Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / resource.c
blob4eefab6c90b9901a1a5bcfa6a854716136543672
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "function.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "resource.h"
35 #include "except.h"
36 #include "insn-attr.h"
37 #include "params.h"
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
44 struct target_info
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
53 #define TARGET_HASH_PRIME 257
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
69 static int *bb_ticks;
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
74 static HARD_REG_SET current_live_regs;
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
79 static HARD_REG_SET pending_dead_regs;
81 static void update_live_status (rtx, rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
91 static void
92 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
94 int first_regno, last_regno;
95 int i;
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
101 if (GET_CODE (dest) == SUBREG)
102 first_regno = subreg_regno (dest);
103 else
104 first_regno = REGNO (dest);
106 last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
108 if (GET_CODE (x) == CLOBBER)
109 for (i = first_regno; i < last_regno; i++)
110 CLEAR_HARD_REG_BIT (current_live_regs, i);
111 else
112 for (i = first_regno; i < last_regno; i++)
114 SET_HARD_REG_BIT (current_live_regs, i);
115 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
119 /* Find the number of the basic block with correct live register
120 information that starts closest to INSN. Return -1 if we couldn't
121 find such a basic block or the beginning is more than
122 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
123 an unlimited search.
125 The delay slot filling code destroys the control-flow graph so,
126 instead of finding the basic block containing INSN, we search
127 backwards toward a BARRIER where the live register information is
128 correct. */
130 static int
131 find_basic_block (rtx insn, int search_limit)
133 basic_block bb;
135 /* Scan backwards to the previous BARRIER. Then see if we can find a
136 label that starts a basic block. Return the basic block number. */
137 for (insn = prev_nonnote_insn (insn);
138 insn && !BARRIER_P (insn) && search_limit != 0;
139 insn = prev_nonnote_insn (insn), --search_limit)
142 /* The closest BARRIER is too far away. */
143 if (search_limit == 0)
144 return -1;
146 /* The start of the function. */
147 else if (insn == 0)
148 return ENTRY_BLOCK_PTR->next_bb->index;
150 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
151 anything other than a CODE_LABEL or note, we can't find this code. */
152 for (insn = next_nonnote_insn (insn);
153 insn && LABEL_P (insn);
154 insn = next_nonnote_insn (insn))
156 FOR_EACH_BB (bb)
157 if (insn == BB_HEAD (bb))
158 return bb->index;
161 return -1;
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
167 static rtx
168 next_insn_no_annul (rtx insn)
170 if (insn)
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (INSN_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
190 insn = NEXT_INSN (insn);
191 if (insn && NONJUMP_INSN_P (insn)
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
196 return insn;
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
204 void
205 mark_referenced_resources (rtx x, struct resources *res,
206 int include_delayed_effects)
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
211 const char *format_ptr;
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
220 case CONST_VECTOR:
221 case PC:
222 case SYMBOL_REF:
223 case LABEL_REF:
224 return;
226 case SUBREG:
227 if (!REG_P (SUBREG_REG (x)))
228 mark_referenced_resources (SUBREG_REG (x), res, 0);
229 else
231 unsigned int regno = subreg_regno (x);
232 unsigned int last_regno
233 = regno + hard_regno_nregs[regno][GET_MODE (x)];
235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
239 return;
241 case REG:
243 unsigned int regno = REGNO (x);
244 unsigned int last_regno
245 = regno + hard_regno_nregs[regno][GET_MODE (x)];
247 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
248 for (r = regno; r < last_regno; r++)
249 SET_HARD_REG_BIT (res->regs, r);
251 return;
253 case MEM:
254 /* If this memory shouldn't change, it really isn't referencing
255 memory. */
256 if (MEM_READONLY_P (x))
257 res->unch_memory = 1;
258 else
259 res->memory = 1;
260 res->volatil |= MEM_VOLATILE_P (x);
262 /* Mark registers used to access memory. */
263 mark_referenced_resources (XEXP (x, 0), res, 0);
264 return;
266 case CC0:
267 res->cc = 1;
268 return;
270 case UNSPEC_VOLATILE:
271 case ASM_INPUT:
272 /* Traditional asm's are always volatile. */
273 res->volatil = 1;
274 return;
276 case TRAP_IF:
277 res->volatil = 1;
278 break;
280 case ASM_OPERANDS:
281 res->volatil |= MEM_VOLATILE_P (x);
283 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
284 We can not just fall through here since then we would be confused
285 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
286 traditional asms unlike their normal usage. */
288 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
289 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
290 return;
292 case CALL:
293 /* The first operand will be a (MEM (xxx)) but doesn't really reference
294 memory. The second operand may be referenced, though. */
295 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
296 mark_referenced_resources (XEXP (x, 1), res, 0);
297 return;
299 case SET:
300 /* Usually, the first operand of SET is set, not referenced. But
301 registers used to access memory are referenced. SET_DEST is
302 also referenced if it is a ZERO_EXTRACT. */
304 mark_referenced_resources (SET_SRC (x), res, 0);
306 x = SET_DEST (x);
307 if (GET_CODE (x) == ZERO_EXTRACT
308 || GET_CODE (x) == STRICT_LOW_PART)
309 mark_referenced_resources (x, res, 0);
310 else if (GET_CODE (x) == SUBREG)
311 x = SUBREG_REG (x);
312 if (MEM_P (x))
313 mark_referenced_resources (XEXP (x, 0), res, 0);
314 return;
316 case CLOBBER:
317 return;
319 case CALL_INSN:
320 if (include_delayed_effects)
322 /* A CALL references memory, the frame pointer if it exists, the
323 stack pointer, any global registers and any registers given in
324 USE insns immediately in front of the CALL.
326 However, we may have moved some of the parameter loading insns
327 into the delay slot of this CALL. If so, the USE's for them
328 don't count and should be skipped. */
329 rtx insn = PREV_INSN (x);
330 rtx sequence = 0;
331 int seq_size = 0;
332 int i;
334 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
335 if (NEXT_INSN (insn) != x)
337 sequence = PATTERN (NEXT_INSN (insn));
338 seq_size = XVECLEN (sequence, 0);
339 gcc_assert (GET_CODE (sequence) == SEQUENCE);
342 res->memory = 1;
343 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
344 if (frame_pointer_needed)
346 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
347 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
348 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
349 #endif
352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
353 if (global_regs[i])
354 SET_HARD_REG_BIT (res->regs, i);
356 /* Check for a REG_SETJMP. If it exists, then we must
357 assume that this call can need any register.
359 This is done to be more conservative about how we handle setjmp.
360 We assume that they both use and set all registers. Using all
361 registers ensures that a register will not be considered dead
362 just because it crosses a setjmp call. A register should be
363 considered dead only if the setjmp call returns nonzero. */
364 if (find_reg_note (x, REG_SETJMP, NULL))
365 SET_HARD_REG_SET (res->regs);
368 rtx link;
370 for (link = CALL_INSN_FUNCTION_USAGE (x);
371 link;
372 link = XEXP (link, 1))
373 if (GET_CODE (XEXP (link, 0)) == USE)
375 for (i = 1; i < seq_size; i++)
377 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
378 if (GET_CODE (slot_pat) == SET
379 && rtx_equal_p (SET_DEST (slot_pat),
380 XEXP (XEXP (link, 0), 0)))
381 break;
383 if (i >= seq_size)
384 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
385 res, 0);
390 /* ... fall through to other INSN processing ... */
392 case INSN:
393 case JUMP_INSN:
395 #ifdef INSN_REFERENCES_ARE_DELAYED
396 if (! include_delayed_effects
397 && INSN_REFERENCES_ARE_DELAYED (x))
398 return;
399 #endif
401 /* No special processing, just speed up. */
402 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
403 return;
405 default:
406 break;
409 /* Process each sub-expression and flag what it needs. */
410 format_ptr = GET_RTX_FORMAT (code);
411 for (i = 0; i < GET_RTX_LENGTH (code); i++)
412 switch (*format_ptr++)
414 case 'e':
415 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
416 break;
418 case 'E':
419 for (j = 0; j < XVECLEN (x, i); j++)
420 mark_referenced_resources (XVECEXP (x, i, j), res,
421 include_delayed_effects);
422 break;
426 /* A subroutine of mark_target_live_regs. Search forward from TARGET
427 looking for registers that are set before they are used. These are dead.
428 Stop after passing a few conditional jumps, and/or a small
429 number of unconditional branches. */
431 static rtx
432 find_dead_or_set_registers (rtx target, struct resources *res,
433 rtx *jump_target, int jump_count,
434 struct resources set, struct resources needed)
436 HARD_REG_SET scratch;
437 rtx insn, next;
438 rtx jump_insn = 0;
439 int i;
441 for (insn = target; insn; insn = next)
443 rtx this_jump_insn = insn;
445 next = NEXT_INSN (insn);
447 /* If this instruction can throw an exception, then we don't
448 know where we might end up next. That means that we have to
449 assume that whatever we have already marked as live really is
450 live. */
451 if (can_throw_internal (insn))
452 break;
454 switch (GET_CODE (insn))
456 case CODE_LABEL:
457 /* After a label, any pending dead registers that weren't yet
458 used can be made dead. */
459 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
460 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
461 CLEAR_HARD_REG_SET (pending_dead_regs);
463 continue;
465 case BARRIER:
466 case NOTE:
467 continue;
469 case INSN:
470 if (GET_CODE (PATTERN (insn)) == USE)
472 /* If INSN is a USE made by update_block, we care about the
473 underlying insn. Any registers set by the underlying insn
474 are live since the insn is being done somewhere else. */
475 if (INSN_P (XEXP (PATTERN (insn), 0)))
476 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
477 MARK_SRC_DEST_CALL);
479 /* All other USE insns are to be ignored. */
480 continue;
482 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
483 continue;
484 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
486 /* An unconditional jump can be used to fill the delay slot
487 of a call, so search for a JUMP_INSN in any position. */
488 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
490 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
491 if (JUMP_P (this_jump_insn))
492 break;
496 default:
497 break;
500 if (JUMP_P (this_jump_insn))
502 if (jump_count++ < 10)
504 if (any_uncondjump_p (this_jump_insn)
505 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
507 next = JUMP_LABEL (this_jump_insn);
508 if (jump_insn == 0)
510 jump_insn = insn;
511 if (jump_target)
512 *jump_target = JUMP_LABEL (this_jump_insn);
515 else if (any_condjump_p (this_jump_insn))
517 struct resources target_set, target_res;
518 struct resources fallthrough_res;
520 /* We can handle conditional branches here by following
521 both paths, and then IOR the results of the two paths
522 together, which will give us registers that are dead
523 on both paths. Since this is expensive, we give it
524 a much higher cost than unconditional branches. The
525 cost was chosen so that we will follow at most 1
526 conditional branch. */
528 jump_count += 4;
529 if (jump_count >= 10)
530 break;
532 mark_referenced_resources (insn, &needed, 1);
534 /* For an annulled branch, mark_set_resources ignores slots
535 filled by instructions from the target. This is correct
536 if the branch is not taken. Since we are following both
537 paths from the branch, we must also compute correct info
538 if the branch is taken. We do this by inverting all of
539 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
540 and then inverting the INSN_FROM_TARGET_P bits again. */
542 if (GET_CODE (PATTERN (insn)) == SEQUENCE
543 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
545 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
549 target_set = set;
550 mark_set_resources (insn, &target_set, 0,
551 MARK_SRC_DEST_CALL);
553 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
554 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
555 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
557 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
559 else
561 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
562 target_set = set;
565 target_res = *res;
566 COPY_HARD_REG_SET (scratch, target_set.regs);
567 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
568 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
570 fallthrough_res = *res;
571 COPY_HARD_REG_SET (scratch, set.regs);
572 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
573 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
575 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
576 &target_res, 0, jump_count,
577 target_set, needed);
578 find_dead_or_set_registers (next,
579 &fallthrough_res, 0, jump_count,
580 set, needed);
581 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
582 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
583 break;
585 else
586 break;
588 else
590 /* Don't try this optimization if we expired our jump count
591 above, since that would mean there may be an infinite loop
592 in the function being compiled. */
593 jump_insn = 0;
594 break;
598 mark_referenced_resources (insn, &needed, 1);
599 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
601 COPY_HARD_REG_SET (scratch, set.regs);
602 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
603 AND_COMPL_HARD_REG_SET (res->regs, scratch);
606 return jump_insn;
609 /* Given X, a part of an insn, and a pointer to a `struct resource',
610 RES, indicate which resources are modified by the insn. If
611 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
612 set by the called routine.
614 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
615 objects are being referenced instead of set.
617 We never mark the insn as modifying the condition code unless it explicitly
618 SETs CC0 even though this is not totally correct. The reason for this is
619 that we require a SET of CC0 to immediately precede the reference to CC0.
620 So if some other insn sets CC0 as a side-effect, we know it cannot affect
621 our computation and thus may be placed in a delay slot. */
623 void
624 mark_set_resources (rtx x, struct resources *res, int in_dest,
625 enum mark_resource_type mark_type)
627 enum rtx_code code;
628 int i, j;
629 unsigned int r;
630 const char *format_ptr;
632 restart:
634 code = GET_CODE (x);
636 switch (code)
638 case NOTE:
639 case BARRIER:
640 case CODE_LABEL:
641 case USE:
642 case CONST_INT:
643 case CONST_DOUBLE:
644 case CONST_VECTOR:
645 case LABEL_REF:
646 case SYMBOL_REF:
647 case CONST:
648 case PC:
649 /* These don't set any resources. */
650 return;
652 case CC0:
653 if (in_dest)
654 res->cc = 1;
655 return;
657 case CALL_INSN:
658 /* Called routine modifies the condition code, memory, any registers
659 that aren't saved across calls, global registers and anything
660 explicitly CLOBBERed immediately after the CALL_INSN. */
662 if (mark_type == MARK_SRC_DEST_CALL)
664 rtx link;
666 res->cc = res->memory = 1;
668 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
670 for (link = CALL_INSN_FUNCTION_USAGE (x);
671 link; link = XEXP (link, 1))
672 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
673 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
674 MARK_SRC_DEST);
676 /* Check for a REG_SETJMP. If it exists, then we must
677 assume that this call can clobber any register. */
678 if (find_reg_note (x, REG_SETJMP, NULL))
679 SET_HARD_REG_SET (res->regs);
682 /* ... and also what its RTL says it modifies, if anything. */
684 case JUMP_INSN:
685 case INSN:
687 /* An insn consisting of just a CLOBBER (or USE) is just for flow
688 and doesn't actually do anything, so we ignore it. */
690 #ifdef INSN_SETS_ARE_DELAYED
691 if (mark_type != MARK_SRC_DEST_CALL
692 && INSN_SETS_ARE_DELAYED (x))
693 return;
694 #endif
696 x = PATTERN (x);
697 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
698 goto restart;
699 return;
701 case SET:
702 /* If the source of a SET is a CALL, this is actually done by
703 the called routine. So only include it if we are to include the
704 effects of the calling routine. */
706 mark_set_resources (SET_DEST (x), res,
707 (mark_type == MARK_SRC_DEST_CALL
708 || GET_CODE (SET_SRC (x)) != CALL),
709 mark_type);
711 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
712 return;
714 case CLOBBER:
715 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
716 return;
718 case SEQUENCE:
719 for (i = 0; i < XVECLEN (x, 0); i++)
720 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
721 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
722 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
723 return;
725 case POST_INC:
726 case PRE_INC:
727 case POST_DEC:
728 case PRE_DEC:
729 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
730 return;
732 case PRE_MODIFY:
733 case POST_MODIFY:
734 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
735 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
736 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
737 return;
739 case SIGN_EXTRACT:
740 case ZERO_EXTRACT:
741 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
742 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
743 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
744 return;
746 case MEM:
747 if (in_dest)
749 res->memory = 1;
750 res->unch_memory |= MEM_READONLY_P (x);
751 res->volatil |= MEM_VOLATILE_P (x);
754 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
755 return;
757 case SUBREG:
758 if (in_dest)
760 if (!REG_P (SUBREG_REG (x)))
761 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
762 else
764 unsigned int regno = subreg_regno (x);
765 unsigned int last_regno
766 = regno + hard_regno_nregs[regno][GET_MODE (x)];
768 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
769 for (r = regno; r < last_regno; r++)
770 SET_HARD_REG_BIT (res->regs, r);
773 return;
775 case REG:
776 if (in_dest)
778 unsigned int regno = REGNO (x);
779 unsigned int last_regno
780 = regno + hard_regno_nregs[regno][GET_MODE (x)];
782 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
783 for (r = regno; r < last_regno; r++)
784 SET_HARD_REG_BIT (res->regs, r);
786 return;
788 case UNSPEC_VOLATILE:
789 case ASM_INPUT:
790 /* Traditional asm's are always volatile. */
791 res->volatil = 1;
792 return;
794 case TRAP_IF:
795 res->volatil = 1;
796 break;
798 case ASM_OPERANDS:
799 res->volatil |= MEM_VOLATILE_P (x);
801 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
802 We can not just fall through here since then we would be confused
803 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
804 traditional asms unlike their normal usage. */
806 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
807 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
808 MARK_SRC_DEST);
809 return;
811 default:
812 break;
815 /* Process each sub-expression and flag what it needs. */
816 format_ptr = GET_RTX_FORMAT (code);
817 for (i = 0; i < GET_RTX_LENGTH (code); i++)
818 switch (*format_ptr++)
820 case 'e':
821 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
822 break;
824 case 'E':
825 for (j = 0; j < XVECLEN (x, i); j++)
826 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
827 break;
831 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
833 static bool
834 return_insn_p (rtx insn)
836 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
837 return true;
839 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
840 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
842 return false;
845 /* Set the resources that are live at TARGET.
847 If TARGET is zero, we refer to the end of the current function and can
848 return our precomputed value.
850 Otherwise, we try to find out what is live by consulting the basic block
851 information. This is tricky, because we must consider the actions of
852 reload and jump optimization, which occur after the basic block information
853 has been computed.
855 Accordingly, we proceed as follows::
857 We find the previous BARRIER and look at all immediately following labels
858 (with no intervening active insns) to see if any of them start a basic
859 block. If we hit the start of the function first, we use block 0.
861 Once we have found a basic block and a corresponding first insns, we can
862 accurately compute the live status from basic_block_live_regs and
863 reg_renumber. (By starting at a label following a BARRIER, we are immune
864 to actions taken by reload and jump.) Then we scan all insns between
865 that point and our target. For each CLOBBER (or for call-clobbered regs
866 when we pass a CALL_INSN), mark the appropriate registers are dead. For
867 a SET, mark them as live.
869 We have to be careful when using REG_DEAD notes because they are not
870 updated by such things as find_equiv_reg. So keep track of registers
871 marked as dead that haven't been assigned to, and mark them dead at the
872 next CODE_LABEL since reload and jump won't propagate values across labels.
874 If we cannot find the start of a basic block (should be a very rare
875 case, if it can happen at all), mark everything as potentially live.
877 Next, scan forward from TARGET looking for things set or clobbered
878 before they are used. These are not live.
880 Because we can be called many times on the same target, save our results
881 in a hash table indexed by INSN_UID. This is only done if the function
882 init_resource_info () was invoked before we are called. */
884 void
885 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
887 int b = -1;
888 unsigned int i;
889 struct target_info *tinfo = NULL;
890 rtx insn;
891 rtx jump_insn = 0;
892 rtx jump_target;
893 HARD_REG_SET scratch;
894 struct resources set, needed;
896 /* Handle end of function. */
897 if (target == 0)
899 *res = end_of_function_needs;
900 return;
903 /* Handle return insn. */
904 else if (return_insn_p (target))
906 *res = end_of_function_needs;
907 mark_referenced_resources (target, res, 0);
908 return;
911 /* We have to assume memory is needed, but the CC isn't. */
912 res->memory = 1;
913 res->volatil = res->unch_memory = 0;
914 res->cc = 0;
916 /* See if we have computed this value already. */
917 if (target_hash_table != NULL)
919 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
920 tinfo; tinfo = tinfo->next)
921 if (tinfo->uid == INSN_UID (target))
922 break;
924 /* Start by getting the basic block number. If we have saved
925 information, we can get it from there unless the insn at the
926 start of the basic block has been deleted. */
927 if (tinfo && tinfo->block != -1
928 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
929 b = tinfo->block;
932 if (b == -1)
933 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
935 if (target_hash_table != NULL)
937 if (tinfo)
939 /* If the information is up-to-date, use it. Otherwise, we will
940 update it below. */
941 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
943 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
944 return;
947 else
949 /* Allocate a place to put our results and chain it into the
950 hash table. */
951 tinfo = xmalloc (sizeof (struct target_info));
952 tinfo->uid = INSN_UID (target);
953 tinfo->block = b;
954 tinfo->next
955 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
956 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
960 CLEAR_HARD_REG_SET (pending_dead_regs);
962 /* If we found a basic block, get the live registers from it and update
963 them with anything set or killed between its start and the insn before
964 TARGET. Otherwise, we must assume everything is live. */
965 if (b != -1)
967 regset regs_live = BASIC_BLOCK (b)->il.rtl->global_live_at_start;
968 unsigned int j;
969 unsigned int regno;
970 rtx start_insn, stop_insn;
971 reg_set_iterator rsi;
973 /* Compute hard regs live at start of block -- this is the real hard regs
974 marked live, plus live pseudo regs that have been renumbered to
975 hard regs. */
977 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
979 EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
981 if (reg_renumber[i] >= 0)
983 regno = reg_renumber[i];
984 for (j = regno;
985 j < regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
986 j++)
987 SET_HARD_REG_BIT (current_live_regs, j);
991 /* Get starting and ending insn, handling the case where each might
992 be a SEQUENCE. */
993 start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
994 stop_insn = target;
996 if (NONJUMP_INSN_P (start_insn)
997 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
998 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
1000 if (NONJUMP_INSN_P (stop_insn)
1001 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1002 stop_insn = next_insn (PREV_INSN (stop_insn));
1004 for (insn = start_insn; insn != stop_insn;
1005 insn = next_insn_no_annul (insn))
1007 rtx link;
1008 rtx real_insn = insn;
1009 enum rtx_code code = GET_CODE (insn);
1011 /* If this insn is from the target of a branch, it isn't going to
1012 be used in the sequel. If it is used in both cases, this
1013 test will not be true. */
1014 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1015 && INSN_FROM_TARGET_P (insn))
1016 continue;
1018 /* If this insn is a USE made by update_block, we care about the
1019 underlying insn. */
1020 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1021 && INSN_P (XEXP (PATTERN (insn), 0)))
1022 real_insn = XEXP (PATTERN (insn), 0);
1024 if (CALL_P (real_insn))
1026 /* CALL clobbers all call-used regs that aren't fixed except
1027 sp, ap, and fp. Do this before setting the result of the
1028 call live. */
1029 AND_COMPL_HARD_REG_SET (current_live_regs,
1030 regs_invalidated_by_call);
1032 /* A CALL_INSN sets any global register live, since it may
1033 have been modified by the call. */
1034 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1035 if (global_regs[i])
1036 SET_HARD_REG_BIT (current_live_regs, i);
1039 /* Mark anything killed in an insn to be deadened at the next
1040 label. Ignore USE insns; the only REG_DEAD notes will be for
1041 parameters. But they might be early. A CALL_INSN will usually
1042 clobber registers used for parameters. It isn't worth bothering
1043 with the unlikely case when it won't. */
1044 if ((NONJUMP_INSN_P (real_insn)
1045 && GET_CODE (PATTERN (real_insn)) != USE
1046 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1047 || JUMP_P (real_insn)
1048 || CALL_P (real_insn))
1050 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1051 if (REG_NOTE_KIND (link) == REG_DEAD
1052 && REG_P (XEXP (link, 0))
1053 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1055 unsigned int first_regno = REGNO (XEXP (link, 0));
1056 unsigned int last_regno
1057 = (first_regno
1058 + hard_regno_nregs[first_regno]
1059 [GET_MODE (XEXP (link, 0))]);
1061 for (i = first_regno; i < last_regno; i++)
1062 SET_HARD_REG_BIT (pending_dead_regs, i);
1065 note_stores (PATTERN (real_insn), update_live_status, NULL);
1067 /* If any registers were unused after this insn, kill them.
1068 These notes will always be accurate. */
1069 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1070 if (REG_NOTE_KIND (link) == REG_UNUSED
1071 && REG_P (XEXP (link, 0))
1072 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1074 unsigned int first_regno = REGNO (XEXP (link, 0));
1075 unsigned int last_regno
1076 = (first_regno
1077 + hard_regno_nregs[first_regno]
1078 [GET_MODE (XEXP (link, 0))]);
1080 for (i = first_regno; i < last_regno; i++)
1081 CLEAR_HARD_REG_BIT (current_live_regs, i);
1085 else if (LABEL_P (real_insn))
1087 /* A label clobbers the pending dead registers since neither
1088 reload nor jump will propagate a value across a label. */
1089 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1090 CLEAR_HARD_REG_SET (pending_dead_regs);
1093 /* The beginning of the epilogue corresponds to the end of the
1094 RTL chain when there are no epilogue insns. Certain resources
1095 are implicitly required at that point. */
1096 else if (NOTE_P (real_insn)
1097 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1098 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1101 COPY_HARD_REG_SET (res->regs, current_live_regs);
1102 if (tinfo != NULL)
1104 tinfo->block = b;
1105 tinfo->bb_tick = bb_ticks[b];
1108 else
1109 /* We didn't find the start of a basic block. Assume everything
1110 in use. This should happen only extremely rarely. */
1111 SET_HARD_REG_SET (res->regs);
1113 CLEAR_RESOURCE (&set);
1114 CLEAR_RESOURCE (&needed);
1116 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1117 set, needed);
1119 /* If we hit an unconditional branch, we have another way of finding out
1120 what is live: we can see what is live at the branch target and include
1121 anything used but not set before the branch. We add the live
1122 resources found using the test below to those found until now. */
1124 if (jump_insn)
1126 struct resources new_resources;
1127 rtx stop_insn = next_active_insn (jump_insn);
1129 mark_target_live_regs (insns, next_active_insn (jump_target),
1130 &new_resources);
1131 CLEAR_RESOURCE (&set);
1132 CLEAR_RESOURCE (&needed);
1134 /* Include JUMP_INSN in the needed registers. */
1135 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1137 mark_referenced_resources (insn, &needed, 1);
1139 COPY_HARD_REG_SET (scratch, needed.regs);
1140 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1141 IOR_HARD_REG_SET (new_resources.regs, scratch);
1143 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1146 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1149 if (tinfo != NULL)
1151 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1155 /* Initialize the resources required by mark_target_live_regs ().
1156 This should be invoked before the first call to mark_target_live_regs. */
1158 void
1159 init_resource_info (rtx epilogue_insn)
1161 int i;
1163 /* Indicate what resources are required to be valid at the end of the current
1164 function. The condition code never is and memory always is. If the
1165 frame pointer is needed, it is and so is the stack pointer unless
1166 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1167 stack pointer is. Registers used to return the function value are
1168 needed. Registers holding global variables are needed. */
1170 end_of_function_needs.cc = 0;
1171 end_of_function_needs.memory = 1;
1172 end_of_function_needs.unch_memory = 0;
1173 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1175 if (frame_pointer_needed)
1177 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1178 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1179 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1180 #endif
1181 if (! EXIT_IGNORE_STACK
1182 || current_function_sp_is_unchanging)
1183 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1185 else
1186 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1188 if (current_function_return_rtx != 0)
1189 mark_referenced_resources (current_function_return_rtx,
1190 &end_of_function_needs, 1);
1192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193 if (global_regs[i]
1194 #ifdef EPILOGUE_USES
1195 || EPILOGUE_USES (i)
1196 #endif
1198 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1200 /* The registers required to be live at the end of the function are
1201 represented in the flow information as being dead just prior to
1202 reaching the end of the function. For example, the return of a value
1203 might be represented by a USE of the return register immediately
1204 followed by an unconditional jump to the return label where the
1205 return label is the end of the RTL chain. The end of the RTL chain
1206 is then taken to mean that the return register is live.
1208 This sequence is no longer maintained when epilogue instructions are
1209 added to the RTL chain. To reconstruct the original meaning, the
1210 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1211 point where these registers become live (start_of_epilogue_needs).
1212 If epilogue instructions are present, the registers set by those
1213 instructions won't have been processed by flow. Thus, those
1214 registers are additionally required at the end of the RTL chain
1215 (end_of_function_needs). */
1217 start_of_epilogue_needs = end_of_function_needs;
1219 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1221 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1222 MARK_SRC_DEST_CALL);
1223 if (return_insn_p (epilogue_insn))
1224 break;
1227 /* Allocate and initialize the tables used by mark_target_live_regs. */
1228 target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1229 bb_ticks = xcalloc (last_basic_block, sizeof (int));
1232 /* Free up the resources allocated to mark_target_live_regs (). This
1233 should be invoked after the last call to mark_target_live_regs (). */
1235 void
1236 free_resource_info (void)
1238 if (target_hash_table != NULL)
1240 int i;
1242 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1244 struct target_info *ti = target_hash_table[i];
1246 while (ti)
1248 struct target_info *next = ti->next;
1249 free (ti);
1250 ti = next;
1254 free (target_hash_table);
1255 target_hash_table = NULL;
1258 if (bb_ticks != NULL)
1260 free (bb_ticks);
1261 bb_ticks = NULL;
1265 /* Clear any hashed information that we have stored for INSN. */
1267 void
1268 clear_hashed_info_for_insn (rtx insn)
1270 struct target_info *tinfo;
1272 if (target_hash_table != NULL)
1274 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1275 tinfo; tinfo = tinfo->next)
1276 if (tinfo->uid == INSN_UID (insn))
1277 break;
1279 if (tinfo)
1280 tinfo->block = -1;
1284 /* Increment the tick count for the basic block that contains INSN. */
1286 void
1287 incr_ticks_for_insn (rtx insn)
1289 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1291 if (b != -1)
1292 bb_ticks[b]++;
1295 /* Add TRIAL to the set of resources used at the end of the current
1296 function. */
1297 void
1298 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1300 mark_referenced_resources (trial, &end_of_function_needs,
1301 include_delayed_effects);