Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-complex.c
blob81577ef16171306234360cde60d6a2edfe8621bc
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "real.h"
28 #include "flags.h"
29 #include "tree-flow.h"
30 #include "tree-gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "tree-ssa-propagate.h"
34 #include "diagnostic.h"
37 /* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
41 typedef enum
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
47 } complex_lattice_t;
49 #define PAIR(a, b) ((a) << 2 | (b))
51 DEF_VEC_I(complex_lattice_t);
52 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
54 static VEC(complex_lattice_t, heap) *complex_lattice_values;
56 /* For each complex variable, a pair of variables for the components exists in
57 the hashtable. */
58 static htab_t complex_variable_components;
60 /* For each complex SSA_NAME, a pair of ssa names for the components. */
61 static VEC(tree, heap) *complex_ssa_name_components;
63 /* Lookup UID in the complex_variable_components hashtable and return the
64 associated tree. */
65 static tree
66 cvc_lookup (unsigned int uid)
68 struct int_tree_map *h, in;
69 in.uid = uid;
70 h = htab_find_with_hash (complex_variable_components, &in, uid);
71 return h ? h->to : NULL;
74 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
76 static void
77 cvc_insert (unsigned int uid, tree to)
79 struct int_tree_map *h;
80 void **loc;
82 h = xmalloc (sizeof (struct int_tree_map));
83 h->uid = uid;
84 h->to = to;
85 loc = htab_find_slot_with_hash (complex_variable_components, h,
86 uid, INSERT);
87 *(struct int_tree_map **) loc = h;
90 /* Return true if T is not a zero constant. In the case of real values,
91 we're only interested in +0.0. */
93 static int
94 some_nonzerop (tree t)
96 int zerop = false;
98 if (TREE_CODE (t) == REAL_CST)
99 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
100 else if (TREE_CODE (t) == INTEGER_CST)
101 zerop = integer_zerop (t);
103 return !zerop;
106 /* Compute a lattice value from T. It may be a gimple_val, or, as a
107 special exception, a COMPLEX_EXPR. */
109 static complex_lattice_t
110 find_lattice_value (tree t)
112 tree real, imag;
113 int r, i;
114 complex_lattice_t ret;
116 switch (TREE_CODE (t))
118 case SSA_NAME:
119 return VEC_index (complex_lattice_t, complex_lattice_values,
120 SSA_NAME_VERSION (t));
122 case COMPLEX_CST:
123 real = TREE_REALPART (t);
124 imag = TREE_IMAGPART (t);
125 break;
127 case COMPLEX_EXPR:
128 real = TREE_OPERAND (t, 0);
129 imag = TREE_OPERAND (t, 1);
130 break;
132 default:
133 gcc_unreachable ();
136 r = some_nonzerop (real);
137 i = some_nonzerop (imag);
138 ret = r*ONLY_REAL + i*ONLY_IMAG;
140 /* ??? On occasion we could do better than mapping 0+0i to real, but we
141 certainly don't want to leave it UNINITIALIZED, which eventually gets
142 mapped to VARYING. */
143 if (ret == UNINITIALIZED)
144 ret = ONLY_REAL;
146 return ret;
149 /* Determine if LHS is something for which we're interested in seeing
150 simulation results. */
152 static bool
153 is_complex_reg (tree lhs)
155 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
158 /* Mark the incoming parameters to the function as VARYING. */
160 static void
161 init_parameter_lattice_values (void)
163 tree parm;
165 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
166 if (is_complex_reg (parm) && var_ann (parm) != NULL)
168 tree ssa_name = default_def (parm);
169 VEC_replace (complex_lattice_t, complex_lattice_values,
170 SSA_NAME_VERSION (ssa_name), VARYING);
174 /* Initialize DONT_SIMULATE_AGAIN for each stmt and phi. Return false if
175 we found no statements we want to simulate, and thus there's nothing for
176 the entire pass to do. */
178 static bool
179 init_dont_simulate_again (void)
181 basic_block bb;
182 block_stmt_iterator bsi;
183 tree phi;
184 bool saw_a_complex_op = false;
186 FOR_EACH_BB (bb)
188 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
189 DONT_SIMULATE_AGAIN (phi) = !is_complex_reg (PHI_RESULT (phi));
191 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
193 tree orig_stmt, stmt, rhs = NULL;
194 bool dsa;
196 orig_stmt = stmt = bsi_stmt (bsi);
198 /* Most control-altering statements must be initially
199 simulated, else we won't cover the entire cfg. */
200 dsa = !stmt_ends_bb_p (stmt);
202 switch (TREE_CODE (stmt))
204 case RETURN_EXPR:
205 /* We don't care what the lattice value of <retval> is,
206 since it's never used as an input to another computation. */
207 dsa = true;
208 stmt = TREE_OPERAND (stmt, 0);
209 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
210 break;
211 /* FALLTHRU */
213 case MODIFY_EXPR:
214 dsa = !is_complex_reg (TREE_OPERAND (stmt, 0));
215 rhs = TREE_OPERAND (stmt, 1);
216 break;
218 case COND_EXPR:
219 rhs = TREE_OPERAND (stmt, 0);
220 break;
222 default:
223 break;
226 if (rhs)
227 switch (TREE_CODE (rhs))
229 case EQ_EXPR:
230 case NE_EXPR:
231 rhs = TREE_OPERAND (rhs, 0);
232 /* FALLTHRU */
234 case PLUS_EXPR:
235 case MINUS_EXPR:
236 case MULT_EXPR:
237 case TRUNC_DIV_EXPR:
238 case CEIL_DIV_EXPR:
239 case FLOOR_DIV_EXPR:
240 case ROUND_DIV_EXPR:
241 case RDIV_EXPR:
242 case NEGATE_EXPR:
243 case CONJ_EXPR:
244 if (TREE_CODE (TREE_TYPE (rhs)) == COMPLEX_TYPE)
245 saw_a_complex_op = true;
246 break;
248 default:
249 break;
252 DONT_SIMULATE_AGAIN (orig_stmt) = dsa;
256 return saw_a_complex_op;
260 /* Evaluate statement STMT against the complex lattice defined above. */
262 static enum ssa_prop_result
263 complex_visit_stmt (tree stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
264 tree *result_p)
266 complex_lattice_t new_l, old_l, op1_l, op2_l;
267 unsigned int ver;
268 tree lhs, rhs;
270 if (TREE_CODE (stmt) != MODIFY_EXPR)
271 return SSA_PROP_VARYING;
273 lhs = TREE_OPERAND (stmt, 0);
274 rhs = TREE_OPERAND (stmt, 1);
276 /* These conditions should be satisfied due to the initial filter
277 set up in init_dont_simulate_again. */
278 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
279 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
281 *result_p = lhs;
282 ver = SSA_NAME_VERSION (lhs);
283 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
285 switch (TREE_CODE (rhs))
287 case SSA_NAME:
288 case COMPLEX_EXPR:
289 case COMPLEX_CST:
290 new_l = find_lattice_value (rhs);
291 break;
293 case PLUS_EXPR:
294 case MINUS_EXPR:
295 op1_l = find_lattice_value (TREE_OPERAND (rhs, 0));
296 op2_l = find_lattice_value (TREE_OPERAND (rhs, 1));
298 /* We've set up the lattice values such that IOR neatly
299 models addition. */
300 new_l = op1_l | op2_l;
301 break;
303 case MULT_EXPR:
304 case RDIV_EXPR:
305 case TRUNC_DIV_EXPR:
306 case CEIL_DIV_EXPR:
307 case FLOOR_DIV_EXPR:
308 case ROUND_DIV_EXPR:
309 op1_l = find_lattice_value (TREE_OPERAND (rhs, 0));
310 op2_l = find_lattice_value (TREE_OPERAND (rhs, 1));
312 /* Obviously, if either varies, so does the result. */
313 if (op1_l == VARYING || op2_l == VARYING)
314 new_l = VARYING;
315 /* Don't prematurely promote variables if we've not yet seen
316 their inputs. */
317 else if (op1_l == UNINITIALIZED)
318 new_l = op2_l;
319 else if (op2_l == UNINITIALIZED)
320 new_l = op1_l;
321 else
323 /* At this point both numbers have only one component. If the
324 numbers are of opposite kind, the result is imaginary,
325 otherwise the result is real. The add/subtract translates
326 the real/imag from/to 0/1; the ^ performs the comparison. */
327 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
329 /* Don't allow the lattice value to flip-flop indefinitely. */
330 new_l |= old_l;
332 break;
334 case NEGATE_EXPR:
335 case CONJ_EXPR:
336 new_l = find_lattice_value (TREE_OPERAND (rhs, 0));
337 break;
339 default:
340 new_l = VARYING;
341 break;
344 /* If nothing changed this round, let the propagator know. */
345 if (new_l == old_l)
346 return SSA_PROP_NOT_INTERESTING;
348 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
349 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
352 /* Evaluate a PHI node against the complex lattice defined above. */
354 static enum ssa_prop_result
355 complex_visit_phi (tree phi)
357 complex_lattice_t new_l, old_l;
358 unsigned int ver;
359 tree lhs;
360 int i;
362 lhs = PHI_RESULT (phi);
364 /* This condition should be satisfied due to the initial filter
365 set up in init_dont_simulate_again. */
366 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
368 /* We've set up the lattice values such that IOR neatly models PHI meet. */
369 new_l = UNINITIALIZED;
370 for (i = PHI_NUM_ARGS (phi) - 1; i >= 0; --i)
371 new_l |= find_lattice_value (PHI_ARG_DEF (phi, i));
373 ver = SSA_NAME_VERSION (lhs);
374 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
376 if (new_l == old_l)
377 return SSA_PROP_NOT_INTERESTING;
379 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
380 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
383 /* Create one backing variable for a complex component of ORIG. */
385 static tree
386 create_one_component_var (tree type, tree orig, const char *prefix,
387 const char *suffix, enum tree_code code)
389 tree r = create_tmp_var (type, prefix);
390 add_referenced_tmp_var (r);
392 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
393 DECL_ARTIFICIAL (r) = 1;
395 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
397 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
398 tree inner_type;
400 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
402 inner_type = TREE_TYPE (TREE_TYPE (orig));
403 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
404 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
405 DECL_IGNORED_P (r) = 0;
406 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
408 else
410 DECL_IGNORED_P (r) = 1;
411 TREE_NO_WARNING (r) = 1;
414 return r;
417 /* Retrieve a value for a complex component of VAR. */
419 static tree
420 get_component_var (tree var, bool imag_p)
422 size_t decl_index = DECL_UID (var) * 2 + imag_p;
423 tree ret = cvc_lookup (decl_index);
425 if (ret == NULL)
427 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
428 imag_p ? "CI" : "CR",
429 imag_p ? "$imag" : "$real",
430 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
431 cvc_insert (decl_index, ret);
434 return ret;
437 /* Retrieve a value for a complex component of SSA_NAME. */
439 static tree
440 get_component_ssa_name (tree ssa_name, bool imag_p)
442 complex_lattice_t lattice = find_lattice_value (ssa_name);
443 size_t ssa_name_index;
444 tree ret;
446 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
448 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
449 if (SCALAR_FLOAT_TYPE_P (inner_type))
450 return build_real (inner_type, dconst0);
451 else
452 return build_int_cst (inner_type, 0);
455 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
456 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
457 if (ret == NULL)
459 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
460 ret = make_ssa_name (ret, NULL);
462 /* Copy some properties from the original. In particular, whether it
463 is used in an abnormal phi, and whether it's uninitialized. */
464 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
465 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
466 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
467 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name)))
469 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
470 set_default_def (SSA_NAME_VAR (ret), ret);
473 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
476 return ret;
479 /* Set a value for a complex component of SSA_NAME, return a STMT_LIST of
480 stuff that needs doing. */
482 static tree
483 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
485 complex_lattice_t lattice = find_lattice_value (ssa_name);
486 size_t ssa_name_index;
487 tree comp, list, last;
489 /* We know the value must be zero, else there's a bug in our lattice
490 analysis. But the value may well be a variable known to contain
491 zero. We should be safe ignoring it. */
492 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
493 return NULL;
495 /* If we've already assigned an SSA_NAME to this component, then this
496 means that our walk of the basic blocks found a use before the set.
497 This is fine. Now we should create an initialization for the value
498 we created earlier. */
499 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
500 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
501 if (comp)
504 /* If we've nothing assigned, and the value we're given is already stable,
505 then install that as the value for this SSA_NAME. This preemptively
506 copy-propagates the value, which avoids unnecessary memory allocation. */
507 else if (is_gimple_min_invariant (value))
509 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
510 return NULL;
512 else if (TREE_CODE (value) == SSA_NAME
513 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
515 /* Replace an anonymous base value with the variable from cvc_lookup.
516 This should result in better debug info. */
517 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
518 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
520 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
521 replace_ssa_name_symbol (value, comp);
524 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
525 return NULL;
528 /* Finally, we need to stabilize the result by installing the value into
529 a new ssa name. */
530 else
531 comp = get_component_ssa_name (ssa_name, imag_p);
533 /* Do all the work to assign VALUE to COMP. */
534 value = force_gimple_operand (value, &list, false, NULL);
535 last = build2 (MODIFY_EXPR, TREE_TYPE (comp), comp, value);
536 append_to_statement_list (last, &list);
538 gcc_assert (SSA_NAME_DEF_STMT (comp) == NULL);
539 SSA_NAME_DEF_STMT (comp) = last;
541 return list;
544 /* Extract the real or imaginary part of a complex variable or constant.
545 Make sure that it's a proper gimple_val and gimplify it if not.
546 Emit any new code before BSI. */
548 static tree
549 extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p,
550 bool gimple_p)
552 switch (TREE_CODE (t))
554 case COMPLEX_CST:
555 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
557 case COMPLEX_EXPR:
558 return TREE_OPERAND (t, imagpart_p);
560 case VAR_DECL:
561 case RESULT_DECL:
562 case PARM_DECL:
563 case INDIRECT_REF:
564 case COMPONENT_REF:
565 case ARRAY_REF:
567 tree inner_type = TREE_TYPE (TREE_TYPE (t));
569 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
570 inner_type, unshare_expr (t));
572 if (gimple_p)
573 t = gimplify_val (bsi, inner_type, t);
575 return t;
578 case SSA_NAME:
579 return get_component_ssa_name (t, imagpart_p);
581 default:
582 gcc_unreachable ();
586 /* Update the complex components of the ssa name on the lhs of STMT. */
588 static void
589 update_complex_components (block_stmt_iterator *bsi, tree stmt, tree r, tree i)
591 tree lhs = TREE_OPERAND (stmt, 0);
592 tree list;
594 list = set_component_ssa_name (lhs, false, r);
595 if (list)
596 bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING);
598 list = set_component_ssa_name (lhs, true, i);
599 if (list)
600 bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING);
603 static void
604 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
606 tree list;
608 list = set_component_ssa_name (lhs, false, r);
609 if (list)
610 bsi_insert_on_edge (e, list);
612 list = set_component_ssa_name (lhs, true, i);
613 if (list)
614 bsi_insert_on_edge (e, list);
617 /* Update an assignment to a complex variable in place. */
619 static void
620 update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i)
622 tree stmt, mod;
623 tree type;
625 mod = stmt = bsi_stmt (*bsi);
626 if (TREE_CODE (stmt) == RETURN_EXPR)
627 mod = TREE_OPERAND (mod, 0);
628 else if (in_ssa_p)
629 update_complex_components (bsi, stmt, r, i);
631 type = TREE_TYPE (TREE_OPERAND (mod, 1));
632 TREE_OPERAND (mod, 1) = build (COMPLEX_EXPR, type, r, i);
633 update_stmt (stmt);
636 /* Generate code at the entry point of the function to initialize the
637 component variables for a complex parameter. */
639 static void
640 update_parameter_components (void)
642 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
643 tree parm;
645 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
647 tree type = TREE_TYPE (parm);
648 tree ssa_name, r, i;
650 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
651 continue;
653 type = TREE_TYPE (type);
654 ssa_name = default_def (parm);
655 if (!ssa_name)
656 continue;
658 r = build1 (REALPART_EXPR, type, ssa_name);
659 i = build1 (IMAGPART_EXPR, type, ssa_name);
660 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
664 /* Generate code to set the component variables of a complex variable
665 to match the PHI statements in block BB. */
667 static void
668 update_phi_components (basic_block bb)
670 tree phi;
672 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
673 if (is_complex_reg (PHI_RESULT (phi)))
675 tree lr, li, pr = NULL, pi = NULL;
676 unsigned int i, n;
678 lr = get_component_ssa_name (PHI_RESULT (phi), false);
679 if (TREE_CODE (lr) == SSA_NAME)
681 pr = create_phi_node (lr, bb);
682 SSA_NAME_DEF_STMT (lr) = pr;
685 li = get_component_ssa_name (PHI_RESULT (phi), true);
686 if (TREE_CODE (li) == SSA_NAME)
688 pi = create_phi_node (li, bb);
689 SSA_NAME_DEF_STMT (li) = pi;
692 for (i = 0, n = PHI_NUM_ARGS (phi); i < n; ++i)
694 tree comp, arg = PHI_ARG_DEF (phi, i);
695 if (pr)
697 comp = extract_component (NULL, arg, false, false);
698 SET_PHI_ARG_DEF (pr, i, comp);
700 if (pi)
702 comp = extract_component (NULL, arg, true, false);
703 SET_PHI_ARG_DEF (pi, i, comp);
709 /* Mark each virtual op in STMT for ssa update. */
711 static void
712 update_all_vops (tree stmt)
714 ssa_op_iter iter;
715 tree sym;
717 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
719 if (TREE_CODE (sym) == SSA_NAME)
720 sym = SSA_NAME_VAR (sym);
721 mark_sym_for_renaming (sym);
725 /* Expand a complex move to scalars. */
727 static void
728 expand_complex_move (block_stmt_iterator *bsi, tree stmt, tree type,
729 tree lhs, tree rhs)
731 tree inner_type = TREE_TYPE (type);
732 tree r, i;
734 if (TREE_CODE (lhs) == SSA_NAME)
736 if (is_ctrl_altering_stmt (bsi_stmt (*bsi)))
738 edge_iterator ei;
739 edge e;
741 /* The value is not assigned on the exception edges, so we need not
742 concern ourselves there. We do need to update on the fallthru
743 edge. Find it. */
744 FOR_EACH_EDGE (e, ei, bsi->bb->succs)
745 if (e->flags & EDGE_FALLTHRU)
746 goto found_fallthru;
747 gcc_unreachable ();
748 found_fallthru:
750 r = build1 (REALPART_EXPR, inner_type, lhs);
751 i = build1 (IMAGPART_EXPR, inner_type, lhs);
752 update_complex_components_on_edge (e, lhs, r, i);
754 else if (TREE_CODE (rhs) == CALL_EXPR || TREE_SIDE_EFFECTS (rhs))
756 r = build1 (REALPART_EXPR, inner_type, lhs);
757 i = build1 (IMAGPART_EXPR, inner_type, lhs);
758 update_complex_components (bsi, stmt, r, i);
760 else
762 update_all_vops (bsi_stmt (*bsi));
763 r = extract_component (bsi, rhs, 0, true);
764 i = extract_component (bsi, rhs, 1, true);
765 update_complex_assignment (bsi, r, i);
768 else if (TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
770 tree x;
772 r = extract_component (bsi, rhs, 0, false);
773 i = extract_component (bsi, rhs, 1, false);
775 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
776 x = build2 (MODIFY_EXPR, inner_type, x, r);
777 bsi_insert_before (bsi, x, BSI_SAME_STMT);
779 if (stmt == bsi_stmt (*bsi))
781 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
782 TREE_OPERAND (stmt, 0) = x;
783 TREE_OPERAND (stmt, 1) = i;
784 TREE_TYPE (stmt) = inner_type;
786 else
788 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
789 x = build2 (MODIFY_EXPR, inner_type, x, i);
790 bsi_insert_before (bsi, x, BSI_SAME_STMT);
792 stmt = bsi_stmt (*bsi);
793 gcc_assert (TREE_CODE (stmt) == RETURN_EXPR);
794 TREE_OPERAND (stmt, 0) = lhs;
797 update_all_vops (stmt);
798 update_stmt (stmt);
802 /* Expand complex addition to scalars:
803 a + b = (ar + br) + i(ai + bi)
804 a - b = (ar - br) + i(ai + bi)
807 static void
808 expand_complex_addition (block_stmt_iterator *bsi, tree inner_type,
809 tree ar, tree ai, tree br, tree bi,
810 enum tree_code code,
811 complex_lattice_t al, complex_lattice_t bl)
813 tree rr, ri;
815 switch (PAIR (al, bl))
817 case PAIR (ONLY_REAL, ONLY_REAL):
818 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
819 ri = ai;
820 break;
822 case PAIR (ONLY_REAL, ONLY_IMAG):
823 rr = ar;
824 if (code == MINUS_EXPR)
825 ri = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, bi);
826 else
827 ri = bi;
828 break;
830 case PAIR (ONLY_IMAG, ONLY_REAL):
831 if (code == MINUS_EXPR)
832 rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ar, br);
833 else
834 rr = br;
835 ri = ai;
836 break;
838 case PAIR (ONLY_IMAG, ONLY_IMAG):
839 rr = ar;
840 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
841 break;
843 case PAIR (VARYING, ONLY_REAL):
844 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
845 ri = ai;
846 break;
848 case PAIR (VARYING, ONLY_IMAG):
849 rr = ar;
850 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
851 break;
853 case PAIR (ONLY_REAL, VARYING):
854 if (code == MINUS_EXPR)
855 goto general;
856 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
857 ri = bi;
858 break;
860 case PAIR (ONLY_IMAG, VARYING):
861 if (code == MINUS_EXPR)
862 goto general;
863 rr = br;
864 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
865 break;
867 case PAIR (VARYING, VARYING):
868 general:
869 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
870 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
871 break;
873 default:
874 gcc_unreachable ();
877 update_complex_assignment (bsi, rr, ri);
880 /* Expand a complex multiplication or division to a libcall to the c99
881 compliant routines. */
883 static void
884 expand_complex_libcall (block_stmt_iterator *bsi, tree ar, tree ai,
885 tree br, tree bi, enum tree_code code)
887 enum machine_mode mode;
888 enum built_in_function bcode;
889 tree args, fn, stmt, type;
891 args = tree_cons (NULL, bi, NULL);
892 args = tree_cons (NULL, br, args);
893 args = tree_cons (NULL, ai, args);
894 args = tree_cons (NULL, ar, args);
896 stmt = bsi_stmt (*bsi);
897 type = TREE_TYPE (TREE_OPERAND (stmt, 1));
899 mode = TYPE_MODE (type);
900 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
901 if (code == MULT_EXPR)
902 bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
903 else if (code == RDIV_EXPR)
904 bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
905 else
906 gcc_unreachable ();
907 fn = built_in_decls[bcode];
909 TREE_OPERAND (stmt, 1)
910 = build3 (CALL_EXPR, type, build_fold_addr_expr (fn), args, NULL);
911 update_stmt (stmt);
913 if (in_ssa_p)
915 tree lhs = TREE_OPERAND (stmt, 0);
916 type = TREE_TYPE (type);
917 update_complex_components (bsi, stmt,
918 build1 (REALPART_EXPR, type, lhs),
919 build1 (IMAGPART_EXPR, type, lhs));
923 /* Expand complex multiplication to scalars:
924 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
927 static void
928 expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type,
929 tree ar, tree ai, tree br, tree bi,
930 complex_lattice_t al, complex_lattice_t bl)
932 tree rr, ri;
934 if (al < bl)
936 complex_lattice_t tl;
937 rr = ar, ar = br, br = rr;
938 ri = ai, ai = bi, bi = ri;
939 tl = al, al = bl, bl = tl;
942 switch (PAIR (al, bl))
944 case PAIR (ONLY_REAL, ONLY_REAL):
945 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
946 ri = ai;
947 break;
949 case PAIR (ONLY_IMAG, ONLY_REAL):
950 rr = ar;
951 if (TREE_CODE (ai) == REAL_CST
952 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
953 ri = br;
954 else
955 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
956 break;
958 case PAIR (ONLY_IMAG, ONLY_IMAG):
959 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
960 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr);
961 ri = ar;
962 break;
964 case PAIR (VARYING, ONLY_REAL):
965 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
966 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
967 break;
969 case PAIR (VARYING, ONLY_IMAG):
970 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
971 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr);
972 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
973 break;
975 case PAIR (VARYING, VARYING):
976 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
978 expand_complex_libcall (bsi, ar, ai, br, bi, MULT_EXPR);
979 return;
981 else
983 tree t1, t2, t3, t4;
985 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
986 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
987 t3 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
989 /* Avoid expanding redundant multiplication for the common
990 case of squaring a complex number. */
991 if (ar == br && ai == bi)
992 t4 = t3;
993 else
994 t4 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
996 rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
997 ri = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t3, t4);
999 break;
1001 default:
1002 gcc_unreachable ();
1005 update_complex_assignment (bsi, rr, ri);
1008 /* Expand complex division to scalars, straightforward algorithm.
1009 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1010 t = br*br + bi*bi
1013 static void
1014 expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type,
1015 tree ar, tree ai, tree br, tree bi,
1016 enum tree_code code)
1018 tree rr, ri, div, t1, t2, t3;
1020 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, br);
1021 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, bi);
1022 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
1024 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
1025 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
1026 t3 = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
1027 rr = gimplify_build2 (bsi, code, inner_type, t3, div);
1029 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
1030 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
1031 t3 = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
1032 ri = gimplify_build2 (bsi, code, inner_type, t3, div);
1034 update_complex_assignment (bsi, rr, ri);
1037 /* Expand complex division to scalars, modified algorithm to minimize
1038 overflow with wide input ranges. */
1040 static void
1041 expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type,
1042 tree ar, tree ai, tree br, tree bi,
1043 enum tree_code code)
1045 tree rr, ri, ratio, div, t1, t2, tr, ti, cond;
1046 basic_block bb_cond, bb_true, bb_false, bb_join;
1048 /* Examine |br| < |bi|, and branch. */
1049 t1 = gimplify_build1 (bsi, ABS_EXPR, inner_type, br);
1050 t2 = gimplify_build1 (bsi, ABS_EXPR, inner_type, bi);
1051 cond = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1052 STRIP_NOPS (cond);
1054 bb_cond = bb_true = bb_false = bb_join = NULL;
1055 rr = ri = tr = ti = NULL;
1056 if (!TREE_CONSTANT (cond))
1058 edge e;
1060 cond = build (COND_EXPR, void_type_node, cond, NULL, NULL);
1061 bsi_insert_before (bsi, cond, BSI_SAME_STMT);
1063 /* Split the original block, and create the TRUE and FALSE blocks. */
1064 e = split_block (bsi->bb, cond);
1065 bb_cond = e->src;
1066 bb_join = e->dest;
1067 bb_true = create_empty_bb (bb_cond);
1068 bb_false = create_empty_bb (bb_true);
1070 t1 = build (GOTO_EXPR, void_type_node, tree_block_label (bb_true));
1071 t2 = build (GOTO_EXPR, void_type_node, tree_block_label (bb_false));
1072 COND_EXPR_THEN (cond) = t1;
1073 COND_EXPR_ELSE (cond) = t2;
1075 /* Wire the blocks together. */
1076 e->flags = EDGE_TRUE_VALUE;
1077 redirect_edge_succ (e, bb_true);
1078 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1079 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1080 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1082 /* Update dominance info. Note that bb_join's data was
1083 updated by split_block. */
1084 if (dom_info_available_p (CDI_DOMINATORS))
1086 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1087 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1090 rr = make_rename_temp (inner_type, NULL);
1091 ri = make_rename_temp (inner_type, NULL);
1094 /* In the TRUE branch, we compute
1095 ratio = br/bi;
1096 div = (br * ratio) + bi;
1097 tr = (ar * ratio) + ai;
1098 ti = (ai * ratio) - ar;
1099 tr = tr / div;
1100 ti = ti / div; */
1101 if (bb_true || integer_nonzerop (cond))
1103 if (bb_true)
1105 *bsi = bsi_last (bb_true);
1106 bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT);
1109 ratio = gimplify_build2 (bsi, code, inner_type, br, bi);
1111 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, ratio);
1112 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, bi);
1114 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio);
1115 tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ai);
1117 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio);
1118 ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, ar);
1120 tr = gimplify_build2 (bsi, code, inner_type, tr, div);
1121 ti = gimplify_build2 (bsi, code, inner_type, ti, div);
1123 if (bb_true)
1125 t1 = build (MODIFY_EXPR, inner_type, rr, tr);
1126 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1127 t1 = build (MODIFY_EXPR, inner_type, ri, ti);
1128 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1129 bsi_remove (bsi);
1133 /* In the FALSE branch, we compute
1134 ratio = d/c;
1135 divisor = (d * ratio) + c;
1136 tr = (b * ratio) + a;
1137 ti = b - (a * ratio);
1138 tr = tr / div;
1139 ti = ti / div; */
1140 if (bb_false || integer_zerop (cond))
1142 if (bb_false)
1144 *bsi = bsi_last (bb_false);
1145 bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT);
1148 ratio = gimplify_build2 (bsi, code, inner_type, bi, br);
1150 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, ratio);
1151 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, br);
1153 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio);
1154 tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ar);
1156 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio);
1157 ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, t1);
1159 tr = gimplify_build2 (bsi, code, inner_type, tr, div);
1160 ti = gimplify_build2 (bsi, code, inner_type, ti, div);
1162 if (bb_false)
1164 t1 = build (MODIFY_EXPR, inner_type, rr, tr);
1165 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1166 t1 = build (MODIFY_EXPR, inner_type, ri, ti);
1167 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1168 bsi_remove (bsi);
1172 if (bb_join)
1173 *bsi = bsi_start (bb_join);
1174 else
1175 rr = tr, ri = ti;
1177 update_complex_assignment (bsi, rr, ri);
1180 /* Expand complex division to scalars. */
1182 static void
1183 expand_complex_division (block_stmt_iterator *bsi, tree inner_type,
1184 tree ar, tree ai, tree br, tree bi,
1185 enum tree_code code,
1186 complex_lattice_t al, complex_lattice_t bl)
1188 tree rr, ri;
1190 switch (PAIR (al, bl))
1192 case PAIR (ONLY_REAL, ONLY_REAL):
1193 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
1194 ri = ai;
1195 break;
1197 case PAIR (ONLY_REAL, ONLY_IMAG):
1198 rr = ai;
1199 ri = gimplify_build2 (bsi, code, inner_type, ar, bi);
1200 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri);
1201 break;
1203 case PAIR (ONLY_IMAG, ONLY_REAL):
1204 rr = ar;
1205 ri = gimplify_build2 (bsi, code, inner_type, ai, br);
1206 break;
1208 case PAIR (ONLY_IMAG, ONLY_IMAG):
1209 rr = gimplify_build2 (bsi, code, inner_type, ai, bi);
1210 ri = ar;
1211 break;
1213 case PAIR (VARYING, ONLY_REAL):
1214 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
1215 ri = gimplify_build2 (bsi, code, inner_type, ai, br);
1216 break;
1218 case PAIR (VARYING, ONLY_IMAG):
1219 rr = gimplify_build2 (bsi, code, inner_type, ai, bi);
1220 ri = gimplify_build2 (bsi, code, inner_type, ar, bi);
1221 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri);
1223 case PAIR (ONLY_REAL, VARYING):
1224 case PAIR (ONLY_IMAG, VARYING):
1225 case PAIR (VARYING, VARYING):
1226 switch (flag_complex_method)
1228 case 0:
1229 /* straightforward implementation of complex divide acceptable. */
1230 expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code);
1231 break;
1233 case 2:
1234 if (SCALAR_FLOAT_TYPE_P (inner_type))
1236 expand_complex_libcall (bsi, ar, ai, br, bi, code);
1237 break;
1239 /* FALLTHRU */
1241 case 1:
1242 /* wide ranges of inputs must work for complex divide. */
1243 expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code);
1244 break;
1246 default:
1247 gcc_unreachable ();
1249 return;
1251 default:
1252 gcc_unreachable ();
1255 update_complex_assignment (bsi, rr, ri);
1258 /* Expand complex negation to scalars:
1259 -a = (-ar) + i(-ai)
1262 static void
1263 expand_complex_negation (block_stmt_iterator *bsi, tree inner_type,
1264 tree ar, tree ai)
1266 tree rr, ri;
1268 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ar);
1269 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
1271 update_complex_assignment (bsi, rr, ri);
1274 /* Expand complex conjugate to scalars:
1275 ~a = (ar) + i(-ai)
1278 static void
1279 expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type,
1280 tree ar, tree ai)
1282 tree ri;
1284 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
1286 update_complex_assignment (bsi, ar, ri);
1289 /* Expand complex comparison (EQ or NE only). */
1291 static void
1292 expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai,
1293 tree br, tree bi, enum tree_code code)
1295 tree cr, ci, cc, stmt, expr, type;
1297 cr = gimplify_build2 (bsi, code, boolean_type_node, ar, br);
1298 ci = gimplify_build2 (bsi, code, boolean_type_node, ai, bi);
1299 cc = gimplify_build2 (bsi,
1300 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1301 boolean_type_node, cr, ci);
1303 stmt = expr = bsi_stmt (*bsi);
1305 switch (TREE_CODE (stmt))
1307 case RETURN_EXPR:
1308 expr = TREE_OPERAND (stmt, 0);
1309 /* FALLTHRU */
1310 case MODIFY_EXPR:
1311 type = TREE_TYPE (TREE_OPERAND (expr, 1));
1312 TREE_OPERAND (expr, 1) = fold_convert (type, cc);
1313 break;
1314 case COND_EXPR:
1315 TREE_OPERAND (stmt, 0) = cc;
1316 break;
1317 default:
1318 gcc_unreachable ();
1321 update_stmt (stmt);
1324 /* Process one statement. If we identify a complex operation, expand it. */
1326 static void
1327 expand_complex_operations_1 (block_stmt_iterator *bsi)
1329 tree stmt = bsi_stmt (*bsi);
1330 tree rhs, type, inner_type;
1331 tree ac, ar, ai, bc, br, bi;
1332 complex_lattice_t al, bl;
1333 enum tree_code code;
1335 switch (TREE_CODE (stmt))
1337 case RETURN_EXPR:
1338 stmt = TREE_OPERAND (stmt, 0);
1339 if (!stmt)
1340 return;
1341 if (TREE_CODE (stmt) != MODIFY_EXPR)
1342 return;
1343 /* FALLTHRU */
1345 case MODIFY_EXPR:
1346 rhs = TREE_OPERAND (stmt, 1);
1347 break;
1349 case COND_EXPR:
1350 rhs = TREE_OPERAND (stmt, 0);
1351 break;
1353 default:
1354 return;
1357 type = TREE_TYPE (rhs);
1358 code = TREE_CODE (rhs);
1360 /* Initial filter for operations we handle. */
1361 switch (code)
1363 case PLUS_EXPR:
1364 case MINUS_EXPR:
1365 case MULT_EXPR:
1366 case TRUNC_DIV_EXPR:
1367 case CEIL_DIV_EXPR:
1368 case FLOOR_DIV_EXPR:
1369 case ROUND_DIV_EXPR:
1370 case RDIV_EXPR:
1371 case NEGATE_EXPR:
1372 case CONJ_EXPR:
1373 if (TREE_CODE (type) != COMPLEX_TYPE)
1374 return;
1375 inner_type = TREE_TYPE (type);
1376 break;
1378 case EQ_EXPR:
1379 case NE_EXPR:
1380 inner_type = TREE_TYPE (TREE_OPERAND (rhs, 1));
1381 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1382 return;
1383 break;
1385 default:
1387 tree lhs = TREE_OPERAND (stmt, 0);
1388 tree rhs = TREE_OPERAND (stmt, 1);
1390 if (TREE_CODE (type) == COMPLEX_TYPE)
1391 expand_complex_move (bsi, stmt, type, lhs, rhs);
1392 else if ((TREE_CODE (rhs) == REALPART_EXPR
1393 || TREE_CODE (rhs) == IMAGPART_EXPR)
1394 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1396 TREE_OPERAND (stmt, 1)
1397 = extract_component (bsi, TREE_OPERAND (rhs, 0),
1398 TREE_CODE (rhs) == IMAGPART_EXPR, false);
1399 update_stmt (stmt);
1402 return;
1405 /* Extract the components of the two complex values. Make sure and
1406 handle the common case of the same value used twice specially. */
1407 ac = TREE_OPERAND (rhs, 0);
1408 ar = extract_component (bsi, ac, 0, true);
1409 ai = extract_component (bsi, ac, 1, true);
1411 if (TREE_CODE_CLASS (code) == tcc_unary)
1412 bc = br = bi = NULL;
1413 else
1415 bc = TREE_OPERAND (rhs, 1);
1416 if (ac == bc)
1417 br = ar, bi = ai;
1418 else
1420 br = extract_component (bsi, bc, 0, true);
1421 bi = extract_component (bsi, bc, 1, true);
1425 if (in_ssa_p)
1427 al = find_lattice_value (ac);
1428 if (al == UNINITIALIZED)
1429 al = VARYING;
1431 if (TREE_CODE_CLASS (code) == tcc_unary)
1432 bl = UNINITIALIZED;
1433 else if (ac == bc)
1434 bl = al;
1435 else
1437 bl = find_lattice_value (bc);
1438 if (bl == UNINITIALIZED)
1439 bl = VARYING;
1442 else
1443 al = bl = VARYING;
1445 switch (code)
1447 case PLUS_EXPR:
1448 case MINUS_EXPR:
1449 expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code, al, bl);
1450 break;
1452 case MULT_EXPR:
1453 expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi, al, bl);
1454 break;
1456 case TRUNC_DIV_EXPR:
1457 case CEIL_DIV_EXPR:
1458 case FLOOR_DIV_EXPR:
1459 case ROUND_DIV_EXPR:
1460 case RDIV_EXPR:
1461 expand_complex_division (bsi, inner_type, ar, ai, br, bi, code, al, bl);
1462 break;
1464 case NEGATE_EXPR:
1465 expand_complex_negation (bsi, inner_type, ar, ai);
1466 break;
1468 case CONJ_EXPR:
1469 expand_complex_conjugate (bsi, inner_type, ar, ai);
1470 break;
1472 case EQ_EXPR:
1473 case NE_EXPR:
1474 expand_complex_comparison (bsi, ar, ai, br, bi, code);
1475 break;
1477 default:
1478 gcc_unreachable ();
1483 /* Entry point for complex operation lowering during optimization. */
1485 static void
1486 tree_lower_complex (void)
1488 int old_last_basic_block;
1489 block_stmt_iterator bsi;
1490 basic_block bb;
1492 if (!init_dont_simulate_again ())
1493 return;
1495 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1496 VEC_safe_grow (complex_lattice_t, heap,
1497 complex_lattice_values, num_ssa_names);
1498 memset (VEC_address (complex_lattice_t, complex_lattice_values), 0,
1499 num_ssa_names * sizeof(complex_lattice_t));
1501 init_parameter_lattice_values ();
1502 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1504 complex_variable_components = htab_create (10, int_tree_map_hash,
1505 int_tree_map_eq, free);
1507 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1508 VEC_safe_grow (tree, heap, complex_ssa_name_components, 2*num_ssa_names);
1509 memset (VEC_address (tree, complex_ssa_name_components), 0,
1510 2 * num_ssa_names * sizeof(tree));
1512 update_parameter_components ();
1514 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1515 old_last_basic_block = last_basic_block;
1516 FOR_EACH_BB (bb)
1518 if (bb->index >= old_last_basic_block)
1519 continue;
1520 update_phi_components (bb);
1521 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1522 expand_complex_operations_1 (&bsi);
1525 bsi_commit_edge_inserts ();
1527 htab_delete (complex_variable_components);
1528 VEC_free (tree, heap, complex_ssa_name_components);
1529 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1532 struct tree_opt_pass pass_lower_complex =
1534 "cplxlower", /* name */
1535 0, /* gate */
1536 tree_lower_complex, /* execute */
1537 NULL, /* sub */
1538 NULL, /* next */
1539 0, /* static_pass_number */
1540 0, /* tv_id */
1541 PROP_ssa, /* properties_required */
1542 0, /* properties_provided */
1543 0, /* properties_destroyed */
1544 0, /* todo_flags_start */
1545 TODO_dump_func | TODO_ggc_collect
1546 | TODO_update_ssa
1547 | TODO_verify_stmts, /* todo_flags_finish */
1548 0 /* letter */
1552 /* Entry point for complex operation lowering without optimization. */
1554 static void
1555 tree_lower_complex_O0 (void)
1557 int old_last_basic_block = last_basic_block;
1558 block_stmt_iterator bsi;
1559 basic_block bb;
1561 FOR_EACH_BB (bb)
1563 if (bb->index >= old_last_basic_block)
1564 continue;
1565 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1566 expand_complex_operations_1 (&bsi);
1570 static bool
1571 gate_no_optimization (void)
1573 /* With errors, normal optimization passes are not run. If we don't
1574 lower complex operations at all, rtl expansion will abort. */
1575 return optimize == 0 || sorrycount || errorcount;
1578 struct tree_opt_pass pass_lower_complex_O0 =
1580 "cplxlower0", /* name */
1581 gate_no_optimization, /* gate */
1582 tree_lower_complex_O0, /* execute */
1583 NULL, /* sub */
1584 NULL, /* next */
1585 0, /* static_pass_number */
1586 0, /* tv_id */
1587 PROP_cfg, /* properties_required */
1588 0, /* properties_provided */
1589 0, /* properties_destroyed */
1590 0, /* todo_flags_start */
1591 TODO_dump_func | TODO_ggc_collect
1592 | TODO_verify_stmts, /* todo_flags_finish */
1593 0 /* letter */