Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-chrec.c
bloba0798b0fcc133ad4f532298a622144f7c9f0ae22
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "varray.h"
36 #include "cfgloop.h"
37 #include "tree-flow.h"
38 #include "tree-chrec.h"
39 #include "tree-pass.h"
40 #include "params.h"
41 #include "tree-scalar-evolution.h"
45 /* Extended folder for chrecs. */
47 /* Determines whether CST is not a constant evolution. */
49 static inline bool
50 is_not_constant_evolution (tree cst)
52 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
55 /* Fold CODE for a polynomial function and a constant. */
57 static inline tree
58 chrec_fold_poly_cst (enum tree_code code,
59 tree type,
60 tree poly,
61 tree cst)
63 gcc_assert (poly);
64 gcc_assert (cst);
65 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
66 gcc_assert (!is_not_constant_evolution (cst));
68 switch (code)
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88 default:
89 return chrec_dont_know;
93 /* Fold the addition of two polynomial functions. */
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
101 tree left, right;
103 gcc_assert (poly0);
104 gcc_assert (poly1);
105 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
106 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
109 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
110 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
111 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
112 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
114 if (code == PLUS_EXPR)
115 return build_polynomial_chrec
116 (CHREC_VARIABLE (poly1),
117 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
118 CHREC_RIGHT (poly1));
119 else
120 return build_polynomial_chrec
121 (CHREC_VARIABLE (poly1),
122 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
123 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
124 SCALAR_FLOAT_TYPE_P (type)
125 ? build_real (type, dconstm1)
126 : build_int_cst_type (type, -1)));
129 if (CHREC_VARIABLE (poly0) > CHREC_VARIABLE (poly1))
131 if (code == PLUS_EXPR)
132 return build_polynomial_chrec
133 (CHREC_VARIABLE (poly0),
134 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
135 CHREC_RIGHT (poly0));
136 else
137 return build_polynomial_chrec
138 (CHREC_VARIABLE (poly0),
139 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
140 CHREC_RIGHT (poly0));
143 if (code == PLUS_EXPR)
145 left = chrec_fold_plus
146 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
147 right = chrec_fold_plus
148 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
150 else
152 left = chrec_fold_minus
153 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
154 right = chrec_fold_minus
155 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
158 if (chrec_zerop (right))
159 return left;
160 else
161 return build_polynomial_chrec
162 (CHREC_VARIABLE (poly0), left, right);
167 /* Fold the multiplication of two polynomial functions. */
169 static inline tree
170 chrec_fold_multiply_poly_poly (tree type,
171 tree poly0,
172 tree poly1)
174 tree t0, t1, t2;
175 int var;
177 gcc_assert (poly0);
178 gcc_assert (poly1);
179 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
180 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
182 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
183 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
184 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
185 if (CHREC_VARIABLE (poly0) < CHREC_VARIABLE (poly1))
186 /* poly0 is a constant wrt. poly1. */
187 return build_polynomial_chrec
188 (CHREC_VARIABLE (poly1),
189 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
190 CHREC_RIGHT (poly1));
192 if (CHREC_VARIABLE (poly1) < CHREC_VARIABLE (poly0))
193 /* poly1 is a constant wrt. poly0. */
194 return build_polynomial_chrec
195 (CHREC_VARIABLE (poly0),
196 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
197 CHREC_RIGHT (poly0));
199 /* poly0 and poly1 are two polynomials in the same variable,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
202 /* "a*c". */
203 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
205 /* "a*d + b*c + b*d". */
206 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
207 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
208 CHREC_RIGHT (poly0),
209 CHREC_LEFT (poly1)));
210 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
211 CHREC_RIGHT (poly0),
212 CHREC_RIGHT (poly1)));
213 /* "2*b*d". */
214 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
215 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
216 ? build_real (type, dconst2)
217 : build_int_cst_type (type, 2), t2);
219 var = CHREC_VARIABLE (poly0);
220 return build_polynomial_chrec (var, t0,
221 build_polynomial_chrec (var, t1, t2));
224 /* When the operands are automatically_generated_chrec_p, the fold has
225 to respect the semantics of the operands. */
227 static inline tree
228 chrec_fold_automatically_generated_operands (tree op0,
229 tree op1)
231 if (op0 == chrec_dont_know
232 || op1 == chrec_dont_know)
233 return chrec_dont_know;
235 if (op0 == chrec_known
236 || op1 == chrec_known)
237 return chrec_known;
239 if (op0 == chrec_not_analyzed_yet
240 || op1 == chrec_not_analyzed_yet)
241 return chrec_not_analyzed_yet;
243 /* The default case produces a safe result. */
244 return chrec_dont_know;
247 /* Fold the addition of two chrecs. */
249 static tree
250 chrec_fold_plus_1 (enum tree_code code,
251 tree type,
252 tree op0,
253 tree op1)
255 if (automatically_generated_chrec_p (op0)
256 || automatically_generated_chrec_p (op1))
257 return chrec_fold_automatically_generated_operands (op0, op1);
259 switch (TREE_CODE (op0))
261 case POLYNOMIAL_CHREC:
262 switch (TREE_CODE (op1))
264 case POLYNOMIAL_CHREC:
265 return chrec_fold_plus_poly_poly (code, type, op0, op1);
267 default:
268 if (code == PLUS_EXPR)
269 return build_polynomial_chrec
270 (CHREC_VARIABLE (op0),
271 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
272 CHREC_RIGHT (op0));
273 else
274 return build_polynomial_chrec
275 (CHREC_VARIABLE (op0),
276 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
277 CHREC_RIGHT (op0));
280 default:
281 switch (TREE_CODE (op1))
283 case POLYNOMIAL_CHREC:
284 if (code == PLUS_EXPR)
285 return build_polynomial_chrec
286 (CHREC_VARIABLE (op1),
287 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
288 CHREC_RIGHT (op1));
289 else
290 return build_polynomial_chrec
291 (CHREC_VARIABLE (op1),
292 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
293 chrec_fold_multiply (type, CHREC_RIGHT (op1),
294 SCALAR_FLOAT_TYPE_P (type)
295 ? build_real (type, dconstm1)
296 : build_int_cst_type (type, -1)));
298 default:
300 int size = 0;
301 if ((tree_contains_chrecs (op0, &size)
302 || tree_contains_chrecs (op1, &size))
303 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
304 return build2 (code, type, op0, op1);
305 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
306 return fold_build2 (code, type,
307 fold_convert (type, op0),
308 fold_convert (type, op1));
309 else
310 return chrec_dont_know;
316 /* Fold the addition of two chrecs. */
318 tree
319 chrec_fold_plus (tree type,
320 tree op0,
321 tree op1)
323 if (integer_zerop (op0))
324 return op1;
325 if (integer_zerop (op1))
326 return op0;
328 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
331 /* Fold the subtraction of two chrecs. */
333 tree
334 chrec_fold_minus (tree type,
335 tree op0,
336 tree op1)
338 if (integer_zerop (op1))
339 return op0;
341 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
344 /* Fold the multiplication of two chrecs. */
346 tree
347 chrec_fold_multiply (tree type,
348 tree op0,
349 tree op1)
351 if (automatically_generated_chrec_p (op0)
352 || automatically_generated_chrec_p (op1))
353 return chrec_fold_automatically_generated_operands (op0, op1);
355 switch (TREE_CODE (op0))
357 case POLYNOMIAL_CHREC:
358 switch (TREE_CODE (op1))
360 case POLYNOMIAL_CHREC:
361 return chrec_fold_multiply_poly_poly (type, op0, op1);
363 default:
364 if (integer_onep (op1))
365 return op0;
366 if (integer_zerop (op1))
367 return build_int_cst_type (type, 0);
369 return build_polynomial_chrec
370 (CHREC_VARIABLE (op0),
371 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
372 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
375 default:
376 if (integer_onep (op0))
377 return op1;
379 if (integer_zerop (op0))
380 return build_int_cst_type (type, 0);
382 switch (TREE_CODE (op1))
384 case POLYNOMIAL_CHREC:
385 return build_polynomial_chrec
386 (CHREC_VARIABLE (op1),
387 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
388 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
390 default:
391 if (integer_onep (op1))
392 return op0;
393 if (integer_zerop (op1))
394 return build_int_cst_type (type, 0);
395 return fold_build2 (MULT_EXPR, type, op0, op1);
402 /* Operations. */
404 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
405 calculation overflows, otherwise return C(n,k) with type TYPE. */
407 static tree
408 tree_fold_binomial (tree type, tree n, unsigned int k)
410 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
411 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
412 unsigned int i;
413 tree res;
415 /* Handle the most frequent cases. */
416 if (k == 0)
417 return build_int_cst (type, 1);
418 if (k == 1)
419 return fold_convert (type, n);
421 /* Check that k <= n. */
422 if (TREE_INT_CST_HIGH (n) == 0
423 && TREE_INT_CST_LOW (n) < k)
424 return NULL_TREE;
426 /* Numerator = n. */
427 lnum = TREE_INT_CST_LOW (n);
428 hnum = TREE_INT_CST_HIGH (n);
430 /* Denominator = 2. */
431 ldenom = 2;
432 hdenom = 0;
434 /* Index = Numerator-1. */
435 if (lnum == 0)
437 hidx = hnum - 1;
438 lidx = ~ (unsigned HOST_WIDE_INT) 0;
440 else
442 hidx = hnum;
443 lidx = lnum - 1;
446 /* Numerator = Numerator*Index = n*(n-1). */
447 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
448 return NULL_TREE;
450 for (i = 3; i <= k; i++)
452 /* Index--. */
453 if (lidx == 0)
455 hidx--;
456 lidx = ~ (unsigned HOST_WIDE_INT) 0;
458 else
459 lidx--;
461 /* Numerator *= Index. */
462 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
463 return NULL_TREE;
465 /* Denominator *= i. */
466 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
469 /* Result = Numerator / Denominator. */
470 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
471 &lres, &hres, &ldum, &hdum);
473 res = build_int_cst_wide (type, lres, hres);
474 return int_fits_type_p (res, type) ? res : NULL_TREE;
477 /* Helper function. Use the Newton's interpolating formula for
478 evaluating the value of the evolution function. */
480 static tree
481 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
483 tree arg0, arg1, binomial_n_k;
484 tree type = TREE_TYPE (chrec);
486 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
487 && CHREC_VARIABLE (chrec) > var)
488 chrec = CHREC_LEFT (chrec);
490 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
491 && CHREC_VARIABLE (chrec) == var)
493 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
494 if (arg0 == chrec_dont_know)
495 return chrec_dont_know;
496 binomial_n_k = tree_fold_binomial (type, n, k);
497 if (!binomial_n_k)
498 return chrec_dont_know;
499 arg1 = fold_build2 (MULT_EXPR, type,
500 CHREC_LEFT (chrec), binomial_n_k);
501 return chrec_fold_plus (type, arg0, arg1);
504 binomial_n_k = tree_fold_binomial (type, n, k);
505 if (!binomial_n_k)
506 return chrec_dont_know;
508 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
511 /* Evaluates "CHREC (X)" when the varying variable is VAR.
512 Example: Given the following parameters,
514 var = 1
515 chrec = {3, +, 4}_1
516 x = 10
518 The result is given by the Newton's interpolating formula:
519 3 * \binom{10}{0} + 4 * \binom{10}{1}.
522 tree
523 chrec_apply (unsigned var,
524 tree chrec,
525 tree x)
527 tree type = chrec_type (chrec);
528 tree res = chrec_dont_know;
530 if (automatically_generated_chrec_p (chrec)
531 || automatically_generated_chrec_p (x)
533 /* When the symbols are defined in an outer loop, it is possible
534 to symbolically compute the apply, since the symbols are
535 constants with respect to the varying loop. */
536 || chrec_contains_symbols_defined_in_loop (chrec, var))
537 return chrec_dont_know;
539 if (dump_file && (dump_flags & TDF_DETAILS))
540 fprintf (dump_file, "(chrec_apply \n");
542 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
543 x = build_real_from_int_cst (type, x);
545 if (evolution_function_is_affine_p (chrec))
547 /* "{a, +, b} (x)" -> "a + b*x". */
548 x = chrec_convert (type, x, NULL_TREE);
549 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
550 if (!integer_zerop (CHREC_LEFT (chrec)))
551 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
554 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
555 res = chrec;
557 else if (TREE_CODE (x) == INTEGER_CST
558 && tree_int_cst_sgn (x) == 1)
559 /* testsuite/.../ssa-chrec-38.c. */
560 res = chrec_evaluate (var, chrec, x, 0);
561 else
562 res = chrec_dont_know;
564 if (dump_file && (dump_flags & TDF_DETAILS))
566 fprintf (dump_file, " (varying_loop = %d\n", var);
567 fprintf (dump_file, ")\n (chrec = ");
568 print_generic_expr (dump_file, chrec, 0);
569 fprintf (dump_file, ")\n (x = ");
570 print_generic_expr (dump_file, x, 0);
571 fprintf (dump_file, ")\n (res = ");
572 print_generic_expr (dump_file, res, 0);
573 fprintf (dump_file, "))\n");
576 return res;
579 /* Replaces the initial condition in CHREC with INIT_COND. */
581 tree
582 chrec_replace_initial_condition (tree chrec,
583 tree init_cond)
585 if (automatically_generated_chrec_p (chrec))
586 return chrec;
588 switch (TREE_CODE (chrec))
590 case POLYNOMIAL_CHREC:
591 return build_polynomial_chrec
592 (CHREC_VARIABLE (chrec),
593 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
594 CHREC_RIGHT (chrec));
596 default:
597 return init_cond;
601 /* Returns the initial condition of a given CHREC. */
603 tree
604 initial_condition (tree chrec)
606 if (automatically_generated_chrec_p (chrec))
607 return chrec;
609 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
610 return initial_condition (CHREC_LEFT (chrec));
611 else
612 return chrec;
615 /* Returns a univariate function that represents the evolution in
616 LOOP_NUM. Mask the evolution of any other loop. */
618 tree
619 hide_evolution_in_other_loops_than_loop (tree chrec,
620 unsigned loop_num)
622 if (automatically_generated_chrec_p (chrec))
623 return chrec;
625 switch (TREE_CODE (chrec))
627 case POLYNOMIAL_CHREC:
628 if (CHREC_VARIABLE (chrec) == loop_num)
629 return build_polynomial_chrec
630 (loop_num,
631 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
632 loop_num),
633 CHREC_RIGHT (chrec));
635 else if (CHREC_VARIABLE (chrec) < loop_num)
636 /* There is no evolution in this loop. */
637 return initial_condition (chrec);
639 else
640 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
641 loop_num);
643 default:
644 return chrec;
648 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
649 true, otherwise returns the initial condition in LOOP_NUM. */
651 static tree
652 chrec_component_in_loop_num (tree chrec,
653 unsigned loop_num,
654 bool right)
656 tree component;
658 if (automatically_generated_chrec_p (chrec))
659 return chrec;
661 switch (TREE_CODE (chrec))
663 case POLYNOMIAL_CHREC:
664 if (CHREC_VARIABLE (chrec) == loop_num)
666 if (right)
667 component = CHREC_RIGHT (chrec);
668 else
669 component = CHREC_LEFT (chrec);
671 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
672 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
673 return component;
675 else
676 return build_polynomial_chrec
677 (loop_num,
678 chrec_component_in_loop_num (CHREC_LEFT (chrec),
679 loop_num,
680 right),
681 component);
684 else if (CHREC_VARIABLE (chrec) < loop_num)
685 /* There is no evolution part in this loop. */
686 return NULL_TREE;
688 else
689 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
690 loop_num,
691 right);
693 default:
694 if (right)
695 return NULL_TREE;
696 else
697 return chrec;
701 /* Returns the evolution part in LOOP_NUM. Example: the call
702 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
703 {1, +, 2}_1 */
705 tree
706 evolution_part_in_loop_num (tree chrec,
707 unsigned loop_num)
709 return chrec_component_in_loop_num (chrec, loop_num, true);
712 /* Returns the initial condition in LOOP_NUM. Example: the call
713 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
714 {0, +, 1}_1 */
716 tree
717 initial_condition_in_loop_num (tree chrec,
718 unsigned loop_num)
720 return chrec_component_in_loop_num (chrec, loop_num, false);
723 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
724 This function is essentially used for setting the evolution to
725 chrec_dont_know, for example after having determined that it is
726 impossible to say how many times a loop will execute. */
728 tree
729 reset_evolution_in_loop (unsigned loop_num,
730 tree chrec,
731 tree new_evol)
733 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
734 && CHREC_VARIABLE (chrec) > loop_num)
736 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
737 new_evol);
738 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
739 new_evol);
740 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
741 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
742 left, right);
745 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
746 && CHREC_VARIABLE (chrec) == loop_num)
747 chrec = CHREC_LEFT (chrec);
749 return build_polynomial_chrec (loop_num, chrec, new_evol);
752 /* Merges two evolution functions that were found by following two
753 alternate paths of a conditional expression. */
755 tree
756 chrec_merge (tree chrec1,
757 tree chrec2)
759 if (chrec1 == chrec_dont_know
760 || chrec2 == chrec_dont_know)
761 return chrec_dont_know;
763 if (chrec1 == chrec_known
764 || chrec2 == chrec_known)
765 return chrec_known;
767 if (chrec1 == chrec_not_analyzed_yet)
768 return chrec2;
769 if (chrec2 == chrec_not_analyzed_yet)
770 return chrec1;
772 if (operand_equal_p (chrec1, chrec2, 0))
773 return chrec1;
775 return chrec_dont_know;
780 /* Observers. */
782 /* Helper function for is_multivariate_chrec. */
784 static bool
785 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
787 if (chrec == NULL_TREE)
788 return false;
790 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
792 if (CHREC_VARIABLE (chrec) != rec_var)
793 return true;
794 else
795 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
796 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
798 else
799 return false;
802 /* Determine whether the given chrec is multivariate or not. */
804 bool
805 is_multivariate_chrec (tree chrec)
807 if (chrec == NULL_TREE)
808 return false;
810 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
811 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
812 CHREC_VARIABLE (chrec))
813 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
814 CHREC_VARIABLE (chrec)));
815 else
816 return false;
819 /* Determines whether the chrec contains symbolic names or not. */
821 bool
822 chrec_contains_symbols (tree chrec)
824 if (chrec == NULL_TREE)
825 return false;
827 if (TREE_CODE (chrec) == SSA_NAME
828 || TREE_CODE (chrec) == VAR_DECL
829 || TREE_CODE (chrec) == PARM_DECL
830 || TREE_CODE (chrec) == FUNCTION_DECL
831 || TREE_CODE (chrec) == LABEL_DECL
832 || TREE_CODE (chrec) == RESULT_DECL
833 || TREE_CODE (chrec) == FIELD_DECL)
834 return true;
836 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
838 case 3:
839 if (chrec_contains_symbols (TREE_OPERAND (chrec, 2)))
840 return true;
842 case 2:
843 if (chrec_contains_symbols (TREE_OPERAND (chrec, 1)))
844 return true;
846 case 1:
847 if (chrec_contains_symbols (TREE_OPERAND (chrec, 0)))
848 return true;
850 default:
851 return false;
855 /* Determines whether the chrec contains undetermined coefficients. */
857 bool
858 chrec_contains_undetermined (tree chrec)
860 if (chrec == chrec_dont_know
861 || chrec == chrec_not_analyzed_yet
862 || chrec == NULL_TREE)
863 return true;
865 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
867 case 3:
868 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 2)))
869 return true;
871 case 2:
872 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 1)))
873 return true;
875 case 1:
876 if (chrec_contains_undetermined (TREE_OPERAND (chrec, 0)))
877 return true;
879 default:
880 return false;
884 /* Determines whether the tree EXPR contains chrecs, and increment
885 SIZE if it is not a NULL pointer by an estimation of the depth of
886 the tree. */
888 bool
889 tree_contains_chrecs (tree expr, int *size)
891 if (expr == NULL_TREE)
892 return false;
894 if (size)
895 (*size)++;
897 if (tree_is_chrec (expr))
898 return true;
900 switch (TREE_CODE_LENGTH (TREE_CODE (expr)))
902 case 3:
903 if (tree_contains_chrecs (TREE_OPERAND (expr, 2), size))
904 return true;
906 case 2:
907 if (tree_contains_chrecs (TREE_OPERAND (expr, 1), size))
908 return true;
910 case 1:
911 if (tree_contains_chrecs (TREE_OPERAND (expr, 0), size))
912 return true;
914 default:
915 return false;
919 /* Recursive helper function. */
921 static bool
922 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
924 if (evolution_function_is_constant_p (chrec))
925 return true;
927 if (TREE_CODE (chrec) == SSA_NAME
928 && expr_invariant_in_loop_p (current_loops->parray[loopnum],
929 chrec))
930 return true;
932 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
934 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
935 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
936 loopnum)
937 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
938 loopnum))
939 return false;
940 return true;
943 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
945 case 2:
946 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
947 loopnum))
948 return false;
950 case 1:
951 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
952 loopnum))
953 return false;
954 return true;
956 default:
957 return false;
960 return false;
963 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
965 bool
966 evolution_function_is_invariant_p (tree chrec, int loopnum)
968 if (evolution_function_is_constant_p (chrec))
969 return true;
971 if (current_loops != NULL)
972 return evolution_function_is_invariant_rec_p (chrec, loopnum);
974 return false;
977 /* Determine whether the given tree is an affine multivariate
978 evolution. */
980 bool
981 evolution_function_is_affine_multivariate_p (tree chrec)
983 if (chrec == NULL_TREE)
984 return false;
986 switch (TREE_CODE (chrec))
988 case POLYNOMIAL_CHREC:
989 if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
991 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
992 return true;
993 else
995 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
996 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
997 != CHREC_VARIABLE (chrec)
998 && evolution_function_is_affine_multivariate_p
999 (CHREC_RIGHT (chrec)))
1000 return true;
1001 else
1002 return false;
1005 else
1007 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1008 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1009 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1010 && evolution_function_is_affine_multivariate_p
1011 (CHREC_LEFT (chrec)))
1012 return true;
1013 else
1014 return false;
1017 default:
1018 return false;
1022 /* Determine whether the given tree is a function in zero or one
1023 variables. */
1025 bool
1026 evolution_function_is_univariate_p (tree chrec)
1028 if (chrec == NULL_TREE)
1029 return true;
1031 switch (TREE_CODE (chrec))
1033 case POLYNOMIAL_CHREC:
1034 switch (TREE_CODE (CHREC_LEFT (chrec)))
1036 case POLYNOMIAL_CHREC:
1037 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1038 return false;
1039 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1040 return false;
1041 break;
1043 default:
1044 break;
1047 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1049 case POLYNOMIAL_CHREC:
1050 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1051 return false;
1052 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1053 return false;
1054 break;
1056 default:
1057 break;
1060 default:
1061 return true;
1065 /* Returns the number of variables of CHREC. Example: the call
1066 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1068 unsigned
1069 nb_vars_in_chrec (tree chrec)
1071 if (chrec == NULL_TREE)
1072 return 0;
1074 switch (TREE_CODE (chrec))
1076 case POLYNOMIAL_CHREC:
1077 return 1 + nb_vars_in_chrec
1078 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1080 default:
1081 return 0;
1085 /* Returns true if TYPE is a type in that we cannot directly perform
1086 arithmetics, even though it is a scalar type. */
1088 static bool
1089 avoid_arithmetics_in_type_p (tree type)
1091 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1092 in the subtype, but a base type must be used, and the result then can
1093 be casted to the subtype. */
1094 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1095 return true;
1097 return false;
1100 static tree chrec_convert_1 (tree, tree, tree, bool);
1102 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1103 the scev corresponds to. AT_STMT is the statement at that the scev is
1104 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1105 the rules for overflow of the given language apply (e.g., that signed
1106 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1107 tests, but also to enforce that the result follows them. Returns true if the
1108 conversion succeeded, false otherwise. */
1110 bool
1111 convert_affine_scev (struct loop *loop, tree type,
1112 tree *base, tree *step, tree at_stmt,
1113 bool use_overflow_semantics)
1115 tree ct = TREE_TYPE (*step);
1116 bool enforce_overflow_semantics;
1117 bool must_check_src_overflow, must_check_rslt_overflow;
1118 tree new_base, new_step;
1120 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1121 if (avoid_arithmetics_in_type_p (type))
1122 return false;
1124 /* In general,
1125 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1126 but we must check some assumptions.
1128 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1129 of CT is smaller than the precision of TYPE. For example, when we
1130 cast unsigned char [254, +, 1] to unsigned, the values on left side
1131 are 254, 255, 0, 1, ..., but those on the right side are
1132 254, 255, 256, 257, ...
1133 2) In case that we must also preserve the fact that signed ivs do not
1134 overflow, we must additionally check that the new iv does not wrap.
1135 For example, unsigned char [125, +, 1] casted to signed char could
1136 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1137 which would confuse optimizers that assume that this does not
1138 happen. */
1139 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1141 enforce_overflow_semantics = (use_overflow_semantics
1142 && nowrap_type_p (type));
1143 if (enforce_overflow_semantics)
1145 /* We can avoid checking whether the result overflows in the following
1146 cases:
1148 -- must_check_src_overflow is true, and the range of TYPE is superset
1149 of the range of CT -- i.e., in all cases except if CT signed and
1150 TYPE unsigned.
1151 -- both CT and TYPE have the same precision and signedness. */
1152 if (must_check_src_overflow)
1154 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1155 must_check_rslt_overflow = true;
1156 else
1157 must_check_rslt_overflow = false;
1159 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1160 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1161 must_check_rslt_overflow = false;
1162 else
1163 must_check_rslt_overflow = true;
1165 else
1166 must_check_rslt_overflow = false;
1168 if (must_check_src_overflow
1169 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1170 use_overflow_semantics))
1171 return false;
1173 new_base = chrec_convert_1 (type, *base, at_stmt,
1174 use_overflow_semantics);
1175 /* The step must be sign extended, regardless of the signedness
1176 of CT and TYPE. This only needs to be handled specially when
1177 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1178 (with values 100, 99, 98, ...) from becoming signed or unsigned
1179 [100, +, 255] with values 100, 355, ...; the sign-extension is
1180 performed by default when CT is signed. */
1181 new_step = *step;
1182 if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1183 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1184 use_overflow_semantics);
1185 new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1187 if (automatically_generated_chrec_p (new_base)
1188 || automatically_generated_chrec_p (new_step))
1189 return false;
1191 if (must_check_rslt_overflow
1192 /* Note that in this case we cannot use the fact that signed variables
1193 do not overflow, as this is what we are verifying for the new iv. */
1194 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1195 return false;
1197 *base = new_base;
1198 *step = new_step;
1199 return true;
1203 /* Convert CHREC to TYPE. When the analyzer knows the context in
1204 which the CHREC is built, it sets AT_STMT to the statement that
1205 contains the definition of the analyzed variable, otherwise the
1206 conversion is less accurate: the information is used for
1207 determining a more accurate estimation of the number of iterations.
1208 By default AT_STMT could be safely set to NULL_TREE.
1210 The following rule is always true: TREE_TYPE (chrec) ==
1211 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1212 An example of what could happen when adding two chrecs and the type
1213 of the CHREC_RIGHT is different than CHREC_LEFT is:
1215 {(uint) 0, +, (uchar) 10} +
1216 {(uint) 0, +, (uchar) 250}
1218 that would produce a wrong result if CHREC_RIGHT is not (uint):
1220 {(uint) 0, +, (uchar) 4}
1222 instead of
1224 {(uint) 0, +, (uint) 260}
1227 tree
1228 chrec_convert (tree type, tree chrec, tree at_stmt)
1230 return chrec_convert_1 (type, chrec, at_stmt, true);
1233 /* Convert CHREC to TYPE. When the analyzer knows the context in
1234 which the CHREC is built, it sets AT_STMT to the statement that
1235 contains the definition of the analyzed variable, otherwise the
1236 conversion is less accurate: the information is used for
1237 determining a more accurate estimation of the number of iterations.
1238 By default AT_STMT could be safely set to NULL_TREE.
1240 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1241 the rules for overflow of the given language apply (e.g., that signed
1242 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1243 tests, but also to enforce that the result follows them. */
1245 static tree
1246 chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1247 bool use_overflow_semantics)
1249 tree ct, res;
1250 tree base, step;
1251 struct loop *loop;
1253 if (automatically_generated_chrec_p (chrec))
1254 return chrec;
1256 ct = chrec_type (chrec);
1257 if (ct == type)
1258 return chrec;
1260 if (!evolution_function_is_affine_p (chrec))
1261 goto keep_cast;
1263 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
1264 base = CHREC_LEFT (chrec);
1265 step = CHREC_RIGHT (chrec);
1267 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1268 use_overflow_semantics))
1269 return build_polynomial_chrec (loop->num, base, step);
1271 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1272 keep_cast:
1273 res = fold_convert (type, chrec);
1275 /* Don't propagate overflows. */
1276 if (CONSTANT_CLASS_P (res))
1278 TREE_CONSTANT_OVERFLOW (res) = 0;
1279 TREE_OVERFLOW (res) = 0;
1282 /* But reject constants that don't fit in their type after conversion.
1283 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1284 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1285 and can cause problems later when computing niters of loops. Note
1286 that we don't do the check before converting because we don't want
1287 to reject conversions of negative chrecs to unsigned types. */
1288 if (TREE_CODE (res) == INTEGER_CST
1289 && TREE_CODE (type) == INTEGER_TYPE
1290 && !int_fits_type_p (res, type))
1291 res = chrec_dont_know;
1293 return res;
1296 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1297 chrec if something else than what chrec_convert would do happens, NULL_TREE
1298 otherwise. */
1300 tree
1301 chrec_convert_aggressive (tree type, tree chrec)
1303 tree inner_type, left, right, lc, rc;
1305 if (automatically_generated_chrec_p (chrec)
1306 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1307 return NULL_TREE;
1309 inner_type = TREE_TYPE (chrec);
1310 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1311 return NULL_TREE;
1313 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1314 if (avoid_arithmetics_in_type_p (type))
1315 return NULL_TREE;
1317 left = CHREC_LEFT (chrec);
1318 right = CHREC_RIGHT (chrec);
1319 lc = chrec_convert_aggressive (type, left);
1320 if (!lc)
1321 lc = chrec_convert (type, left, NULL_TREE);
1322 rc = chrec_convert_aggressive (type, right);
1323 if (!rc)
1324 rc = chrec_convert (type, right, NULL_TREE);
1326 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1329 /* Returns the type of the chrec. */
1331 tree
1332 chrec_type (tree chrec)
1334 if (automatically_generated_chrec_p (chrec))
1335 return NULL_TREE;
1337 return TREE_TYPE (chrec);
1340 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1341 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1342 which of these cases happens. */
1344 enum ev_direction
1345 scev_direction (tree chrec)
1347 tree step;
1349 if (!evolution_function_is_affine_p (chrec))
1350 return EV_DIR_UNKNOWN;
1352 step = CHREC_RIGHT (chrec);
1353 if (TREE_CODE (step) != INTEGER_CST)
1354 return EV_DIR_UNKNOWN;
1356 if (tree_int_cst_sign_bit (step))
1357 return EV_DIR_DECREASES;
1358 else
1359 return EV_DIR_GROWS;