1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 /* Dead code elimination.
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
48 #include "coretypes.h"
52 /* These RTL headers are needed for basic-block.h. */
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "tree-gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
68 #include "tree-scalar-evolution.h"
70 static struct stmt_stats
78 static VEC(tree
,heap
) *worklist
;
80 /* Vector indicating an SSA name has already been processed and marked
82 static sbitmap processed
;
84 /* Vector indicating that last_stmt if a basic block has already been
85 marked as necessary. */
86 static sbitmap last_stmt_necessary
;
88 /* Before we can determine whether a control branch is dead, we need to
89 compute which blocks are control dependent on which edges.
91 We expect each block to be control dependent on very few edges so we
92 use a bitmap for each block recording its edges. An array holds the
93 bitmap. The Ith bit in the bitmap is set if that block is dependent
95 static bitmap
*control_dependence_map
;
97 /* Vector indicating that a basic block has already had all the edges
98 processed that it is control dependent on. */
99 static sbitmap visited_control_parents
;
101 /* TRUE if this pass alters the CFG (by removing control statements).
104 If this pass alters the CFG, then it will arrange for the dominators
106 static bool cfg_altered
;
108 /* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
109 for which the block with index N is control dependent. */
110 #define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE) \
112 bitmap_iterator bi; \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, bi) \
120 /* Local function prototypes. */
121 static inline void set_control_dependence_map_bit (basic_block
, int);
122 static inline void clear_control_dependence_bitmap (basic_block
);
123 static void find_all_control_dependences (struct edge_list
*);
124 static void find_control_dependence (struct edge_list
*, int);
125 static inline basic_block
find_pdom (basic_block
);
127 static inline void mark_stmt_necessary (tree
, bool);
128 static inline void mark_operand_necessary (tree
, bool);
130 static void mark_stmt_if_obviously_necessary (tree
, bool);
131 static void find_obviously_necessary_stmts (struct edge_list
*);
133 static void mark_control_dependent_edges_necessary (basic_block
, struct edge_list
*);
134 static void propagate_necessity (struct edge_list
*);
136 static void eliminate_unnecessary_stmts (void);
137 static void remove_dead_phis (basic_block
);
138 static void remove_dead_stmt (block_stmt_iterator
*, basic_block
);
140 static void print_stats (void);
141 static void tree_dce_init (bool);
142 static void tree_dce_done (bool);
144 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
146 set_control_dependence_map_bit (basic_block bb
, int edge_index
)
148 if (bb
== ENTRY_BLOCK_PTR
)
150 gcc_assert (bb
!= EXIT_BLOCK_PTR
);
151 bitmap_set_bit (control_dependence_map
[bb
->index
], edge_index
);
154 /* Clear all control dependences for block BB. */
156 void clear_control_dependence_bitmap (basic_block bb
)
158 bitmap_clear (control_dependence_map
[bb
->index
]);
161 /* Record all blocks' control dependences on all edges in the edge
162 list EL, ala Morgan, Section 3.6. */
165 find_all_control_dependences (struct edge_list
*el
)
169 for (i
= 0; i
< NUM_EDGES (el
); ++i
)
170 find_control_dependence (el
, i
);
173 /* Determine all blocks' control dependences on the given edge with edge_list
174 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
177 find_control_dependence (struct edge_list
*el
, int edge_index
)
179 basic_block current_block
;
180 basic_block ending_block
;
182 gcc_assert (INDEX_EDGE_PRED_BB (el
, edge_index
) != EXIT_BLOCK_PTR
);
184 if (INDEX_EDGE_PRED_BB (el
, edge_index
) == ENTRY_BLOCK_PTR
)
185 ending_block
= ENTRY_BLOCK_PTR
->next_bb
;
187 ending_block
= find_pdom (INDEX_EDGE_PRED_BB (el
, edge_index
));
189 for (current_block
= INDEX_EDGE_SUCC_BB (el
, edge_index
);
190 current_block
!= ending_block
&& current_block
!= EXIT_BLOCK_PTR
;
191 current_block
= find_pdom (current_block
))
193 edge e
= INDEX_EDGE (el
, edge_index
);
195 /* For abnormal edges, we don't make current_block control
196 dependent because instructions that throw are always necessary
198 if (e
->flags
& EDGE_ABNORMAL
)
201 set_control_dependence_map_bit (current_block
, edge_index
);
205 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
206 This function is necessary because some blocks have negative numbers. */
208 static inline basic_block
209 find_pdom (basic_block block
)
211 gcc_assert (block
!= ENTRY_BLOCK_PTR
);
213 if (block
== EXIT_BLOCK_PTR
)
214 return EXIT_BLOCK_PTR
;
217 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
219 return EXIT_BLOCK_PTR
;
224 #define NECESSARY(stmt) stmt->common.asm_written_flag
226 /* If STMT is not already marked necessary, mark it, and add it to the
227 worklist if ADD_TO_WORKLIST is true. */
229 mark_stmt_necessary (tree stmt
, bool add_to_worklist
)
232 gcc_assert (!DECL_P (stmt
));
234 if (NECESSARY (stmt
))
237 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
239 fprintf (dump_file
, "Marking useful stmt: ");
240 print_generic_stmt (dump_file
, stmt
, TDF_SLIM
);
241 fprintf (dump_file
, "\n");
244 NECESSARY (stmt
) = 1;
246 VEC_safe_push (tree
, heap
, worklist
, stmt
);
249 /* Mark the statement defining operand OP as necessary. PHIONLY is true
250 if we should only mark it necessary if it is a phi node. */
253 mark_operand_necessary (tree op
, bool phionly
)
260 ver
= SSA_NAME_VERSION (op
);
261 if (TEST_BIT (processed
, ver
))
263 SET_BIT (processed
, ver
);
265 stmt
= SSA_NAME_DEF_STMT (op
);
269 || IS_EMPTY_STMT (stmt
)
270 || (phionly
&& TREE_CODE (stmt
) != PHI_NODE
))
273 NECESSARY (stmt
) = 1;
274 VEC_safe_push (tree
, heap
, worklist
, stmt
);
278 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
279 it can make other statements necessary.
281 If AGGRESSIVE is false, control statements are conservatively marked as
285 mark_stmt_if_obviously_necessary (tree stmt
, bool aggressive
)
291 /* With non-call exceptions, we have to assume that all statements could
292 throw. If a statement may throw, it is inherently necessary. */
293 if (flag_non_call_exceptions
294 && tree_could_throw_p (stmt
))
296 mark_stmt_necessary (stmt
, true);
300 /* Statements that are implicitly live. Most function calls, asm and return
301 statements are required. Labels and BIND_EXPR nodes are kept because
302 they are control flow, and we have no way of knowing whether they can be
303 removed. DCE can eliminate all the other statements in a block, and CFG
304 can then remove the block and labels. */
305 switch (TREE_CODE (stmt
))
309 case CASE_LABEL_EXPR
:
310 mark_stmt_necessary (stmt
, false);
316 mark_stmt_necessary (stmt
, true);
320 /* Most, but not all function calls are required. Function calls that
321 produce no result and have no side effects (i.e. const pure
322 functions) are unnecessary. */
323 if (TREE_SIDE_EFFECTS (stmt
))
324 mark_stmt_necessary (stmt
, true);
328 op
= get_call_expr_in (stmt
);
329 if (op
&& TREE_SIDE_EFFECTS (op
))
331 mark_stmt_necessary (stmt
, true);
335 /* These values are mildly magic bits of the EH runtime. We can't
336 see the entire lifetime of these values until landing pads are
338 if (TREE_CODE (TREE_OPERAND (stmt
, 0)) == EXC_PTR_EXPR
339 || TREE_CODE (TREE_OPERAND (stmt
, 0)) == FILTER_EXPR
)
341 mark_stmt_necessary (stmt
, true);
347 gcc_assert (!simple_goto_p (stmt
));
348 mark_stmt_necessary (stmt
, true);
352 gcc_assert (EDGE_COUNT (bb_for_stmt (stmt
)->succs
) == 2);
357 mark_stmt_necessary (stmt
, true);
364 ann
= stmt_ann (stmt
);
366 /* If the statement has volatile operands, it needs to be preserved.
367 Same for statements that can alter control flow in unpredictable
369 if (ann
->has_volatile_ops
|| is_ctrl_altering_stmt (stmt
))
371 mark_stmt_necessary (stmt
, true);
375 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
377 if (is_global_var (SSA_NAME_VAR (def
)))
379 mark_stmt_necessary (stmt
, true);
383 if (is_hidden_global_store (stmt
))
385 mark_stmt_necessary (stmt
, true);
392 /* Find obviously necessary statements. These are things like most function
393 calls, and stores to file level variables.
395 If EL is NULL, control statements are conservatively marked as
396 necessary. Otherwise it contains the list of edges used by control
397 dependence analysis. */
400 find_obviously_necessary_stmts (struct edge_list
*el
)
403 block_stmt_iterator i
;
410 /* Check any PHI nodes in the block. */
411 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
415 /* PHIs for virtual variables do not directly affect code
416 generation and need not be considered inherently necessary
417 regardless of the bits set in their decl.
419 Thus, we only need to mark PHIs for real variables which
420 need their result preserved as being inherently necessary. */
421 if (is_gimple_reg (PHI_RESULT (phi
))
422 && is_global_var (SSA_NAME_VAR (PHI_RESULT (phi
))))
423 mark_stmt_necessary (phi
, true);
426 /* Check all statements in the block. */
427 for (i
= bsi_start (bb
); ! bsi_end_p (i
); bsi_next (&i
))
429 tree stmt
= bsi_stmt (i
);
430 NECESSARY (stmt
) = 0;
431 mark_stmt_if_obviously_necessary (stmt
, el
!= NULL
);
437 /* Prevent the loops from being removed. We must keep the infinite loops,
438 and we currently do not have a means to recognize the finite ones. */
442 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
443 if (e
->flags
& EDGE_DFS_BACK
)
444 mark_control_dependent_edges_necessary (e
->dest
, el
);
449 /* Make corresponding control dependent edges necessary. We only
450 have to do this once for each basic block, so we clear the bitmap
453 mark_control_dependent_edges_necessary (basic_block bb
, struct edge_list
*el
)
455 unsigned edge_number
;
457 gcc_assert (bb
!= EXIT_BLOCK_PTR
);
459 if (bb
== ENTRY_BLOCK_PTR
)
462 EXECUTE_IF_CONTROL_DEPENDENT (bb
->index
, edge_number
,
465 basic_block cd_bb
= INDEX_EDGE_PRED_BB (el
, edge_number
);
467 if (TEST_BIT (last_stmt_necessary
, cd_bb
->index
))
469 SET_BIT (last_stmt_necessary
, cd_bb
->index
);
471 t
= last_stmt (cd_bb
);
472 if (t
&& is_ctrl_stmt (t
))
473 mark_stmt_necessary (t
, true);
477 /* Propagate necessity using the operands of necessary statements. Process
478 the uses on each statement in the worklist, and add all feeding statements
479 which contribute to the calculation of this value to the worklist.
481 In conservative mode, EL is NULL. */
484 propagate_necessity (struct edge_list
*el
)
487 bool aggressive
= (el
? true : false);
489 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
490 fprintf (dump_file
, "\nProcessing worklist:\n");
492 while (VEC_length (tree
, worklist
) > 0)
494 /* Take `i' from worklist. */
495 i
= VEC_pop (tree
, worklist
);
497 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
499 fprintf (dump_file
, "processing: ");
500 print_generic_stmt (dump_file
, i
, TDF_SLIM
);
501 fprintf (dump_file
, "\n");
506 /* Mark the last statements of the basic blocks that the block
507 containing `i' is control dependent on, but only if we haven't
509 basic_block bb
= bb_for_stmt (i
);
510 if (bb
!= ENTRY_BLOCK_PTR
511 && ! TEST_BIT (visited_control_parents
, bb
->index
))
513 SET_BIT (visited_control_parents
, bb
->index
);
514 mark_control_dependent_edges_necessary (bb
, el
);
518 if (TREE_CODE (i
) == PHI_NODE
)
520 /* PHI nodes are somewhat special in that each PHI alternative has
521 data and control dependencies. All the statements feeding the
522 PHI node's arguments are always necessary. In aggressive mode,
523 we also consider the control dependent edges leading to the
524 predecessor block associated with each PHI alternative as
527 for (k
= 0; k
< PHI_NUM_ARGS (i
); k
++)
529 tree arg
= PHI_ARG_DEF (i
, k
);
530 if (TREE_CODE (arg
) == SSA_NAME
)
531 mark_operand_necessary (arg
, false);
536 for (k
= 0; k
< PHI_NUM_ARGS (i
); k
++)
538 basic_block arg_bb
= PHI_ARG_EDGE (i
, k
)->src
;
539 if (arg_bb
!= ENTRY_BLOCK_PTR
540 && ! TEST_BIT (visited_control_parents
, arg_bb
->index
))
542 SET_BIT (visited_control_parents
, arg_bb
->index
);
543 mark_control_dependent_edges_necessary (arg_bb
, el
);
550 /* Propagate through the operands. Examine all the USE, VUSE and
551 V_MAY_DEF operands in this statement. Mark all the statements
552 which feed this statement's uses as necessary. */
556 /* The operands of V_MAY_DEF expressions are also needed as they
557 represent potential definitions that may reach this
558 statement (V_MAY_DEF operands allow us to follow def-def
561 FOR_EACH_SSA_TREE_OPERAND (use
, i
, iter
, SSA_OP_ALL_USES
)
562 mark_operand_necessary (use
, false);
568 /* Propagate necessity around virtual phi nodes used in kill operands.
569 The reason this isn't done during propagate_necessity is because we don't
570 want to keep phis around that are just there for must-defs, unless we
571 absolutely have to. After we've rewritten the reaching definitions to be
572 correct in the previous part of the fixup routine, we can simply propagate
573 around the information about which of these virtual phi nodes are really
574 used, and set the NECESSARY flag accordingly.
575 Note that we do the minimum here to ensure that we keep alive the phis that
576 are actually used in the corrected SSA form. In particular, some of these
577 phis may now have all of the same operand, and will be deleted by some
581 mark_really_necessary_kill_operand_phis (void)
586 /* Seed the worklist with the new virtual phi arguments and virtual
590 block_stmt_iterator bsi
;
593 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
595 if (!is_gimple_reg (PHI_RESULT (phi
)) && NECESSARY (phi
))
597 for (i
= 0; i
< PHI_NUM_ARGS (phi
); i
++)
598 mark_operand_necessary (PHI_ARG_DEF (phi
, i
), true);
602 for (bsi
= bsi_last (bb
); !bsi_end_p (bsi
); bsi_prev (&bsi
))
604 tree stmt
= bsi_stmt (bsi
);
606 if (NECESSARY (stmt
))
610 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
,
611 SSA_OP_VIRTUAL_USES
| SSA_OP_VIRTUAL_KILLS
)
613 tree use
= USE_FROM_PTR (use_p
);
614 mark_operand_necessary (use
, true);
620 /* Mark all virtual phis still in use as necessary, and all of their
621 arguments that are phis as necessary. */
622 while (VEC_length (tree
, worklist
) > 0)
624 tree use
= VEC_pop (tree
, worklist
);
626 for (i
= 0; i
< PHI_NUM_ARGS (use
); i
++)
627 mark_operand_necessary (PHI_ARG_DEF (use
, i
), true);
634 /* Eliminate unnecessary statements. Any instruction not marked as necessary
635 contributes nothing to the program, and can be deleted. */
638 eliminate_unnecessary_stmts (void)
641 block_stmt_iterator i
;
643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
644 fprintf (dump_file
, "\nEliminating unnecessary statements:\n");
646 clear_special_calls ();
649 /* Remove dead PHI nodes. */
650 remove_dead_phis (bb
);
655 /* Remove dead statements. */
656 for (i
= bsi_start (bb
); ! bsi_end_p (i
) ; )
658 tree t
= bsi_stmt (i
);
662 /* If `i' is not necessary then remove it. */
664 remove_dead_stmt (&i
, bb
);
667 tree call
= get_call_expr_in (t
);
669 notice_special_calls (call
);
676 /* Remove dead PHI nodes from block BB. */
679 remove_dead_phis (basic_block bb
)
684 phi
= phi_nodes (bb
);
689 if (! NECESSARY (phi
))
691 tree next
= PHI_CHAIN (phi
);
693 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
695 fprintf (dump_file
, "Deleting : ");
696 print_generic_stmt (dump_file
, phi
, TDF_SLIM
);
697 fprintf (dump_file
, "\n");
700 remove_phi_node (phi
, prev
);
701 stats
.removed_phis
++;
707 phi
= PHI_CHAIN (phi
);
712 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
713 containing I so that we don't have to look it up. */
716 remove_dead_stmt (block_stmt_iterator
*i
, basic_block bb
)
718 tree t
= bsi_stmt (*i
);
723 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
725 fprintf (dump_file
, "Deleting : ");
726 print_generic_stmt (dump_file
, t
, TDF_SLIM
);
727 fprintf (dump_file
, "\n");
732 /* If we have determined that a conditional branch statement contributes
733 nothing to the program, then we not only remove it, but we also change
734 the flow graph so that the current block will simply fall-thru to its
735 immediate post-dominator. The blocks we are circumventing will be
736 removed by cleaup_tree_cfg if this change in the flow graph makes them
738 if (is_ctrl_stmt (t
))
740 basic_block post_dom_bb
;
742 /* The post dominance info has to be up-to-date. */
743 gcc_assert (dom_computed
[CDI_POST_DOMINATORS
] == DOM_OK
);
744 /* Get the immediate post dominator of bb. */
745 post_dom_bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, bb
);
746 /* Some blocks don't have an immediate post dominator. This can happen
747 for example with infinite loops. Removing an infinite loop is an
748 inappropriate transformation anyway... */
755 /* If the post dominator block has PHI nodes, we might be unable
756 to compute the right PHI args for them. Since the control
757 statement is unnecessary, all edges can be regarded as
758 equivalent, but we have to get rid of the condition, since it
759 might reference a variable that was determined to be
760 unnecessary and thus removed. */
761 if (phi_nodes (post_dom_bb
))
762 post_dom_bb
= EDGE_SUCC (bb
, 0)->dest
;
765 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
766 redirect_edge_and_branch (EDGE_SUCC (bb
, 0), post_dom_bb
);
767 PENDING_STMT (EDGE_SUCC (bb
, 0)) = NULL
;
769 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
770 EDGE_SUCC (bb
, 0)->count
= bb
->count
;
772 /* The edge is no longer associated with a conditional, so it does
773 not have TRUE/FALSE flags. */
774 EDGE_SUCC (bb
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
776 /* If the edge reaches any block other than the exit, then it is a
777 fallthru edge; if it reaches the exit, then it is not a fallthru
779 if (post_dom_bb
!= EXIT_BLOCK_PTR
)
780 EDGE_SUCC (bb
, 0)->flags
|= EDGE_FALLTHRU
;
782 EDGE_SUCC (bb
, 0)->flags
&= ~EDGE_FALLTHRU
;
784 /* Remove the remaining the outgoing edges. */
785 while (!single_succ_p (bb
))
787 /* FIXME. When we remove the edge, we modify the CFG, which
788 in turn modifies the dominator and post-dominator tree.
789 Is it safe to postpone recomputing the dominator and
790 post-dominator tree until the end of this pass given that
791 the post-dominators are used above? */
793 remove_edge (EDGE_SUCC (bb
, 1));
797 FOR_EACH_SSA_DEF_OPERAND (def_p
, t
, iter
, SSA_OP_VIRTUAL_DEFS
)
799 tree def
= DEF_FROM_PTR (def_p
);
800 mark_sym_for_renaming (SSA_NAME_VAR (def
));
806 /* Print out removed statement statistics. */
811 if (dump_file
&& (dump_flags
& (TDF_STATS
|TDF_DETAILS
)))
815 percg
= ((float) stats
.removed
/ (float) stats
.total
) * 100;
816 fprintf (dump_file
, "Removed %d of %d statements (%d%%)\n",
817 stats
.removed
, stats
.total
, (int) percg
);
819 if (stats
.total_phis
== 0)
822 percg
= ((float) stats
.removed_phis
/ (float) stats
.total_phis
) * 100;
824 fprintf (dump_file
, "Removed %d of %d PHI nodes (%d%%)\n",
825 stats
.removed_phis
, stats
.total_phis
, (int) percg
);
829 /* Initialization for this pass. Set up the used data structures. */
832 tree_dce_init (bool aggressive
)
834 memset ((void *) &stats
, 0, sizeof (stats
));
840 control_dependence_map
841 = xmalloc (last_basic_block
* sizeof (bitmap
));
842 for (i
= 0; i
< last_basic_block
; ++i
)
843 control_dependence_map
[i
] = BITMAP_ALLOC (NULL
);
845 last_stmt_necessary
= sbitmap_alloc (last_basic_block
);
846 sbitmap_zero (last_stmt_necessary
);
849 processed
= sbitmap_alloc (num_ssa_names
+ 1);
850 sbitmap_zero (processed
);
852 worklist
= VEC_alloc (tree
, heap
, 64);
856 /* Cleanup after this pass. */
859 tree_dce_done (bool aggressive
)
865 for (i
= 0; i
< last_basic_block
; ++i
)
866 BITMAP_FREE (control_dependence_map
[i
]);
867 free (control_dependence_map
);
869 sbitmap_free (visited_control_parents
);
870 sbitmap_free (last_stmt_necessary
);
873 sbitmap_free (processed
);
875 VEC_free (tree
, heap
, worklist
);
878 /* Main routine to eliminate dead code.
880 AGGRESSIVE controls the aggressiveness of the algorithm.
881 In conservative mode, we ignore control dependence and simply declare
882 all but the most trivially dead branches necessary. This mode is fast.
883 In aggressive mode, control dependences are taken into account, which
884 results in more dead code elimination, but at the cost of some time.
886 FIXME: Aggressive mode before PRE doesn't work currently because
887 the dominance info is not invalidated after DCE1. This is
888 not an issue right now because we only run aggressive DCE
889 as the last tree SSA pass, but keep this in mind when you
890 start experimenting with pass ordering. */
893 perform_tree_ssa_dce (bool aggressive
)
895 struct edge_list
*el
= NULL
;
897 tree_dce_init (aggressive
);
901 /* Compute control dependence. */
902 timevar_push (TV_CONTROL_DEPENDENCES
);
903 calculate_dominance_info (CDI_POST_DOMINATORS
);
904 el
= create_edge_list ();
905 find_all_control_dependences (el
);
906 timevar_pop (TV_CONTROL_DEPENDENCES
);
908 visited_control_parents
= sbitmap_alloc (last_basic_block
);
909 sbitmap_zero (visited_control_parents
);
911 mark_dfs_back_edges ();
914 find_obviously_necessary_stmts (el
);
916 propagate_necessity (el
);
918 mark_really_necessary_kill_operand_phis ();
919 eliminate_unnecessary_stmts ();
922 free_dominance_info (CDI_POST_DOMINATORS
);
924 /* If we removed paths in the CFG, then we need to update
925 dominators as well. I haven't investigated the possibility
926 of incrementally updating dominators. */
928 free_dominance_info (CDI_DOMINATORS
);
930 /* Debugging dumps. */
934 tree_dce_done (aggressive
);
939 /* Pass entry points. */
943 perform_tree_ssa_dce (/*aggressive=*/false);
947 tree_ssa_dce_loop (void)
949 perform_tree_ssa_dce (/*aggressive=*/false);
950 free_numbers_of_iterations_estimates (current_loops
);
955 tree_ssa_cd_dce (void)
957 perform_tree_ssa_dce (/*aggressive=*/optimize
>= 2);
963 return flag_tree_dce
!= 0;
966 struct tree_opt_pass pass_dce
=
970 tree_ssa_dce
, /* execute */
973 0, /* static_pass_number */
974 TV_TREE_DCE
, /* tv_id */
975 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
976 0, /* properties_provided */
977 0, /* properties_destroyed */
978 0, /* todo_flags_start */
983 | TODO_verify_ssa
, /* todo_flags_finish */
987 struct tree_opt_pass pass_dce_loop
=
989 "dceloop", /* name */
991 tree_ssa_dce_loop
, /* execute */
994 0, /* static_pass_number */
995 TV_TREE_DCE
, /* tv_id */
996 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
997 0, /* properties_provided */
998 0, /* properties_destroyed */
999 0, /* todo_flags_start */
1003 | TODO_verify_ssa
, /* todo_flags_finish */
1007 struct tree_opt_pass pass_cd_dce
=
1010 gate_dce
, /* gate */
1011 tree_ssa_cd_dce
, /* execute */
1014 0, /* static_pass_number */
1015 TV_TREE_CD_DCE
, /* tv_id */
1016 PROP_cfg
| PROP_ssa
| PROP_alias
, /* properties_required */
1017 0, /* properties_provided */
1018 0, /* properties_destroyed */
1019 0, /* todo_flags_start */
1025 | TODO_verify_flow
, /* todo_flags_finish */