1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
31 first_htab_element (htab_iterator
*hti
, htab_t table
)
34 hti
->slot
= table
->entries
;
35 hti
->limit
= hti
->slot
+ htab_size (table
);
39 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
41 } while (++(hti
->slot
) < hti
->limit
);
43 if (hti
->slot
< hti
->limit
)
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49 or NULL if we have reached the end. */
52 end_htab_p (htab_iterator
*hti
)
54 if (hti
->slot
>= hti
->limit
)
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
63 next_htab_element (htab_iterator
*hti
)
65 while (++(hti
->slot
) < hti
->limit
)
68 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
74 /* Initialize ITER to point to the first referenced variable in the
75 referenced_vars hashtable, and return that variable. */
78 first_referenced_var (referenced_var_iterator
*iter
)
80 struct int_tree_map
*itm
;
81 itm
= first_htab_element (&iter
->hti
, referenced_vars
);
87 /* Return true if we have hit the end of the referenced variables ITER is
91 end_referenced_vars_p (referenced_var_iterator
*iter
)
93 return end_htab_p (&iter
->hti
);
96 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
97 and return that variable. */
100 next_referenced_var (referenced_var_iterator
*iter
)
102 struct int_tree_map
*itm
;
103 itm
= next_htab_element (&iter
->hti
);
109 /* Fill up VEC with the variables in the referenced vars hashtable. */
112 fill_referenced_var_vec (VEC (tree
, heap
) **vec
)
114 referenced_var_iterator rvi
;
117 FOR_EACH_REFERENCED_VAR (var
, rvi
)
118 VEC_safe_push (tree
, heap
, *vec
, var
);
121 /* Return the variable annotation for T, which must be a _DECL node.
122 Return NULL if the variable annotation doesn't already exist. */
123 static inline var_ann_t
127 gcc_assert (DECL_P (t
));
128 gcc_assert (!t
->common
.ann
|| t
->common
.ann
->common
.type
== VAR_ANN
);
130 return (var_ann_t
) t
->common
.ann
;
133 /* Return the variable annotation for T, which must be a _DECL node.
134 Create the variable annotation if it doesn't exist. */
135 static inline var_ann_t
136 get_var_ann (tree var
)
138 var_ann_t ann
= var_ann (var
);
139 return (ann
) ? ann
: create_var_ann (var
);
142 /* Return the statement annotation for T, which must be a statement
143 node. Return NULL if the statement annotation doesn't exist. */
144 static inline stmt_ann_t
147 #ifdef ENABLE_CHECKING
148 gcc_assert (is_gimple_stmt (t
));
150 return (stmt_ann_t
) t
->common
.ann
;
153 /* Return the statement annotation for T, which must be a statement
154 node. Create the statement annotation if it doesn't exist. */
155 static inline stmt_ann_t
156 get_stmt_ann (tree stmt
)
158 stmt_ann_t ann
= stmt_ann (stmt
);
159 return (ann
) ? ann
: create_stmt_ann (stmt
);
162 /* Return the annotation type for annotation ANN. */
163 static inline enum tree_ann_type
164 ann_type (tree_ann_t ann
)
166 return ann
->common
.type
;
169 /* Return the basic block for statement T. */
170 static inline basic_block
175 if (TREE_CODE (t
) == PHI_NODE
)
179 return ann
? ann
->bb
: NULL
;
182 /* Return the may_aliases varray for variable VAR, or NULL if it has
184 static inline varray_type
185 may_aliases (tree var
)
187 var_ann_t ann
= var_ann (var
);
188 return ann
? ann
->may_aliases
: NULL
;
191 /* Return the line number for EXPR, or return -1 if we have no line
192 number information for it. */
194 get_lineno (tree expr
)
196 if (expr
== NULL_TREE
)
199 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
200 expr
= TREE_OPERAND (expr
, 0);
202 if (! EXPR_HAS_LOCATION (expr
))
205 return EXPR_LINENO (expr
);
208 /* Return the file name for EXPR, or return "???" if we have no
209 filename information. */
210 static inline const char *
211 get_filename (tree expr
)
213 const char *filename
;
214 if (expr
== NULL_TREE
)
217 if (TREE_CODE (expr
) == COMPOUND_EXPR
)
218 expr
= TREE_OPERAND (expr
, 0);
220 if (EXPR_HAS_LOCATION (expr
) && (filename
= EXPR_FILENAME (expr
)))
226 /* Return true if T is a noreturn call. */
228 noreturn_call_p (tree t
)
230 tree call
= get_call_expr_in (t
);
231 return call
!= 0 && (call_expr_flags (call
) & ECF_NORETURN
) != 0;
234 /* Mark statement T as modified. */
236 mark_stmt_modified (tree t
)
239 if (TREE_CODE (t
) == PHI_NODE
)
244 ann
= create_stmt_ann (t
);
245 else if (noreturn_call_p (t
))
246 VEC_safe_push (tree
, gc
, modified_noreturn_calls
, t
);
250 /* Mark statement T as modified, and update it. */
254 if (TREE_CODE (t
) == PHI_NODE
)
256 mark_stmt_modified (t
);
257 update_stmt_operands (t
);
261 update_stmt_if_modified (tree t
)
263 if (stmt_modified_p (t
))
264 update_stmt_operands (t
);
267 /* Return true if T is marked as modified, false otherwise. */
269 stmt_modified_p (tree t
)
271 stmt_ann_t ann
= stmt_ann (t
);
273 /* Note that if the statement doesn't yet have an annotation, we consider it
274 modified. This will force the next call to update_stmt_operands to scan
276 return ann
? ann
->modified
: true;
279 /* Delink an immediate_uses node from its chain. */
281 delink_imm_use (ssa_use_operand_t
*linknode
)
283 /* Return if this node is not in a list. */
284 if (linknode
->prev
== NULL
)
287 linknode
->prev
->next
= linknode
->next
;
288 linknode
->next
->prev
= linknode
->prev
;
289 linknode
->prev
= NULL
;
290 linknode
->next
= NULL
;
293 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
295 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
297 /* Link the new node at the head of the list. If we are in the process of
298 traversing the list, we won't visit any new nodes added to it. */
299 linknode
->prev
= list
;
300 linknode
->next
= list
->next
;
301 list
->next
->prev
= linknode
;
302 list
->next
= linknode
;
305 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
307 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
309 ssa_use_operand_t
*root
;
311 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
312 linknode
->prev
= NULL
;
315 root
= &(SSA_NAME_IMM_USE_NODE (def
));
316 #ifdef ENABLE_CHECKING
318 gcc_assert (*(linknode
->use
) == def
);
320 link_imm_use_to_list (linknode
, root
);
324 /* Set the value of a use pointed to by USE to VAL. */
326 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
328 delink_imm_use (use
);
330 link_imm_use (use
, val
);
333 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
336 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, tree stmt
)
339 link_imm_use (linknode
, def
);
341 link_imm_use (linknode
, NULL
);
342 linknode
->stmt
= stmt
;
345 /* Relink a new node in place of an old node in the list. */
347 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
349 /* The node one had better be in the same list. */
350 gcc_assert (*(old
->use
) == *(node
->use
));
351 node
->prev
= old
->prev
;
352 node
->next
= old
->next
;
355 old
->prev
->next
= node
;
356 old
->next
->prev
= node
;
357 /* Remove the old node from the list. */
362 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
365 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
, tree stmt
)
368 relink_imm_use (linknode
, old
);
370 link_imm_use (linknode
, NULL
);
371 linknode
->stmt
= stmt
;
374 /* Finished the traverse of an immediate use list IMM by removing it from
377 end_safe_imm_use_traverse (imm_use_iterator
*imm
)
379 delink_imm_use (&(imm
->iter_node
));
382 /* Return true if IMM is at the end of the list. */
384 end_safe_imm_use_p (imm_use_iterator
*imm
)
386 return (imm
->imm_use
== imm
->end_p
);
389 /* Initialize iterator IMM to process the list for VAR. */
390 static inline use_operand_p
391 first_safe_imm_use (imm_use_iterator
*imm
, tree var
)
393 /* Set up and link the iterator node into the linked list for VAR. */
394 imm
->iter_node
.use
= NULL
;
395 imm
->iter_node
.stmt
= NULL_TREE
;
396 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
397 /* Check if there are 0 elements. */
398 if (imm
->end_p
->next
== imm
->end_p
)
400 imm
->imm_use
= imm
->end_p
;
401 return NULL_USE_OPERAND_P
;
404 link_imm_use (&(imm
->iter_node
), var
);
405 imm
->imm_use
= imm
->iter_node
.next
;
409 /* Bump IMM to the next use in the list. */
410 static inline use_operand_p
411 next_safe_imm_use (imm_use_iterator
*imm
)
413 ssa_use_operand_t
*ptr
;
417 /* If the next node following the iter_node is still the one referred to by
418 imm_use, then the list hasn't changed, go to the next node. */
419 if (imm
->iter_node
.next
== imm
->imm_use
)
421 ptr
= &(imm
->iter_node
);
422 /* Remove iternode from the list. */
423 delink_imm_use (ptr
);
424 imm
->imm_use
= imm
->imm_use
->next
;
425 if (! end_safe_imm_use_p (imm
))
427 /* This isn't the end, link iternode before the next use. */
428 ptr
->prev
= imm
->imm_use
->prev
;
429 ptr
->next
= imm
->imm_use
;
430 imm
->imm_use
->prev
->next
= ptr
;
431 imm
->imm_use
->prev
= ptr
;
438 /* If the 'next' value after the iterator isn't the same as it was, then
439 a node has been deleted, so we simply proceed to the node following
440 where the iterator is in the list. */
441 imm
->imm_use
= imm
->iter_node
.next
;
442 if (end_safe_imm_use_p (imm
))
444 end_safe_imm_use_traverse (imm
);
452 /* Return true is IMM has reached the end of the immediate use list. */
454 end_readonly_imm_use_p (imm_use_iterator
*imm
)
456 return (imm
->imm_use
== imm
->end_p
);
459 /* Initialize iterator IMM to process the list for VAR. */
460 static inline use_operand_p
461 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
463 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
465 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
466 imm
->imm_use
= imm
->end_p
->next
;
467 #ifdef ENABLE_CHECKING
468 imm
->iter_node
.next
= imm
->imm_use
->next
;
470 if (end_readonly_imm_use_p (imm
))
471 return NULL_USE_OPERAND_P
;
475 /* Bump IMM to the next use in the list. */
476 static inline use_operand_p
477 next_readonly_imm_use (imm_use_iterator
*imm
)
479 use_operand_p old
= imm
->imm_use
;
481 #ifdef ENABLE_CHECKING
482 /* If this assertion fails, it indicates the 'next' pointer has changed
483 since we the last bump. This indicates that the list is being modified
484 via stmt changes, or SET_USE, or somesuch thing, and you need to be
485 using the SAFE version of the iterator. */
486 gcc_assert (imm
->iter_node
.next
== old
->next
);
487 imm
->iter_node
.next
= old
->next
->next
;
490 imm
->imm_use
= old
->next
;
491 if (end_readonly_imm_use_p (imm
))
496 /* Return true if VAR has no uses. */
498 has_zero_uses (tree var
)
500 ssa_use_operand_t
*ptr
;
501 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
502 /* A single use means there is no items in the list. */
503 return (ptr
== ptr
->next
);
506 /* Return true if VAR has a single use. */
508 has_single_use (tree var
)
510 ssa_use_operand_t
*ptr
;
511 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
512 /* A single use means there is one item in the list. */
513 return (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
);
516 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
517 to the use pointer and stmt of occurrence. */
519 single_imm_use (tree var
, use_operand_p
*use_p
, tree
*stmt
)
521 ssa_use_operand_t
*ptr
;
523 ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
524 if (ptr
!= ptr
->next
&& ptr
== ptr
->next
->next
)
527 *stmt
= ptr
->next
->stmt
;
530 *use_p
= NULL_USE_OPERAND_P
;
535 /* Return the number of immediate uses of VAR. */
536 static inline unsigned int
537 num_imm_uses (tree var
)
539 ssa_use_operand_t
*ptr
, *start
;
542 start
= &(SSA_NAME_IMM_USE_NODE (var
));
544 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
551 /* Return the tree pointer to by USE. */
553 get_use_from_ptr (use_operand_p use
)
558 /* Return the tree pointer to by DEF. */
560 get_def_from_ptr (def_operand_p def
)
565 /* Return a def_operand_p pointer for the result of PHI. */
566 static inline def_operand_p
567 get_phi_result_ptr (tree phi
)
569 return &(PHI_RESULT_TREE (phi
));
572 /* Return a use_operand_p pointer for argument I of phinode PHI. */
573 static inline use_operand_p
574 get_phi_arg_def_ptr (tree phi
, int i
)
576 return &(PHI_ARG_IMM_USE_NODE (phi
,i
));
580 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
583 addresses_taken (tree stmt
)
585 stmt_ann_t ann
= stmt_ann (stmt
);
586 return ann
? ann
->addresses_taken
: NULL
;
589 /* Return the PHI nodes for basic block BB, or NULL if there are no
592 phi_nodes (basic_block bb
)
594 return bb
->phi_nodes
;
597 /* Set list of phi nodes of a basic block BB to L. */
600 set_phi_nodes (basic_block bb
, tree l
)
605 for (phi
= l
; phi
; phi
= PHI_CHAIN (phi
))
606 set_bb_for_stmt (phi
, bb
);
609 /* Return the phi argument which contains the specified use. */
612 phi_arg_index_from_use (use_operand_p use
)
614 struct phi_arg_d
*element
, *root
;
618 /* Since the use is the first thing in a PHI argument element, we can
619 calculate its index based on casting it to an argument, and performing
620 pointer arithmetic. */
622 phi
= USE_STMT (use
);
623 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
625 element
= (struct phi_arg_d
*)use
;
626 root
= &(PHI_ARG_ELT (phi
, 0));
627 index
= element
- root
;
629 #ifdef ENABLE_CHECKING
630 /* Make sure the calculation doesn't have any leftover bytes. If it does,
631 then imm_use is likely not the first element in phi_arg_d. */
633 (((char *)element
- (char *)root
) % sizeof (struct phi_arg_d
)) == 0);
634 gcc_assert (index
>= 0 && index
< PHI_ARG_CAPACITY (phi
));
640 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
643 set_is_used (tree var
)
645 var_ann_t ann
= get_var_ann (var
);
650 /* ----------------------------------------------------------------------- */
652 /* Return true if T is an executable statement. */
654 is_exec_stmt (tree t
)
656 return (t
&& !IS_EMPTY_STMT (t
) && t
!= error_mark_node
);
660 /* Return true if this stmt can be the target of a control transfer stmt such
663 is_label_stmt (tree t
)
666 switch (TREE_CODE (t
))
670 case CASE_LABEL_EXPR
:
678 /* Set the default definition for VAR to DEF. */
680 set_default_def (tree var
, tree def
)
682 var_ann_t ann
= get_var_ann (var
);
683 ann
->default_def
= def
;
686 /* Return the default definition for variable VAR, or NULL if none
689 default_def (tree var
)
691 var_ann_t ann
= var_ann (var
);
692 return ann
? ann
->default_def
: NULL_TREE
;
695 /* PHI nodes should contain only ssa_names and invariants. A test
696 for ssa_name is definitely simpler; don't let invalid contents
697 slip in in the meantime. */
700 phi_ssa_name_p (tree t
)
702 if (TREE_CODE (t
) == SSA_NAME
)
704 #ifdef ENABLE_CHECKING
705 gcc_assert (is_gimple_min_invariant (t
));
710 /* ----------------------------------------------------------------------- */
712 /* Return a block_stmt_iterator that points to beginning of basic
714 static inline block_stmt_iterator
715 bsi_start (basic_block bb
)
717 block_stmt_iterator bsi
;
719 bsi
.tsi
= tsi_start (bb
->stmt_list
);
722 gcc_assert (bb
->index
< 0);
724 bsi
.tsi
.container
= NULL
;
730 /* Return a block statement iterator that points to the first non-label
731 statement in block BB. */
733 static inline block_stmt_iterator
734 bsi_after_labels (basic_block bb
)
736 block_stmt_iterator bsi
= bsi_start (bb
);
738 while (!bsi_end_p (bsi
) && TREE_CODE (bsi_stmt (bsi
)) == LABEL_EXPR
)
744 /* Return a block statement iterator that points to the end of basic
746 static inline block_stmt_iterator
747 bsi_last (basic_block bb
)
749 block_stmt_iterator bsi
;
751 bsi
.tsi
= tsi_last (bb
->stmt_list
);
754 gcc_assert (bb
->index
< 0);
756 bsi
.tsi
.container
= NULL
;
762 /* Return true if block statement iterator I has reached the end of
765 bsi_end_p (block_stmt_iterator i
)
767 return tsi_end_p (i
.tsi
);
770 /* Modify block statement iterator I so that it is at the next
771 statement in the basic block. */
773 bsi_next (block_stmt_iterator
*i
)
778 /* Modify block statement iterator I so that it is at the previous
779 statement in the basic block. */
781 bsi_prev (block_stmt_iterator
*i
)
786 /* Return the statement that block statement iterator I is currently
789 bsi_stmt (block_stmt_iterator i
)
791 return tsi_stmt (i
.tsi
);
794 /* Return a pointer to the statement that block statement iterator I
797 bsi_stmt_ptr (block_stmt_iterator i
)
799 return tsi_stmt_ptr (i
.tsi
);
802 /* Returns the loop of the statement STMT. */
804 static inline struct loop
*
805 loop_containing_stmt (tree stmt
)
807 basic_block bb
= bb_for_stmt (stmt
);
811 return bb
->loop_father
;
814 /* Return true if VAR is a clobbered by function calls. */
816 is_call_clobbered (tree var
)
818 return is_global_var (var
)
819 || bitmap_bit_p (call_clobbered_vars
, DECL_UID (var
));
822 /* Mark variable VAR as being clobbered by function calls. */
824 mark_call_clobbered (tree var
)
826 var_ann_t ann
= var_ann (var
);
827 /* If VAR is a memory tag, then we need to consider it a global
828 variable. This is because the pointer that VAR represents has
829 been found to point to either an arbitrary location or to a known
830 location in global memory. */
831 if (ann
->mem_tag_kind
!= NOT_A_TAG
&& ann
->mem_tag_kind
!= STRUCT_FIELD
)
832 DECL_EXTERNAL (var
) = 1;
833 bitmap_set_bit (call_clobbered_vars
, DECL_UID (var
));
834 ssa_call_clobbered_cache_valid
= false;
835 ssa_ro_call_cache_valid
= false;
838 /* Clear the call-clobbered attribute from variable VAR. */
840 clear_call_clobbered (tree var
)
842 var_ann_t ann
= var_ann (var
);
843 if (ann
->mem_tag_kind
!= NOT_A_TAG
&& ann
->mem_tag_kind
!= STRUCT_FIELD
)
844 DECL_EXTERNAL (var
) = 0;
845 bitmap_clear_bit (call_clobbered_vars
, DECL_UID (var
));
846 ssa_call_clobbered_cache_valid
= false;
847 ssa_ro_call_cache_valid
= false;
850 /* Mark variable VAR as being non-addressable. */
852 mark_non_addressable (tree var
)
854 bitmap_clear_bit (call_clobbered_vars
, DECL_UID (var
));
855 TREE_ADDRESSABLE (var
) = 0;
856 ssa_call_clobbered_cache_valid
= false;
857 ssa_ro_call_cache_valid
= false;
860 /* Return the common annotation for T. Return NULL if the annotation
861 doesn't already exist. */
862 static inline tree_ann_t
865 return t
->common
.ann
;
868 /* Return a common annotation for T. Create the constant annotation if it
870 static inline tree_ann_t
871 get_tree_ann (tree t
)
873 tree_ann_t ann
= tree_ann (t
);
874 return (ann
) ? ann
: create_tree_ann (t
);
877 /* ----------------------------------------------------------------------- */
879 /* The following set of routines are used to iterator over various type of
882 /* Return true if PTR is finished iterating. */
884 op_iter_done (ssa_op_iter
*ptr
)
889 /* Get the next iterator use value for PTR. */
890 static inline use_operand_p
891 op_iter_next_use (ssa_op_iter
*ptr
)
894 #ifdef ENABLE_CHECKING
895 gcc_assert (ptr
->iter_type
== ssa_op_iter_use
);
899 use_p
= USE_OP_PTR (ptr
->uses
);
900 ptr
->uses
= ptr
->uses
->next
;
905 use_p
= VUSE_OP_PTR (ptr
->vuses
);
906 ptr
->vuses
= ptr
->vuses
->next
;
911 use_p
= MAYDEF_OP_PTR (ptr
->mayuses
);
912 ptr
->mayuses
= ptr
->mayuses
->next
;
917 use_p
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
918 ptr
->mustkills
= ptr
->mustkills
->next
;
921 if (ptr
->phi_i
< ptr
->num_phi
)
923 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
926 return NULL_USE_OPERAND_P
;
929 /* Get the next iterator def value for PTR. */
930 static inline def_operand_p
931 op_iter_next_def (ssa_op_iter
*ptr
)
934 #ifdef ENABLE_CHECKING
935 gcc_assert (ptr
->iter_type
== ssa_op_iter_def
);
939 def_p
= DEF_OP_PTR (ptr
->defs
);
940 ptr
->defs
= ptr
->defs
->next
;
945 def_p
= MUSTDEF_RESULT_PTR (ptr
->mustdefs
);
946 ptr
->mustdefs
= ptr
->mustdefs
->next
;
951 def_p
= MAYDEF_RESULT_PTR (ptr
->maydefs
);
952 ptr
->maydefs
= ptr
->maydefs
->next
;
956 return NULL_DEF_OPERAND_P
;
959 /* Get the next iterator tree value for PTR. */
961 op_iter_next_tree (ssa_op_iter
*ptr
)
964 #ifdef ENABLE_CHECKING
965 gcc_assert (ptr
->iter_type
== ssa_op_iter_tree
);
969 val
= USE_OP (ptr
->uses
);
970 ptr
->uses
= ptr
->uses
->next
;
975 val
= VUSE_OP (ptr
->vuses
);
976 ptr
->vuses
= ptr
->vuses
->next
;
981 val
= MAYDEF_OP (ptr
->mayuses
);
982 ptr
->mayuses
= ptr
->mayuses
->next
;
987 val
= MUSTDEF_KILL (ptr
->mustkills
);
988 ptr
->mustkills
= ptr
->mustkills
->next
;
993 val
= DEF_OP (ptr
->defs
);
994 ptr
->defs
= ptr
->defs
->next
;
999 val
= MUSTDEF_RESULT (ptr
->mustdefs
);
1000 ptr
->mustdefs
= ptr
->mustdefs
->next
;
1005 val
= MAYDEF_RESULT (ptr
->maydefs
);
1006 ptr
->maydefs
= ptr
->maydefs
->next
;
1016 /* This functions clears the iterator PTR, and marks it done. This is normally
1017 used to prevent warnings in the compile about might be uninitialized
1021 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
1026 ptr
->maydefs
= NULL
;
1027 ptr
->mayuses
= NULL
;
1028 ptr
->mustdefs
= NULL
;
1029 ptr
->mustkills
= NULL
;
1030 ptr
->iter_type
= ssa_op_iter_none
;
1033 ptr
->phi_stmt
= NULL_TREE
;
1037 /* Initialize the iterator PTR to the virtual defs in STMT. */
1039 op_iter_init (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1041 #ifdef ENABLE_CHECKING
1042 gcc_assert (stmt_ann (stmt
));
1045 ptr
->defs
= (flags
& SSA_OP_DEF
) ? DEF_OPS (stmt
) : NULL
;
1046 ptr
->uses
= (flags
& SSA_OP_USE
) ? USE_OPS (stmt
) : NULL
;
1047 ptr
->vuses
= (flags
& SSA_OP_VUSE
) ? VUSE_OPS (stmt
) : NULL
;
1048 ptr
->maydefs
= (flags
& SSA_OP_VMAYDEF
) ? MAYDEF_OPS (stmt
) : NULL
;
1049 ptr
->mayuses
= (flags
& SSA_OP_VMAYUSE
) ? MAYDEF_OPS (stmt
) : NULL
;
1050 ptr
->mustdefs
= (flags
& SSA_OP_VMUSTDEF
) ? MUSTDEF_OPS (stmt
) : NULL
;
1051 ptr
->mustkills
= (flags
& SSA_OP_VMUSTKILL
) ? MUSTDEF_OPS (stmt
) : NULL
;
1056 ptr
->phi_stmt
= NULL_TREE
;
1059 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1061 static inline use_operand_p
1062 op_iter_init_use (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1064 gcc_assert ((flags
& SSA_OP_ALL_DEFS
) == 0);
1065 op_iter_init (ptr
, stmt
, flags
);
1066 ptr
->iter_type
= ssa_op_iter_use
;
1067 return op_iter_next_use (ptr
);
1070 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1072 static inline def_operand_p
1073 op_iter_init_def (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1075 gcc_assert ((flags
& (SSA_OP_ALL_USES
| SSA_OP_VIRTUAL_KILLS
)) == 0);
1076 op_iter_init (ptr
, stmt
, flags
);
1077 ptr
->iter_type
= ssa_op_iter_def
;
1078 return op_iter_next_def (ptr
);
1081 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1082 the first operand as a tree. */
1084 op_iter_init_tree (ssa_op_iter
*ptr
, tree stmt
, int flags
)
1086 op_iter_init (ptr
, stmt
, flags
);
1087 ptr
->iter_type
= ssa_op_iter_tree
;
1088 return op_iter_next_tree (ptr
);
1091 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1094 op_iter_next_maymustdef (use_operand_p
*use
, def_operand_p
*def
,
1097 #ifdef ENABLE_CHECKING
1098 gcc_assert (ptr
->iter_type
== ssa_op_iter_maymustdef
);
1102 *def
= MAYDEF_RESULT_PTR (ptr
->mayuses
);
1103 *use
= MAYDEF_OP_PTR (ptr
->mayuses
);
1104 ptr
->mayuses
= ptr
->mayuses
->next
;
1110 *def
= MUSTDEF_RESULT_PTR (ptr
->mustkills
);
1111 *use
= MUSTDEF_KILL_PTR (ptr
->mustkills
);
1112 ptr
->mustkills
= ptr
->mustkills
->next
;
1116 *def
= NULL_DEF_OPERAND_P
;
1117 *use
= NULL_USE_OPERAND_P
;
1123 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1126 op_iter_init_maydef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*use
,
1129 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1131 op_iter_init (ptr
, stmt
, SSA_OP_VMAYUSE
);
1132 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1133 op_iter_next_maymustdef (use
, def
, ptr
);
1137 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1140 op_iter_init_mustdef (ssa_op_iter
*ptr
, tree stmt
, use_operand_p
*kill
,
1143 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1145 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
);
1146 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1147 op_iter_next_maymustdef (kill
, def
, ptr
);
1150 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1153 op_iter_init_must_and_may_def (ssa_op_iter
*ptr
, tree stmt
,
1154 use_operand_p
*kill
, def_operand_p
*def
)
1156 gcc_assert (TREE_CODE (stmt
) != PHI_NODE
);
1158 op_iter_init (ptr
, stmt
, SSA_OP_VMUSTKILL
|SSA_OP_VMAYUSE
);
1159 ptr
->iter_type
= ssa_op_iter_maymustdef
;
1160 op_iter_next_maymustdef (kill
, def
, ptr
);
1164 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1167 single_ssa_tree_operand (tree stmt
, int flags
)
1172 var
= op_iter_init_tree (&iter
, stmt
, flags
);
1173 if (op_iter_done (&iter
))
1175 op_iter_next_tree (&iter
);
1176 if (op_iter_done (&iter
))
1182 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1184 static inline use_operand_p
1185 single_ssa_use_operand (tree stmt
, int flags
)
1190 var
= op_iter_init_use (&iter
, stmt
, flags
);
1191 if (op_iter_done (&iter
))
1192 return NULL_USE_OPERAND_P
;
1193 op_iter_next_use (&iter
);
1194 if (op_iter_done (&iter
))
1196 return NULL_USE_OPERAND_P
;
1201 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1203 static inline def_operand_p
1204 single_ssa_def_operand (tree stmt
, int flags
)
1209 var
= op_iter_init_def (&iter
, stmt
, flags
);
1210 if (op_iter_done (&iter
))
1211 return NULL_DEF_OPERAND_P
;
1212 op_iter_next_def (&iter
);
1213 if (op_iter_done (&iter
))
1215 return NULL_DEF_OPERAND_P
;
1219 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1222 zero_ssa_operands (tree stmt
, int flags
)
1226 op_iter_init_tree (&iter
, stmt
, flags
);
1227 return op_iter_done (&iter
);
1231 /* Return the number of operands matching FLAGS in STMT. */
1233 num_ssa_operands (tree stmt
, int flags
)
1239 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
1245 /* Delink all immediate_use information for STMT. */
1247 delink_stmt_imm_use (tree stmt
)
1250 use_operand_p use_p
;
1252 if (ssa_operands_active ())
1253 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
,
1254 (SSA_OP_ALL_USES
| SSA_OP_ALL_KILLS
))
1255 delink_imm_use (use_p
);
1259 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1260 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1262 compare_ssa_operands_equal (tree stmt1
, tree stmt2
, int flags
)
1264 ssa_op_iter iter1
, iter2
;
1265 tree op1
= NULL_TREE
;
1266 tree op2
= NULL_TREE
;
1272 look1
= stmt1
&& stmt_ann (stmt1
);
1273 look2
= stmt2
&& stmt_ann (stmt2
);
1277 op1
= op_iter_init_tree (&iter1
, stmt1
, flags
);
1279 return op_iter_done (&iter1
);
1282 clear_and_done_ssa_iter (&iter1
);
1286 op2
= op_iter_init_tree (&iter2
, stmt2
, flags
);
1288 return op_iter_done (&iter2
);
1291 clear_and_done_ssa_iter (&iter2
);
1293 while (!op_iter_done (&iter1
) && !op_iter_done (&iter2
))
1297 op1
= op_iter_next_tree (&iter1
);
1298 op2
= op_iter_next_tree (&iter2
);
1301 return (op_iter_done (&iter1
) && op_iter_done (&iter2
));
1305 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1306 Otherwise return NULL_DEF_OPERAND_P. */
1308 single_phi_def (tree stmt
, int flags
)
1310 tree def
= PHI_RESULT (stmt
);
1311 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
1313 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
1318 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1319 be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */
1320 static inline use_operand_p
1321 op_iter_init_phiuse (ssa_op_iter
*ptr
, tree phi
, int flags
)
1323 tree phi_def
= PHI_RESULT (phi
);
1326 clear_and_done_ssa_iter (ptr
);
1329 gcc_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
1331 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1333 /* If the PHI node doesn't the operand type we care about, we're done. */
1334 if ((flags
& comp
) == 0)
1337 return NULL_USE_OPERAND_P
;
1340 ptr
->phi_stmt
= phi
;
1341 ptr
->num_phi
= PHI_NUM_ARGS (phi
);
1342 ptr
->iter_type
= ssa_op_iter_use
;
1343 return op_iter_next_use (ptr
);
1347 /* Start an iterator for a PHI definition. */
1349 static inline def_operand_p
1350 op_iter_init_phidef (ssa_op_iter
*ptr
, tree phi
, int flags
)
1352 tree phi_def
= PHI_RESULT (phi
);
1355 clear_and_done_ssa_iter (ptr
);
1358 gcc_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
1360 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
1362 /* If the PHI node doesn't the operand type we care about, we're done. */
1363 if ((flags
& comp
) == 0)
1366 return NULL_USE_OPERAND_P
;
1369 ptr
->iter_type
= ssa_op_iter_def
;
1370 /* The first call to op_iter_next_def will terminate the iterator since
1371 all the fields are NULL. Simply return the result here as the first and
1372 therefore only result. */
1373 return PHI_RESULT_PTR (phi
);
1378 /* Return true if VAR cannot be modified by the program. */
1381 unmodifiable_var_p (tree var
)
1383 if (TREE_CODE (var
) == SSA_NAME
)
1384 var
= SSA_NAME_VAR (var
);
1385 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1388 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1391 array_ref_contains_indirect_ref (tree ref
)
1393 gcc_assert (TREE_CODE (ref
) == ARRAY_REF
);
1396 ref
= TREE_OPERAND (ref
, 0);
1397 } while (handled_component_p (ref
));
1399 return TREE_CODE (ref
) == INDIRECT_REF
;
1402 /* Return true if REF, a handled component reference, has an ARRAY_REF
1406 ref_contains_array_ref (tree ref
)
1408 gcc_assert (handled_component_p (ref
));
1411 if (TREE_CODE (ref
) == ARRAY_REF
)
1413 ref
= TREE_OPERAND (ref
, 0);
1414 } while (handled_component_p (ref
));
1419 /* Given a variable VAR, lookup and return a pointer to the list of
1420 subvariables for it. */
1422 static inline subvar_t
*
1423 lookup_subvars_for_var (tree var
)
1425 var_ann_t ann
= var_ann (var
);
1427 return &ann
->subvars
;
1430 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1431 NULL, if there are no subvariables. */
1433 static inline subvar_t
1434 get_subvars_for_var (tree var
)
1438 gcc_assert (SSA_VAR_P (var
));
1440 if (TREE_CODE (var
) == SSA_NAME
)
1441 subvars
= *(lookup_subvars_for_var (SSA_NAME_VAR (var
)));
1443 subvars
= *(lookup_subvars_for_var (var
));
1447 /* Return the subvariable of VAR at offset OFFSET. */
1450 get_subvar_at (tree var
, unsigned HOST_WIDE_INT offset
)
1454 for (sv
= get_subvars_for_var (var
); sv
; sv
= sv
->next
)
1455 if (sv
->offset
== offset
)
1461 /* Return true if V is a tree that we can have subvars for.
1462 Normally, this is any aggregate type, however, due to implementation
1463 limitations ATM, we exclude array types as well. */
1466 var_can_have_subvars (tree v
)
1468 /* Volatile variables should never have subvars. */
1469 if (TREE_THIS_VOLATILE (v
))
1472 return (AGGREGATE_TYPE_P (TREE_TYPE (v
)) &&
1473 TREE_CODE (TREE_TYPE (v
)) != ARRAY_TYPE
);
1477 /* Return true if OFFSET and SIZE define a range that overlaps with some
1478 portion of the range of SV, a subvar. If there was an exact overlap,
1479 *EXACT will be set to true upon return. */
1482 overlap_subvar (unsigned HOST_WIDE_INT offset
, unsigned HOST_WIDE_INT size
,
1483 subvar_t sv
, bool *exact
)
1485 /* There are three possible cases of overlap.
1486 1. We can have an exact overlap, like so:
1487 |offset, offset + size |
1488 |sv->offset, sv->offset + sv->size |
1490 2. We can have offset starting after sv->offset, like so:
1492 |offset, offset + size |
1493 |sv->offset, sv->offset + sv->size |
1495 3. We can have offset starting before sv->offset, like so:
1497 |offset, offset + size |
1498 |sv->offset, sv->offset + sv->size|
1503 if (offset
== sv
->offset
&& size
== sv
->size
)
1509 else if (offset
>= sv
->offset
&& offset
< (sv
->offset
+ sv
->size
))
1513 else if (offset
< sv
->offset
&& (size
> sv
->offset
- offset
))
1521 #endif /* _TREE_FLOW_INLINE_H */