gen_rtx_MULT (mode
, mult1
, mult2
);
5006 /* Again, put the constant second. */
5007 if (GET_CODE (add1
) == CONST_INT
)
5014 result
= simplify_binary_operation (PLUS
, mode
, add1
, mult_res
);
5016 result
= gen_rtx_PLUS (mode
, add1
, mult_res
);
5021 /* Searches the list of induction struct's for the biv BL, to try to calculate
5022 the total increment value for one iteration of the loop as a constant.
5024 Returns the increment value as an rtx, simplified as much as possible,
5025 if it can be calculated. Otherwise, returns 0. */
5028 biv_total_increment (const struct iv_class
*bl
)
5030 struct induction
*v
;
5033 /* For increment, must check every instruction that sets it. Each
5034 instruction must be executed only once each time through the loop.
5035 To verify this, we check that the insn is always executed, and that
5036 there are no backward branches after the insn that branch to before it.
5037 Also, the insn must have a mult_val of one (to make sure it really is
5040 result
= const0_rtx
;
5041 for (v
= bl
->biv
; v
; v
= v
->next_iv
)
5043 if (v
->always_computable
&& v
->mult_val
== const1_rtx
5044 && ! v
->maybe_multiple
5045 && SCALAR_INT_MODE_P (v
->mode
))
5047 /* If we have already counted it, skip it. */
5051 result
= fold_rtx_mult_add (result
, const1_rtx
, v
->add_val
, v
->mode
);
5060 /* Try to prove that the register is dead after the loop exits. Trace every
5061 loop exit looking for an insn that will always be executed, which sets
5062 the register to some value, and appears before the first use of the register
5063 is found. If successful, then return 1, otherwise return 0. */
5065 /* ?? Could be made more intelligent in the handling of jumps, so that
5066 it can search past if statements and other similar structures. */
5069 reg_dead_after_loop (const struct loop
*loop
, rtx reg
)
5073 int label_count
= 0;
5075 /* In addition to checking all exits of this loop, we must also check
5076 all exits of inner nested loops that would exit this loop. We don't
5077 have any way to identify those, so we just give up if there are any
5078 such inner loop exits. */
5080 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
5083 if (label_count
!= loop
->exit_count
)
5086 /* HACK: Must also search the loop fall through exit, create a label_ref
5087 here which points to the loop->end, and append the loop_number_exit_labels
5089 label
= gen_rtx_LABEL_REF (Pmode
, loop
->end
);
5090 LABEL_NEXTREF (label
) = loop
->exit_labels
;
5092 for (; label
; label
= LABEL_NEXTREF (label
))
5094 /* Succeed if find an insn which sets the biv or if reach end of
5095 function. Fail if find an insn that uses the biv, or if come to
5096 a conditional jump. */
5098 insn
= NEXT_INSN (XEXP (label
, 0));
5105 if (reg_referenced_p (reg
, PATTERN (insn
)))
5108 note
= find_reg_equal_equiv_note (insn
);
5109 if (note
&& reg_overlap_mentioned_p (reg
, XEXP (note
, 0)))
5112 set
= single_set (insn
);
5113 if (set
&& rtx_equal_p (SET_DEST (set
), reg
))
5118 if (GET_CODE (PATTERN (insn
)) == RETURN
)
5120 else if (!any_uncondjump_p (insn
)
5121 /* Prevent infinite loop following infinite loops. */
5122 || jump_count
++ > 20)
5125 insn
= JUMP_LABEL (insn
);
5129 insn
= NEXT_INSN (insn
);
5133 /* Success, the register is dead on all loop exits. */
5137 /* Try to calculate the final value of the biv, the value it will have at
5138 the end of the loop. If we can do it, return that value. */
5141 final_biv_value (const struct loop
*loop
, struct iv_class
*bl
)
5143 unsigned HOST_WIDE_INT n_iterations
= LOOP_INFO (loop
)->n_iterations
;
5146 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
5148 if (GET_MODE_CLASS (bl
->biv
->mode
) != MODE_INT
)
5151 /* The final value for reversed bivs must be calculated differently than
5152 for ordinary bivs. In this case, there is already an insn after the
5153 loop which sets this biv's final value (if necessary), and there are
5154 no other loop exits, so we can return any value. */
5157 if (loop_dump_stream
)
5158 fprintf (loop_dump_stream
,
5159 "Final biv value for %d, reversed biv.\n", bl
->regno
);
5164 /* Try to calculate the final value as initial value + (number of iterations
5165 * increment). For this to work, increment must be invariant, the only
5166 exit from the loop must be the fall through at the bottom (otherwise
5167 it may not have its final value when the loop exits), and the initial
5168 value of the biv must be invariant. */
5170 if (n_iterations
!= 0
5171 && ! loop
->exit_count
5172 && loop_invariant_p (loop
, bl
->initial_value
))
5174 increment
= biv_total_increment (bl
);
5176 if (increment
&& loop_invariant_p (loop
, increment
))
5178 /* Can calculate the loop exit value, emit insns after loop
5179 end to calculate this value into a temporary register in
5180 case it is needed later. */
5182 tem
= gen_reg_rtx (bl
->biv
->mode
);
5183 record_base_value (REGNO (tem
), bl
->biv
->add_val
, 0);
5184 loop_iv_add_mult_sink (loop
, increment
, GEN_INT (n_iterations
),
5185 bl
->initial_value
, tem
);
5187 if (loop_dump_stream
)
5188 fprintf (loop_dump_stream
,
5189 "Final biv value for %d, calculated.\n", bl
->regno
);
5195 /* Check to see if the biv is dead at all loop exits. */
5196 if (reg_dead_after_loop (loop
, bl
->biv
->src_reg
))
5198 if (loop_dump_stream
)
5199 fprintf (loop_dump_stream
,
5200 "Final biv value for %d, biv dead after loop exit.\n",
5209 /* Return nonzero if it is possible to eliminate the biv BL provided
5210 all givs are reduced. This is possible if either the reg is not
5211 used outside the loop, or we can compute what its final value will
5215 loop_biv_eliminable_p (struct loop
*loop
, struct iv_class
*bl
,
5216 int threshold
, int insn_count
)
5218 /* For architectures with a decrement_and_branch_until_zero insn,
5219 don't do this if we put a REG_NONNEG note on the endtest for this
5222 #ifdef HAVE_decrement_and_branch_until_zero
5225 if (loop_dump_stream
)
5226 fprintf (loop_dump_stream
,
5227 "Cannot eliminate nonneg biv %d.\n", bl
->regno
);
5232 /* Check that biv is used outside loop or if it has a final value.
5233 Compare against bl->init_insn rather than loop->start. We aren't
5234 concerned with any uses of the biv between init_insn and
5235 loop->start since these won't be affected by the value of the biv
5236 elsewhere in the function, so long as init_insn doesn't use the
5239 if ((REGNO_LAST_LUID (bl
->regno
) < INSN_LUID (loop
->end
)
5241 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
5242 && REGNO_FIRST_LUID (bl
->regno
) >= INSN_LUID (bl
->init_insn
)
5243 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
5244 || (bl
->final_value
= final_biv_value (loop
, bl
)))
5245 return maybe_eliminate_biv (loop
, bl
, 0, threshold
, insn_count
);
5247 if (loop_dump_stream
)
5249 fprintf (loop_dump_stream
,
5250 "Cannot eliminate biv %d.\n",
5252 fprintf (loop_dump_stream
,
5253 "First use: insn %d, last use: insn %d.\n",
5254 REGNO_FIRST_UID (bl
->regno
),
5255 REGNO_LAST_UID (bl
->regno
));
5261 /* Reduce each giv of BL that we have decided to reduce. */
5264 loop_givs_reduce (struct loop
*loop
, struct iv_class
*bl
)
5266 struct induction
*v
;
5268 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5270 struct induction
*tv
;
5271 if (! v
->ignore
&& v
->same
== 0)
5273 int auto_inc_opt
= 0;
5275 /* If the code for derived givs immediately below has already
5276 allocated a new_reg, we must keep it. */
5278 v
->new_reg
= gen_reg_rtx (v
->mode
);
5281 /* If the target has auto-increment addressing modes, and
5282 this is an address giv, then try to put the increment
5283 immediately after its use, so that flow can create an
5284 auto-increment addressing mode. */
5285 /* Don't do this for loops entered at the bottom, to avoid
5286 this invalid transformation:
5295 if (v
->giv_type
== DEST_ADDR
&& bl
->biv_count
== 1
5296 && bl
->biv
->always_executed
&& ! bl
->biv
->maybe_multiple
5297 /* We don't handle reversed biv's because bl->biv->insn
5298 does not have a valid INSN_LUID. */
5300 && v
->always_executed
&& ! v
->maybe_multiple
5301 && INSN_UID (v
->insn
) < max_uid_for_loop
5304 /* If other giv's have been combined with this one, then
5305 this will work only if all uses of the other giv's occur
5306 before this giv's insn. This is difficult to check.
5308 We simplify this by looking for the common case where
5309 there is one DEST_REG giv, and this giv's insn is the
5310 last use of the dest_reg of that DEST_REG giv. If the
5311 increment occurs after the address giv, then we can
5312 perform the optimization. (Otherwise, the increment
5313 would have to go before other_giv, and we would not be
5314 able to combine it with the address giv to get an
5315 auto-inc address.) */
5316 if (v
->combined_with
)
5318 struct induction
*other_giv
= 0;
5320 for (tv
= bl
->giv
; tv
; tv
= tv
->next_iv
)
5328 if (! tv
&& other_giv
5329 && REGNO (other_giv
->dest_reg
) < max_reg_before_loop
5330 && (REGNO_LAST_UID (REGNO (other_giv
->dest_reg
))
5331 == INSN_UID (v
->insn
))
5332 && INSN_LUID (v
->insn
) < INSN_LUID (bl
->biv
->insn
))
5335 /* Check for case where increment is before the address
5336 giv. Do this test in "loop order". */
5337 else if ((INSN_LUID (v
->insn
) > INSN_LUID (bl
->biv
->insn
)
5338 && (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
5339 || (INSN_LUID (bl
->biv
->insn
)
5340 > INSN_LUID (loop
->scan_start
))))
5341 || (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
5342 && (INSN_LUID (loop
->scan_start
)
5343 < INSN_LUID (bl
->biv
->insn
))))
5352 /* We can't put an insn immediately after one setting
5353 cc0, or immediately before one using cc0. */
5354 if ((auto_inc_opt
== 1 && sets_cc0_p (PATTERN (v
->insn
)))
5355 || (auto_inc_opt
== -1
5356 && (prev
= prev_nonnote_insn (v
->insn
)) != 0
5358 && sets_cc0_p (PATTERN (prev
))))
5364 v
->auto_inc_opt
= 1;
5368 /* For each place where the biv is incremented, add an insn
5369 to increment the new, reduced reg for the giv. */
5370 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
5374 /* Skip if location is the same as a previous one. */
5378 insert_before
= NEXT_INSN (tv
->insn
);
5379 else if (auto_inc_opt
== 1)
5380 insert_before
= NEXT_INSN (v
->insn
);
5382 insert_before
= v
->insn
;
5384 if (tv
->mult_val
== const1_rtx
)
5385 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
5386 v
->new_reg
, v
->new_reg
,
5388 else /* tv->mult_val == const0_rtx */
5389 /* A multiply is acceptable here
5390 since this is presumed to be seldom executed. */
5391 loop_iv_add_mult_emit_before (loop
, tv
->add_val
, v
->mult_val
,
5392 v
->add_val
, v
->new_reg
,
5396 /* Add code at loop start to initialize giv's reduced reg. */
5398 loop_iv_add_mult_hoist (loop
,
5399 extend_value_for_giv (v
, bl
->initial_value
),
5400 v
->mult_val
, v
->add_val
, v
->new_reg
);
5406 /* Check for givs whose first use is their definition and whose
5407 last use is the definition of another giv. If so, it is likely
5408 dead and should not be used to derive another giv nor to
5412 loop_givs_dead_check (struct loop
*loop ATTRIBUTE_UNUSED
, struct iv_class
*bl
)
5414 struct induction
*v
;
5416 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5419 || (v
->same
&& v
->same
->ignore
))
5422 if (v
->giv_type
== DEST_REG
5423 && REGNO_FIRST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v
->insn
))
5425 struct induction
*v1
;
5427 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
5428 if (REGNO_LAST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v1
->insn
))
5436 loop_givs_rescan (struct loop
*loop
, struct iv_class
*bl
, rtx
*reg_map
)
5438 struct induction
*v
;
5440 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
5442 if (v
->same
&& v
->same
->ignore
)
5448 /* Update expression if this was combined, in case other giv was
5451 v
->new_reg
= replace_rtx (v
->new_reg
,
5452 v
->same
->dest_reg
, v
->same
->new_reg
);
5454 /* See if this register is known to be a pointer to something. If
5455 so, see if we can find the alignment. First see if there is a
5456 destination register that is a pointer. If so, this shares the
5457 alignment too. Next see if we can deduce anything from the
5458 computational information. If not, and this is a DEST_ADDR
5459 giv, at least we know that it's a pointer, though we don't know
5461 if (REG_P (v
->new_reg
)
5462 && v
->giv_type
== DEST_REG
5463 && REG_POINTER (v
->dest_reg
))
5464 mark_reg_pointer (v
->new_reg
,
5465 REGNO_POINTER_ALIGN (REGNO (v
->dest_reg
)));
5466 else if (REG_P (v
->new_reg
)
5467 && REG_POINTER (v
->src_reg
))
5469 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->src_reg
));
5472 || GET_CODE (v
->add_val
) != CONST_INT
5473 || INTVAL (v
->add_val
) % (align
/ BITS_PER_UNIT
) != 0)
5476 mark_reg_pointer (v
->new_reg
, align
);
5478 else if (REG_P (v
->new_reg
)
5479 && REG_P (v
->add_val
)
5480 && REG_POINTER (v
->add_val
))
5482 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->add_val
));
5484 if (align
== 0 || GET_CODE (v
->mult_val
) != CONST_INT
5485 || INTVAL (v
->mult_val
) % (align
/ BITS_PER_UNIT
) != 0)
5488 mark_reg_pointer (v
->new_reg
, align
);
5490 else if (REG_P (v
->new_reg
) && v
->giv_type
== DEST_ADDR
)
5491 mark_reg_pointer (v
->new_reg
, 0);
5493 if (v
->giv_type
== DEST_ADDR
)
5495 /* Store reduced reg as the address in the memref where we found
5497 if (validate_change_maybe_volatile (v
->insn
, v
->location
,
5499 /* Yay, it worked! */;
5500 /* Not replaceable; emit an insn to set the original
5501 giv reg from the reduced giv. */
5502 else if (REG_P (*v
->location
))
5506 tem
= force_operand (v
->new_reg
, *v
->location
);
5507 if (tem
!= *v
->location
)
5508 emit_move_insn (*v
->location
, tem
);
5511 loop_insn_emit_before (loop
, 0, v
->insn
, tem
);
5513 else if (GET_CODE (*v
->location
) == PLUS
5514 && REG_P (XEXP (*v
->location
, 0))
5515 && CONSTANT_P (XEXP (*v
->location
, 1)))
5519 tem
= expand_simple_binop (GET_MODE (*v
->location
), MINUS
,
5520 v
->new_reg
, XEXP (*v
->location
, 1),
5521 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5522 emit_move_insn (XEXP (*v
->location
, 0), tem
);
5525 loop_insn_emit_before (loop
, 0, v
->insn
, tem
);
5529 /* If it wasn't a reg, create a pseudo and use that. */
5532 reg
= force_reg (v
->mode
, *v
->location
);
5533 if (validate_change_maybe_volatile (v
->insn
, v
->location
, reg
))
5537 loop_insn_emit_before (loop
, 0, v
->insn
, seq
);
5542 if (loop_dump_stream
)
5543 fprintf (loop_dump_stream
,
5544 "unable to reduce iv in insn %d\n",
5545 INSN_UID (v
->insn
));
5546 bl
->all_reduced
= 0;
5552 else if (v
->replaceable
)
5554 reg_map
[REGNO (v
->dest_reg
)] = v
->new_reg
;
5558 rtx original_insn
= v
->insn
;
5561 /* Not replaceable; emit an insn to set the original giv reg from
5562 the reduced giv, same as above. */
5563 v
->insn
= loop_insn_emit_after (loop
, 0, original_insn
,
5564 gen_move_insn (v
->dest_reg
,
5567 /* The original insn may have a REG_EQUAL note. This note is
5568 now incorrect and may result in invalid substitutions later.
5569 The original insn is dead, but may be part of a libcall
5570 sequence, which doesn't seem worth the bother of handling. */
5571 note
= find_reg_note (original_insn
, REG_EQUAL
, NULL_RTX
);
5573 remove_note (original_insn
, note
);
5576 /* When a loop is reversed, givs which depend on the reversed
5577 biv, and which are live outside the loop, must be set to their
5578 correct final value. This insn is only needed if the giv is
5579 not replaceable. The correct final value is the same as the
5580 value that the giv starts the reversed loop with. */
5581 if (bl
->reversed
&& ! v
->replaceable
)
5582 loop_iv_add_mult_sink (loop
,
5583 extend_value_for_giv (v
, bl
->initial_value
),
5584 v
->mult_val
, v
->add_val
, v
->dest_reg
);
5585 else if (v
->final_value
)
5586 loop_insn_sink_or_swim (loop
,
5587 gen_load_of_final_value (v
->dest_reg
,
5590 if (loop_dump_stream
)
5592 fprintf (loop_dump_stream
, "giv at %d reduced to ",
5593 INSN_UID (v
->insn
));
5594 print_simple_rtl (loop_dump_stream
, v
->new_reg
);
5595 fprintf (loop_dump_stream
, "\n");
5602 loop_giv_reduce_benefit (struct loop
*loop ATTRIBUTE_UNUSED
,
5603 struct iv_class
*bl
, struct induction
*v
,
5606 struct induction
*biv
;
5610 benefit
= v
->benefit
;
5611 PUT_MODE (test_reg
, v
->mode
);
5612 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
5614 int cost
= iv_add_mult_cost (biv
->add_val
, v
->mult_val
,
5615 test_reg
, test_reg
);
5616 if (cost
> add_cost
)
5620 /* Reduce benefit if not replaceable, since we will insert a
5621 move-insn to replace the insn that calculates this giv. Don't do
5622 this unless the giv is a user variable, since it will often be
5623 marked non-replaceable because of the duplication of the exit
5624 code outside the loop. In such a case, the copies we insert are
5625 dead and will be deleted. So they don't have a cost. Similar
5626 situations exist. */
5627 /* ??? The new final_[bg]iv_value code does a much better job of
5628 finding replaceable giv's, and hence this code may no longer be
5630 if (! v
->replaceable
&& ! bl
->eliminable
5631 && REG_USERVAR_P (v
->dest_reg
))
5632 benefit
-= copy_cost
;
5634 /* Decrease the benefit to count the add-insns that we will insert
5635 to increment the reduced reg for the giv. ??? This can
5636 overestimate the run-time cost of the additional insns, e.g. if
5637 there are multiple basic blocks that increment the biv, but only
5638 one of these blocks is executed during each iteration. There is
5639 no good way to detect cases like this with the current structure
5640 of the loop optimizer. This code is more accurate for
5641 determining code size than run-time benefits. */
5642 benefit
-= add_cost
* bl
->biv_count
;
5644 /* Decide whether to strength-reduce this giv or to leave the code
5645 unchanged (recompute it from the biv each time it is used). This
5646 decision can be made independently for each giv. */
5649 /* Attempt to guess whether autoincrement will handle some of the
5650 new add insns; if so, increase BENEFIT (undo the subtraction of
5651 add_cost that was done above). */
5652 if (v
->giv_type
== DEST_ADDR
5653 /* Increasing the benefit is risky, since this is only a guess.
5654 Avoid increasing register pressure in cases where there would
5655 be no other benefit from reducing this giv. */
5657 && GET_CODE (v
->mult_val
) == CONST_INT
)
5659 int size
= GET_MODE_SIZE (GET_MODE (v
->mem
));
5661 if (HAVE_POST_INCREMENT
5662 && INTVAL (v
->mult_val
) == size
)
5663 benefit
+= add_cost
* bl
->biv_count
;
5664 else if (HAVE_PRE_INCREMENT
5665 && INTVAL (v
->mult_val
) == size
)
5666 benefit
+= add_cost
* bl
->biv_count
;
5667 else if (HAVE_POST_DECREMENT
5668 && -INTVAL (v
->mult_val
) == size
)
5669 benefit
+= add_cost
* bl
->biv_count
;
5670 else if (HAVE_PRE_DECREMENT
5671 && -INTVAL (v
->mult_val
) == size
)
5672 benefit
+= add_cost
* bl
->biv_count
;
5680 /* Free IV structures for LOOP. */
5683 loop_ivs_free (struct loop
*loop
)
5685 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5686 struct iv_class
*iv
= ivs
->list
;
5692 struct iv_class
*next
= iv
->next
;
5693 struct induction
*induction
;
5694 struct induction
*next_induction
;
5696 for (induction
= iv
->biv
; induction
; induction
= next_induction
)
5698 next_induction
= induction
->next_iv
;
5701 for (induction
= iv
->giv
; induction
; induction
= next_induction
)
5703 next_induction
= induction
->next_iv
;
5712 /* Look back before LOOP->START for the insn that sets REG and return
5713 the equivalent constant if there is a REG_EQUAL note otherwise just
5714 the SET_SRC of REG. */
5717 loop_find_equiv_value (const struct loop
*loop
, rtx reg
)
5719 rtx loop_start
= loop
->start
;
5724 for (insn
= PREV_INSN (loop_start
); insn
; insn
= PREV_INSN (insn
))
5729 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
5731 /* We found the last insn before the loop that sets the register.
5732 If it sets the entire register, and has a REG_EQUAL note,
5733 then use the value of the REG_EQUAL note. */
5734 if ((set
= single_set (insn
))
5735 && (SET_DEST (set
) == reg
))
5737 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
5739 /* Only use the REG_EQUAL note if it is a constant.
5740 Other things, divide in particular, will cause
5741 problems later if we use them. */
5742 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
5743 && CONSTANT_P (XEXP (note
, 0)))
5744 ret
= XEXP (note
, 0);
5746 ret
= SET_SRC (set
);
5748 /* We cannot do this if it changes between the
5749 assignment and loop start though. */
5750 if (modified_between_p (ret
, insn
, loop_start
))
5759 /* Find and return register term common to both expressions OP0 and
5760 OP1 or NULL_RTX if no such term exists. Each expression must be a
5761 REG or a PLUS of a REG. */
5764 find_common_reg_term (rtx op0
, rtx op1
)
5766 if ((REG_P (op0
) || GET_CODE (op0
) == PLUS
)
5767 && (REG_P (op1
) || GET_CODE (op1
) == PLUS
))
5774 if (GET_CODE (op0
) == PLUS
)
5775 op01
= XEXP (op0
, 1), op00
= XEXP (op0
, 0);
5777 op01
= const0_rtx
, op00
= op0
;
5779 if (GET_CODE (op1
) == PLUS
)
5780 op11
= XEXP (op1
, 1), op10
= XEXP (op1
, 0);
5782 op11
= const0_rtx
, op10
= op1
;
5784 /* Find and return common register term if present. */
5785 if (REG_P (op00
) && (op00
== op10
|| op00
== op11
))
5787 else if (REG_P (op01
) && (op01
== op10
|| op01
== op11
))
5791 /* No common register term found. */
5795 /* Determine the loop iterator and calculate the number of loop
5796 iterations. Returns the exact number of loop iterations if it can
5797 be calculated, otherwise returns zero. */
5799 static unsigned HOST_WIDE_INT
5800 loop_iterations (struct loop
*loop
)
5802 struct loop_info
*loop_info
= LOOP_INFO (loop
);
5803 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5804 rtx comparison
, comparison_value
;
5805 rtx iteration_var
, initial_value
, increment
, final_value
;
5806 enum rtx_code comparison_code
;
5808 unsigned HOST_WIDE_INT abs_inc
;
5809 unsigned HOST_WIDE_INT abs_diff
;
5812 int unsigned_p
, compare_dir
, final_larger
;
5814 struct iv_class
*bl
;
5816 loop_info
->n_iterations
= 0;
5817 loop_info
->initial_value
= 0;
5818 loop_info
->initial_equiv_value
= 0;
5819 loop_info
->comparison_value
= 0;
5820 loop_info
->final_value
= 0;
5821 loop_info
->final_equiv_value
= 0;
5822 loop_info
->increment
= 0;
5823 loop_info
->iteration_var
= 0;
5826 /* We used to use prev_nonnote_insn here, but that fails because it might
5827 accidentally get the branch for a contained loop if the branch for this
5828 loop was deleted. We can only trust branches immediately before the
5830 last_loop_insn
= PREV_INSN (loop
->end
);
5832 /* ??? We should probably try harder to find the jump insn
5833 at the end of the loop. The following code assumes that
5834 the last loop insn is a jump to the top of the loop. */
5835 if (!JUMP_P (last_loop_insn
))
5837 if (loop_dump_stream
)
5838 fprintf (loop_dump_stream
,
5839 "Loop iterations: No final conditional branch found.\n");
5843 /* If there is a more than a single jump to the top of the loop
5844 we cannot (easily) determine the iteration count. */
5845 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn
)) > 1)
5847 if (loop_dump_stream
)
5848 fprintf (loop_dump_stream
,
5849 "Loop iterations: Loop has multiple back edges.\n");
5853 /* Find the iteration variable. If the last insn is a conditional
5854 branch, and the insn before tests a register value, make that the
5855 iteration variable. */
5857 comparison
= get_condition_for_loop (loop
, last_loop_insn
);
5858 if (comparison
== 0)
5860 if (loop_dump_stream
)
5861 fprintf (loop_dump_stream
,
5862 "Loop iterations: No final comparison found.\n");
5866 /* ??? Get_condition may switch position of induction variable and
5867 invariant register when it canonicalizes the comparison. */
5869 comparison_code
= GET_CODE (comparison
);
5870 iteration_var
= XEXP (comparison
, 0);
5871 comparison_value
= XEXP (comparison
, 1);
5873 if (!REG_P (iteration_var
))
5875 if (loop_dump_stream
)
5876 fprintf (loop_dump_stream
,
5877 "Loop iterations: Comparison not against register.\n");
5881 /* The only new registers that are created before loop iterations
5882 are givs made from biv increments or registers created by
5883 load_mems. In the latter case, it is possible that try_copy_prop
5884 will propagate a new pseudo into the old iteration register but
5885 this will be marked by having the REG_USERVAR_P bit set. */
5887 gcc_assert ((unsigned) REGNO (iteration_var
) < ivs
->n_regs
5888 || REG_USERVAR_P (iteration_var
));
5890 /* Determine the initial value of the iteration variable, and the amount
5891 that it is incremented each loop. Use the tables constructed by
5892 the strength reduction pass to calculate these values. */
5894 /* Clear the result values, in case no answer can be found. */
5898 /* The iteration variable can be either a giv or a biv. Check to see
5899 which it is, and compute the variable's initial value, and increment
5900 value if possible. */
5902 /* If this is a new register, can't handle it since we don't have any
5903 reg_iv_type entry for it. */
5904 if ((unsigned) REGNO (iteration_var
) >= ivs
->n_regs
)
5906 if (loop_dump_stream
)
5907 fprintf (loop_dump_stream
,
5908 "Loop iterations: No reg_iv_type entry for iteration var.\n");
5912 /* Reject iteration variables larger than the host wide int size, since they
5913 could result in a number of iterations greater than the range of our
5914 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
5915 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var
))
5916 > HOST_BITS_PER_WIDE_INT
))
5918 if (loop_dump_stream
)
5919 fprintf (loop_dump_stream
,
5920 "Loop iterations: Iteration var rejected because mode too large.\n");
5923 else if (GET_MODE_CLASS (GET_MODE (iteration_var
)) != MODE_INT
)
5925 if (loop_dump_stream
)
5926 fprintf (loop_dump_stream
,
5927 "Loop iterations: Iteration var not an integer.\n");
5931 /* Try swapping the comparison to identify a suitable iv. */
5932 if (REG_IV_TYPE (ivs
, REGNO (iteration_var
)) != BASIC_INDUCT
5933 && REG_IV_TYPE (ivs
, REGNO (iteration_var
)) != GENERAL_INDUCT
5934 && REG_P (comparison_value
)
5935 && REGNO (comparison_value
) < ivs
->n_regs
)
5937 rtx temp
= comparison_value
;
5938 comparison_code
= swap_condition (comparison_code
);
5939 comparison_value
= iteration_var
;
5940 iteration_var
= temp
;
5943 if (REG_IV_TYPE (ivs
, REGNO (iteration_var
)) == BASIC_INDUCT
)
5945 gcc_assert (REGNO (iteration_var
) < ivs
->n_regs
);
5947 /* Grab initial value, only useful if it is a constant. */
5948 bl
= REG_IV_CLASS (ivs
, REGNO (iteration_var
));
5949 initial_value
= bl
->initial_value
;
5950 if (!bl
->biv
->always_executed
|| bl
->biv
->maybe_multiple
)
5952 if (loop_dump_stream
)
5953 fprintf (loop_dump_stream
,
5954 "Loop iterations: Basic induction var not set once in each iteration.\n");
5958 increment
= biv_total_increment (bl
);
5960 else if (REG_IV_TYPE (ivs
, REGNO (iteration_var
)) == GENERAL_INDUCT
)
5962 HOST_WIDE_INT offset
= 0;
5963 struct induction
*v
= REG_IV_INFO (ivs
, REGNO (iteration_var
));
5964 rtx biv_initial_value
;
5966 gcc_assert (REGNO (v
->src_reg
) < ivs
->n_regs
);
5968 if (!v
->always_executed
|| v
->maybe_multiple
)
5970 if (loop_dump_stream
)
5971 fprintf (loop_dump_stream
,
5972 "Loop iterations: General induction var not set once in each iteration.\n");
5976 bl
= REG_IV_CLASS (ivs
, REGNO (v
->src_reg
));
5978 /* Increment value is mult_val times the increment value of the biv. */
5980 increment
= biv_total_increment (bl
);
5983 struct induction
*biv_inc
;
5985 increment
= fold_rtx_mult_add (v
->mult_val
,
5986 extend_value_for_giv (v
, increment
),
5987 const0_rtx
, v
->mode
);
5988 /* The caller assumes that one full increment has occurred at the
5989 first loop test. But that's not true when the biv is incremented
5990 after the giv is set (which is the usual case), e.g.:
5991 i = 6; do {;} while (i++ < 9) .
5992 Therefore, we bias the initial value by subtracting the amount of
5993 the increment that occurs between the giv set and the giv test. */
5994 for (biv_inc
= bl
->biv
; biv_inc
; biv_inc
= biv_inc
->next_iv
)
5996 if (loop_insn_first_p (v
->insn
, biv_inc
->insn
))
5998 if (REG_P (biv_inc
->add_val
))
6000 if (loop_dump_stream
)
6001 fprintf (loop_dump_stream
,
6002 "Loop iterations: Basic induction var add_val is REG %d.\n",
6003 REGNO (biv_inc
->add_val
));
6007 /* If we have already counted it, skip it. */
6011 offset
-= INTVAL (biv_inc
->add_val
);
6015 if (loop_dump_stream
)
6016 fprintf (loop_dump_stream
,
6017 "Loop iterations: Giv iterator, initial value bias %ld.\n",
6020 /* Initial value is mult_val times the biv's initial value plus
6021 add_val. Only useful if it is a constant. */
6022 biv_initial_value
= extend_value_for_giv (v
, bl
->initial_value
);
6024 = fold_rtx_mult_add (v
->mult_val
,
6025 plus_constant (biv_initial_value
, offset
),
6026 v
->add_val
, v
->mode
);
6030 if (loop_dump_stream
)
6031 fprintf (loop_dump_stream
,
6032 "Loop iterations: Not basic or general induction var.\n");
6036 if (initial_value
== 0)
6041 switch (comparison_code
)
6056 /* Cannot determine loop iterations with this case. */
6076 /* If the comparison value is an invariant register, then try to find
6077 its value from the insns before the start of the loop. */
6079 final_value
= comparison_value
;
6080 if (REG_P (comparison_value
)
6081 && loop_invariant_p (loop
, comparison_value
))
6083 final_value
= loop_find_equiv_value (loop
, comparison_value
);
6085 /* If we don't get an invariant final value, we are better
6086 off with the original register. */
6087 if (! loop_invariant_p (loop
, final_value
))
6088 final_value
= comparison_value
;
6091 /* Calculate the approximate final value of the induction variable
6092 (on the last successful iteration). The exact final value
6093 depends on the branch operator, and increment sign. It will be
6094 wrong if the iteration variable is not incremented by one each
6095 time through the loop and (comparison_value + off_by_one -
6096 initial_value) % increment != 0.
6097 ??? Note that the final_value may overflow and thus final_larger
6098 will be bogus. A potentially infinite loop will be classified
6099 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
6101 final_value
= plus_constant (final_value
, off_by_one
);
6103 /* Save the calculated values describing this loop's bounds, in case
6104 precondition_loop_p will need them later. These values can not be
6105 recalculated inside precondition_loop_p because strength reduction
6106 optimizations may obscure the loop's structure.
6108 These values are only required by precondition_loop_p and insert_bct
6109 whenever the number of iterations cannot be computed at compile time.
6110 Only the difference between final_value and initial_value is
6111 important. Note that final_value is only approximate. */
6112 loop_info
->initial_value
= initial_value
;
6113 loop_info
->comparison_value
= comparison_value
;
6114 loop_info
->final_value
= plus_constant (comparison_value
, off_by_one
);
6115 loop_info
->increment
= increment
;
6116 loop_info
->iteration_var
= iteration_var
;
6117 loop_info
->comparison_code
= comparison_code
;
6120 /* Try to determine the iteration count for loops such
6121 as (for i = init; i < init + const; i++). When running the
6122 loop optimization twice, the first pass often converts simple
6123 loops into this form. */
6125 if (REG_P (initial_value
))
6131 reg1
= initial_value
;
6132 if (GET_CODE (final_value
) == PLUS
)
6133 reg2
= XEXP (final_value
, 0), const2
= XEXP (final_value
, 1);
6135 reg2
= final_value
, const2
= const0_rtx
;
6137 /* Check for initial_value = reg1, final_value = reg2 + const2,
6138 where reg1 != reg2. */
6139 if (REG_P (reg2
) && reg2
!= reg1
)
6143 /* Find what reg1 is equivalent to. Hopefully it will
6144 either be reg2 or reg2 plus a constant. */
6145 temp
= loop_find_equiv_value (loop
, reg1
);
6147 if (find_common_reg_term (temp
, reg2
))
6148 initial_value
= temp
;
6149 else if (loop_invariant_p (loop
, reg2
))
6151 /* Find what reg2 is equivalent to. Hopefully it will
6152 either be reg1 or reg1 plus a constant. Let's ignore
6153 the latter case for now since it is not so common. */
6154 temp
= loop_find_equiv_value (loop
, reg2
);
6156 if (temp
== loop_info
->iteration_var
)
6157 temp
= initial_value
;
6159 final_value
= (const2
== const0_rtx
)
6160 ? reg1
: gen_rtx_PLUS (GET_MODE (reg1
), reg1
, const2
);
6165 loop_info
->initial_equiv_value
= initial_value
;
6166 loop_info
->final_equiv_value
= final_value
;
6168 /* For EQ comparison loops, we don't have a valid final value.
6169 Check this now so that we won't leave an invalid value if we
6170 return early for any other reason. */
6171 if (comparison_code
== EQ
)
6172 loop_info
->final_equiv_value
= loop_info
->final_value
= 0;
6176 if (loop_dump_stream
)
6177 fprintf (loop_dump_stream
,
6178 "Loop iterations: Increment value can't be calculated.\n");
6182 if (GET_CODE (increment
) != CONST_INT
)
6184 /* If we have a REG, check to see if REG holds a constant value. */
6185 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
6186 clear if it is worthwhile to try to handle such RTL. */
6187 if (REG_P (increment
) || GET_CODE (increment
) == SUBREG
)
6188 increment
= loop_find_equiv_value (loop
, increment
);
6190 if (GET_CODE (increment
) != CONST_INT
)
6192 if (loop_dump_stream
)
6194 fprintf (loop_dump_stream
,
6195 "Loop iterations: Increment value not constant ");
6196 print_simple_rtl (loop_dump_stream
, increment
);
6197 fprintf (loop_dump_stream
, ".\n");
6201 loop_info
->increment
= increment
;
6204 if (GET_CODE (initial_value
) != CONST_INT
)
6206 if (loop_dump_stream
)
6208 fprintf (loop_dump_stream
,
6209 "Loop iterations: Initial value not constant ");
6210 print_simple_rtl (loop_dump_stream
, initial_value
);
6211 fprintf (loop_dump_stream
, ".\n");
6215 else if (GET_CODE (final_value
) != CONST_INT
)
6217 if (loop_dump_stream
)
6219 fprintf (loop_dump_stream
,
6220 "Loop iterations: Final value not constant ");
6221 print_simple_rtl (loop_dump_stream
, final_value
);
6222 fprintf (loop_dump_stream
, ".\n");
6226 else if (comparison_code
== EQ
)
6230 if (loop_dump_stream
)
6231 fprintf (loop_dump_stream
, "Loop iterations: EQ comparison loop.\n");
6233 inc_once
= gen_int_mode (INTVAL (initial_value
) + INTVAL (increment
),
6234 GET_MODE (iteration_var
));
6236 if (inc_once
== final_value
)
6238 /* The iterator value once through the loop is equal to the
6239 comparison value. Either we have an infinite loop, or
6240 we'll loop twice. */
6241 if (increment
== const0_rtx
)
6243 loop_info
->n_iterations
= 2;
6246 loop_info
->n_iterations
= 1;
6248 if (GET_CODE (loop_info
->initial_value
) == CONST_INT
)
6249 loop_info
->final_value
6250 = gen_int_mode ((INTVAL (loop_info
->initial_value
)
6251 + loop_info
->n_iterations
* INTVAL (increment
)),
6252 GET_MODE (iteration_var
));
6254 loop_info
->final_value
6255 = plus_constant (loop_info
->initial_value
,
6256 loop_info
->n_iterations
* INTVAL (increment
));
6257 loop_info
->final_equiv_value
6258 = gen_int_mode ((INTVAL (initial_value
)
6259 + loop_info
->n_iterations
* INTVAL (increment
)),
6260 GET_MODE (iteration_var
));
6261 return loop_info
->n_iterations
;
6264 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
6267 = ((unsigned HOST_WIDE_INT
) INTVAL (final_value
)
6268 > (unsigned HOST_WIDE_INT
) INTVAL (initial_value
))
6269 - ((unsigned HOST_WIDE_INT
) INTVAL (final_value
)
6270 < (unsigned HOST_WIDE_INT
) INTVAL (initial_value
));
6272 final_larger
= (INTVAL (final_value
) > INTVAL (initial_value
))
6273 - (INTVAL (final_value
) < INTVAL (initial_value
));
6275 if (INTVAL (increment
) > 0)
6277 else if (INTVAL (increment
) == 0)
6282 /* There are 27 different cases: compare_dir = -1, 0, 1;
6283 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
6284 There are 4 normal cases, 4 reverse cases (where the iteration variable
6285 will overflow before the loop exits), 4 infinite loop cases, and 15
6286 immediate exit (0 or 1 iteration depending on loop type) cases.
6287 Only try to optimize the normal cases. */
6289 /* (compare_dir/final_larger/increment_dir)
6290 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
6291 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
6292 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
6293 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
6295 /* ?? If the meaning of reverse loops (where the iteration variable
6296 will overflow before the loop exits) is undefined, then could
6297 eliminate all of these special checks, and just always assume
6298 the loops are normal/immediate/infinite. Note that this means
6299 the sign of increment_dir does not have to be known. Also,
6300 since it does not really hurt if immediate exit loops or infinite loops
6301 are optimized, then that case could be ignored also, and hence all
6302 loops can be optimized.
6304 According to ANSI Spec, the reverse loop case result is undefined,
6305 because the action on overflow is undefined.
6307 See also the special test for NE loops below. */
6309 if (final_larger
== increment_dir
&& final_larger
!= 0
6310 && (final_larger
== compare_dir
|| compare_dir
== 0))
6315 if (loop_dump_stream
)
6316 fprintf (loop_dump_stream
, "Loop iterations: Not normal loop.\n");
6320 /* Calculate the number of iterations, final_value is only an approximation,
6321 so correct for that. Note that abs_diff and n_iterations are
6322 unsigned, because they can be as large as 2^n - 1. */
6324 inc
= INTVAL (increment
);
6328 abs_diff
= INTVAL (final_value
) - INTVAL (initial_value
);
6333 abs_diff
= INTVAL (initial_value
) - INTVAL (final_value
);
6337 /* Given that iteration_var is going to iterate over its own mode,
6338 not HOST_WIDE_INT, disregard higher bits that might have come
6339 into the picture due to sign extension of initial and final
6341 abs_diff
&= ((unsigned HOST_WIDE_INT
) 1
6342 << (GET_MODE_BITSIZE (GET_MODE (iteration_var
)) - 1)
6345 /* For NE tests, make sure that the iteration variable won't miss
6346 the final value. If abs_diff mod abs_incr is not zero, then the
6347 iteration variable will overflow before the loop exits, and we
6348 can not calculate the number of iterations. */
6349 if (compare_dir
== 0 && (abs_diff
% abs_inc
) != 0)
6352 /* Note that the number of iterations could be calculated using
6353 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
6354 handle potential overflow of the summation. */
6355 loop_info
->n_iterations
= abs_diff
/ abs_inc
+ ((abs_diff
% abs_inc
) != 0);
6356 return loop_info
->n_iterations
;
6359 /* Perform strength reduction and induction variable elimination.
6361 Pseudo registers created during this function will be beyond the
6362 last valid index in several tables including
6363 REGS->ARRAY[I].N_TIMES_SET and REGNO_LAST_UID. This does not cause a
6364 problem here, because the added registers cannot be givs outside of
6365 their loop, and hence will never be reconsidered. But scan_loop
6366 must check regnos to make sure they are in bounds. */
6369 strength_reduce (struct loop
*loop
, int flags
)
6371 struct loop_info
*loop_info
= LOOP_INFO (loop
);
6372 struct loop_regs
*regs
= LOOP_REGS (loop
);
6373 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6375 /* Temporary list pointer for traversing ivs->list. */
6376 struct iv_class
*bl
;
6377 /* Ratio of extra register life span we can justify
6378 for saving an instruction. More if loop doesn't call subroutines
6379 since in that case saving an insn makes more difference
6380 and more registers are available. */
6381 /* ??? could set this to last value of threshold in move_movables */
6382 int threshold
= (loop_info
->has_call
? 1 : 2) * (3 + n_non_fixed_regs
);
6383 /* Map of pseudo-register replacements. */
6384 rtx
*reg_map
= NULL
;
6386 rtx test_reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
6387 int insn_count
= count_insns_in_loop (loop
);
6389 addr_placeholder
= gen_reg_rtx (Pmode
);
6391 ivs
->n_regs
= max_reg_before_loop
;
6392 ivs
->regs
= xcalloc (ivs
->n_regs
, sizeof (struct iv
));
6394 /* Find all BIVs in loop. */
6395 loop_bivs_find (loop
);
6397 /* Exit if there are no bivs. */
6400 loop_ivs_free (loop
);
6404 /* Determine how BIVS are initialized by looking through pre-header
6405 extended basic block. */
6406 loop_bivs_init_find (loop
);
6408 /* Look at the each biv and see if we can say anything better about its
6409 initial value from any initializing insns set up above. */
6410 loop_bivs_check (loop
);
6412 /* Search the loop for general induction variables. */
6413 loop_givs_find (loop
);
6415 /* Try to calculate and save the number of loop iterations. This is
6416 set to zero if the actual number can not be calculated. This must
6417 be called after all giv's have been identified, since otherwise it may
6418 fail if the iteration variable is a giv. */
6419 loop_iterations (loop
);
6421 #ifdef HAVE_prefetch
6422 if (flags
& LOOP_PREFETCH
)
6423 emit_prefetch_instructions (loop
);
6426 /* Now for each giv for which we still don't know whether or not it is
6427 replaceable, check to see if it is replaceable because its final value
6428 can be calculated. This must be done after loop_iterations is called,
6429 so that final_giv_value will work correctly. */
6430 loop_givs_check (loop
);
6432 /* Try to prove that the loop counter variable (if any) is always
6433 nonnegative; if so, record that fact with a REG_NONNEG note
6434 so that "decrement and branch until zero" insn can be used. */
6435 check_dbra_loop (loop
, insn_count
);
6437 /* Create reg_map to hold substitutions for replaceable giv regs.
6438 Some givs might have been made from biv increments, so look at
6439 ivs->reg_iv_type for a suitable size. */
6440 reg_map_size
= ivs
->n_regs
;
6441 reg_map
= xcalloc (reg_map_size
, sizeof (rtx
));
6443 /* Examine each iv class for feasibility of strength reduction/induction
6444 variable elimination. */
6446 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
6448 struct induction
*v
;
6451 /* Test whether it will be possible to eliminate this biv
6452 provided all givs are reduced. */
6453 bl
->eliminable
= loop_biv_eliminable_p (loop
, bl
, threshold
, insn_count
);
6455 /* This will be true at the end, if all givs which depend on this
6456 biv have been strength reduced.
6457 We can't (currently) eliminate the biv unless this is so. */
6458 bl
->all_reduced
= 1;
6460 /* Check each extension dependent giv in this class to see if its
6461 root biv is safe from wrapping in the interior mode. */
6462 check_ext_dependent_givs (loop
, bl
);
6464 /* Combine all giv's for this iv_class. */
6465 combine_givs (regs
, bl
);
6467 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
6469 struct induction
*tv
;
6471 if (v
->ignore
|| v
->same
)
6474 benefit
= loop_giv_reduce_benefit (loop
, bl
, v
, test_reg
);
6476 /* If an insn is not to be strength reduced, then set its ignore
6477 flag, and clear bl->all_reduced. */
6479 /* A giv that depends on a reversed biv must be reduced if it is
6480 used after the loop exit, otherwise, it would have the wrong
6481 value after the loop exit. To make it simple, just reduce all
6482 of such giv's whether or not we know they are used after the loop
6485 if (v
->lifetime
* threshold
* benefit
< insn_count
6488 if (loop_dump_stream
)
6489 fprintf (loop_dump_stream
,
6490 "giv of insn %d not worth while, %d vs %d.\n",
6492 v
->lifetime
* threshold
* benefit
, insn_count
);
6494 bl
->all_reduced
= 0;
6496 else if (! v
->always_executed
6497 && (may_trap_or_fault_p (v
->add_val
)
6498 || may_trap_or_fault_p (v
->mult_val
)))
6500 if (loop_dump_stream
)
6501 fprintf (loop_dump_stream
,
6502 "giv of insn %d: not always executed.\n",
6503 INSN_UID (v
->insn
));
6505 bl
->all_reduced
= 0;
6509 /* Check that we can increment the reduced giv without a
6510 multiply insn. If not, reject it. */
6512 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
6513 if (tv
->mult_val
== const1_rtx
6514 && ! product_cheap_p (tv
->add_val
, v
->mult_val
))
6516 if (loop_dump_stream
)
6517 fprintf (loop_dump_stream
,
6518 "giv of insn %d: would need a multiply.\n",
6519 INSN_UID (v
->insn
));
6521 bl
->all_reduced
= 0;
6527 /* Check for givs whose first use is their definition and whose
6528 last use is the definition of another giv. If so, it is likely
6529 dead and should not be used to derive another giv nor to
6531 loop_givs_dead_check (loop
, bl
);
6533 /* Reduce each giv that we decided to reduce. */
6534 loop_givs_reduce (loop
, bl
);
6536 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
6539 For each giv register that can be reduced now: if replaceable,
6540 substitute reduced reg wherever the old giv occurs;
6541 else add new move insn "giv_reg = reduced_reg". */
6542 loop_givs_rescan (loop
, bl
, reg_map
);
6544 /* All the givs based on the biv bl have been reduced if they
6547 /* For each giv not marked as maybe dead that has been combined with a
6548 second giv, clear any "maybe dead" mark on that second giv.
6549 v->new_reg will either be or refer to the register of the giv it
6552 Doing this clearing avoids problems in biv elimination where
6553 a giv's new_reg is a complex value that can't be put in the
6554 insn but the giv combined with (with a reg as new_reg) is
6555 marked maybe_dead. Since the register will be used in either
6556 case, we'd prefer it be used from the simpler giv. */
6558 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
6559 if (! v
->maybe_dead
&& v
->same
)
6560 v
->same
->maybe_dead
= 0;
6562 /* Try to eliminate the biv, if it is a candidate.
6563 This won't work if ! bl->all_reduced,
6564 since the givs we planned to use might not have been reduced.
6566 We have to be careful that we didn't initially think we could
6567 eliminate this biv because of a giv that we now think may be
6568 dead and shouldn't be used as a biv replacement.
6570 Also, there is the possibility that we may have a giv that looks
6571 like it can be used to eliminate a biv, but the resulting insn
6572 isn't valid. This can happen, for example, on the 88k, where a
6573 JUMP_INSN can compare a register only with zero. Attempts to
6574 replace it with a compare with a constant will fail.
6576 Note that in cases where this call fails, we may have replaced some
6577 of the occurrences of the biv with a giv, but no harm was done in
6578 doing so in the rare cases where it can occur. */
6580 if (bl
->all_reduced
== 1 && bl
->eliminable
6581 && maybe_eliminate_biv (loop
, bl
, 1, threshold
, insn_count
))
6583 /* ?? If we created a new test to bypass the loop entirely,
6584 or otherwise drop straight in, based on this test, then
6585 we might want to rewrite it also. This way some later
6586 pass has more hope of removing the initialization of this
6589 /* If final_value != 0, then the biv may be used after loop end
6590 and we must emit an insn to set it just in case.
6592 Reversed bivs already have an insn after the loop setting their
6593 value, so we don't need another one. We can't calculate the
6594 proper final value for such a biv here anyways. */
6595 if (bl
->final_value
&& ! bl
->reversed
)
6596 loop_insn_sink_or_swim (loop
,
6597 gen_load_of_final_value (bl
->biv
->dest_reg
,
6600 if (loop_dump_stream
)
6601 fprintf (loop_dump_stream
, "Reg %d: biv eliminated\n",
6604 /* See above note wrt final_value. But since we couldn't eliminate
6605 the biv, we must set the value after the loop instead of before. */
6606 else if (bl
->final_value
&& ! bl
->reversed
)
6607 loop_insn_sink (loop
, gen_load_of_final_value (bl
->biv
->dest_reg
,
6611 /* Go through all the instructions in the loop, making all the
6612 register substitutions scheduled in REG_MAP. */
6614 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
6617 replace_regs (PATTERN (p
), reg_map
, reg_map_size
, 0);
6618 replace_regs (REG_NOTES (p
), reg_map
, reg_map_size
, 0);
6622 if (loop_dump_stream
)
6623 fprintf (loop_dump_stream
, "\n");
6625 loop_ivs_free (loop
);
6630 /*Record all basic induction variables calculated in the insn. */
6632 check_insn_for_bivs (struct loop
*loop
, rtx p
, int not_every_iteration
,
6635 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6642 if (NONJUMP_INSN_P (p
)
6643 && (set
= single_set (p
))
6644 && REG_P (SET_DEST (set
)))
6646 dest_reg
= SET_DEST (set
);
6647 if (REGNO (dest_reg
) < max_reg_before_loop
6648 && REGNO (dest_reg
) >= FIRST_PSEUDO_REGISTER
6649 && REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != NOT_BASIC_INDUCT
)
6651 if (basic_induction_var (loop
, SET_SRC (set
),
6652 GET_MODE (SET_SRC (set
)),
6653 dest_reg
, p
, &inc_val
, &mult_val
,
6654 &location
, VOIDmode
))
6656 /* It is a possible basic induction variable.
6657 Create and initialize an induction structure for it. */
6659 struct induction
*v
= xmalloc (sizeof (struct induction
));
6661 record_biv (loop
, v
, p
, dest_reg
, inc_val
, mult_val
, location
,
6662 not_every_iteration
, maybe_multiple
);
6663 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = BASIC_INDUCT
;
6665 else if (REGNO (dest_reg
) < ivs
->n_regs
)
6666 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = NOT_BASIC_INDUCT
;
6672 /* Record all givs calculated in the insn.
6673 A register is a giv if: it is only set once, it is a function of a
6674 biv and a constant (or invariant), and it is not a biv. */
6676 check_insn_for_givs (struct loop
*loop
, rtx p
, int not_every_iteration
,
6679 struct loop_regs
*regs
= LOOP_REGS (loop
);
6682 /* Look for a general induction variable in a register. */
6683 if (NONJUMP_INSN_P (p
)
6684 && (set
= single_set (p
))
6685 && REG_P (SET_DEST (set
))
6686 && ! regs
->array
[REGNO (SET_DEST (set
))].may_not_optimize
)
6695 rtx last_consec_insn
;
6697 dest_reg
= SET_DEST (set
);
6698 if (REGNO (dest_reg
) < FIRST_PSEUDO_REGISTER
)
6701 if (/* SET_SRC is a giv. */
6702 (general_induction_var (loop
, SET_SRC (set
), &src_reg
, &add_val
,
6703 &mult_val
, &ext_val
, 0, &benefit
, VOIDmode
)
6704 /* Equivalent expression is a giv. */
6705 || ((regnote
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
6706 && general_induction_var (loop
, XEXP (regnote
, 0), &src_reg
,
6707 &add_val
, &mult_val
, &ext_val
, 0,
6708 &benefit
, VOIDmode
)))
6709 /* Don't try to handle any regs made by loop optimization.
6710 We have nothing on them in regno_first_uid, etc. */
6711 && REGNO (dest_reg
) < max_reg_before_loop
6712 /* Don't recognize a BASIC_INDUCT_VAR here. */
6713 && dest_reg
!= src_reg
6714 /* This must be the only place where the register is set. */
6715 && (regs
->array
[REGNO (dest_reg
)].n_times_set
== 1
6716 /* or all sets must be consecutive and make a giv. */
6717 || (benefit
= consec_sets_giv (loop
, benefit
, p
,
6719 &add_val
, &mult_val
, &ext_val
,
6720 &last_consec_insn
))))
6722 struct induction
*v
= xmalloc (sizeof (struct induction
));
6724 /* If this is a library call, increase benefit. */
6725 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
6726 benefit
+= libcall_benefit (p
);
6728 /* Skip the consecutive insns, if there are any. */
6729 if (regs
->array
[REGNO (dest_reg
)].n_times_set
!= 1)
6730 p
= last_consec_insn
;
6732 record_giv (loop
, v
, p
, src_reg
, dest_reg
, mult_val
, add_val
,
6733 ext_val
, benefit
, DEST_REG
, not_every_iteration
,
6734 maybe_multiple
, (rtx
*) 0);
6739 /* Look for givs which are memory addresses. */
6740 if (NONJUMP_INSN_P (p
))
6741 find_mem_givs (loop
, PATTERN (p
), p
, not_every_iteration
,
6744 /* Update the status of whether giv can derive other givs. This can
6745 change when we pass a label or an insn that updates a biv. */
6746 if (INSN_P (p
) || LABEL_P (p
))
6747 update_giv_derive (loop
, p
);
6751 /* Return 1 if X is a valid source for an initial value (or as value being
6752 compared against in an initial test).
6754 X must be either a register or constant and must not be clobbered between
6755 the current insn and the start of the loop.
6757 INSN is the insn containing X. */
6760 valid_initial_value_p (rtx x
, rtx insn
, int call_seen
, rtx loop_start
)
6765 /* Only consider pseudos we know about initialized in insns whose luids
6768 || REGNO (x
) >= max_reg_before_loop
)
6771 /* Don't use call-clobbered registers across a call which clobbers it. On
6772 some machines, don't use any hard registers at all. */
6773 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
6774 && (SMALL_REGISTER_CLASSES
6775 || (call_seen
&& call_used_regs
[REGNO (x
)])))
6778 /* Don't use registers that have been clobbered before the start of the
6780 if (reg_set_between_p (x
, insn
, loop_start
))
6786 /* Scan X for memory refs and check each memory address
6787 as a possible giv. INSN is the insn whose pattern X comes from.
6788 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
6789 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
6790 more than once in each loop iteration. */
6793 find_mem_givs (const struct loop
*loop
, rtx x
, rtx insn
,
6794 int not_every_iteration
, int maybe_multiple
)
6803 code
= GET_CODE (x
);
6828 /* This code used to disable creating GIVs with mult_val == 1 and
6829 add_val == 0. However, this leads to lost optimizations when
6830 it comes time to combine a set of related DEST_ADDR GIVs, since
6831 this one would not be seen. */
6833 if (general_induction_var (loop
, XEXP (x
, 0), &src_reg
, &add_val
,
6834 &mult_val
, &ext_val
, 1, &benefit
,
6837 /* Found one; record it. */
6838 struct induction
*v
= xmalloc (sizeof (struct induction
));
6840 record_giv (loop
, v
, insn
, src_reg
, addr_placeholder
, mult_val
,
6841 add_val
, ext_val
, benefit
, DEST_ADDR
,
6842 not_every_iteration
, maybe_multiple
, &XEXP (x
, 0));
6853 /* Recursively scan the subexpressions for other mem refs. */
6855 fmt
= GET_RTX_FORMAT (code
);
6856 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6858 find_mem_givs (loop
, XEXP (x
, i
), insn
, not_every_iteration
,
6860 else if (fmt
[i
] == 'E')
6861 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
6862 find_mem_givs (loop
, XVECEXP (x
, i
, j
), insn
, not_every_iteration
,
6866 /* Fill in the data about one biv update.
6867 V is the `struct induction' in which we record the biv. (It is
6868 allocated by the caller, with alloca.)
6869 INSN is the insn that sets it.
6870 DEST_REG is the biv's reg.
6872 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
6873 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
6874 being set to INC_VAL.
6876 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
6877 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
6878 can be executed more than once per iteration. If MAYBE_MULTIPLE
6879 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
6880 executed exactly once per iteration. */
6883 record_biv (struct loop
*loop
, struct induction
*v
, rtx insn
, rtx dest_reg
,
6884 rtx inc_val
, rtx mult_val
, rtx
*location
,
6885 int not_every_iteration
, int maybe_multiple
)
6887 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6888 struct iv_class
*bl
;
6891 v
->src_reg
= dest_reg
;
6892 v
->dest_reg
= dest_reg
;
6893 v
->mult_val
= mult_val
;
6894 v
->add_val
= inc_val
;
6895 v
->ext_dependent
= NULL_RTX
;
6896 v
->location
= location
;
6897 v
->mode
= GET_MODE (dest_reg
);
6898 v
->always_computable
= ! not_every_iteration
;
6899 v
->always_executed
= ! not_every_iteration
;
6900 v
->maybe_multiple
= maybe_multiple
;
6903 /* Add this to the reg's iv_class, creating a class
6904 if this is the first incrementation of the reg. */
6906 bl
= REG_IV_CLASS (ivs
, REGNO (dest_reg
));
6909 /* Create and initialize new iv_class. */
6911 bl
= xmalloc (sizeof (struct iv_class
));
6913 bl
->regno
= REGNO (dest_reg
);
6919 /* Set initial value to the reg itself. */
6920 bl
->initial_value
= dest_reg
;
6921 bl
->final_value
= 0;
6922 /* We haven't seen the initializing insn yet. */
6925 bl
->initial_test
= 0;
6926 bl
->incremented
= 0;
6930 bl
->total_benefit
= 0;
6932 /* Add this class to ivs->list. */
6933 bl
->next
= ivs
->list
;
6936 /* Put it in the array of biv register classes. */
6937 REG_IV_CLASS (ivs
, REGNO (dest_reg
)) = bl
;
6941 /* Check if location is the same as a previous one. */
6942 struct induction
*induction
;
6943 for (induction
= bl
->biv
; induction
; induction
= induction
->next_iv
)
6944 if (location
== induction
->location
)
6946 v
->same
= induction
;
6951 /* Update IV_CLASS entry for this biv. */
6952 v
->next_iv
= bl
->biv
;
6955 if (mult_val
== const1_rtx
)
6956 bl
->incremented
= 1;
6958 if (loop_dump_stream
)
6959 loop_biv_dump (v
, loop_dump_stream
, 0);
6962 /* Fill in the data about one giv.
6963 V is the `struct induction' in which we record the giv. (It is
6964 allocated by the caller, with alloca.)
6965 INSN is the insn that sets it.
6966 BENEFIT estimates the savings from deleting this insn.
6967 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
6968 into a register or is used as a memory address.
6970 SRC_REG is the biv reg which the giv is computed from.
6971 DEST_REG is the giv's reg (if the giv is stored in a reg).
6972 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
6973 LOCATION points to the place where this giv's value appears in INSN. */
6976 record_giv (const struct loop
*loop
, struct induction
*v
, rtx insn
,
6977 rtx src_reg
, rtx dest_reg
, rtx mult_val
, rtx add_val
,
6978 rtx ext_val
, int benefit
, enum g_types type
,
6979 int not_every_iteration
, int maybe_multiple
, rtx
*location
)
6981 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6982 struct induction
*b
;
6983 struct iv_class
*bl
;
6984 rtx set
= single_set (insn
);
6987 /* Attempt to prove constantness of the values. Don't let simplify_rtx
6988 undo the MULT canonicalization that we performed earlier. */
6989 temp
= simplify_rtx (add_val
);
6991 && ! (GET_CODE (add_val
) == MULT
6992 && GET_CODE (temp
) == ASHIFT
))
6996 v
->src_reg
= src_reg
;
6998 v
->dest_reg
= dest_reg
;
6999 v
->mult_val
= mult_val
;
7000 v
->add_val
= add_val
;
7001 v
->ext_dependent
= ext_val
;
7002 v
->benefit
= benefit
;
7003 v
->location
= location
;
7005 v
->combined_with
= 0;
7006 v
->maybe_multiple
= maybe_multiple
;
7008 v
->derive_adjustment
= 0;
7014 v
->auto_inc_opt
= 0;
7017 /* The v->always_computable field is used in update_giv_derive, to
7018 determine whether a giv can be used to derive another giv. For a
7019 DEST_REG giv, INSN computes a new value for the giv, so its value
7020 isn't computable if INSN insn't executed every iteration.
7021 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
7022 it does not compute a new value. Hence the value is always computable
7023 regardless of whether INSN is executed each iteration. */
7025 if (type
== DEST_ADDR
)
7026 v
->always_computable
= 1;
7028 v
->always_computable
= ! not_every_iteration
;
7030 v
->always_executed
= ! not_every_iteration
;
7032 if (type
== DEST_ADDR
)
7034 v
->mode
= GET_MODE (*location
);
7037 else /* type == DEST_REG */
7039 v
->mode
= GET_MODE (SET_DEST (set
));
7041 v
->lifetime
= LOOP_REG_LIFETIME (loop
, REGNO (dest_reg
));
7043 /* If the lifetime is zero, it means that this register is
7044 really a dead store. So mark this as a giv that can be
7045 ignored. This will not prevent the biv from being eliminated. */
7046 if (v
->lifetime
== 0)
7049 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
7050 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
7053 /* Add the giv to the class of givs computed from one biv. */
7055 bl
= REG_IV_CLASS (ivs
, REGNO (src_reg
));
7057 v
->next_iv
= bl
->giv
;
7060 /* Don't count DEST_ADDR. This is supposed to count the number of
7061 insns that calculate givs. */
7062 if (type
== DEST_REG
)
7064 bl
->total_benefit
+= benefit
;
7066 if (type
== DEST_ADDR
)
7069 v
->not_replaceable
= 0;
7073 /* The giv can be replaced outright by the reduced register only if all
7074 of the following conditions are true:
7075 - the insn that sets the giv is always executed on any iteration
7076 on which the giv is used at all
7077 (there are two ways to deduce this:
7078 either the insn is executed on every iteration,
7079 or all uses follow that insn in the same basic block),
7080 - the giv is not used outside the loop
7081 - no assignments to the biv occur during the giv's lifetime. */
7083 if (REGNO_FIRST_UID (REGNO (dest_reg
)) == INSN_UID (insn
)
7084 /* Previous line always fails if INSN was moved by loop opt. */
7085 && REGNO_LAST_LUID (REGNO (dest_reg
))
7086 < INSN_LUID (loop
->end
)
7087 && (! not_every_iteration
7088 || last_use_this_basic_block (dest_reg
, insn
)))
7090 /* Now check that there are no assignments to the biv within the
7091 giv's lifetime. This requires two separate checks. */
7093 /* Check each biv update, and fail if any are between the first
7094 and last use of the giv.
7096 If this loop contains an inner loop that was unrolled, then
7097 the insn modifying the biv may have been emitted by the loop
7098 unrolling code, and hence does not have a valid luid. Just
7099 mark the biv as not replaceable in this case. It is not very
7100 useful as a biv, because it is used in two different loops.
7101 It is very unlikely that we would be able to optimize the giv
7102 using this biv anyways. */
7105 v
->not_replaceable
= 0;
7106 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
7108 if (INSN_UID (b
->insn
) >= max_uid_for_loop
7109 || ((INSN_LUID (b
->insn
)
7110 >= REGNO_FIRST_LUID (REGNO (dest_reg
)))
7111 && (INSN_LUID (b
->insn
)
7112 <= REGNO_LAST_LUID (REGNO (dest_reg
)))))
7115 v
->not_replaceable
= 1;
7120 /* If there are any backwards branches that go from after the
7121 biv update to before it, then this giv is not replaceable. */
7123 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
7124 if (back_branch_in_range_p (loop
, b
->insn
))
7127 v
->not_replaceable
= 1;
7133 /* May still be replaceable, we don't have enough info here to
7136 v
->not_replaceable
= 0;
7140 /* Record whether the add_val contains a const_int, for later use by
7145 v
->no_const_addval
= 1;
7146 if (tem
== const0_rtx
)
7148 else if (CONSTANT_P (add_val
))
7149 v
->no_const_addval
= 0;
7150 if (GET_CODE (tem
) == PLUS
)
7154 if (GET_CODE (XEXP (tem
, 0)) == PLUS
)
7155 tem
= XEXP (tem
, 0);
7156 else if (GET_CODE (XEXP (tem
, 1)) == PLUS
)
7157 tem
= XEXP (tem
, 1);
7161 if (CONSTANT_P (XEXP (tem
, 1)))
7162 v
->no_const_addval
= 0;
7166 if (loop_dump_stream
)
7167 loop_giv_dump (v
, loop_dump_stream
, 0);
7170 /* Try to calculate the final value of the giv, the value it will have at
7171 the end of the loop. If we can do it, return that value. */
7174 final_giv_value (const struct loop
*loop
, struct induction
*v
)
7176 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7177 struct iv_class
*bl
;
7181 rtx loop_end
= loop
->end
;
7182 unsigned HOST_WIDE_INT n_iterations
= LOOP_INFO (loop
)->n_iterations
;
7184 bl
= REG_IV_CLASS (ivs
, REGNO (v
->src_reg
));
7186 /* The final value for givs which depend on reversed bivs must be calculated
7187 differently than for ordinary givs. In this case, there is already an
7188 insn after the loop which sets this giv's final value (if necessary),
7189 and there are no other loop exits, so we can return any value. */
7192 if (loop_dump_stream
)
7193 fprintf (loop_dump_stream
,
7194 "Final giv value for %d, depends on reversed biv\n",
7195 REGNO (v
->dest_reg
));
7199 /* Try to calculate the final value as a function of the biv it depends
7200 upon. The only exit from the loop must be the fall through at the bottom
7201 and the insn that sets the giv must be executed on every iteration
7202 (otherwise the giv may not have its final value when the loop exits). */
7204 /* ??? Can calculate the final giv value by subtracting off the
7205 extra biv increments times the giv's mult_val. The loop must have
7206 only one exit for this to work, but the loop iterations does not need
7209 if (n_iterations
!= 0
7210 && ! loop
->exit_count
7211 && v
->always_executed
)
7213 /* ?? It is tempting to use the biv's value here since these insns will
7214 be put after the loop, and hence the biv will have its final value
7215 then. However, this fails if the biv is subsequently eliminated.
7216 Perhaps determine whether biv's are eliminable before trying to
7217 determine whether giv's are replaceable so that we can use the
7218 biv value here if it is not eliminable. */
7220 /* We are emitting code after the end of the loop, so we must make
7221 sure that bl->initial_value is still valid then. It will still
7222 be valid if it is invariant. */
7224 increment
= biv_total_increment (bl
);
7226 if (increment
&& loop_invariant_p (loop
, increment
)
7227 && loop_invariant_p (loop
, bl
->initial_value
))
7229 /* Can calculate the loop exit value of its biv as
7230 (n_iterations * increment) + initial_value */
7232 /* The loop exit value of the giv is then
7233 (final_biv_value - extra increments) * mult_val + add_val.
7234 The extra increments are any increments to the biv which
7235 occur in the loop after the giv's value is calculated.
7236 We must search from the insn that sets the giv to the end
7237 of the loop to calculate this value. */
7239 /* Put the final biv value in tem. */
7240 tem
= gen_reg_rtx (v
->mode
);
7241 record_base_value (REGNO (tem
), bl
->biv
->add_val
, 0);
7242 loop_iv_add_mult_sink (loop
, extend_value_for_giv (v
, increment
),
7243 GEN_INT (n_iterations
),
7244 extend_value_for_giv (v
, bl
->initial_value
),
7247 /* Subtract off extra increments as we find them. */
7248 for (insn
= NEXT_INSN (v
->insn
); insn
!= loop_end
;
7249 insn
= NEXT_INSN (insn
))
7251 struct induction
*biv
;
7253 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
7254 if (biv
->insn
== insn
)
7257 tem
= expand_simple_binop (GET_MODE (tem
), MINUS
, tem
,
7258 biv
->add_val
, NULL_RTX
, 0,
7262 loop_insn_sink (loop
, seq
);
7266 /* Now calculate the giv's final value. */
7267 loop_iv_add_mult_sink (loop
, tem
, v
->mult_val
, v
->add_val
, tem
);
7269 if (loop_dump_stream
)
7270 fprintf (loop_dump_stream
,
7271 "Final giv value for %d, calc from biv's value.\n",
7272 REGNO (v
->dest_reg
));
7278 /* Replaceable giv's should never reach here. */
7279 gcc_assert (!v
->replaceable
);
7281 /* Check to see if the biv is dead at all loop exits. */
7282 if (reg_dead_after_loop (loop
, v
->dest_reg
))
7284 if (loop_dump_stream
)
7285 fprintf (loop_dump_stream
,
7286 "Final giv value for %d, giv dead after loop exit.\n",
7287 REGNO (v
->dest_reg
));
7295 /* All this does is determine whether a giv can be made replaceable because
7296 its final value can be calculated. This code can not be part of record_giv
7297 above, because final_giv_value requires that the number of loop iterations
7298 be known, and that can not be accurately calculated until after all givs
7299 have been identified. */
7302 check_final_value (const struct loop
*loop
, struct induction
*v
)
7304 rtx final_value
= 0;
7306 /* DEST_ADDR givs will never reach here, because they are always marked
7307 replaceable above in record_giv. */
7309 /* The giv can be replaced outright by the reduced register only if all
7310 of the following conditions are true:
7311 - the insn that sets the giv is always executed on any iteration
7312 on which the giv is used at all
7313 (there are two ways to deduce this:
7314 either the insn is executed on every iteration,
7315 or all uses follow that insn in the same basic block),
7316 - its final value can be calculated (this condition is different
7317 than the one above in record_giv)
7318 - it's not used before the it's set
7319 - no assignments to the biv occur during the giv's lifetime. */
7322 /* This is only called now when replaceable is known to be false. */
7323 /* Clear replaceable, so that it won't confuse final_giv_value. */
7327 if ((final_value
= final_giv_value (loop
, v
))
7328 && (v
->always_executed
7329 || last_use_this_basic_block (v
->dest_reg
, v
->insn
)))
7331 int biv_increment_seen
= 0, before_giv_insn
= 0;
7336 v
->not_replaceable
= 0;
7338 /* When trying to determine whether or not a biv increment occurs
7339 during the lifetime of the giv, we can ignore uses of the variable
7340 outside the loop because final_value is true. Hence we can not
7341 use regno_last_uid and regno_first_uid as above in record_giv. */
7343 /* Search the loop to determine whether any assignments to the
7344 biv occur during the giv's lifetime. Start with the insn
7345 that sets the giv, and search around the loop until we come
7346 back to that insn again.
7348 Also fail if there is a jump within the giv's lifetime that jumps
7349 to somewhere outside the lifetime but still within the loop. This
7350 catches spaghetti code where the execution order is not linear, and
7351 hence the above test fails. Here we assume that the giv lifetime
7352 does not extend from one iteration of the loop to the next, so as
7353 to make the test easier. Since the lifetime isn't known yet,
7354 this requires two loops. See also record_giv above. */
7356 last_giv_use
= v
->insn
;
7363 before_giv_insn
= 1;
7364 p
= NEXT_INSN (loop
->start
);
7371 /* It is possible for the BIV increment to use the GIV if we
7372 have a cycle. Thus we must be sure to check each insn for
7373 both BIV and GIV uses, and we must check for BIV uses
7376 if (! biv_increment_seen
7377 && reg_set_p (v
->src_reg
, PATTERN (p
)))
7378 biv_increment_seen
= 1;
7380 if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
7382 if (biv_increment_seen
|| before_giv_insn
)
7385 v
->not_replaceable
= 1;
7393 /* Now that the lifetime of the giv is known, check for branches
7394 from within the lifetime to outside the lifetime if it is still
7404 p
= NEXT_INSN (loop
->start
);
7405 if (p
== last_giv_use
)
7408 if (JUMP_P (p
) && JUMP_LABEL (p
)
7409 && LABEL_NAME (JUMP_LABEL (p
))
7410 && ((loop_insn_first_p (JUMP_LABEL (p
), v
->insn
)
7411 && loop_insn_first_p (loop
->start
, JUMP_LABEL (p
)))
7412 || (loop_insn_first_p (last_giv_use
, JUMP_LABEL (p
))
7413 && loop_insn_first_p (JUMP_LABEL (p
), loop
->end
))))
7416 v
->not_replaceable
= 1;
7418 if (loop_dump_stream
)
7419 fprintf (loop_dump_stream
,
7420 "Found branch outside giv lifetime.\n");
7427 /* If it is replaceable, then save the final value. */
7429 v
->final_value
= final_value
;
7432 if (loop_dump_stream
&& v
->replaceable
)
7433 fprintf (loop_dump_stream
, "Insn %d: giv reg %d final_value replaceable\n",
7434 INSN_UID (v
->insn
), REGNO (v
->dest_reg
));
7437 /* Update the status of whether a giv can derive other givs.
7439 We need to do something special if there is or may be an update to the biv
7440 between the time the giv is defined and the time it is used to derive
7443 In addition, a giv that is only conditionally set is not allowed to
7444 derive another giv once a label has been passed.
7446 The cases we look at are when a label or an update to a biv is passed. */
7449 update_giv_derive (const struct loop
*loop
, rtx p
)
7451 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7452 struct iv_class
*bl
;
7453 struct induction
*biv
, *giv
;
7457 /* Search all IV classes, then all bivs, and finally all givs.
7459 There are three cases we are concerned with. First we have the situation
7460 of a giv that is only updated conditionally. In that case, it may not
7461 derive any givs after a label is passed.
7463 The second case is when a biv update occurs, or may occur, after the
7464 definition of a giv. For certain biv updates (see below) that are
7465 known to occur between the giv definition and use, we can adjust the
7466 giv definition. For others, or when the biv update is conditional,
7467 we must prevent the giv from deriving any other givs. There are two
7468 sub-cases within this case.
7470 If this is a label, we are concerned with any biv update that is done
7471 conditionally, since it may be done after the giv is defined followed by
7472 a branch here (actually, we need to pass both a jump and a label, but
7473 this extra tracking doesn't seem worth it).
7475 If this is a jump, we are concerned about any biv update that may be
7476 executed multiple times. We are actually only concerned about
7477 backward jumps, but it is probably not worth performing the test
7478 on the jump again here.
7480 If this is a biv update, we must adjust the giv status to show that a
7481 subsequent biv update was performed. If this adjustment cannot be done,
7482 the giv cannot derive further givs. */
7484 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
7485 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
7486 if (LABEL_P (p
) || JUMP_P (p
)
7489 /* Skip if location is the same as a previous one. */
7493 for (giv
= bl
->giv
; giv
; giv
= giv
->next_iv
)
7495 /* If cant_derive is already true, there is no point in
7496 checking all of these conditions again. */
7497 if (giv
->cant_derive
)
7500 /* If this giv is conditionally set and we have passed a label,
7501 it cannot derive anything. */
7502 if (LABEL_P (p
) && ! giv
->always_computable
)
7503 giv
->cant_derive
= 1;
7505 /* Skip givs that have mult_val == 0, since
7506 they are really invariants. Also skip those that are
7507 replaceable, since we know their lifetime doesn't contain
7509 else if (giv
->mult_val
== const0_rtx
|| giv
->replaceable
)
7512 /* The only way we can allow this giv to derive another
7513 is if this is a biv increment and we can form the product
7514 of biv->add_val and giv->mult_val. In this case, we will
7515 be able to compute a compensation. */
7516 else if (biv
->insn
== p
)
7521 if (biv
->mult_val
== const1_rtx
)
7522 tem
= simplify_giv_expr (loop
,
7523 gen_rtx_MULT (giv
->mode
,
7526 &ext_val_dummy
, &dummy
);
7528 if (tem
&& giv
->derive_adjustment
)
7529 tem
= simplify_giv_expr
7531 gen_rtx_PLUS (giv
->mode
, tem
, giv
->derive_adjustment
),
7532 &ext_val_dummy
, &dummy
);
7535 giv
->derive_adjustment
= tem
;
7537 giv
->cant_derive
= 1;
7539 else if ((LABEL_P (p
) && ! biv
->always_computable
)
7540 || (JUMP_P (p
) && biv
->maybe_multiple
))
7541 giv
->cant_derive
= 1;
7546 /* Check whether an insn is an increment legitimate for a basic induction var.
7547 X is the source of insn P, or a part of it.
7548 MODE is the mode in which X should be interpreted.
7550 DEST_REG is the putative biv, also the destination of the insn.
7551 We accept patterns of these forms:
7552 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
7553 REG = INVARIANT + REG
7555 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
7556 store the additive term into *INC_VAL, and store the place where
7557 we found the additive term into *LOCATION.
7559 If X is an assignment of an invariant into DEST_REG, we set
7560 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
7562 We also want to detect a BIV when it corresponds to a variable whose
7563 mode was promoted. In that case, an increment of the variable may be
7564 a PLUS that adds a SUBREG of that variable to an invariant and then
7565 sign- or zero-extends the result of the PLUS into the variable. Or
7566 it may be a PLUS that adds the variable to an invariant, takes SUBREG
7567 of the result and then sign- or zero-extends it into the variable.
7569 Most GIVs in such cases will be in the promoted mode, since that is the
7570 probably the natural computation mode (and almost certainly the mode
7571 used for addresses) on the machine. So we view the pseudo-reg containing
7572 the variable as the BIV, as if it were simply incremented.
7574 Note that treating the entire pseudo as a BIV will result in making
7575 simple increments to any GIVs based on it. However, if the variable
7576 overflows in its declared mode but not its promoted mode, the result will
7577 be incorrect. This is acceptable if the variable is signed, since
7578 overflows in such cases are undefined, but not if it is unsigned, since
7579 those overflows are defined. So we only check for SIGN_EXTEND and
7582 If we happen to detect such a promoted BIV, we set inner_mode to the
7583 mode in which the BIV is incremented.
7585 If we cannot find a biv, we return 0. */
7588 basic_induction_var (const struct loop
*loop
, rtx x
, enum machine_mode mode
,
7589 rtx dest_reg
, rtx p
, rtx
*inc_val
, rtx
*mult_val
,
7590 rtx
**location
, enum machine_mode inner_mode
)
7594 rtx insn
, last
, inc
;
7596 code
= GET_CODE (x
);
7601 if (rtx_equal_p (XEXP (x
, 0), dest_reg
)
7602 || (GET_CODE (XEXP (x
, 0)) == SUBREG
7603 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 0))
7604 && SUBREG_REG (XEXP (x
, 0)) == dest_reg
))
7606 argp
= &XEXP (x
, 1);
7608 else if (rtx_equal_p (XEXP (x
, 1), dest_reg
)
7609 || (GET_CODE (XEXP (x
, 1)) == SUBREG
7610 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 1))
7611 && SUBREG_REG (XEXP (x
, 1)) == dest_reg
))
7613 argp
= &XEXP (x
, 0);
7619 if (loop_invariant_p (loop
, arg
) != 1)
7622 /* convert_modes can emit new instructions, e.g. when arg is a loop
7623 invariant MEM and dest_reg has a different mode.
7624 These instructions would be emitted after the end of the function
7625 and then *inc_val would be an uninitialized pseudo.
7626 Detect this and bail in this case.
7627 Other alternatives to solve this can be introducing a convert_modes
7628 variant which is allowed to fail but not allowed to emit new
7629 instructions, emit these instructions before loop start and let
7630 it be garbage collected if *inc_val is never used or saving the
7631 *inc_val initialization sequence generated here and when *inc_val
7632 is going to be actually used, emit it at some suitable place. */
7633 last
= get_last_insn ();
7634 if (inner_mode
!= VOIDmode
)
7636 arg
= convert_modes (inner_mode
, GET_MODE (x
), arg
, 0);
7637 inc
= convert_modes (GET_MODE (dest_reg
), inner_mode
, arg
, 0);
7640 inc
= convert_modes (GET_MODE (dest_reg
), GET_MODE (x
), arg
, 0);
7641 if (get_last_insn () != last
)
7643 delete_insns_since (last
);
7648 *mult_val
= const1_rtx
;
7653 /* If what's inside the SUBREG is a BIV, then the SUBREG. This will
7654 handle addition of promoted variables. */
7655 return basic_induction_var (loop
, SUBREG_REG (x
),
7656 GET_MODE (SUBREG_REG (x
)),
7657 dest_reg
, p
, inc_val
, mult_val
,
7658 location
, GET_MODE (x
));
7661 /* If this register is assigned in a previous insn, look at its
7662 source, but don't go outside the loop or past a label. */
7664 /* If this sets a register to itself, we would repeat any previous
7665 biv increment if we applied this strategy blindly. */
7666 if (rtx_equal_p (dest_reg
, x
))
7675 insn
= PREV_INSN (insn
);
7677 while (insn
&& NOTE_P (insn
)
7678 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
7682 set
= single_set (insn
);
7685 dest
= SET_DEST (set
);
7687 || (GET_CODE (dest
) == SUBREG
7688 && (GET_MODE_SIZE (GET_MODE (dest
)) <= UNITS_PER_WORD
)
7689 && (GET_MODE_CLASS (GET_MODE (dest
)) == MODE_INT
)
7690 && SUBREG_REG (dest
) == x
))
7691 return basic_induction_var (loop
, SET_SRC (set
),
7692 (GET_MODE (SET_SRC (set
)) == VOIDmode
7694 : GET_MODE (SET_SRC (set
))),
7697 location
, inner_mode
);
7699 while (GET_CODE (dest
) == SUBREG
7700 || GET_CODE (dest
) == ZERO_EXTRACT
7701 || GET_CODE (dest
) == STRICT_LOW_PART
)
7702 dest
= XEXP (dest
, 0);
7708 /* Can accept constant setting of biv only when inside inner most loop.
7709 Otherwise, a biv of an inner loop may be incorrectly recognized
7710 as a biv of the outer loop,
7711 causing code to be moved INTO the inner loop. */
7713 if (loop_invariant_p (loop
, x
) != 1)
7718 /* convert_modes dies if we try to convert to or from CCmode, so just
7719 exclude that case. It is very unlikely that a condition code value
7720 would be a useful iterator anyways. convert_modes dies if we try to
7721 convert a float mode to non-float or vice versa too. */
7722 if (loop
->level
== 1
7723 && GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (dest_reg
))
7724 && GET_MODE_CLASS (mode
) != MODE_CC
)
7726 /* Possible bug here? Perhaps we don't know the mode of X. */
7727 last
= get_last_insn ();
7728 if (inner_mode
!= VOIDmode
)
7730 x
= convert_modes (inner_mode
, mode
, x
, 0);
7731 inc
= convert_modes (GET_MODE (dest_reg
), inner_mode
, x
, 0);
7734 inc
= convert_modes (GET_MODE (dest_reg
), mode
, x
, 0);
7735 if (get_last_insn () != last
)
7737 delete_insns_since (last
);
7742 *mult_val
= const0_rtx
;
7749 /* Ignore this BIV if signed arithmetic overflow is defined. */
7752 return basic_induction_var (loop
, XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
7753 dest_reg
, p
, inc_val
, mult_val
,
7754 location
, inner_mode
);
7757 /* Similar, since this can be a sign extension. */
7760 if (rtx_equal_p (dest_reg
, XEXP (x
, 0)))
7763 for (insn
= PREV_INSN (p
);
7764 (insn
&& NOTE_P (insn
)
7765 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
7766 insn
= PREV_INSN (insn
))
7771 rtx op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
7772 rtx set
= single_set (insn
);
7773 enum machine_mode inner_mode
;
7775 /* We're looking for sign-extension by double shift. */
7777 && SET_DEST (set
) == op0
7778 && GET_CODE (SET_SRC (set
)) == ASHIFT
7779 && GET_CODE (op1
) == CONST_INT
7780 && INTVAL (op1
) >= 0
7781 && XEXP (SET_SRC (set
), 1) == op1
))
7784 mode
= GET_MODE (op0
);
7785 inner_mode
= mode_for_size (GET_MODE_BITSIZE (mode
) - INTVAL (op1
),
7787 if (inner_mode
!= BLKmode
)
7788 return basic_induction_var (loop
, XEXP (SET_SRC (set
), 0),
7789 mode
, dest_reg
, insn
,
7791 location
, inner_mode
);
7800 /* A general induction variable (giv) is any quantity that is a linear
7801 function of a basic induction variable,
7802 i.e. giv = biv * mult_val + add_val.
7803 The coefficients can be any loop invariant quantity.
7804 A giv need not be computed directly from the biv;
7805 it can be computed by way of other givs. */
7807 /* Determine whether X computes a giv.
7808 If it does, return a nonzero value
7809 which is the benefit from eliminating the computation of X;
7810 set *SRC_REG to the register of the biv that it is computed from;
7811 set *ADD_VAL and *MULT_VAL to the coefficients,
7812 such that the value of X is biv * mult + add; */
7815 general_induction_var (const struct loop
*loop
, rtx x
, rtx
*src_reg
,
7816 rtx
*add_val
, rtx
*mult_val
, rtx
*ext_val
,
7817 int is_addr
, int *pbenefit
,
7818 enum machine_mode addr_mode
)
7820 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7823 /* If this is an invariant, forget it, it isn't a giv. */
7824 if (loop_invariant_p (loop
, x
) == 1)
7828 *ext_val
= NULL_RTX
;
7829 x
= simplify_giv_expr (loop
, x
, ext_val
, pbenefit
);
7833 switch (GET_CODE (x
))
7837 /* Since this is now an invariant and wasn't before, it must be a giv
7838 with MULT_VAL == 0. It doesn't matter which BIV we associate this
7840 *src_reg
= ivs
->list
->biv
->dest_reg
;
7841 *mult_val
= const0_rtx
;
7846 /* This is equivalent to a BIV. */
7848 *mult_val
= const1_rtx
;
7849 *add_val
= const0_rtx
;
7853 /* Either (plus (biv) (invar)) or
7854 (plus (mult (biv) (invar_1)) (invar_2)). */
7855 if (GET_CODE (XEXP (x
, 0)) == MULT
)
7857 *src_reg
= XEXP (XEXP (x
, 0), 0);
7858 *mult_val
= XEXP (XEXP (x
, 0), 1);
7862 *src_reg
= XEXP (x
, 0);
7863 *mult_val
= const1_rtx
;
7865 *add_val
= XEXP (x
, 1);
7869 /* ADD_VAL is zero. */
7870 *src_reg
= XEXP (x
, 0);
7871 *mult_val
= XEXP (x
, 1);
7872 *add_val
= const0_rtx
;
7879 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
7880 unless they are CONST_INT). */
7881 if (GET_CODE (*add_val
) == USE
)
7882 *add_val
= XEXP (*add_val
, 0);
7883 if (GET_CODE (*mult_val
) == USE
)
7884 *mult_val
= XEXP (*mult_val
, 0);
7887 *pbenefit
+= address_cost (orig_x
, addr_mode
) - reg_address_cost
;
7889 *pbenefit
+= rtx_cost (orig_x
, SET
);
7891 /* Always return true if this is a giv so it will be detected as such,
7892 even if the benefit is zero or negative. This allows elimination
7893 of bivs that might otherwise not be eliminated. */
7897 /* Given an expression, X, try to form it as a linear function of a biv.
7898 We will canonicalize it to be of the form
7899 (plus (mult (BIV) (invar_1))
7901 with possible degeneracies.
7903 The invariant expressions must each be of a form that can be used as a
7904 machine operand. We surround then with a USE rtx (a hack, but localized
7905 and certainly unambiguous!) if not a CONST_INT for simplicity in this
7906 routine; it is the caller's responsibility to strip them.
7908 If no such canonicalization is possible (i.e., two biv's are used or an
7909 expression that is neither invariant nor a biv or giv), this routine
7912 For a nonzero return, the result will have a code of CONST_INT, USE,
7913 REG (for a BIV), PLUS, or MULT. No other codes will occur.
7915 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
7917 static rtx
sge_plus (enum machine_mode
, rtx
, rtx
);
7918 static rtx
sge_plus_constant (rtx
, rtx
);
7921 simplify_giv_expr (const struct loop
*loop
, rtx x
, rtx
*ext_val
, int *benefit
)
7923 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7924 struct loop_regs
*regs
= LOOP_REGS (loop
);
7925 enum machine_mode mode
= GET_MODE (x
);
7929 /* If this is not an integer mode, or if we cannot do arithmetic in this
7930 mode, this can't be a giv. */
7931 if (mode
!= VOIDmode
7932 && (GET_MODE_CLASS (mode
) != MODE_INT
7933 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
))
7936 switch (GET_CODE (x
))
7939 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
7940 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
7941 if (arg0
== 0 || arg1
== 0)
7944 /* Put constant last, CONST_INT last if both constant. */
7945 if ((GET_CODE (arg0
) == USE
7946 || GET_CODE (arg0
) == CONST_INT
)
7947 && ! ((GET_CODE (arg0
) == USE
7948 && GET_CODE (arg1
) == USE
)
7949 || GET_CODE (arg1
) == CONST_INT
))
7950 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
7952 /* Handle addition of zero, then addition of an invariant. */
7953 if (arg1
== const0_rtx
)
7955 else if (GET_CODE (arg1
) == CONST_INT
|| GET_CODE (arg1
) == USE
)
7956 switch (GET_CODE (arg0
))
7960 /* Adding two invariants must result in an invariant, so enclose
7961 addition operation inside a USE and return it. */
7962 if (GET_CODE (arg0
) == USE
)
7963 arg0
= XEXP (arg0
, 0);
7964 if (GET_CODE (arg1
) == USE
)
7965 arg1
= XEXP (arg1
, 0);
7967 if (GET_CODE (arg0
) == CONST_INT
)
7968 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
7969 if (GET_CODE (arg1
) == CONST_INT
)
7970 tem
= sge_plus_constant (arg0
, arg1
);
7972 tem
= sge_plus (mode
, arg0
, arg1
);
7974 if (GET_CODE (tem
) != CONST_INT
)
7975 tem
= gen_rtx_USE (mode
, tem
);
7980 /* biv + invar or mult + invar. Return sum. */
7981 return gen_rtx_PLUS (mode
, arg0
, arg1
);
7984 /* (a + invar_1) + invar_2. Associate. */
7986 simplify_giv_expr (loop
,
7998 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
7999 MULT to reduce cases. */
8001 arg0
= gen_rtx_MULT (mode
, arg0
, const1_rtx
);
8003 arg1
= gen_rtx_MULT (mode
, arg1
, const1_rtx
);
8005 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
8006 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
8007 Recurse to associate the second PLUS. */
8008 if (GET_CODE (arg1
) == MULT
)
8009 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
8011 if (GET_CODE (arg1
) == PLUS
)
8013 simplify_giv_expr (loop
,
8015 gen_rtx_PLUS (mode
, arg0
,
8020 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
8021 if (GET_CODE (arg0
) != MULT
|| GET_CODE (arg1
) != MULT
)
8024 if (!rtx_equal_p (arg0
, arg1
))
8027 return simplify_giv_expr (loop
,
8036 /* Handle "a - b" as "a + b * (-1)". */
8037 return simplify_giv_expr (loop
,
8046 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
8047 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
8048 if (arg0
== 0 || arg1
== 0)
8051 /* Put constant last, CONST_INT last if both constant. */
8052 if ((GET_CODE (arg0
) == USE
|| GET_CODE (arg0
) == CONST_INT
)
8053 && GET_CODE (arg1
) != CONST_INT
)
8054 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
8056 /* If second argument is not now constant, not giv. */
8057 if (GET_CODE (arg1
) != USE
&& GET_CODE (arg1
) != CONST_INT
)
8060 /* Handle multiply by 0 or 1. */
8061 if (arg1
== const0_rtx
)
8064 else if (arg1
== const1_rtx
)
8067 switch (GET_CODE (arg0
))
8070 /* biv * invar. Done. */
8071 return gen_rtx_MULT (mode
, arg0
, arg1
);
8074 /* Product of two constants. */
8075 return GEN_INT (INTVAL (arg0
) * INTVAL (arg1
));
8078 /* invar * invar is a giv, but attempt to simplify it somehow. */
8079 if (GET_CODE (arg1
) != CONST_INT
)
8082 arg0
= XEXP (arg0
, 0);
8083 if (GET_CODE (arg0
) == MULT
)
8085 /* (invar_0 * invar_1) * invar_2. Associate. */
8086 return simplify_giv_expr (loop
,
8095 /* Propagate the MULT expressions to the innermost nodes. */
8096 else if (GET_CODE (arg0
) == PLUS
)
8098 /* (invar_0 + invar_1) * invar_2. Distribute. */
8099 return simplify_giv_expr (loop
,
8111 return gen_rtx_USE (mode
, gen_rtx_MULT (mode
, arg0
, arg1
));
8114 /* (a * invar_1) * invar_2. Associate. */
8115 return simplify_giv_expr (loop
,
8124 /* (a + invar_1) * invar_2. Distribute. */
8125 return simplify_giv_expr (loop
,
8140 /* Shift by constant is multiply by power of two. */
8141 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
8145 simplify_giv_expr (loop
,
8148 GEN_INT ((HOST_WIDE_INT
) 1
8149 << INTVAL (XEXP (x
, 1)))),
8153 /* "-a" is "a * (-1)" */
8154 return simplify_giv_expr (loop
,
8155 gen_rtx_MULT (mode
, XEXP (x
, 0), constm1_rtx
),
8159 /* "~a" is "-a - 1". Silly, but easy. */
8160 return simplify_giv_expr (loop
,
8161 gen_rtx_MINUS (mode
,
8162 gen_rtx_NEG (mode
, XEXP (x
, 0)),
8167 /* Already in proper form for invariant. */
8173 /* Conditionally recognize extensions of simple IVs. After we've
8174 computed loop traversal counts and verified the range of the
8175 source IV, we'll reevaluate this as a GIV. */
8176 if (*ext_val
== NULL_RTX
)
8178 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
8179 if (arg0
&& *ext_val
== NULL_RTX
&& REG_P (arg0
))
8181 *ext_val
= gen_rtx_fmt_e (GET_CODE (x
), mode
, arg0
);
8188 /* If this is a new register, we can't deal with it. */
8189 if (REGNO (x
) >= max_reg_before_loop
)
8192 /* Check for biv or giv. */
8193 switch (REG_IV_TYPE (ivs
, REGNO (x
)))
8197 case GENERAL_INDUCT
:
8199 struct induction
*v
= REG_IV_INFO (ivs
, REGNO (x
));
8201 /* Form expression from giv and add benefit. Ensure this giv
8202 can derive another and subtract any needed adjustment if so. */
8204 /* Increasing the benefit here is risky. The only case in which it
8205 is arguably correct is if this is the only use of V. In other
8206 cases, this will artificially inflate the benefit of the current
8207 giv, and lead to suboptimal code. Thus, it is disabled, since
8208 potentially not reducing an only marginally beneficial giv is
8209 less harmful than reducing many givs that are not really
8212 rtx single_use
= regs
->array
[REGNO (x
)].single_usage
;
8213 if (single_use
&& single_use
!= const0_rtx
)
8214 *benefit
+= v
->benefit
;
8220 tem
= gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
8221 v
->src_reg
, v
->mult_val
),
8224 if (v
->derive_adjustment
)
8225 tem
= gen_rtx_MINUS (mode
, tem
, v
->derive_adjustment
);
8226 arg0
= simplify_giv_expr (loop
, tem
, ext_val
, benefit
);
8229 if (!v
->ext_dependent
)
8234 *ext_val
= v
->ext_dependent
;
8242 /* If it isn't an induction variable, and it is invariant, we
8243 may be able to simplify things further by looking through
8244 the bits we just moved outside the loop. */
8245 if (loop_invariant_p (loop
, x
) == 1)
8248 struct loop_movables
*movables
= LOOP_MOVABLES (loop
);
8250 for (m
= movables
->head
; m
; m
= m
->next
)
8251 if (rtx_equal_p (x
, m
->set_dest
))
8253 /* Ok, we found a match. Substitute and simplify. */
8255 /* If we match another movable, we must use that, as
8256 this one is going away. */
8258 return simplify_giv_expr (loop
, m
->match
->set_dest
,
8261 /* If consec is nonzero, this is a member of a group of
8262 instructions that were moved together. We handle this
8263 case only to the point of seeking to the last insn and
8264 looking for a REG_EQUAL. Fail if we don't find one. */
8271 tem
= NEXT_INSN (tem
);
8275 tem
= find_reg_note (tem
, REG_EQUAL
, NULL_RTX
);
8277 tem
= XEXP (tem
, 0);
8281 tem
= single_set (m
->insn
);
8283 tem
= SET_SRC (tem
);
8288 /* What we are most interested in is pointer
8289 arithmetic on invariants -- only take
8290 patterns we may be able to do something with. */
8291 if (GET_CODE (tem
) == PLUS
8292 || GET_CODE (tem
) == MULT
8293 || GET_CODE (tem
) == ASHIFT
8294 || GET_CODE (tem
) == CONST_INT
8295 || GET_CODE (tem
) == SYMBOL_REF
)
8297 tem
= simplify_giv_expr (loop
, tem
, ext_val
,
8302 else if (GET_CODE (tem
) == CONST
8303 && GET_CODE (XEXP (tem
, 0)) == PLUS
8304 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == SYMBOL_REF
8305 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)
8307 tem
= simplify_giv_expr (loop
, XEXP (tem
, 0),
8319 /* Fall through to general case. */
8321 /* If invariant, return as USE (unless CONST_INT).
8322 Otherwise, not giv. */
8323 if (GET_CODE (x
) == USE
)
8326 if (loop_invariant_p (loop
, x
) == 1)
8328 if (GET_CODE (x
) == CONST_INT
)
8330 if (GET_CODE (x
) == CONST
8331 && GET_CODE (XEXP (x
, 0)) == PLUS
8332 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
8333 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
8335 return gen_rtx_USE (mode
, x
);
8342 /* This routine folds invariants such that there is only ever one
8343 CONST_INT in the summation. It is only used by simplify_giv_expr. */
8346 sge_plus_constant (rtx x
, rtx c
)
8348 if (GET_CODE (x
) == CONST_INT
)
8349 return GEN_INT (INTVAL (x
) + INTVAL (c
));
8350 else if (GET_CODE (x
) != PLUS
)
8351 return gen_rtx_PLUS (GET_MODE (x
), x
, c
);
8352 else if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8354 return gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
8355 GEN_INT (INTVAL (XEXP (x
, 1)) + INTVAL (c
)));
8357 else if (GET_CODE (XEXP (x
, 0)) == PLUS
8358 || GET_CODE (XEXP (x
, 1)) != PLUS
)
8360 return gen_rtx_PLUS (GET_MODE (x
),
8361 sge_plus_constant (XEXP (x
, 0), c
), XEXP (x
, 1));
8365 return gen_rtx_PLUS (GET_MODE (x
),
8366 sge_plus_constant (XEXP (x
, 1), c
), XEXP (x
, 0));
8371 sge_plus (enum machine_mode mode
, rtx x
, rtx y
)
8373 while (GET_CODE (y
) == PLUS
)
8375 rtx a
= XEXP (y
, 0);
8376 if (GET_CODE (a
) == CONST_INT
)
8377 x
= sge_plus_constant (x
, a
);
8379 x
= gen_rtx_PLUS (mode
, x
, a
);
8382 if (GET_CODE (y
) == CONST_INT
)
8383 x
= sge_plus_constant (x
, y
);
8385 x
= gen_rtx_PLUS (mode
, x
, y
);
8389 /* Help detect a giv that is calculated by several consecutive insns;
8393 The caller has already identified the first insn P as having a giv as dest;
8394 we check that all other insns that set the same register follow
8395 immediately after P, that they alter nothing else,
8396 and that the result of the last is still a giv.
8398 The value is 0 if the reg set in P is not really a giv.
8399 Otherwise, the value is the amount gained by eliminating
8400 all the consecutive insns that compute the value.
8402 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
8403 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
8405 The coefficients of the ultimate giv value are stored in
8406 *MULT_VAL and *ADD_VAL. */
8409 consec_sets_giv (const struct loop
*loop
, int first_benefit
, rtx p
,
8410 rtx src_reg
, rtx dest_reg
, rtx
*add_val
, rtx
*mult_val
,
8411 rtx
*ext_val
, rtx
*last_consec_insn
)
8413 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
8414 struct loop_regs
*regs
= LOOP_REGS (loop
);
8421 /* Indicate that this is a giv so that we can update the value produced in
8422 each insn of the multi-insn sequence.
8424 This induction structure will be used only by the call to
8425 general_induction_var below, so we can allocate it on our stack.
8426 If this is a giv, our caller will replace the induct var entry with
8427 a new induction structure. */
8428 struct induction
*v
;
8430 if (REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != UNKNOWN_INDUCT
)
8433 v
= alloca (sizeof (struct induction
));
8434 v
->src_reg
= src_reg
;
8435 v
->mult_val
= *mult_val
;
8436 v
->add_val
= *add_val
;
8437 v
->benefit
= first_benefit
;
8439 v
->derive_adjustment
= 0;
8440 v
->ext_dependent
= NULL_RTX
;
8442 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
8443 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
8445 count
= regs
->array
[REGNO (dest_reg
)].n_times_set
- 1;
8450 code
= GET_CODE (p
);
8452 /* If libcall, skip to end of call sequence. */
8453 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
8457 && (set
= single_set (p
))
8458 && REG_P (SET_DEST (set
))
8459 && SET_DEST (set
) == dest_reg
8460 && (general_induction_var (loop
, SET_SRC (set
), &src_reg
,
8461 add_val
, mult_val
, ext_val
, 0,
8463 /* Giv created by equivalent expression. */
8464 || ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
8465 && general_induction_var (loop
, XEXP (temp
, 0), &src_reg
,
8466 add_val
, mult_val
, ext_val
, 0,
8467 &benefit
, VOIDmode
)))
8468 && src_reg
== v
->src_reg
)
8470 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
8471 benefit
+= libcall_benefit (p
);
8474 v
->mult_val
= *mult_val
;
8475 v
->add_val
= *add_val
;
8476 v
->benefit
+= benefit
;
8478 else if (code
!= NOTE
)
8480 /* Allow insns that set something other than this giv to a
8481 constant. Such insns are needed on machines which cannot
8482 include long constants and should not disqualify a giv. */
8484 && (set
= single_set (p
))
8485 && SET_DEST (set
) != dest_reg
8486 && CONSTANT_P (SET_SRC (set
)))
8489 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
8494 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
8495 *last_consec_insn
= p
;
8499 /* Return an rtx, if any, that expresses giv G2 as a function of the register
8500 represented by G1. If no such expression can be found, or it is clear that
8501 it cannot possibly be a valid address, 0 is returned.
8503 To perform the computation, we note that
8506 where `v' is the biv.
8508 So G2 = (y/b) * G1 + (b - a*y/x).
8510 Note that MULT = y/x.
8512 Update: A and B are now allowed to be additive expressions such that
8513 B contains all variables in A. That is, computing B-A will not require
8514 subtracting variables. */
8517 express_from_1 (rtx a
, rtx b
, rtx mult
)
8519 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
8521 if (mult
== const0_rtx
)
8524 /* If MULT is not 1, we cannot handle A with non-constants, since we
8525 would then be required to subtract multiples of the registers in A.
8526 This is theoretically possible, and may even apply to some Fortran
8527 constructs, but it is a lot of work and we do not attempt it here. */
8529 if (mult
!= const1_rtx
&& GET_CODE (a
) != CONST_INT
)
8532 /* In general these structures are sorted top to bottom (down the PLUS
8533 chain), but not left to right across the PLUS. If B is a higher
8534 order giv than A, we can strip one level and recurse. If A is higher
8535 order, we'll eventually bail out, but won't know that until the end.
8536 If they are the same, we'll strip one level around this loop. */
8538 while (GET_CODE (a
) == PLUS
&& GET_CODE (b
) == PLUS
)
8540 rtx ra
, rb
, oa
, ob
, tmp
;
8542 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
8543 if (GET_CODE (ra
) == PLUS
)
8544 tmp
= ra
, ra
= oa
, oa
= tmp
;
8546 rb
= XEXP (b
, 0), ob
= XEXP (b
, 1);
8547 if (GET_CODE (rb
) == PLUS
)
8548 tmp
= rb
, rb
= ob
, ob
= tmp
;
8550 if (rtx_equal_p (ra
, rb
))
8551 /* We matched: remove one reg completely. */
8553 else if (GET_CODE (ob
) != PLUS
&& rtx_equal_p (ra
, ob
))
8554 /* An alternate match. */
8556 else if (GET_CODE (oa
) != PLUS
&& rtx_equal_p (oa
, rb
))
8557 /* An alternate match. */
8561 /* Indicates an extra register in B. Strip one level from B and
8562 recurse, hoping B was the higher order expression. */
8563 ob
= express_from_1 (a
, ob
, mult
);
8566 return gen_rtx_PLUS (GET_MODE (b
), rb
, ob
);
8570 /* Here we are at the last level of A, go through the cases hoping to
8571 get rid of everything but a constant. */
8573 if (GET_CODE (a
) == PLUS
)
8577 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
8578 if (rtx_equal_p (oa
, b
))
8580 else if (!rtx_equal_p (ra
, b
))
8583 if (GET_CODE (oa
) != CONST_INT
)
8586 return GEN_INT (-INTVAL (oa
) * INTVAL (mult
));
8588 else if (GET_CODE (a
) == CONST_INT
)
8590 return plus_constant (b
, -INTVAL (a
) * INTVAL (mult
));
8592 else if (CONSTANT_P (a
))
8594 enum machine_mode mode_a
= GET_MODE (a
);
8595 enum machine_mode mode_b
= GET_MODE (b
);
8596 enum machine_mode mode
= mode_b
== VOIDmode
? mode_a
: mode_b
;
8597 return simplify_gen_binary (MINUS
, mode
, b
, a
);
8599 else if (GET_CODE (b
) == PLUS
)
8601 if (rtx_equal_p (a
, XEXP (b
, 0)))
8603 else if (rtx_equal_p (a
, XEXP (b
, 1)))
8608 else if (rtx_equal_p (a
, b
))
8615 express_from (struct induction
*g1
, struct induction
*g2
)
8619 /* The value that G1 will be multiplied by must be a constant integer. Also,
8620 the only chance we have of getting a valid address is if b*c/a (see above
8621 for notation) is also an integer. */
8622 if (GET_CODE (g1
->mult_val
) == CONST_INT
8623 && GET_CODE (g2
->mult_val
) == CONST_INT
)
8625 if (g1
->mult_val
== const0_rtx
8626 || (g1
->mult_val
== constm1_rtx
8627 && INTVAL (g2
->mult_val
)
8628 == (HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1))
8629 || INTVAL (g2
->mult_val
) % INTVAL (g1
->mult_val
) != 0)
8631 mult
= GEN_INT (INTVAL (g2
->mult_val
) / INTVAL (g1
->mult_val
));
8633 else if (rtx_equal_p (g1
->mult_val
, g2
->mult_val
))
8637 /* ??? Find out if the one is a multiple of the other? */
8641 add
= express_from_1 (g1
->add_val
, g2
->add_val
, mult
);
8642 if (add
== NULL_RTX
)
8644 /* Failed. If we've got a multiplication factor between G1 and G2,
8645 scale G1's addend and try again. */
8646 if (INTVAL (mult
) > 1)
8648 rtx g1_add_val
= g1
->add_val
;
8649 if (GET_CODE (g1_add_val
) == MULT
8650 && GET_CODE (XEXP (g1_add_val
, 1)) == CONST_INT
)
8653 m
= INTVAL (mult
) * INTVAL (XEXP (g1_add_val
, 1));
8654 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
),
8655 XEXP (g1_add_val
, 0), GEN_INT (m
));
8659 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
), g1_add_val
,
8663 add
= express_from_1 (g1_add_val
, g2
->add_val
, const1_rtx
);
8666 if (add
== NULL_RTX
)
8669 /* Form simplified final result. */
8670 if (mult
== const0_rtx
)
8672 else if (mult
== const1_rtx
)
8673 mult
= g1
->dest_reg
;
8675 mult
= gen_rtx_MULT (g2
->mode
, g1
->dest_reg
, mult
);
8677 if (add
== const0_rtx
)
8681 if (GET_CODE (add
) == PLUS
8682 && CONSTANT_P (XEXP (add
, 1)))
8684 rtx tem
= XEXP (add
, 1);
8685 mult
= gen_rtx_PLUS (g2
->mode
, mult
, XEXP (add
, 0));
8689 return gen_rtx_PLUS (g2
->mode
, mult
, add
);
8693 /* Return an rtx, if any, that expresses giv G2 as a function of the register
8694 represented by G1. This indicates that G2 should be combined with G1 and
8695 that G2 can use (either directly or via an address expression) a register
8696 used to represent G1. */
8699 combine_givs_p (struct induction
*g1
, struct induction
*g2
)
8703 /* We cannot combine givs that are not always in sync. */
8704 if (!g1
->always_executed
|| !g2
->always_executed
)
8707 /* With the introduction of ext dependent givs, we must care for modes.
8708 G2 must not use a wider mode than G1. */
8709 if (GET_MODE_SIZE (g1
->mode
) < GET_MODE_SIZE (g2
->mode
))
8712 ret
= comb
= express_from (g1
, g2
);
8713 if (comb
== NULL_RTX
)
8716 if (g1
->mode
!= g2
->mode
)
8717 ret
= gen_lowpart (g2
->mode
, comb
);
8719 /* If these givs are identical, they can be combined. We use the results
8720 of express_from because the addends are not in a canonical form, so
8721 rtx_equal_p is a weaker test. */
8722 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
8723 combination to be the other way round. */
8724 if (comb
== g1
->dest_reg
8725 && (g1
->giv_type
== DEST_REG
|| g2
->giv_type
== DEST_ADDR
))
8728 /* If G2 can be expressed as a function of G1 and that function is valid
8729 as an address and no more expensive than using a register for G2,
8730 the expression of G2 in terms of G1 can be used. */
8732 && g2
->giv_type
== DEST_ADDR
8733 && memory_address_p (GET_MODE (g2
->mem
), ret
))
8739 /* See if BL is monotonic and has a constant per-iteration increment.
8740 Return the increment if so, otherwise return 0. */
8742 static HOST_WIDE_INT
8743 get_monotonic_increment (struct iv_class
*bl
)
8745 struct induction
*v
;
8748 /* Get the total increment and check that it is constant. */
8749 incr
= biv_total_increment (bl
);
8750 if (incr
== 0 || GET_CODE (incr
) != CONST_INT
)
8753 for (v
= bl
->biv
; v
!= 0; v
= v
->next_iv
)
8755 if (GET_CODE (v
->add_val
) != CONST_INT
)
8758 if (INTVAL (v
->add_val
) < 0 && INTVAL (incr
) >= 0)
8761 if (INTVAL (v
->add_val
) > 0 && INTVAL (incr
) <= 0)
8764 return INTVAL (incr
);
8768 /* Subroutine of biv_fits_mode_p. Return true if biv BL, when biased by
8769 BIAS, will never exceed the unsigned range of MODE. LOOP is the loop
8770 to which the biv belongs and INCR is its per-iteration increment. */
8773 biased_biv_fits_mode_p (const struct loop
*loop
, struct iv_class
*bl
,
8774 HOST_WIDE_INT incr
, enum machine_mode mode
,
8775 unsigned HOST_WIDE_INT bias
)
8777 unsigned HOST_WIDE_INT initial
, maximum
, span
, delta
;
8779 /* We need to be able to manipulate MODE-size constants. */
8780 if (HOST_BITS_PER_WIDE_INT
< GET_MODE_BITSIZE (mode
))
8783 /* The number of loop iterations must be constant. */
8784 if (LOOP_INFO (loop
)->n_iterations
== 0)
8787 /* So must the biv's initial value. */
8788 if (bl
->initial_value
== 0 || GET_CODE (bl
->initial_value
) != CONST_INT
)
8791 initial
= bias
+ INTVAL (bl
->initial_value
);
8792 maximum
= GET_MODE_MASK (mode
);
8794 /* Make sure that the initial value is within range. */
8795 if (initial
> maximum
)
8798 /* Set up DELTA and SPAN such that the number of iterations * DELTA
8799 (calculated to arbitrary precision) must be <= SPAN. */
8808 /* Handle the special case in which MAXIMUM is the largest
8809 unsigned HOST_WIDE_INT and INITIAL is 0. */
8810 if (maximum
+ 1 == initial
)
8811 span
= LOOP_INFO (loop
)->n_iterations
* delta
;
8813 span
= maximum
+ 1 - initial
;
8815 return (span
/ LOOP_INFO (loop
)->n_iterations
>= delta
);
8819 /* Return true if biv BL will never exceed the bounds of MODE. LOOP is
8820 the loop to which BL belongs and INCR is its per-iteration increment.
8821 UNSIGNEDP is true if the biv should be treated as unsigned. */
8824 biv_fits_mode_p (const struct loop
*loop
, struct iv_class
*bl
,
8825 HOST_WIDE_INT incr
, enum machine_mode mode
, bool unsignedp
)
8827 struct loop_info
*loop_info
;
8828 unsigned HOST_WIDE_INT bias
;
8830 /* A biv's value will always be limited to its natural mode.
8831 Larger modes will observe the same wrap-around. */
8832 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (bl
->biv
->src_reg
)))
8833 mode
= GET_MODE (bl
->biv
->src_reg
);
8835 loop_info
= LOOP_INFO (loop
);
8837 bias
= (unsignedp
? 0 : (GET_MODE_MASK (mode
) >> 1) + 1);
8838 if (biased_biv_fits_mode_p (loop
, bl
, incr
, mode
, bias
))
8841 if (mode
== GET_MODE (bl
->biv
->src_reg
)
8842 && bl
->biv
->src_reg
== loop_info
->iteration_var
8843 && loop_info
->comparison_value
8844 && loop_invariant_p (loop
, loop_info
->comparison_value
))
8846 /* If the increment is +1, and the exit test is a <, the BIV
8847 cannot overflow. (For <=, we have the problematic case that
8848 the comparison value might be the maximum value of the range.) */
8851 if (loop_info
->comparison_code
== LT
)
8853 if (loop_info
->comparison_code
== LTU
&& unsignedp
)
8857 /* Likewise for increment -1 and exit test >. */
8860 if (loop_info
->comparison_code
== GT
)
8862 if (loop_info
->comparison_code
== GTU
&& unsignedp
)
8870 /* Return false iff it is provable that biv BL will not wrap at any point
8871 in its update sequence. Note that at the RTL level we may not have
8872 information about the signedness of BL; in that case, check for both
8873 signed and unsigned overflow. */
8876 biv_may_wrap_p (const struct loop
*loop
, struct iv_class
*bl
)
8879 bool check_signed
, check_unsigned
;
8880 enum machine_mode mode
;
8882 /* If the increment is not monotonic, we'd have to check separately
8883 at each increment step. Not Worth It. */
8884 incr
= get_monotonic_increment (bl
);
8888 /* If this biv is the loop iteration variable, then we may be able to
8889 deduce a sign based on the loop condition. */
8890 /* ??? This is not 100% reliable; consider an unsigned biv that is cast
8891 to signed for the comparison. However, this same bug appears all
8893 check_signed
= check_unsigned
= true;
8894 if (bl
->biv
->src_reg
== LOOP_INFO (loop
)->iteration_var
)
8896 switch (LOOP_INFO (loop
)->comparison_code
)
8898 case GTU
: case GEU
: case LTU
: case LEU
:
8899 check_signed
= false;
8901 case GT
: case GE
: case LT
: case LE
:
8902 check_unsigned
= false;
8909 mode
= GET_MODE (bl
->biv
->src_reg
);
8912 && !biased_biv_fits_mode_p (loop
, bl
, incr
, mode
, 0))
8917 unsigned HOST_WIDE_INT bias
= (GET_MODE_MASK (mode
) >> 1) + 1;
8918 if (!biased_biv_fits_mode_p (loop
, bl
, incr
, mode
, bias
))
8926 /* Given that X is an extension or truncation of BL, return true
8927 if it is unaffected by overflow. LOOP is the loop to which
8928 BL belongs and INCR is its per-iteration increment. */
8931 extension_within_bounds_p (const struct loop
*loop
, struct iv_class
*bl
,
8932 HOST_WIDE_INT incr
, rtx x
)
8934 enum machine_mode mode
;
8935 bool signedp
, unsignedp
;
8937 switch (GET_CODE (x
))
8941 mode
= GET_MODE (XEXP (x
, 0));
8942 signedp
= (GET_CODE (x
) == SIGN_EXTEND
);
8943 unsignedp
= (GET_CODE (x
) == ZERO_EXTEND
);
8947 /* We don't know whether this value is being used as signed
8948 or unsigned, so check the conditions for both. */
8949 mode
= GET_MODE (x
);
8950 signedp
= unsignedp
= true;
8957 return ((!signedp
|| biv_fits_mode_p (loop
, bl
, incr
, mode
, false))
8958 && (!unsignedp
|| biv_fits_mode_p (loop
, bl
, incr
, mode
, true)));
8962 /* Check each extension dependent giv in this class to see if its
8963 root biv is safe from wrapping in the interior mode, which would
8964 make the giv illegal. */
8967 check_ext_dependent_givs (const struct loop
*loop
, struct iv_class
*bl
)
8969 struct induction
*v
;
8972 incr
= get_monotonic_increment (bl
);
8974 /* Invalidate givs that fail the tests. */
8975 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8976 if (v
->ext_dependent
)
8979 && extension_within_bounds_p (loop
, bl
, incr
, v
->ext_dependent
))
8981 if (loop_dump_stream
)
8982 fprintf (loop_dump_stream
,
8983 "Verified ext dependent giv at %d of reg %d\n",
8984 INSN_UID (v
->insn
), bl
->regno
);
8988 if (loop_dump_stream
)
8989 fprintf (loop_dump_stream
,
8990 "Failed ext dependent giv at %d\n",
8991 INSN_UID (v
->insn
));
8994 bl
->all_reduced
= 0;
8999 /* Generate a version of VALUE in a mode appropriate for initializing V. */
9002 extend_value_for_giv (struct induction
*v
, rtx value
)
9004 rtx ext_dep
= v
->ext_dependent
;
9009 /* Recall that check_ext_dependent_givs verified that the known bounds
9010 of a biv did not overflow or wrap with respect to the extension for
9011 the giv. Therefore, constants need no additional adjustment. */
9012 if (CONSTANT_P (value
) && GET_MODE (value
) == VOIDmode
)
9015 /* Otherwise, we must adjust the value to compensate for the
9016 differing modes of the biv and the giv. */
9017 return gen_rtx_fmt_e (GET_CODE (ext_dep
), GET_MODE (ext_dep
), value
);
9020 struct combine_givs_stats
9027 cmp_combine_givs_stats (const void *xp
, const void *yp
)
9029 const struct combine_givs_stats
* const x
=
9030 (const struct combine_givs_stats
*) xp
;
9031 const struct combine_givs_stats
* const y
=
9032 (const struct combine_givs_stats
*) yp
;
9034 d
= y
->total_benefit
- x
->total_benefit
;
9035 /* Stabilize the sort. */
9037 d
= x
->giv_number
- y
->giv_number
;
9041 /* Check all pairs of givs for iv_class BL and see if any can be combined with
9042 any other. If so, point SAME to the giv combined with and set NEW_REG to
9043 be an expression (in terms of the other giv's DEST_REG) equivalent to the
9044 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
9047 combine_givs (struct loop_regs
*regs
, struct iv_class
*bl
)
9049 /* Additional benefit to add for being combined multiple times. */
9050 const int extra_benefit
= 3;
9052 struct induction
*g1
, *g2
, **giv_array
;
9053 int i
, j
, k
, giv_count
;
9054 struct combine_givs_stats
*stats
;
9057 /* Count givs, because bl->giv_count is incorrect here. */
9059 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
9063 giv_array
= alloca (giv_count
* sizeof (struct induction
*));
9065 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
9067 giv_array
[i
++] = g1
;
9069 stats
= xcalloc (giv_count
, sizeof (*stats
));
9070 can_combine
= xcalloc (giv_count
, giv_count
* sizeof (rtx
));
9072 for (i
= 0; i
< giv_count
; i
++)
9078 stats
[i
].giv_number
= i
;
9080 /* If a DEST_REG GIV is used only once, do not allow it to combine
9081 with anything, for in doing so we will gain nothing that cannot
9082 be had by simply letting the GIV with which we would have combined
9083 to be reduced on its own. The lossage shows up in particular with
9084 DEST_ADDR targets on hosts with reg+reg addressing, though it can
9085 be seen elsewhere as well. */
9086 if (g1
->giv_type
== DEST_REG
9087 && (single_use
= regs
->array
[REGNO (g1
->dest_reg
)].single_usage
)
9088 && single_use
!= const0_rtx
)
9091 this_benefit
= g1
->benefit
;
9092 /* Add an additional weight for zero addends. */
9093 if (g1
->no_const_addval
)
9096 for (j
= 0; j
< giv_count
; j
++)
9102 && (this_combine
= combine_givs_p (g1
, g2
)) != NULL_RTX
)
9104 can_combine
[i
* giv_count
+ j
] = this_combine
;
9105 this_benefit
+= g2
->benefit
+ extra_benefit
;
9108 stats
[i
].total_benefit
= this_benefit
;
9111 /* Iterate, combining until we can't. */
9113 qsort (stats
, giv_count
, sizeof (*stats
), cmp_combine_givs_stats
);
9115 if (loop_dump_stream
)
9117 fprintf (loop_dump_stream
, "Sorted combine statistics:\n");
9118 for (k
= 0; k
< giv_count
; k
++)
9120 g1
= giv_array
[stats
[k
].giv_number
];
9121 if (!g1
->combined_with
&& !g1
->same
)
9122 fprintf (loop_dump_stream
, " {%d, %d}",
9123 INSN_UID (giv_array
[stats
[k
].giv_number
]->insn
),
9124 stats
[k
].total_benefit
);
9126 putc ('\n', loop_dump_stream
);
9129 for (k
= 0; k
< giv_count
; k
++)
9131 int g1_add_benefit
= 0;
9133 i
= stats
[k
].giv_number
;
9136 /* If it has already been combined, skip. */
9137 if (g1
->combined_with
|| g1
->same
)
9140 for (j
= 0; j
< giv_count
; j
++)
9143 if (g1
!= g2
&& can_combine
[i
* giv_count
+ j
]
9144 /* If it has already been combined, skip. */
9145 && ! g2
->same
&& ! g2
->combined_with
)
9149 g2
->new_reg
= can_combine
[i
* giv_count
+ j
];
9151 /* For destination, we now may replace by mem expression instead
9152 of register. This changes the costs considerably, so add the
9154 if (g2
->giv_type
== DEST_ADDR
)
9155 g2
->benefit
= (g2
->benefit
+ reg_address_cost
9156 - address_cost (g2
->new_reg
,
9157 GET_MODE (g2
->mem
)));
9158 g1
->combined_with
++;
9159 g1
->lifetime
+= g2
->lifetime
;
9161 g1_add_benefit
+= g2
->benefit
;
9163 /* ??? The new final_[bg]iv_value code does a much better job
9164 of finding replaceable giv's, and hence this code may no
9165 longer be necessary. */
9166 if (! g2
->replaceable
&& REG_USERVAR_P (g2
->dest_reg
))
9167 g1_add_benefit
-= copy_cost
;
9169 /* To help optimize the next set of combinations, remove
9170 this giv from the benefits of other potential mates. */
9171 for (l
= 0; l
< giv_count
; ++l
)
9173 int m
= stats
[l
].giv_number
;
9174 if (can_combine
[m
* giv_count
+ j
])
9175 stats
[l
].total_benefit
-= g2
->benefit
+ extra_benefit
;
9178 if (loop_dump_stream
)
9179 fprintf (loop_dump_stream
,
9180 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
9181 INSN_UID (g2
->insn
), INSN_UID (g1
->insn
),
9182 g1
->benefit
, g1_add_benefit
, g1
->lifetime
);
9186 /* To help optimize the next set of combinations, remove
9187 this giv from the benefits of other potential mates. */
9188 if (g1
->combined_with
)
9190 for (j
= 0; j
< giv_count
; ++j
)
9192 int m
= stats
[j
].giv_number
;
9193 if (can_combine
[m
* giv_count
+ i
])
9194 stats
[j
].total_benefit
-= g1
->benefit
+ extra_benefit
;
9197 g1
->benefit
+= g1_add_benefit
;
9199 /* We've finished with this giv, and everything it touched.
9200 Restart the combination so that proper weights for the
9201 rest of the givs are properly taken into account. */
9202 /* ??? Ideally we would compact the arrays at this point, so
9203 as to not cover old ground. But sanely compacting
9204 can_combine is tricky. */
9214 /* Generate sequence for REG = B * M + A. B is the initial value of
9215 the basic induction variable, M a multiplicative constant, A an
9216 additive constant and REG the destination register. */
9219 gen_add_mult (rtx b
, rtx m
, rtx a
, rtx reg
)
9225 /* Use unsigned arithmetic. */
9226 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
9228 emit_move_insn (reg
, result
);
9236 /* Update registers created in insn sequence SEQ. */
9239 loop_regs_update (const struct loop
*loop ATTRIBUTE_UNUSED
, rtx seq
)
9243 /* Update register info for alias analysis. */
9246 while (insn
!= NULL_RTX
)
9248 rtx set
= single_set (insn
);
9250 if (set
&& REG_P (SET_DEST (set
)))
9251 record_base_value (REGNO (SET_DEST (set
)), SET_SRC (set
), 0);
9253 insn
= NEXT_INSN (insn
);
9258 /* EMIT code before BEFORE_BB/BEFORE_INSN to set REG = B * M + A. B
9259 is the initial value of the basic induction variable, M a
9260 multiplicative constant, A an additive constant and REG the
9261 destination register. */
9264 loop_iv_add_mult_emit_before (const struct loop
*loop
, rtx b
, rtx m
, rtx a
,
9265 rtx reg
, basic_block before_bb
, rtx before_insn
)
9271 loop_iv_add_mult_hoist (loop
, b
, m
, a
, reg
);
9275 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9276 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
9278 /* Increase the lifetime of any invariants moved further in code. */
9279 update_reg_last_use (a
, before_insn
);
9280 update_reg_last_use (b
, before_insn
);
9281 update_reg_last_use (m
, before_insn
);
9283 /* It is possible that the expansion created lots of new registers.
9284 Iterate over the sequence we just created and record them all. We
9285 must do this before inserting the sequence. */
9286 loop_regs_update (loop
, seq
);
9288 loop_insn_emit_before (loop
, before_bb
, before_insn
, seq
);
9292 /* Emit insns in loop pre-header to set REG = B * M + A. B is the
9293 initial value of the basic induction variable, M a multiplicative
9294 constant, A an additive constant and REG the destination
9298 loop_iv_add_mult_sink (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
9302 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9303 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
9305 /* Increase the lifetime of any invariants moved further in code.
9306 ???? Is this really necessary? */
9307 update_reg_last_use (a
, loop
->sink
);
9308 update_reg_last_use (b
, loop
->sink
);
9309 update_reg_last_use (m
, loop
->sink
);
9311 /* It is possible that the expansion created lots of new registers.
9312 Iterate over the sequence we just created and record them all. We
9313 must do this before inserting the sequence. */
9314 loop_regs_update (loop
, seq
);
9316 loop_insn_sink (loop
, seq
);
9320 /* Emit insns after loop to set REG = B * M + A. B is the initial
9321 value of the basic induction variable, M a multiplicative constant,
9322 A an additive constant and REG the destination register. */
9325 loop_iv_add_mult_hoist (const struct loop
*loop
, rtx b
, rtx m
, rtx a
, rtx reg
)
9329 /* Use copy_rtx to prevent unexpected sharing of these rtx. */
9330 seq
= gen_add_mult (copy_rtx (b
), copy_rtx (m
), copy_rtx (a
), reg
);
9332 /* It is possible that the expansion created lots of new registers.
9333 Iterate over the sequence we just created and record them all. We
9334 must do this before inserting the sequence. */
9335 loop_regs_update (loop
, seq
);
9337 loop_insn_hoist (loop
, seq
);
9342 /* Similar to gen_add_mult, but compute cost rather than generating
9346 iv_add_mult_cost (rtx b
, rtx m
, rtx a
, rtx reg
)
9352 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
9354 emit_move_insn (reg
, result
);
9355 last
= get_last_insn ();
9358 rtx t
= single_set (last
);
9360 cost
+= rtx_cost (SET_SRC (t
), SET
);
9361 last
= PREV_INSN (last
);
9367 /* Test whether A * B can be computed without
9368 an actual multiply insn. Value is 1 if so.
9370 ??? This function stinks because it generates a ton of wasted RTL
9371 ??? and as a result fragments GC memory to no end. There are other
9372 ??? places in the compiler which are invoked a lot and do the same
9373 ??? thing, generate wasted RTL just to see if something is possible. */
9376 product_cheap_p (rtx a
, rtx b
)
9381 /* If only one is constant, make it B. */
9382 if (GET_CODE (a
) == CONST_INT
)
9383 tmp
= a
, a
= b
, b
= tmp
;
9385 /* If first constant, both constant, so don't need multiply. */
9386 if (GET_CODE (a
) == CONST_INT
)
9389 /* If second not constant, neither is constant, so would need multiply. */
9390 if (GET_CODE (b
) != CONST_INT
)
9393 /* One operand is constant, so might not need multiply insn. Generate the
9394 code for the multiply and see if a call or multiply, or long sequence
9395 of insns is generated. */
9398 expand_mult (GET_MODE (a
), a
, b
, NULL_RTX
, 1);
9403 if (tmp
== NULL_RTX
)
9405 else if (INSN_P (tmp
))
9408 while (tmp
!= NULL_RTX
)
9410 rtx next
= NEXT_INSN (tmp
);
9413 || !NONJUMP_INSN_P (tmp
)
9414 || (GET_CODE (PATTERN (tmp
)) == SET
9415 && GET_CODE (SET_SRC (PATTERN (tmp
))) == MULT
)
9416 || (GET_CODE (PATTERN (tmp
)) == PARALLEL
9417 && GET_CODE (XVECEXP (PATTERN (tmp
), 0, 0)) == SET
9418 && GET_CODE (SET_SRC (XVECEXP (PATTERN (tmp
), 0, 0))) == MULT
))
9427 else if (GET_CODE (tmp
) == SET
9428 && GET_CODE (SET_SRC (tmp
)) == MULT
)
9430 else if (GET_CODE (tmp
) == PARALLEL
9431 && GET_CODE (XVECEXP (tmp
, 0, 0)) == SET
9432 && GET_CODE (SET_SRC (XVECEXP (tmp
, 0, 0))) == MULT
)
9438 /* Check to see if loop can be terminated by a "decrement and branch until
9439 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
9440 Also try reversing an increment loop to a decrement loop
9441 to see if the optimization can be performed.
9442 Value is nonzero if optimization was performed. */
9444 /* This is useful even if the architecture doesn't have such an insn,
9445 because it might change a loops which increments from 0 to n to a loop
9446 which decrements from n to 0. A loop that decrements to zero is usually
9447 faster than one that increments from zero. */
9449 /* ??? This could be rewritten to use some of the loop unrolling procedures,
9450 such as approx_final_value, biv_total_increment, loop_iterations, and
9451 final_[bg]iv_value. */
9454 check_dbra_loop (struct loop
*loop
, int insn_count
)
9456 struct loop_info
*loop_info
= LOOP_INFO (loop
);
9457 struct loop_regs
*regs
= LOOP_REGS (loop
);
9458 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
9459 struct iv_class
*bl
;
9461 enum machine_mode mode
;
9467 rtx before_comparison
;
9471 int compare_and_branch
;
9472 rtx loop_start
= loop
->start
;
9473 rtx loop_end
= loop
->end
;
9475 /* If last insn is a conditional branch, and the insn before tests a
9476 register value, try to optimize it. Otherwise, we can't do anything. */
9478 jump
= PREV_INSN (loop_end
);
9479 comparison
= get_condition_for_loop (loop
, jump
);
9480 if (comparison
== 0)
9482 if (!onlyjump_p (jump
))
9485 /* Try to compute whether the compare/branch at the loop end is one or
9486 two instructions. */
9487 get_condition (jump
, &first_compare
, false, true);
9488 if (first_compare
== jump
)
9489 compare_and_branch
= 1;
9490 else if (first_compare
== prev_nonnote_insn (jump
))
9491 compare_and_branch
= 2;
9496 /* If more than one condition is present to control the loop, then
9497 do not proceed, as this function does not know how to rewrite
9498 loop tests with more than one condition.
9500 Look backwards from the first insn in the last comparison
9501 sequence and see if we've got another comparison sequence. */
9504 if ((jump1
= prev_nonnote_insn (first_compare
))
9509 /* Check all of the bivs to see if the compare uses one of them.
9510 Skip biv's set more than once because we can't guarantee that
9511 it will be zero on the last iteration. Also skip if the biv is
9512 used between its update and the test insn. */
9514 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
9516 if (bl
->biv_count
== 1
9517 && ! bl
->biv
->maybe_multiple
9518 && bl
->biv
->dest_reg
== XEXP (comparison
, 0)
9519 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
9524 /* Try swapping the comparison to identify a suitable biv. */
9526 for (bl
= ivs
->list
; bl
; bl
= bl
->next
)
9527 if (bl
->biv_count
== 1
9528 && ! bl
->biv
->maybe_multiple
9529 && bl
->biv
->dest_reg
== XEXP (comparison
, 1)
9530 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
9533 comparison
= gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)),
9535 XEXP (comparison
, 1),
9536 XEXP (comparison
, 0));
9543 /* Look for the case where the basic induction variable is always
9544 nonnegative, and equals zero on the last iteration.
9545 In this case, add a reg_note REG_NONNEG, which allows the
9546 m68k DBRA instruction to be used. */
9548 if (((GET_CODE (comparison
) == GT
&& XEXP (comparison
, 1) == constm1_rtx
)
9549 || (GET_CODE (comparison
) == NE
&& XEXP (comparison
, 1) == const0_rtx
))
9550 && GET_CODE (bl
->biv
->add_val
) == CONST_INT
9551 && INTVAL (bl
->biv
->add_val
) < 0)
9553 /* Initial value must be greater than 0,
9554 init_val % -dec_value == 0 to ensure that it equals zero on
9555 the last iteration */
9557 if (GET_CODE (bl
->initial_value
) == CONST_INT
9558 && INTVAL (bl
->initial_value
) > 0
9559 && (INTVAL (bl
->initial_value
)
9560 % (-INTVAL (bl
->biv
->add_val
))) == 0)
9562 /* Register always nonnegative, add REG_NOTE to branch. */
9563 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
9565 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
9572 /* If the decrement is 1 and the value was tested as >= 0 before
9573 the loop, then we can safely optimize. */
9574 for (p
= loop_start
; p
; p
= PREV_INSN (p
))
9581 before_comparison
= get_condition_for_loop (loop
, p
);
9582 if (before_comparison
9583 && XEXP (before_comparison
, 0) == bl
->biv
->dest_reg
9584 && (GET_CODE (before_comparison
) == LT
9585 || GET_CODE (before_comparison
) == LTU
)
9586 && XEXP (before_comparison
, 1) == const0_rtx
9587 && ! reg_set_between_p (bl
->biv
->dest_reg
, p
, loop_start
)
9588 && INTVAL (bl
->biv
->add_val
) == -1)
9590 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
9592 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
9600 else if (GET_CODE (bl
->biv
->add_val
) == CONST_INT
9601 && INTVAL (bl
->biv
->add_val
) > 0)
9603 /* Try to change inc to dec, so can apply above optimization. */
9605 all registers modified are induction variables or invariant,
9606 all memory references have non-overlapping addresses
9607 (obviously true if only one write)
9608 allow 2 insns for the compare/jump at the end of the loop. */
9609 /* Also, we must avoid any instructions which use both the reversed
9610 biv and another biv. Such instructions will fail if the loop is
9611 reversed. We meet this condition by requiring that either
9612 no_use_except_counting is true, or else that there is only
9614 int num_nonfixed_reads
= 0;
9615 /* 1 if the iteration var is used only to count iterations. */
9616 int no_use_except_counting
= 0;
9617 /* 1 if the loop has no memory store, or it has a single memory store
9618 which is reversible. */
9619 int reversible_mem_store
= 1;
9621 if (bl
->giv_count
== 0
9622 && !loop
->exit_count
9623 && !loop_info
->has_multiple_exit_targets
)
9625 rtx bivreg
= regno_reg_rtx
[bl
->regno
];
9626 struct iv_class
*blt
;
9628 /* If there are no givs for this biv, and the only exit is the
9629 fall through at the end of the loop, then
9630 see if perhaps there are no uses except to count. */
9631 no_use_except_counting
= 1;
9632 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
9635 rtx set
= single_set (p
);
9637 if (set
&& REG_P (SET_DEST (set
))
9638 && REGNO (SET_DEST (set
)) == bl
->regno
)
9639 /* An insn that sets the biv is okay. */
9641 else if (!reg_mentioned_p (bivreg
, PATTERN (p
)))
9642 /* An insn that doesn't mention the biv is okay. */
9644 else if (p
== prev_nonnote_insn (prev_nonnote_insn (loop_end
))
9645 || p
== prev_nonnote_insn (loop_end
))
9647 /* If either of these insns uses the biv and sets a pseudo
9648 that has more than one usage, then the biv has uses
9649 other than counting since it's used to derive a value
9650 that is used more than one time. */
9651 note_stores (PATTERN (p
), note_set_pseudo_multiple_uses
,
9653 if (regs
->multiple_uses
)
9655 no_use_except_counting
= 0;
9661 no_use_except_counting
= 0;
9666 /* A biv has uses besides counting if it is used to set
9668 for (blt
= ivs
->list
; blt
; blt
= blt
->next
)
9670 && reg_mentioned_p (bivreg
, SET_SRC (blt
->init_set
)))
9672 no_use_except_counting
= 0;
9677 if (no_use_except_counting
)
9678 /* No need to worry about MEMs. */
9680 else if (loop_info
->num_mem_sets
<= 1)
9682 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
9684 num_nonfixed_reads
+= count_nonfixed_reads (loop
, PATTERN (p
));
9686 /* If the loop has a single store, and the destination address is
9687 invariant, then we can't reverse the loop, because this address
9688 might then have the wrong value at loop exit.
9689 This would work if the source was invariant also, however, in that
9690 case, the insn should have been moved out of the loop. */
9692 if (loop_info
->num_mem_sets
== 1)
9694 struct induction
*v
;
9696 /* If we could prove that each of the memory locations
9697 written to was different, then we could reverse the
9698 store -- but we don't presently have any way of
9700 reversible_mem_store
= 0;
9702 /* If the store depends on a register that is set after the
9703 store, it depends on the initial value, and is thus not
9705 for (v
= bl
->giv
; reversible_mem_store
&& v
; v
= v
->next_iv
)
9707 if (v
->giv_type
== DEST_REG
9708 && reg_mentioned_p (v
->dest_reg
,
9709 PATTERN (loop_info
->first_loop_store_insn
))
9710 && loop_insn_first_p (loop_info
->first_loop_store_insn
,
9712 reversible_mem_store
= 0;
9719 /* This code only acts for innermost loops. Also it simplifies
9720 the memory address check by only reversing loops with
9721 zero or one memory access.
9722 Two memory accesses could involve parts of the same array,
9723 and that can't be reversed.
9724 If the biv is used only for counting, than we don't need to worry
9725 about all these things. */
9727 if ((num_nonfixed_reads
<= 1
9728 && ! loop_info
->has_nonconst_call
9729 && ! loop_info
->has_prefetch
9730 && ! loop_info
->has_volatile
9731 && reversible_mem_store
9732 && (bl
->giv_count
+ bl
->biv_count
+ loop_info
->num_mem_sets
9733 + num_unmoved_movables (loop
) + compare_and_branch
== insn_count
)
9734 && (bl
== ivs
->list
&& bl
->next
== 0))
9735 || (no_use_except_counting
&& ! loop_info
->has_prefetch
))
9739 /* Loop can be reversed. */
9740 if (loop_dump_stream
)
9741 fprintf (loop_dump_stream
, "Can reverse loop\n");
9743 /* Now check other conditions:
9745 The increment must be a constant, as must the initial value,
9746 and the comparison code must be LT.
9748 This test can probably be improved since +/- 1 in the constant
9749 can be obtained by changing LT to LE and vice versa; this is
9753 /* for constants, LE gets turned into LT */
9754 && (GET_CODE (comparison
) == LT
9755 || (GET_CODE (comparison
) == LE
9756 && no_use_except_counting
)
9757 || GET_CODE (comparison
) == LTU
))
9759 HOST_WIDE_INT add_val
, add_adjust
, comparison_val
= 0;
9760 rtx initial_value
, comparison_value
;
9762 enum rtx_code cmp_code
;
9763 int comparison_const_width
;
9764 unsigned HOST_WIDE_INT comparison_sign_mask
;
9765 bool keep_first_compare
;
9767 add_val
= INTVAL (bl
->biv
->add_val
);
9768 comparison_value
= XEXP (comparison
, 1);
9769 if (GET_MODE (comparison_value
) == VOIDmode
)
9770 comparison_const_width
9771 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison
, 0)));
9773 comparison_const_width
9774 = GET_MODE_BITSIZE (GET_MODE (comparison_value
));
9775 if (comparison_const_width
> HOST_BITS_PER_WIDE_INT
)
9776 comparison_const_width
= HOST_BITS_PER_WIDE_INT
;
9777 comparison_sign_mask
9778 = (unsigned HOST_WIDE_INT
) 1 << (comparison_const_width
- 1);
9780 /* If the comparison value is not a loop invariant, then we
9781 can not reverse this loop.
9783 ??? If the insns which initialize the comparison value as
9784 a whole compute an invariant result, then we could move
9785 them out of the loop and proceed with loop reversal. */
9786 if (! loop_invariant_p (loop
, comparison_value
))
9789 if (GET_CODE (comparison_value
) == CONST_INT
)
9790 comparison_val
= INTVAL (comparison_value
);
9791 initial_value
= bl
->initial_value
;
9793 /* Normalize the initial value if it is an integer and
9794 has no other use except as a counter. This will allow
9795 a few more loops to be reversed. */
9796 if (no_use_except_counting
9797 && GET_CODE (comparison_value
) == CONST_INT
9798 && GET_CODE (initial_value
) == CONST_INT
)
9800 comparison_val
= comparison_val
- INTVAL (bl
->initial_value
);
9801 /* The code below requires comparison_val to be a multiple
9802 of add_val in order to do the loop reversal, so
9803 round up comparison_val to a multiple of add_val.
9804 Since comparison_value is constant, we know that the
9805 current comparison code is LT. */
9806 comparison_val
= comparison_val
+ add_val
- 1;
9808 -= (unsigned HOST_WIDE_INT
) comparison_val
% add_val
;
9809 /* We postpone overflow checks for COMPARISON_VAL here;
9810 even if there is an overflow, we might still be able to
9811 reverse the loop, if converting the loop exit test to
9813 initial_value
= const0_rtx
;
9816 /* First check if we can do a vanilla loop reversal. */
9817 if (initial_value
== const0_rtx
9818 && GET_CODE (comparison_value
) == CONST_INT
9819 /* Now do postponed overflow checks on COMPARISON_VAL. */
9820 && ! (((comparison_val
- add_val
) ^ INTVAL (comparison_value
))
9821 & comparison_sign_mask
))
9823 /* Register will always be nonnegative, with value
9824 0 on last iteration */
9825 add_adjust
= add_val
;
9832 if (GET_CODE (comparison
) == LE
)
9833 add_adjust
-= add_val
;
9835 /* If the initial value is not zero, or if the comparison
9836 value is not an exact multiple of the increment, then we
9837 can not reverse this loop. */
9838 if (initial_value
== const0_rtx
9839 && GET_CODE (comparison_value
) == CONST_INT
)
9841 if (((unsigned HOST_WIDE_INT
) comparison_val
% add_val
) != 0)
9846 if (! no_use_except_counting
|| add_val
!= 1)
9850 final_value
= comparison_value
;
9852 /* Reset these in case we normalized the initial value
9853 and comparison value above. */
9854 if (GET_CODE (comparison_value
) == CONST_INT
9855 && GET_CODE (initial_value
) == CONST_INT
)
9857 comparison_value
= GEN_INT (comparison_val
);
9859 = GEN_INT (comparison_val
+ INTVAL (bl
->initial_value
));
9861 bl
->initial_value
= initial_value
;
9863 /* Save some info needed to produce the new insns. */
9864 reg
= bl
->biv
->dest_reg
;
9865 mode
= GET_MODE (reg
);
9866 jump_label
= condjump_label (PREV_INSN (loop_end
));
9867 new_add_val
= GEN_INT (-INTVAL (bl
->biv
->add_val
));
9869 /* Set start_value; if this is not a CONST_INT, we need
9871 Initialize biv to start_value before loop start.
9872 The old initializing insn will be deleted as a
9873 dead store by flow.c. */
9874 if (initial_value
== const0_rtx
9875 && GET_CODE (comparison_value
) == CONST_INT
)
9878 = gen_int_mode (comparison_val
- add_adjust
, mode
);
9879 loop_insn_hoist (loop
, gen_move_insn (reg
, start_value
));
9881 else if (GET_CODE (initial_value
) == CONST_INT
)
9883 rtx offset
= GEN_INT (-INTVAL (initial_value
) - add_adjust
);
9884 rtx add_insn
= gen_add3_insn (reg
, comparison_value
, offset
);
9890 = gen_rtx_PLUS (mode
, comparison_value
, offset
);
9891 loop_insn_hoist (loop
, add_insn
);
9892 if (GET_CODE (comparison
) == LE
)
9893 final_value
= gen_rtx_PLUS (mode
, comparison_value
,
9896 else if (! add_adjust
)
9898 rtx sub_insn
= gen_sub3_insn (reg
, comparison_value
,
9904 = gen_rtx_MINUS (mode
, comparison_value
, initial_value
);
9905 loop_insn_hoist (loop
, sub_insn
);
9908 /* We could handle the other cases too, but it'll be
9909 better to have a testcase first. */
9912 /* We may not have a single insn which can increment a reg, so
9913 create a sequence to hold all the insns from expand_inc. */
9915 expand_inc (reg
, new_add_val
);
9919 p
= loop_insn_emit_before (loop
, 0, bl
->biv
->insn
, tem
);
9920 delete_insn (bl
->biv
->insn
);
9922 /* Update biv info to reflect its new status. */
9924 bl
->initial_value
= start_value
;
9925 bl
->biv
->add_val
= new_add_val
;
9927 /* Update loop info. */
9928 loop_info
->initial_value
= reg
;
9929 loop_info
->initial_equiv_value
= reg
;
9930 loop_info
->final_value
= const0_rtx
;
9931 loop_info
->final_equiv_value
= const0_rtx
;
9932 loop_info
->comparison_value
= const0_rtx
;
9933 loop_info
->comparison_code
= cmp_code
;
9934 loop_info
->increment
= new_add_val
;
9936 /* Inc LABEL_NUSES so that delete_insn will
9937 not delete the label. */
9938 LABEL_NUSES (XEXP (jump_label
, 0))++;
9940 /* If we have a separate comparison insn that does more
9941 than just set cc0, the result of the comparison might
9942 be used outside the loop. */
9943 keep_first_compare
= (compare_and_branch
== 2
9945 && sets_cc0_p (first_compare
) <= 0
9949 /* Emit an insn after the end of the loop to set the biv's
9950 proper exit value if it is used anywhere outside the loop. */
9951 if (keep_first_compare
9952 || (REGNO_LAST_UID (bl
->regno
) != INSN_UID (first_compare
))
9954 || REGNO_FIRST_UID (bl
->regno
) != INSN_UID (bl
->init_insn
))
9955 loop_insn_sink (loop
, gen_load_of_final_value (reg
, final_value
));
9957 if (keep_first_compare
)
9958 loop_insn_sink (loop
, PATTERN (first_compare
));
9960 /* Delete compare/branch at end of loop. */
9961 delete_related_insns (PREV_INSN (loop_end
));
9962 if (compare_and_branch
== 2)
9963 delete_related_insns (first_compare
);
9965 /* Add new compare/branch insn at end of loop. */
9967 emit_cmp_and_jump_insns (reg
, const0_rtx
, cmp_code
, NULL_RTX
,
9969 XEXP (jump_label
, 0));
9972 emit_jump_insn_before (tem
, loop_end
);
9974 for (tem
= PREV_INSN (loop_end
);
9975 tem
&& !JUMP_P (tem
);
9976 tem
= PREV_INSN (tem
))
9980 JUMP_LABEL (tem
) = XEXP (jump_label
, 0);
9986 /* Increment of LABEL_NUSES done above. */
9987 /* Register is now always nonnegative,
9988 so add REG_NONNEG note to the branch. */
9989 REG_NOTES (tem
) = gen_rtx_EXPR_LIST (REG_NONNEG
, reg
,
9995 /* No insn may reference both the reversed and another biv or it
9996 will fail (see comment near the top of the loop reversal
9998 Earlier on, we have verified that the biv has no use except
9999 counting, or it is the only biv in this function.
10000 However, the code that computes no_use_except_counting does
10001 not verify reg notes. It's possible to have an insn that
10002 references another biv, and has a REG_EQUAL note with an
10003 expression based on the reversed biv. To avoid this case,
10004 remove all REG_EQUAL notes based on the reversed biv
10006 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
10010 rtx set
= single_set (p
);
10011 /* If this is a set of a GIV based on the reversed biv, any
10012 REG_EQUAL notes should still be correct. */
10014 || !REG_P (SET_DEST (set
))
10015 || (size_t) REGNO (SET_DEST (set
)) >= ivs
->n_regs
10016 || REG_IV_TYPE (ivs
, REGNO (SET_DEST (set
))) != GENERAL_INDUCT
10017 || REG_IV_INFO (ivs
, REGNO (SET_DEST (set
)))->src_reg
!= bl
->biv
->src_reg
)
10018 for (pnote
= ®_NOTES (p
); *pnote
;)
10020 if (REG_NOTE_KIND (*pnote
) == REG_EQUAL
10021 && reg_mentioned_p (regno_reg_rtx
[bl
->regno
],
10023 *pnote
= XEXP (*pnote
, 1);
10025 pnote
= &XEXP (*pnote
, 1);
10029 /* Mark that this biv has been reversed. Each giv which depends
10030 on this biv, and which is also live past the end of the loop
10031 will have to be fixed up. */
10035 if (loop_dump_stream
)
10037 fprintf (loop_dump_stream
, "Reversed loop");
10039 fprintf (loop_dump_stream
, " and added reg_nonneg\n");
10041 fprintf (loop_dump_stream
, "\n");
10052 /* Verify whether the biv BL appears to be eliminable,
10053 based on the insns in the loop that refer to it.
10055 If ELIMINATE_P is nonzero, actually do the elimination.
10057 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
10058 determine whether invariant insns should be placed inside or at the
10059 start of the loop. */
10062 maybe_eliminate_biv (const struct loop
*loop
, struct iv_class
*bl
,
10063 int eliminate_p
, int threshold
, int insn_count
)
10065 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
10066 rtx reg
= bl
->biv
->dest_reg
;
10069 /* Scan all insns in the loop, stopping if we find one that uses the
10070 biv in a way that we cannot eliminate. */
10072 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
10074 enum rtx_code code
= GET_CODE (p
);
10075 basic_block where_bb
= 0;
10076 rtx where_insn
= threshold
>= insn_count
? 0 : p
;
10079 /* If this is a libcall that sets a giv, skip ahead to its end. */
10082 note
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
10086 rtx last
= XEXP (note
, 0);
10087 rtx set
= single_set (last
);
10089 if (set
&& REG_P (SET_DEST (set
)))
10091 unsigned int regno
= REGNO (SET_DEST (set
));
10093 if (regno
< ivs
->n_regs
10094 && REG_IV_TYPE (ivs
, regno
) == GENERAL_INDUCT
10095 && REG_IV_INFO (ivs
, regno
)->src_reg
== bl
->biv
->src_reg
)
10101 /* Closely examine the insn if the biv is mentioned. */
10102 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
10103 && reg_mentioned_p (reg
, PATTERN (p
))
10104 && ! maybe_eliminate_biv_1 (loop
, PATTERN (p
), p
, bl
,
10105 eliminate_p
, where_bb
, where_insn
))
10107 if (loop_dump_stream
)
10108 fprintf (loop_dump_stream
,
10109 "Cannot eliminate biv %d: biv used in insn %d.\n",
10110 bl
->regno
, INSN_UID (p
));
10114 /* If we are eliminating, kill REG_EQUAL notes mentioning the biv. */
10116 && (note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
10117 && reg_mentioned_p (reg
, XEXP (note
, 0)))
10118 remove_note (p
, note
);
10121 if (p
== loop
->end
)
10123 if (loop_dump_stream
)
10124 fprintf (loop_dump_stream
, "biv %d %s eliminated.\n",
10125 bl
->regno
, eliminate_p
? "was" : "can be");
10132 /* INSN and REFERENCE are instructions in the same insn chain.
10133 Return nonzero if INSN is first. */
10136 loop_insn_first_p (rtx insn
, rtx reference
)
10140 for (p
= insn
, q
= reference
;;)
10142 /* Start with test for not first so that INSN == REFERENCE yields not
10144 if (q
== insn
|| ! p
)
10146 if (p
== reference
|| ! q
)
10149 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
10150 previous insn, hence the <= comparison below does not work if
10152 if (INSN_UID (p
) < max_uid_for_loop
10153 && INSN_UID (q
) < max_uid_for_loop
10155 return INSN_LUID (p
) <= INSN_LUID (q
);
10157 if (INSN_UID (p
) >= max_uid_for_loop
10160 if (INSN_UID (q
) >= max_uid_for_loop
)
10165 /* We are trying to eliminate BIV in INSN using GIV. Return nonzero if
10166 the offset that we have to take into account due to auto-increment /
10167 div derivation is zero. */
10169 biv_elimination_giv_has_0_offset (struct induction
*biv
,
10170 struct induction
*giv
, rtx insn
)
10172 /* If the giv V had the auto-inc address optimization applied
10173 to it, and INSN occurs between the giv insn and the biv
10174 insn, then we'd have to adjust the value used here.
10175 This is rare, so we don't bother to make this possible. */
10176 if (giv
->auto_inc_opt
10177 && ((loop_insn_first_p (giv
->insn
, insn
)
10178 && loop_insn_first_p (insn
, biv
->insn
))
10179 || (loop_insn_first_p (biv
->insn
, insn
)
10180 && loop_insn_first_p (insn
, giv
->insn
))))
10186 /* If BL appears in X (part of the pattern of INSN), see if we can
10187 eliminate its use. If so, return 1. If not, return 0.
10189 If BIV does not appear in X, return 1.
10191 If ELIMINATE_P is nonzero, actually do the elimination.
10192 WHERE_INSN/WHERE_BB indicate where extra insns should be added.
10193 Depending on how many items have been moved out of the loop, it
10194 will either be before INSN (when WHERE_INSN is nonzero) or at the
10195 start of the loop (when WHERE_INSN is zero). */
10198 maybe_eliminate_biv_1 (const struct loop
*loop
, rtx x
, rtx insn
,
10199 struct iv_class
*bl
, int eliminate_p
,
10200 basic_block where_bb
, rtx where_insn
)
10202 enum rtx_code code
= GET_CODE (x
);
10203 rtx reg
= bl
->biv
->dest_reg
;
10204 enum machine_mode mode
= GET_MODE (reg
);
10205 struct induction
*v
;
10217 /* If we haven't already been able to do something with this BIV,
10218 we can't eliminate it. */
10224 /* If this sets the BIV, it is not a problem. */
10225 if (SET_DEST (x
) == reg
)
10228 /* If this is an insn that defines a giv, it is also ok because
10229 it will go away when the giv is reduced. */
10230 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
10231 if (v
->giv_type
== DEST_REG
&& SET_DEST (x
) == v
->dest_reg
)
10235 if (SET_DEST (x
) == cc0_rtx
&& SET_SRC (x
) == reg
)
10237 /* Can replace with any giv that was reduced and
10238 that has (MULT_VAL != 0) and (ADD_VAL == 0).
10239 Require a constant for MULT_VAL, so we know it's nonzero.
10240 ??? We disable this optimization to avoid potential
10243 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
10244 if (GET_CODE (v
->mult_val
) == CONST_INT
&& v
->mult_val
!= const0_rtx
10245 && v
->add_val
== const0_rtx
10246 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
10250 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
10256 /* If the giv has the opposite direction of change,
10257 then reverse the comparison. */
10258 if (INTVAL (v
->mult_val
) < 0)
10259 new = gen_rtx_COMPARE (GET_MODE (v
->new_reg
),
10260 const0_rtx
, v
->new_reg
);
10264 /* We can probably test that giv's reduced reg. */
10265 if (validate_change (insn
, &SET_SRC (x
), new, 0))
10269 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
10270 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
10271 Require a constant for MULT_VAL, so we know it's nonzero.
10272 ??? Do this only if ADD_VAL is a pointer to avoid a potential
10273 overflow problem. */
10275 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
10276 if (GET_CODE (v
->mult_val
) == CONST_INT
10277 && v
->mult_val
!= const0_rtx
10278 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
10280 && (GET_CODE (v
->add_val
) == SYMBOL_REF
10281 || GET_CODE (v
->add_val
) == LABEL_REF
10282 || GET_CODE (v
->add_val
) == CONST
10283 || (REG_P (v
->add_val
)
10284 && REG_POINTER (v
->add_val
))))
10286 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
10292 /* If the giv has the opposite direction of change,
10293 then reverse the comparison. */
10294 if (INTVAL (v
->mult_val
) < 0)
10295 new = gen_rtx_COMPARE (VOIDmode
, copy_rtx (v
->add_val
),
10298 new = gen_rtx_COMPARE (VOIDmode
, v
->new_reg
,
10299 copy_rtx (v
->add_val
));
10301 /* Replace biv with the giv's reduced register. */
10302 update_reg_last_use (v
->add_val
, insn
);
10303 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
10306 /* Insn doesn't support that constant or invariant. Copy it
10307 into a register (it will be a loop invariant.) */
10308 tem
= gen_reg_rtx (GET_MODE (v
->new_reg
));
10310 loop_insn_emit_before (loop
, 0, where_insn
,
10311 gen_move_insn (tem
,
10312 copy_rtx (v
->add_val
)));
10314 /* Substitute the new register for its invariant value in
10315 the compare expression. */
10316 XEXP (new, (INTVAL (v
->mult_val
) < 0) ? 0 : 1) = tem
;
10317 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
10326 case GT
: case GE
: case GTU
: case GEU
:
10327 case LT
: case LE
: case LTU
: case LEU
:
10328 /* See if either argument is the biv. */
10329 if (XEXP (x
, 0) == reg
)
10330 arg
= XEXP (x
, 1), arg_operand
= 1;
10331 else if (XEXP (x
, 1) == reg
)
10332 arg
= XEXP (x
, 0), arg_operand
= 0;
10336 if (GET_CODE (arg
) != CONST_INT
)
10339 /* Unless we're dealing with an equality comparison, if we can't
10340 determine that the original biv doesn't wrap, then we must not
10341 apply the transformation. */
10342 /* ??? Actually, what we must do is verify that the transformed
10343 giv doesn't wrap. But the general case of this transformation
10344 was disabled long ago due to wrapping problems, and there's no
10345 point reviving it this close to end-of-life for loop.c. The
10346 only case still enabled is known (via the check on add_val) to
10347 be pointer arithmetic, which in theory never overflows for
10349 /* Without lifetime analysis, we don't know how COMPARE will be
10350 used, so we must assume the worst. */
10351 if (code
!= EQ
&& code
!= NE
&& biv_may_wrap_p (loop
, bl
))
10354 /* Try to replace with any giv that has constant positive mult_val
10355 and a pointer add_val. */
10356 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
10357 if (GET_CODE (v
->mult_val
) == CONST_INT
10358 && INTVAL (v
->mult_val
) > 0
10359 && (GET_CODE (v
->add_val
) == SYMBOL_REF
10360 || GET_CODE (v
->add_val
) == LABEL_REF
10361 || GET_CODE (v
->add_val
) == CONST
10362 || (REG_P (v
->add_val
) && REG_POINTER (v
->add_val
)))
10363 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
10364 && v
->mode
== mode
)
10366 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
10372 /* Replace biv with the giv's reduced reg. */
10373 validate_change (insn
, &XEXP (x
, 1 - arg_operand
), v
->new_reg
, 1);
10375 /* Load the value into a register. */
10376 tem
= gen_reg_rtx (mode
);
10377 loop_iv_add_mult_emit_before (loop
, arg
, v
->mult_val
, v
->add_val
,
10378 tem
, where_bb
, where_insn
);
10380 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
10382 if (apply_change_group ())
10386 /* If we get here, the biv can't be eliminated. */
10390 /* If this address is a DEST_ADDR giv, it doesn't matter if the
10391 biv is used in it, since it will be replaced. */
10392 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
10393 if (v
->giv_type
== DEST_ADDR
&& v
->location
== &XEXP (x
, 0))
10401 /* See if any subexpression fails elimination. */
10402 fmt
= GET_RTX_FORMAT (code
);
10403 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10408 if (! maybe_eliminate_biv_1 (loop
, XEXP (x
, i
), insn
, bl
,
10409 eliminate_p
, where_bb
, where_insn
))
10414 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
10415 if (! maybe_eliminate_biv_1 (loop
, XVECEXP (x
, i
, j
), insn
, bl
,
10416 eliminate_p
, where_bb
, where_insn
))
10425 /* Return nonzero if the last use of REG
10426 is in an insn following INSN in the same basic block. */
10429 last_use_this_basic_block (rtx reg
, rtx insn
)
10433 n
&& !LABEL_P (n
) && !JUMP_P (n
);
10436 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (n
))
10442 /* Called via `note_stores' to record the initial value of a biv. Here we
10443 just record the location of the set and process it later. */
10446 record_initial (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
10448 struct loop_ivs
*ivs
= (struct loop_ivs
*) data
;
10449 struct iv_class
*bl
;
10452 || REGNO (dest
) >= ivs
->n_regs
10453 || REG_IV_TYPE (ivs
, REGNO (dest
)) != BASIC_INDUCT
)
10456 bl
= REG_IV_CLASS (ivs
, REGNO (dest
));
10458 /* If this is the first set found, record it. */
10459 if (bl
->init_insn
== 0)
10461 bl
->init_insn
= note_insn
;
10462 bl
->init_set
= set
;
10466 /* If any of the registers in X are "old" and currently have a last use earlier
10467 than INSN, update them to have a last use of INSN. Their actual last use
10468 will be the previous insn but it will not have a valid uid_luid so we can't
10469 use it. X must be a source expression only. */
10472 update_reg_last_use (rtx x
, rtx insn
)
10474 /* Check for the case where INSN does not have a valid luid. In this case,
10475 there is no need to modify the regno_last_uid, as this can only happen
10476 when code is inserted after the loop_end to set a pseudo's final value,
10477 and hence this insn will never be the last use of x.
10478 ???? This comment is not correct. See for example loop_givs_reduce.
10479 This may insert an insn before another new insn. */
10480 if (REG_P (x
) && REGNO (x
) < max_reg_before_loop
10481 && INSN_UID (insn
) < max_uid_for_loop
10482 && REGNO_LAST_LUID (REGNO (x
)) < INSN_LUID (insn
))
10484 REGNO_LAST_UID (REGNO (x
)) = INSN_UID (insn
);
10489 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
10490 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
10493 update_reg_last_use (XEXP (x
, i
), insn
);
10494 else if (fmt
[i
] == 'E')
10495 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
10496 update_reg_last_use (XVECEXP (x
, i
, j
), insn
);
10501 /* Similar to rtlanal.c:get_condition, except that we also put an
10502 invariant last unless both operands are invariants. */
10505 get_condition_for_loop (const struct loop
*loop
, rtx x
)
10507 rtx comparison
= get_condition (x
, (rtx
*) 0, false, true);
10509 if (comparison
== 0
10510 || ! loop_invariant_p (loop
, XEXP (comparison
, 0))
10511 || loop_invariant_p (loop
, XEXP (comparison
, 1)))
10514 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)), VOIDmode
,
10515 XEXP (comparison
, 1), XEXP (comparison
, 0));
10518 /* Scan the function and determine whether it has indirect (computed) jumps.
10520 This is taken mostly from flow.c; similar code exists elsewhere
10521 in the compiler. It may be useful to put this into rtlanal.c. */
10523 indirect_jump_in_function_p (rtx start
)
10527 for (insn
= start
; insn
; insn
= NEXT_INSN (insn
))
10528 if (computed_jump_p (insn
))
10534 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
10535 documentation for LOOP_MEMS for the definition of `appropriate'.
10536 This function is called from prescan_loop via for_each_rtx. */
10539 insert_loop_mem (rtx
*mem
, void *data ATTRIBUTE_UNUSED
)
10541 struct loop_info
*loop_info
= data
;
10548 switch (GET_CODE (m
))
10554 /* We're not interested in MEMs that are only clobbered. */
10558 /* We're not interested in the MEM associated with a
10559 CONST_DOUBLE, so there's no need to traverse into this. */
10563 /* We're not interested in any MEMs that only appear in notes. */
10567 /* This is not a MEM. */
10571 /* See if we've already seen this MEM. */
10572 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
10573 if (rtx_equal_p (m
, loop_info
->mems
[i
].mem
))
10575 if (MEM_VOLATILE_P (m
) && !MEM_VOLATILE_P (loop_info
->mems
[i
].mem
))
10576 loop_info
->mems
[i
].mem
= m
;
10577 if (GET_MODE (m
) != GET_MODE (loop_info
->mems
[i
].mem
))
10578 /* The modes of the two memory accesses are different. If
10579 this happens, something tricky is going on, and we just
10580 don't optimize accesses to this MEM. */
10581 loop_info
->mems
[i
].optimize
= 0;
10586 /* Resize the array, if necessary. */
10587 if (loop_info
->mems_idx
== loop_info
->mems_allocated
)
10589 if (loop_info
->mems_allocated
!= 0)
10590 loop_info
->mems_allocated
*= 2;
10592 loop_info
->mems_allocated
= 32;
10594 loop_info
->mems
= xrealloc (loop_info
->mems
,
10595 loop_info
->mems_allocated
* sizeof (loop_mem_info
));
10598 /* Actually insert the MEM. */
10599 loop_info
->mems
[loop_info
->mems_idx
].mem
= m
;
10600 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
10601 because we can't put it in a register. We still store it in the
10602 table, though, so that if we see the same address later, but in a
10603 non-BLK mode, we'll not think we can optimize it at that point. */
10604 loop_info
->mems
[loop_info
->mems_idx
].optimize
= (GET_MODE (m
) != BLKmode
);
10605 loop_info
->mems
[loop_info
->mems_idx
].reg
= NULL_RTX
;
10606 ++loop_info
->mems_idx
;
10612 /* Allocate REGS->ARRAY or reallocate it if it is too small.
10614 Increment REGS->ARRAY[I].SET_IN_LOOP at the index I of each
10615 register that is modified by an insn between FROM and TO. If the
10616 value of an element of REGS->array[I].SET_IN_LOOP becomes 127 or
10617 more, stop incrementing it, to avoid overflow.
10619 Store in REGS->ARRAY[I].SINGLE_USAGE the single insn in which
10620 register I is used, if it is only used once. Otherwise, it is set
10621 to 0 (for no uses) or const0_rtx for more than one use. This
10622 parameter may be zero, in which case this processing is not done.
10624 Set REGS->ARRAY[I].MAY_NOT_OPTIMIZE nonzero if we should not
10625 optimize register I. */
10628 loop_regs_scan (const struct loop
*loop
, int extra_size
)
10630 struct loop_regs
*regs
= LOOP_REGS (loop
);
10632 /* last_set[n] is nonzero iff reg n has been set in the current
10633 basic block. In that case, it is the insn that last set reg n. */
10638 old_nregs
= regs
->num
;
10639 regs
->num
= max_reg_num ();
10641 /* Grow the regs array if not allocated or too small. */
10642 if (regs
->num
>= regs
->size
)
10644 regs
->size
= regs
->num
+ extra_size
;
10646 regs
->array
= xrealloc (regs
->array
, regs
->size
* sizeof (*regs
->array
));
10648 /* Zero the new elements. */
10649 memset (regs
->array
+ old_nregs
, 0,
10650 (regs
->size
- old_nregs
) * sizeof (*regs
->array
));
10653 /* Clear previously scanned fields but do not clear n_times_set. */
10654 for (i
= 0; i
< old_nregs
; i
++)
10656 regs
->array
[i
].set_in_loop
= 0;
10657 regs
->array
[i
].may_not_optimize
= 0;
10658 regs
->array
[i
].single_usage
= NULL_RTX
;
10661 last_set
= xcalloc (regs
->num
, sizeof (rtx
));
10663 /* Scan the loop, recording register usage. */
10664 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
10665 insn
= NEXT_INSN (insn
))
10669 /* Record registers that have exactly one use. */
10670 find_single_use_in_loop (regs
, insn
, PATTERN (insn
));
10672 /* Include uses in REG_EQUAL notes. */
10673 if (REG_NOTES (insn
))
10674 find_single_use_in_loop (regs
, insn
, REG_NOTES (insn
));
10676 if (GET_CODE (PATTERN (insn
)) == SET
10677 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
10678 count_one_set (regs
, insn
, PATTERN (insn
), last_set
);
10679 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
10682 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
10683 count_one_set (regs
, insn
, XVECEXP (PATTERN (insn
), 0, i
),
10688 if (LABEL_P (insn
) || JUMP_P (insn
))
10689 memset (last_set
, 0, regs
->num
* sizeof (rtx
));
10691 /* Invalidate all registers used for function argument passing.
10692 We check rtx_varies_p for the same reason as below, to allow
10693 optimizing PIC calculations. */
10697 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
10699 link
= XEXP (link
, 1))
10703 if (GET_CODE (op
= XEXP (link
, 0)) == USE
10704 && REG_P (reg
= XEXP (op
, 0))
10705 && rtx_varies_p (reg
, 1))
10706 regs
->array
[REGNO (reg
)].may_not_optimize
= 1;
10711 /* Invalidate all hard registers clobbered by calls. With one exception:
10712 a call-clobbered PIC register is still function-invariant for our
10713 purposes, since we can hoist any PIC calculations out of the loop.
10714 Thus the call to rtx_varies_p. */
10715 if (LOOP_INFO (loop
)->has_call
)
10716 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
10717 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
)
10718 && rtx_varies_p (regno_reg_rtx
[i
], 1))
10720 regs
->array
[i
].may_not_optimize
= 1;
10721 regs
->array
[i
].set_in_loop
= 1;
10724 #ifdef AVOID_CCMODE_COPIES
10725 /* Don't try to move insns which set CC registers if we should not
10726 create CCmode register copies. */
10727 for (i
= regs
->num
- 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
10728 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
10729 regs
->array
[i
].may_not_optimize
= 1;
10732 /* Set regs->array[I].n_times_set for the new registers. */
10733 for (i
= old_nregs
; i
< regs
->num
; i
++)
10734 regs
->array
[i
].n_times_set
= regs
->array
[i
].set_in_loop
;
10739 /* Returns the number of real INSNs in the LOOP. */
10742 count_insns_in_loop (const struct loop
*loop
)
10747 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
10748 insn
= NEXT_INSN (insn
))
10755 /* Move MEMs into registers for the duration of the loop. */
10758 load_mems (const struct loop
*loop
)
10760 struct loop_info
*loop_info
= LOOP_INFO (loop
);
10761 struct loop_regs
*regs
= LOOP_REGS (loop
);
10762 int maybe_never
= 0;
10764 rtx p
, prev_ebb_head
;
10765 rtx label
= NULL_RTX
;
10767 /* Nonzero if the next instruction may never be executed. */
10768 int next_maybe_never
= 0;
10769 unsigned int last_max_reg
= max_reg_num ();
10771 if (loop_info
->mems_idx
== 0)
10774 /* We cannot use next_label here because it skips over normal insns. */
10775 end_label
= next_nonnote_insn (loop
->end
);
10776 if (end_label
&& !LABEL_P (end_label
))
10777 end_label
= NULL_RTX
;
10779 /* Check to see if it's possible that some instructions in the loop are
10780 never executed. Also check if there is a goto out of the loop other
10781 than right after the end of the loop. */
10782 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
10784 p
= next_insn_in_loop (loop
, p
))
10788 else if (JUMP_P (p
)
10789 /* If we enter the loop in the middle, and scan
10790 around to the beginning, don't set maybe_never
10791 for that. This must be an unconditional jump,
10792 otherwise the code at the top of the loop might
10793 never be executed. Unconditional jumps are
10794 followed a by barrier then loop end. */
10796 && JUMP_LABEL (p
) == loop
->top
10797 && NEXT_INSN (NEXT_INSN (p
)) == loop
->end
10798 && any_uncondjump_p (p
)))
10800 /* If this is a jump outside of the loop but not right
10801 after the end of the loop, we would have to emit new fixup
10802 sequences for each such label. */
10803 if (/* If we can't tell where control might go when this
10804 JUMP_INSN is executed, we must be conservative. */
10806 || (JUMP_LABEL (p
) != end_label
10807 && (INSN_UID (JUMP_LABEL (p
)) >= max_uid_for_loop
10808 || INSN_LUID (JUMP_LABEL (p
)) < INSN_LUID (loop
->start
)
10809 || INSN_LUID (JUMP_LABEL (p
)) > INSN_LUID (loop
->end
))))
10812 if (!any_condjump_p (p
))
10813 /* Something complicated. */
10816 /* If there are any more instructions in the loop, they
10817 might not be reached. */
10818 next_maybe_never
= 1;
10820 else if (next_maybe_never
)
10824 /* Find start of the extended basic block that enters the loop. */
10825 for (p
= loop
->start
;
10826 PREV_INSN (p
) && !LABEL_P (p
);
10831 cselib_init (true);
10833 /* Build table of mems that get set to constant values before the
10835 for (; p
!= loop
->start
; p
= NEXT_INSN (p
))
10836 cselib_process_insn (p
);
10838 /* Actually move the MEMs. */
10839 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
10841 regset_head load_copies
;
10842 regset_head store_copies
;
10845 rtx mem
= loop_info
->mems
[i
].mem
;
10846 rtx mem_list_entry
;
10848 if (MEM_VOLATILE_P (mem
)
10849 || loop_invariant_p (loop
, XEXP (mem
, 0)) != 1)
10850 /* There's no telling whether or not MEM is modified. */
10851 loop_info
->mems
[i
].optimize
= 0;
10853 /* Go through the MEMs written to in the loop to see if this
10854 one is aliased by one of them. */
10855 mem_list_entry
= loop_info
->store_mems
;
10856 while (mem_list_entry
)
10858 if (rtx_equal_p (mem
, XEXP (mem_list_entry
, 0)))
10860 else if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
10861 mem
, rtx_varies_p
))
10863 /* MEM is indeed aliased by this store. */
10864 loop_info
->mems
[i
].optimize
= 0;
10867 mem_list_entry
= XEXP (mem_list_entry
, 1);
10870 if (flag_float_store
&& written
10871 && GET_MODE_CLASS (GET_MODE (mem
)) == MODE_FLOAT
)
10872 loop_info
->mems
[i
].optimize
= 0;
10874 /* If this MEM is written to, we must be sure that there
10875 are no reads from another MEM that aliases this one. */
10876 if (loop_info
->mems
[i
].optimize
&& written
)
10880 for (j
= 0; j
< loop_info
->mems_idx
; ++j
)
10884 else if (true_dependence (mem
,
10886 loop_info
->mems
[j
].mem
,
10889 /* It's not safe to hoist loop_info->mems[i] out of
10890 the loop because writes to it might not be
10891 seen by reads from loop_info->mems[j]. */
10892 loop_info
->mems
[i
].optimize
= 0;
10898 if (maybe_never
&& may_trap_p (mem
))
10899 /* We can't access the MEM outside the loop; it might
10900 cause a trap that wouldn't have happened otherwise. */
10901 loop_info
->mems
[i
].optimize
= 0;
10903 if (!loop_info
->mems
[i
].optimize
)
10904 /* We thought we were going to lift this MEM out of the
10905 loop, but later discovered that we could not. */
10908 INIT_REG_SET (&load_copies
);
10909 INIT_REG_SET (&store_copies
);
10911 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
10912 order to keep scan_loop from moving stores to this MEM
10913 out of the loop just because this REG is neither a
10914 user-variable nor used in the loop test. */
10915 reg
= gen_reg_rtx (GET_MODE (mem
));
10916 REG_USERVAR_P (reg
) = 1;
10917 loop_info
->mems
[i
].reg
= reg
;
10919 /* Now, replace all references to the MEM with the
10920 corresponding pseudos. */
10922 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
10924 p
= next_insn_in_loop (loop
, p
))
10930 set
= single_set (p
);
10932 /* See if this copies the mem into a register that isn't
10933 modified afterwards. We'll try to do copy propagation
10934 a little further on. */
10936 /* @@@ This test is _way_ too conservative. */
10938 && REG_P (SET_DEST (set
))
10939 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
10940 && REGNO (SET_DEST (set
)) < last_max_reg
10941 && regs
->array
[REGNO (SET_DEST (set
))].n_times_set
== 1
10942 && rtx_equal_p (SET_SRC (set
), mem
))
10943 SET_REGNO_REG_SET (&load_copies
, REGNO (SET_DEST (set
)));
10945 /* See if this copies the mem from a register that isn't
10946 modified afterwards. We'll try to remove the
10947 redundant copy later on by doing a little register
10948 renaming and copy propagation. This will help
10949 to untangle things for the BIV detection code. */
10952 && REG_P (SET_SRC (set
))
10953 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
10954 && REGNO (SET_SRC (set
)) < last_max_reg
10955 && regs
->array
[REGNO (SET_SRC (set
))].n_times_set
== 1
10956 && rtx_equal_p (SET_DEST (set
), mem
))
10957 SET_REGNO_REG_SET (&store_copies
, REGNO (SET_SRC (set
)));
10959 /* If this is a call which uses / clobbers this memory
10960 location, we must not change the interface here. */
10962 && reg_mentioned_p (loop_info
->mems
[i
].mem
,
10963 CALL_INSN_FUNCTION_USAGE (p
)))
10965 cancel_changes (0);
10966 loop_info
->mems
[i
].optimize
= 0;
10970 /* Replace the memory reference with the shadow register. */
10971 replace_loop_mems (p
, loop_info
->mems
[i
].mem
,
10972 loop_info
->mems
[i
].reg
, written
);
10980 if (! loop_info
->mems
[i
].optimize
)
10981 ; /* We found we couldn't do the replacement, so do nothing. */
10982 else if (! apply_change_group ())
10983 /* We couldn't replace all occurrences of the MEM. */
10984 loop_info
->mems
[i
].optimize
= 0;
10987 /* Load the memory immediately before LOOP->START, which is
10988 the NOTE_LOOP_BEG. */
10989 cselib_val
*e
= cselib_lookup (mem
, VOIDmode
, 0);
10993 struct elt_loc_list
*const_equiv
= 0;
10994 reg_set_iterator rsi
;
10998 struct elt_loc_list
*equiv
;
10999 struct elt_loc_list
*best_equiv
= 0;
11000 for (equiv
= e
->locs
; equiv
; equiv
= equiv
->next
)
11002 if (CONSTANT_P (equiv
->loc
))
11003 const_equiv
= equiv
;
11004 else if (REG_P (equiv
->loc
)
11005 /* Extending hard register lifetimes causes crash
11006 on SRC targets. Doing so on non-SRC is
11007 probably also not good idea, since we most
11008 probably have pseudoregister equivalence as
11010 && REGNO (equiv
->loc
) >= FIRST_PSEUDO_REGISTER
)
11011 best_equiv
= equiv
;
11013 /* Use the constant equivalence if that is cheap enough. */
11015 best_equiv
= const_equiv
;
11016 else if (const_equiv
11017 && (rtx_cost (const_equiv
->loc
, SET
)
11018 <= rtx_cost (best_equiv
->loc
, SET
)))
11020 best_equiv
= const_equiv
;
11024 /* If best_equiv is nonzero, we know that MEM is set to a
11025 constant or register before the loop. We will use this
11026 knowledge to initialize the shadow register with that
11027 constant or reg rather than by loading from MEM. */
11029 best
= copy_rtx (best_equiv
->loc
);
11032 set
= gen_move_insn (reg
, best
);
11033 set
= loop_insn_hoist (loop
, set
);
11036 for (p
= prev_ebb_head
; p
!= loop
->start
; p
= NEXT_INSN (p
))
11037 if (REGNO_LAST_UID (REGNO (best
)) == INSN_UID (p
))
11039 REGNO_LAST_UID (REGNO (best
)) = INSN_UID (set
);
11045 set_unique_reg_note (set
, REG_EQUAL
, copy_rtx (const_equiv
->loc
));
11049 if (label
== NULL_RTX
)
11051 label
= gen_label_rtx ();
11052 emit_label_after (label
, loop
->end
);
11055 /* Store the memory immediately after END, which is
11056 the NOTE_LOOP_END. */
11057 set
= gen_move_insn (copy_rtx (mem
), reg
);
11058 loop_insn_emit_after (loop
, 0, label
, set
);
11061 if (loop_dump_stream
)
11063 fprintf (loop_dump_stream
, "Hoisted regno %d %s from ",
11064 REGNO (reg
), (written
? "r/w" : "r/o"));
11065 print_rtl (loop_dump_stream
, mem
);
11066 fputc ('\n', loop_dump_stream
);
11069 /* Attempt a bit of copy propagation. This helps untangle the
11070 data flow, and enables {basic,general}_induction_var to find
11072 EXECUTE_IF_SET_IN_REG_SET
11073 (&load_copies
, FIRST_PSEUDO_REGISTER
, j
, rsi
)
11075 try_copy_prop (loop
, reg
, j
);
11077 CLEAR_REG_SET (&load_copies
);
11079 EXECUTE_IF_SET_IN_REG_SET
11080 (&store_copies
, FIRST_PSEUDO_REGISTER
, j
, rsi
)
11082 try_swap_copy_prop (loop
, reg
, j
);
11084 CLEAR_REG_SET (&store_copies
);
11088 /* Now, we need to replace all references to the previous exit
11089 label with the new one. */
11090 if (label
!= NULL_RTX
&& end_label
!= NULL_RTX
)
11091 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
11092 if (JUMP_P (p
) && JUMP_LABEL (p
) == end_label
)
11093 redirect_jump (p
, label
, false);
11098 /* For communication between note_reg_stored and its caller. */
11099 struct note_reg_stored_arg
11105 /* Called via note_stores, record in SET_SEEN whether X, which is written,
11106 is equal to ARG. */
11108 note_reg_stored (rtx x
, rtx setter ATTRIBUTE_UNUSED
, void *arg
)
11110 struct note_reg_stored_arg
*t
= (struct note_reg_stored_arg
*) arg
;
11115 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
11116 There must be exactly one insn that sets this pseudo; it will be
11117 deleted if all replacements succeed and we can prove that the register
11118 is not used after the loop. */
11121 try_copy_prop (const struct loop
*loop
, rtx replacement
, unsigned int regno
)
11123 /* This is the reg that we are copying from. */
11124 rtx reg_rtx
= regno_reg_rtx
[regno
];
11127 /* These help keep track of whether we replaced all uses of the reg. */
11128 int replaced_last
= 0;
11129 int store_is_first
= 0;
11131 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
11133 insn
= next_insn_in_loop (loop
, insn
))
11137 /* Only substitute within one extended basic block from the initializing
11139 if (LABEL_P (insn
) && init_insn
)
11142 if (! INSN_P (insn
))
11145 /* Is this the initializing insn? */
11146 set
= single_set (insn
);
11148 && REG_P (SET_DEST (set
))
11149 && REGNO (SET_DEST (set
)) == regno
)
11151 gcc_assert (!init_insn
);
11154 if (REGNO_FIRST_UID (regno
) == INSN_UID (insn
))
11155 store_is_first
= 1;
11158 /* Only substitute after seeing the initializing insn. */
11159 if (init_insn
&& insn
!= init_insn
)
11161 struct note_reg_stored_arg arg
;
11163 replace_loop_regs (insn
, reg_rtx
, replacement
);
11164 if (REGNO_LAST_UID (regno
) == INSN_UID (insn
))
11167 /* Stop replacing when REPLACEMENT is modified. */
11168 arg
.reg
= replacement
;
11170 note_stores (PATTERN (insn
), note_reg_stored
, &arg
);
11173 rtx note
= find_reg_note (insn
, REG_EQUAL
, NULL
);
11175 /* It is possible that we've turned previously valid REG_EQUAL to
11176 invalid, as we change the REGNO to REPLACEMENT and unlike REGNO,
11177 REPLACEMENT is modified, we get different meaning. */
11178 if (note
&& reg_mentioned_p (replacement
, XEXP (note
, 0)))
11179 remove_note (insn
, note
);
11184 gcc_assert (init_insn
);
11185 if (apply_change_group ())
11187 if (loop_dump_stream
)
11188 fprintf (loop_dump_stream
, " Replaced reg %d", regno
);
11189 if (store_is_first
&& replaced_last
)
11194 /* Assume we're just deleting INIT_INSN. */
11196 /* Look for REG_RETVAL note. If we're deleting the end of
11197 the libcall sequence, the whole sequence can go. */
11198 retval_note
= find_reg_note (init_insn
, REG_RETVAL
, NULL_RTX
);
11199 /* If we found a REG_RETVAL note, find the first instruction
11200 in the sequence. */
11202 first
= XEXP (retval_note
, 0);
11204 /* Delete the instructions. */
11205 loop_delete_insns (first
, init_insn
);
11207 if (loop_dump_stream
)
11208 fprintf (loop_dump_stream
, ".\n");
11212 /* Replace all the instructions from FIRST up to and including LAST
11213 with NOTE_INSN_DELETED notes. */
11216 loop_delete_insns (rtx first
, rtx last
)
11220 if (loop_dump_stream
)
11221 fprintf (loop_dump_stream
, ", deleting init_insn (%d)",
11223 delete_insn (first
);
11225 /* If this was the LAST instructions we're supposed to delete,
11230 first
= NEXT_INSN (first
);
11234 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
11235 loop LOOP if the order of the sets of these registers can be
11236 swapped. There must be exactly one insn within the loop that sets
11237 this pseudo followed immediately by a move insn that sets
11238 REPLACEMENT with REGNO. */
11240 try_swap_copy_prop (const struct loop
*loop
, rtx replacement
,
11241 unsigned int regno
)
11244 rtx set
= NULL_RTX
;
11245 unsigned int new_regno
;
11247 new_regno
= REGNO (replacement
);
11249 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
11251 insn
= next_insn_in_loop (loop
, insn
))
11253 /* Search for the insn that copies REGNO to NEW_REGNO? */
11255 && (set
= single_set (insn
))
11256 && REG_P (SET_DEST (set
))
11257 && REGNO (SET_DEST (set
)) == new_regno
11258 && REG_P (SET_SRC (set
))
11259 && REGNO (SET_SRC (set
)) == regno
)
11263 if (insn
!= NULL_RTX
)
11268 /* Some DEF-USE info would come in handy here to make this
11269 function more general. For now, just check the previous insn
11270 which is the most likely candidate for setting REGNO. */
11272 prev_insn
= PREV_INSN (insn
);
11275 && (prev_set
= single_set (prev_insn
))
11276 && REG_P (SET_DEST (prev_set
))
11277 && REGNO (SET_DEST (prev_set
)) == regno
)
11280 (set (reg regno) (expr))
11281 (set (reg new_regno) (reg regno))
11283 so try converting this to:
11284 (set (reg new_regno) (expr))
11285 (set (reg regno) (reg new_regno))
11287 The former construct is often generated when a global
11288 variable used for an induction variable is shadowed by a
11289 register (NEW_REGNO). The latter construct improves the
11290 chances of GIV replacement and BIV elimination. */
11292 validate_change (prev_insn
, &SET_DEST (prev_set
),
11294 validate_change (insn
, &SET_DEST (set
),
11296 validate_change (insn
, &SET_SRC (set
),
11299 if (apply_change_group ())
11301 if (loop_dump_stream
)
11302 fprintf (loop_dump_stream
,
11303 " Swapped set of reg %d at %d with reg %d at %d.\n",
11304 regno
, INSN_UID (insn
),
11305 new_regno
, INSN_UID (prev_insn
));
11307 /* Update first use of REGNO. */
11308 if (REGNO_FIRST_UID (regno
) == INSN_UID (prev_insn
))
11309 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
11311 /* Now perform copy propagation to hopefully
11312 remove all uses of REGNO within the loop. */
11313 try_copy_prop (loop
, replacement
, regno
);
11319 /* Worker function for find_mem_in_note, called via for_each_rtx. */
11322 find_mem_in_note_1 (rtx
*x
, void *data
)
11324 if (*x
!= NULL_RTX
&& MEM_P (*x
))
11326 rtx
*res
= (rtx
*) data
;
11333 /* Returns the first MEM found in NOTE by depth-first search. */
11336 find_mem_in_note (rtx note
)
11338 if (note
&& for_each_rtx (¬e
, find_mem_in_note_1
, ¬e
))
11343 /* Replace MEM with its associated pseudo register. This function is
11344 called from load_mems via for_each_rtx. DATA is actually a pointer
11345 to a structure describing the instruction currently being scanned
11346 and the MEM we are currently replacing. */
11349 replace_loop_mem (rtx
*mem
, void *data
)
11351 loop_replace_args
*args
= (loop_replace_args
*) data
;
11357 switch (GET_CODE (m
))
11363 /* We're not interested in the MEM associated with a
11364 CONST_DOUBLE, so there's no need to traverse into one. */
11368 /* This is not a MEM. */
11372 if (!rtx_equal_p (args
->match
, m
))
11373 /* This is not the MEM we are currently replacing. */
11376 /* Actually replace the MEM. */
11377 validate_change (args
->insn
, mem
, args
->replacement
, 1);
11383 replace_loop_mems (rtx insn
, rtx mem
, rtx reg
, int written
)
11385 loop_replace_args args
;
11389 args
.replacement
= reg
;
11391 for_each_rtx (&insn
, replace_loop_mem
, &args
);
11393 /* If we hoist a mem write out of the loop, then REG_EQUAL
11394 notes referring to the mem are no longer valid. */
11400 for (link
= ®_NOTES (insn
); (note
= *link
); link
= &XEXP (note
, 1))
11402 if (REG_NOTE_KIND (note
) == REG_EQUAL
11403 && (sub
= find_mem_in_note (note
))
11404 && true_dependence (mem
, VOIDmode
, sub
, rtx_varies_p
))
11406 /* Remove the note. */
11407 validate_change (NULL_RTX
, link
, XEXP (note
, 1), 1);
11414 /* Replace one register with another. Called through for_each_rtx; PX points
11415 to the rtx being scanned. DATA is actually a pointer to
11416 a structure of arguments. */
11419 replace_loop_reg (rtx
*px
, void *data
)
11422 loop_replace_args
*args
= (loop_replace_args
*) data
;
11427 if (x
== args
->match
)
11428 validate_change (args
->insn
, px
, args
->replacement
, 1);
11434 replace_loop_regs (rtx insn
, rtx reg
, rtx replacement
)
11436 loop_replace_args args
;
11440 args
.replacement
= replacement
;
11442 for_each_rtx (&insn
, replace_loop_reg
, &args
);
11445 /* Emit insn for PATTERN after WHERE_INSN in basic block WHERE_BB
11446 (ignored in the interim). */
11449 loop_insn_emit_after (const struct loop
*loop ATTRIBUTE_UNUSED
,
11450 basic_block where_bb ATTRIBUTE_UNUSED
, rtx where_insn
,
11453 return emit_insn_after (pattern
, where_insn
);
11457 /* If WHERE_INSN is nonzero emit insn for PATTERN before WHERE_INSN
11458 in basic block WHERE_BB (ignored in the interim) within the loop
11459 otherwise hoist PATTERN into the loop pre-header. */
11462 loop_insn_emit_before (const struct loop
*loop
,
11463 basic_block where_bb ATTRIBUTE_UNUSED
,
11464 rtx where_insn
, rtx pattern
)
11467 return loop_insn_hoist (loop
, pattern
);
11468 return emit_insn_before (pattern
, where_insn
);
11472 /* Emit call insn for PATTERN before WHERE_INSN in basic block
11473 WHERE_BB (ignored in the interim) within the loop. */
11476 loop_call_insn_emit_before (const struct loop
*loop ATTRIBUTE_UNUSED
,
11477 basic_block where_bb ATTRIBUTE_UNUSED
,
11478 rtx where_insn
, rtx pattern
)
11480 return emit_call_insn_before (pattern
, where_insn
);
11484 /* Hoist insn for PATTERN into the loop pre-header. */
11487 loop_insn_hoist (const struct loop
*loop
, rtx pattern
)
11489 return loop_insn_emit_before (loop
, 0, loop
->start
, pattern
);
11493 /* Hoist call insn for PATTERN into the loop pre-header. */
11496 loop_call_insn_hoist (const struct loop
*loop
, rtx pattern
)
11498 return loop_call_insn_emit_before (loop
, 0, loop
->start
, pattern
);
11502 /* Sink insn for PATTERN after the loop end. */
11505 loop_insn_sink (const struct loop
*loop
, rtx pattern
)
11507 return loop_insn_emit_before (loop
, 0, loop
->sink
, pattern
);
11510 /* bl->final_value can be either general_operand or PLUS of general_operand
11511 and constant. Emit sequence of instructions to load it into REG. */
11513 gen_load_of_final_value (rtx reg
, rtx final_value
)
11517 final_value
= force_operand (final_value
, reg
);
11518 if (final_value
!= reg
)
11519 emit_move_insn (reg
, final_value
);
11520 seq
= get_insns ();
11525 /* If the loop has multiple exits, emit insn for PATTERN before the
11526 loop to ensure that it will always be executed no matter how the
11527 loop exits. Otherwise, emit the insn for PATTERN after the loop,
11528 since this is slightly more efficient. */
11531 loop_insn_sink_or_swim (const struct loop
*loop
, rtx pattern
)
11533 if (loop
->exit_count
)
11534 return loop_insn_hoist (loop
, pattern
);
11536 return loop_insn_sink (loop
, pattern
);
11540 loop_ivs_dump (const struct loop
*loop
, FILE *file
, int verbose
)
11542 struct iv_class
*bl
;
11545 if (! loop
|| ! file
)
11548 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
11551 fprintf (file
, "Loop %d: %d IV classes\n", loop
->num
, iv_num
);
11553 for (bl
= LOOP_IVS (loop
)->list
; bl
; bl
= bl
->next
)
11555 loop_iv_class_dump (bl
, file
, verbose
);
11556 fputc ('\n', file
);
11562 loop_iv_class_dump (const struct iv_class
*bl
, FILE *file
,
11563 int verbose ATTRIBUTE_UNUSED
)
11565 struct induction
*v
;
11569 if (! bl
|| ! file
)
11572 fprintf (file
, "IV class for reg %d, benefit %d\n",
11573 bl
->regno
, bl
->total_benefit
);
11575 fprintf (file
, " Init insn %d", INSN_UID (bl
->init_insn
));
11576 if (bl
->initial_value
)
11578 fprintf (file
, ", init val: ");
11579 print_simple_rtl (file
, bl
->initial_value
);
11581 if (bl
->initial_test
)
11583 fprintf (file
, ", init test: ");
11584 print_simple_rtl (file
, bl
->initial_test
);
11586 fputc ('\n', file
);
11588 if (bl
->final_value
)
11590 fprintf (file
, " Final val: ");
11591 print_simple_rtl (file
, bl
->final_value
);
11592 fputc ('\n', file
);
11595 if ((incr
= biv_total_increment (bl
)))
11597 fprintf (file
, " Total increment: ");
11598 print_simple_rtl (file
, incr
);
11599 fputc ('\n', file
);
11602 /* List the increments. */
11603 for (i
= 0, v
= bl
->biv
; v
; v
= v
->next_iv
, i
++)
11605 fprintf (file
, " Inc%d: insn %d, incr: ", i
, INSN_UID (v
->insn
));
11606 print_simple_rtl (file
, v
->add_val
);
11607 fputc ('\n', file
);
11610 /* List the givs. */
11611 for (i
= 0, v
= bl
->giv
; v
; v
= v
->next_iv
, i
++)
11613 fprintf (file
, " Giv%d: insn %d, benefit %d, ",
11614 i
, INSN_UID (v
->insn
), v
->benefit
);
11615 if (v
->giv_type
== DEST_ADDR
)
11616 print_simple_rtl (file
, v
->mem
);
11618 print_simple_rtl (file
, single_set (v
->insn
));
11619 fputc ('\n', file
);
11625 loop_biv_dump (const struct induction
*v
, FILE *file
, int verbose
)
11632 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
11633 fprintf (file
, " const ");
11634 print_simple_rtl (file
, v
->add_val
);
11636 if (verbose
&& v
->final_value
)
11638 fputc ('\n', file
);
11639 fprintf (file
, " final ");
11640 print_simple_rtl (file
, v
->final_value
);
11643 fputc ('\n', file
);
11648 loop_giv_dump (const struct induction
*v
, FILE *file
, int verbose
)
11653 if (v
->giv_type
== DEST_REG
)
11654 fprintf (file
, "Giv %d: insn %d",
11655 REGNO (v
->dest_reg
), INSN_UID (v
->insn
));
11657 fprintf (file
, "Dest address: insn %d",
11658 INSN_UID (v
->insn
));
11660 fprintf (file
, " src reg %d benefit %d",
11661 REGNO (v
->src_reg
), v
->benefit
);
11662 fprintf (file
, " lifetime %d",
11665 if (v
->replaceable
)
11666 fprintf (file
, " replaceable");
11668 if (v
->no_const_addval
)
11669 fprintf (file
, " ncav");
11671 if (v
->ext_dependent
)
11673 switch (GET_CODE (v
->ext_dependent
))
11676 fprintf (file
, " ext se");
11679 fprintf (file
, " ext ze");
11682 fprintf (file
, " ext tr");
11685 gcc_unreachable ();
11689 fputc ('\n', file
);
11690 fprintf (file
, " mult ");
11691 print_simple_rtl (file
, v
->mult_val
);
11693 fputc ('\n', file
);
11694 fprintf (file
, " add ");
11695 print_simple_rtl (file
, v
->add_val
);
11697 if (verbose
&& v
->final_value
)
11699 fputc ('\n', file
);
11700 fprintf (file
, " final ");
11701 print_simple_rtl (file
, v
->final_value
);
11704 fputc ('\n', file
);
11709 debug_ivs (const struct loop
*loop
)
11711 loop_ivs_dump (loop
, stderr
, 1);
11716 debug_iv_class (const struct iv_class
*bl
)
11718 loop_iv_class_dump (bl
, stderr
, 1);
11723 debug_biv (const struct induction
*v
)
11725 loop_biv_dump (v
, stderr
, 1);
11730 debug_giv (const struct induction
*v
)
11732 loop_giv_dump (v
, stderr
, 1);
11736 #define LOOP_BLOCK_NUM_1(INSN) \
11737 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
11739 /* The notes do not have an assigned block, so look at the next insn. */
11740 #define LOOP_BLOCK_NUM(INSN) \
11741 ((INSN) ? (NOTE_P (INSN) \
11742 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
11743 : LOOP_BLOCK_NUM_1 (INSN)) \
11746 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
11749 loop_dump_aux (const struct loop
*loop
, FILE *file
,
11750 int verbose ATTRIBUTE_UNUSED
)
11754 if (! loop
|| ! file
|| !BB_HEAD (loop
->first
))
11757 /* Print diagnostics to compare our concept of a loop with
11758 what the loop notes say. */
11759 if (! PREV_INSN (BB_HEAD (loop
->first
))
11760 || !NOTE_P (PREV_INSN (BB_HEAD (loop
->first
)))
11761 || NOTE_LINE_NUMBER (PREV_INSN (BB_HEAD (loop
->first
)))
11762 != NOTE_INSN_LOOP_BEG
)
11763 fprintf (file
, ";; No NOTE_INSN_LOOP_BEG at %d\n",
11764 INSN_UID (PREV_INSN (BB_HEAD (loop
->first
))));
11765 if (! NEXT_INSN (BB_END (loop
->last
))
11766 || !NOTE_P (NEXT_INSN (BB_END (loop
->last
)))
11767 || NOTE_LINE_NUMBER (NEXT_INSN (BB_END (loop
->last
)))
11768 != NOTE_INSN_LOOP_END
)
11769 fprintf (file
, ";; No NOTE_INSN_LOOP_END at %d\n",
11770 INSN_UID (NEXT_INSN (BB_END (loop
->last
))));
11775 ";; start %d (%d), end %d (%d)\n",
11776 LOOP_BLOCK_NUM (loop
->start
),
11777 LOOP_INSN_UID (loop
->start
),
11778 LOOP_BLOCK_NUM (loop
->end
),
11779 LOOP_INSN_UID (loop
->end
));
11780 fprintf (file
, ";; top %d (%d), scan start %d (%d)\n",
11781 LOOP_BLOCK_NUM (loop
->top
),
11782 LOOP_INSN_UID (loop
->top
),
11783 LOOP_BLOCK_NUM (loop
->scan_start
),
11784 LOOP_INSN_UID (loop
->scan_start
));
11785 fprintf (file
, ";; exit_count %d", loop
->exit_count
);
11786 if (loop
->exit_count
)
11788 fputs (", labels:", file
);
11789 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
11791 fprintf (file
, " %d ",
11792 LOOP_INSN_UID (XEXP (label
, 0)));
11795 fputs ("\n", file
);
11799 /* Call this function from the debugger to dump LOOP. */
11802 debug_loop (const struct loop
*loop
)
11804 flow_loop_dump (loop
, stderr
, loop_dump_aux
, 1);
11807 /* Call this function from the debugger to dump LOOPS. */
11810 debug_loops (const struct loops
*loops
)
11812 flow_loops_dump (loops
, stderr
, loop_dump_aux
, 1);
11816 gate_handle_loop_optimize (void)
11818 return (optimize
> 0 && flag_loop_optimize
);
11821 /* Move constant computations out of loops. */
11823 rest_of_handle_loop_optimize (void)
11827 /* CFG is no longer maintained up-to-date. */
11828 free_bb_for_insn ();
11829 profile_status
= PROFILE_ABSENT
;
11831 do_prefetch
= flag_prefetch_loop_arrays
? LOOP_PREFETCH
: 0;
11833 if (flag_rerun_loop_opt
)
11835 cleanup_barriers ();
11837 /* We only want to perform unrolling once. */
11838 loop_optimize (get_insns (), dump_file
, 0);
11840 /* The first call to loop_optimize makes some instructions
11841 trivially dead. We delete those instructions now in the
11842 hope that doing so will make the heuristics in loop work
11843 better and possibly speed up compilation. */
11844 delete_trivially_dead_insns (get_insns (), max_reg_num ());
11846 /* The regscan pass is currently necessary as the alias
11847 analysis code depends on this information. */
11848 reg_scan (get_insns (), max_reg_num ());
11850 cleanup_barriers ();
11851 loop_optimize (get_insns (), dump_file
, do_prefetch
);
11853 /* Loop can create trivially dead instructions. */
11854 delete_trivially_dead_insns (get_insns (), max_reg_num ());
11855 find_basic_blocks (get_insns ());
11858 struct tree_opt_pass pass_loop_optimize
=
11860 "old-loop", /* name */
11861 gate_handle_loop_optimize
, /* gate */
11862 rest_of_handle_loop_optimize
, /* execute */
11865 0, /* static_pass_number */
11866 TV_LOOP
, /* tv_id */
11867 0, /* properties_required */
11868 0, /* properties_provided */
11869 0, /* properties_destroyed */
11870 0, /* todo_flags_start */
11872 TODO_ggc_collect
, /* todo_flags_finish */