Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / gcc / tree-vrp.c
blob8d479c1eed33bdf3bd9381b74225b7a99048db41
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops *cfg_loops;
48 /* Local functions. */
49 static int compare_values (tree val1, tree val2);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
71 /* Value being compared against. */
72 tree val;
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
78 typedef struct assert_locus_d *assert_locus_t;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
101 static bool
102 nonnull_arg_p (tree arg)
104 tree t, attrs, fntype;
105 unsigned HOST_WIDE_INT arg_num;
107 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
109 /* The static chain decl is always non null. */
110 if (arg == cfun->static_chain_decl)
111 return true;
113 fntype = TREE_TYPE (current_function_decl);
114 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
116 /* If "nonnull" wasn't specified, we know nothing about the argument. */
117 if (attrs == NULL_TREE)
118 return false;
120 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
121 if (TREE_VALUE (attrs) == NULL_TREE)
122 return true;
124 /* Get the position number for ARG in the function signature. */
125 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
127 t = TREE_CHAIN (t), arg_num++)
129 if (t == arg)
130 break;
133 gcc_assert (t == arg);
135 /* Now see if ARG_NUM is mentioned in the nonnull list. */
136 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
138 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
139 return true;
142 return false;
146 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
148 static void
149 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
150 tree max, bitmap equiv)
152 #if defined ENABLE_CHECKING
153 /* Check the validity of the range. */
154 if (t == VR_RANGE || t == VR_ANTI_RANGE)
156 int cmp;
158 gcc_assert (min && max);
160 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
161 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
162 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
164 cmp = compare_values (min, max);
165 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
168 if (t == VR_UNDEFINED || t == VR_VARYING)
169 gcc_assert (min == NULL_TREE && max == NULL_TREE);
171 if (t == VR_UNDEFINED || t == VR_VARYING)
172 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
173 #endif
175 vr->type = t;
176 vr->min = min;
177 vr->max = max;
179 /* Since updating the equivalence set involves deep copying the
180 bitmaps, only do it if absolutely necessary. */
181 if (vr->equiv == NULL)
182 vr->equiv = BITMAP_ALLOC (NULL);
184 if (equiv != vr->equiv)
186 if (equiv && !bitmap_empty_p (equiv))
187 bitmap_copy (vr->equiv, equiv);
188 else
189 bitmap_clear (vr->equiv);
194 /* Copy value range FROM into value range TO. */
196 static inline void
197 copy_value_range (value_range_t *to, value_range_t *from)
199 set_value_range (to, from->type, from->min, from->max, from->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR. Create an empty range
248 if none existed. */
250 static value_range_t *
251 get_value_range (tree var)
253 value_range_t *vr;
254 tree sym;
255 unsigned ver = SSA_NAME_VERSION (var);
257 vr = vr_value[ver];
258 if (vr)
259 return vr;
261 /* Create a default value range. */
262 vr_value[ver] = vr = xmalloc (sizeof (*vr));
263 memset (vr, 0, sizeof (*vr));
265 /* Allocate an equivalence set. */
266 vr->equiv = BITMAP_ALLOC (NULL);
268 /* If VAR is a default definition, the variable can take any value
269 in VAR's type. */
270 sym = SSA_NAME_VAR (var);
271 if (var == default_def (sym))
273 /* Try to use the "nonnull" attribute to create ~[0, 0]
274 anti-ranges for pointers. Note that this is only valid with
275 default definitions of PARM_DECLs. */
276 if (TREE_CODE (sym) == PARM_DECL
277 && POINTER_TYPE_P (TREE_TYPE (sym))
278 && nonnull_arg_p (sym))
279 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
280 else
281 set_value_range_to_varying (vr);
284 return vr;
287 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
289 static inline bool
290 vrp_operand_equal_p (tree val1, tree val2)
292 return (val1 == val2
293 || (val1 && val2
294 && operand_equal_p (val1, val2, 0)));
297 /* Return true, if the bitmaps B1 and B2 are equal. */
299 static inline bool
300 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
302 return (b1 == b2
303 || (b1 && b2
304 && bitmap_equal_p (b1, b2)));
307 /* Update the value range and equivalence set for variable VAR to
308 NEW_VR. Return true if NEW_VR is different from VAR's previous
309 value.
311 NOTE: This function assumes that NEW_VR is a temporary value range
312 object created for the sole purpose of updating VAR's range. The
313 storage used by the equivalence set from NEW_VR will be freed by
314 this function. Do not call update_value_range when NEW_VR
315 is the range object associated with another SSA name. */
317 static inline bool
318 update_value_range (tree var, value_range_t *new_vr)
320 value_range_t *old_vr;
321 bool is_new;
323 /* Update the value range, if necessary. */
324 old_vr = get_value_range (var);
325 is_new = old_vr->type != new_vr->type
326 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
327 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
328 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
330 if (is_new)
331 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
332 new_vr->equiv);
334 BITMAP_FREE (new_vr->equiv);
335 new_vr->equiv = NULL;
337 return is_new;
341 /* Add VAR and VAR's equivalence set to EQUIV. */
343 static void
344 add_equivalence (bitmap equiv, tree var)
346 unsigned ver = SSA_NAME_VERSION (var);
347 value_range_t *vr = vr_value[ver];
349 bitmap_set_bit (equiv, ver);
350 if (vr && vr->equiv)
351 bitmap_ior_into (equiv, vr->equiv);
355 /* Return true if VR is ~[0, 0]. */
357 static inline bool
358 range_is_nonnull (value_range_t *vr)
360 return vr->type == VR_ANTI_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
366 /* Return true if VR is [0, 0]. */
368 static inline bool
369 range_is_null (value_range_t *vr)
371 return vr->type == VR_RANGE
372 && integer_zerop (vr->min)
373 && integer_zerop (vr->max);
377 /* Return true if value range VR involves at least one symbol. */
379 static inline bool
380 symbolic_range_p (value_range_t *vr)
382 return (!is_gimple_min_invariant (vr->min)
383 || !is_gimple_min_invariant (vr->max));
387 /* Like tree_expr_nonzero_p, but this function uses value ranges
388 obtained so far. */
390 static bool
391 vrp_expr_computes_nonzero (tree expr)
393 if (tree_expr_nonzero_p (expr))
394 return true;
396 /* If we have an expression of the form &X->a, then the expression
397 is nonnull if X is nonnull. */
398 if (TREE_CODE (expr) == ADDR_EXPR)
400 tree base = get_base_address (TREE_OPERAND (expr, 0));
402 if (base != NULL_TREE
403 && TREE_CODE (base) == INDIRECT_REF
404 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
406 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
407 if (range_is_nonnull (vr))
408 return true;
412 return false;
416 /* Compare two values VAL1 and VAL2. Return
418 -2 if VAL1 and VAL2 cannot be compared at compile-time,
419 -1 if VAL1 < VAL2,
420 0 if VAL1 == VAL2,
421 +1 if VAL1 > VAL2, and
422 +2 if VAL1 != VAL2
424 This is similar to tree_int_cst_compare but supports pointer values
425 and values that cannot be compared at compile time. */
427 static int
428 compare_values (tree val1, tree val2)
430 if (val1 == val2)
431 return 0;
433 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
434 both integers. */
435 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
436 == POINTER_TYPE_P (TREE_TYPE (val2)));
438 /* Do some limited symbolic comparisons. */
439 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
441 /* We can determine some comparisons against +INF and -INF even
442 if the other value is an expression. */
443 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
444 && TREE_CODE (val2) == MINUS_EXPR)
446 /* +INF > NAME - CST. */
447 return 1;
449 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
450 && TREE_CODE (val2) == PLUS_EXPR)
452 /* -INF < NAME + CST. */
453 return -1;
455 else if (TREE_CODE (val1) == MINUS_EXPR
456 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
458 /* NAME - CST < +INF. */
459 return -1;
461 else if (TREE_CODE (val1) == PLUS_EXPR
462 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
464 /* NAME + CST > -INF. */
465 return 1;
469 if ((TREE_CODE (val1) == SSA_NAME
470 || TREE_CODE (val1) == PLUS_EXPR
471 || TREE_CODE (val1) == MINUS_EXPR)
472 && (TREE_CODE (val2) == SSA_NAME
473 || TREE_CODE (val2) == PLUS_EXPR
474 || TREE_CODE (val2) == MINUS_EXPR))
476 tree n1, c1, n2, c2;
478 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
479 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
480 same name, return -2. */
481 if (TREE_CODE (val1) == SSA_NAME)
483 n1 = val1;
484 c1 = NULL_TREE;
486 else
488 n1 = TREE_OPERAND (val1, 0);
489 c1 = TREE_OPERAND (val1, 1);
492 if (TREE_CODE (val2) == SSA_NAME)
494 n2 = val2;
495 c2 = NULL_TREE;
497 else
499 n2 = TREE_OPERAND (val2, 0);
500 c2 = TREE_OPERAND (val2, 1);
503 /* Both values must use the same name. */
504 if (n1 != n2)
505 return -2;
507 if (TREE_CODE (val1) == SSA_NAME)
509 if (TREE_CODE (val2) == SSA_NAME)
510 /* NAME == NAME */
511 return 0;
512 else if (TREE_CODE (val2) == PLUS_EXPR)
513 /* NAME < NAME + CST */
514 return -1;
515 else if (TREE_CODE (val2) == MINUS_EXPR)
516 /* NAME > NAME - CST */
517 return 1;
519 else if (TREE_CODE (val1) == PLUS_EXPR)
521 if (TREE_CODE (val2) == SSA_NAME)
522 /* NAME + CST > NAME */
523 return 1;
524 else if (TREE_CODE (val2) == PLUS_EXPR)
525 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
526 return compare_values (c1, c2);
527 else if (TREE_CODE (val2) == MINUS_EXPR)
528 /* NAME + CST1 > NAME - CST2 */
529 return 1;
531 else if (TREE_CODE (val1) == MINUS_EXPR)
533 if (TREE_CODE (val2) == SSA_NAME)
534 /* NAME - CST < NAME */
535 return -1;
536 else if (TREE_CODE (val2) == PLUS_EXPR)
537 /* NAME - CST1 < NAME + CST2 */
538 return -1;
539 else if (TREE_CODE (val2) == MINUS_EXPR)
540 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
541 C1 and C2 are swapped in the call to compare_values. */
542 return compare_values (c2, c1);
545 gcc_unreachable ();
548 /* We cannot compare non-constants. */
549 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
550 return -2;
552 /* We cannot compare overflowed values. */
553 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
554 return -2;
556 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
557 return tree_int_cst_compare (val1, val2);
558 else
560 tree t;
562 /* First see if VAL1 and VAL2 are not the same. */
563 if (val1 == val2 || operand_equal_p (val1, val2, 0))
564 return 0;
566 /* If VAL1 is a lower address than VAL2, return -1. */
567 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
568 if (t == boolean_true_node)
569 return -1;
571 /* If VAL1 is a higher address than VAL2, return +1. */
572 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
573 if (t == boolean_true_node)
574 return 1;
576 /* If VAL1 is different than VAL2, return +2. */
577 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
578 if (t == boolean_true_node)
579 return 2;
581 return -2;
586 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
587 0 if VAL is not inside VR,
588 -2 if we cannot tell either way.
590 FIXME, the current semantics of this functions are a bit quirky
591 when taken in the context of VRP. In here we do not care
592 about VR's type. If VR is the anti-range ~[3, 5] the call
593 value_inside_range (4, VR) will return 1.
595 This is counter-intuitive in a strict sense, but the callers
596 currently expect this. They are calling the function
597 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
598 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
599 themselves.
601 This also applies to value_ranges_intersect_p and
602 range_includes_zero_p. The semantics of VR_RANGE and
603 VR_ANTI_RANGE should be encoded here, but that also means
604 adapting the users of these functions to the new semantics. */
606 static inline int
607 value_inside_range (tree val, value_range_t *vr)
609 int cmp1, cmp2;
611 cmp1 = compare_values (val, vr->min);
612 if (cmp1 == -2 || cmp1 == 2)
613 return -2;
615 cmp2 = compare_values (val, vr->max);
616 if (cmp2 == -2 || cmp2 == 2)
617 return -2;
619 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
623 /* Return true if value ranges VR0 and VR1 have a non-empty
624 intersection. */
626 static inline bool
627 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
629 return (value_inside_range (vr1->min, vr0) == 1
630 || value_inside_range (vr1->max, vr0) == 1
631 || value_inside_range (vr0->min, vr1) == 1
632 || value_inside_range (vr0->max, vr1) == 1);
636 /* Return true if VR includes the value zero, false otherwise. FIXME,
637 currently this will return false for an anti-range like ~[-4, 3].
638 This will be wrong when the semantics of value_inside_range are
639 modified (currently the users of this function expect these
640 semantics). */
642 static inline bool
643 range_includes_zero_p (value_range_t *vr)
645 tree zero;
647 gcc_assert (vr->type != VR_UNDEFINED
648 && vr->type != VR_VARYING
649 && !symbolic_range_p (vr));
651 zero = build_int_cst (TREE_TYPE (vr->min), 0);
652 return (value_inside_range (zero, vr) == 1);
656 /* Extract value range information from an ASSERT_EXPR EXPR and store
657 it in *VR_P. */
659 static void
660 extract_range_from_assert (value_range_t *vr_p, tree expr)
662 tree var, cond, limit, min, max, type;
663 value_range_t *var_vr, *limit_vr;
664 enum tree_code cond_code;
666 var = ASSERT_EXPR_VAR (expr);
667 cond = ASSERT_EXPR_COND (expr);
669 gcc_assert (COMPARISON_CLASS_P (cond));
671 /* Find VAR in the ASSERT_EXPR conditional. */
672 if (var == TREE_OPERAND (cond, 0))
674 /* If the predicate is of the form VAR COMP LIMIT, then we just
675 take LIMIT from the RHS and use the same comparison code. */
676 limit = TREE_OPERAND (cond, 1);
677 cond_code = TREE_CODE (cond);
679 else
681 /* If the predicate is of the form LIMIT COMP VAR, then we need
682 to flip around the comparison code to create the proper range
683 for VAR. */
684 limit = TREE_OPERAND (cond, 0);
685 cond_code = swap_tree_comparison (TREE_CODE (cond));
688 type = TREE_TYPE (limit);
689 gcc_assert (limit != var);
691 /* For pointer arithmetic, we only keep track of pointer equality
692 and inequality. */
693 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
695 set_value_range_to_varying (vr_p);
696 return;
699 /* If LIMIT is another SSA name and LIMIT has a range of its own,
700 try to use LIMIT's range to avoid creating symbolic ranges
701 unnecessarily. */
702 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
704 /* LIMIT's range is only interesting if it has any useful information. */
705 if (limit_vr
706 && (limit_vr->type == VR_UNDEFINED
707 || limit_vr->type == VR_VARYING
708 || symbolic_range_p (limit_vr)))
709 limit_vr = NULL;
711 /* Special handling for integral types with super-types. Some FEs
712 construct integral types derived from other types and restrict
713 the range of values these new types may take.
715 It may happen that LIMIT is actually smaller than TYPE's minimum
716 value. For instance, the Ada FE is generating code like this
717 during bootstrap:
719 D.1480_32 = nam_30 - 300000361;
720 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
721 <L112>:;
722 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
724 All the names are of type types__name_id___XDLU_300000000__399999999
725 which has min == 300000000 and max == 399999999. This means that
726 the ASSERT_EXPR would try to create the range [3000000, 1] which
727 is invalid.
729 The fact that the type specifies MIN and MAX values does not
730 automatically mean that every variable of that type will always
731 be within that range, so the predicate may well be true at run
732 time. If we had symbolic -INF and +INF values, we could
733 represent this range, but we currently represent -INF and +INF
734 using the type's min and max values.
736 So, the only sensible thing we can do for now is set the
737 resulting range to VR_VARYING. TODO, would having symbolic -INF
738 and +INF values be worth the trouble? */
739 if (TREE_CODE (limit) != SSA_NAME
740 && INTEGRAL_TYPE_P (type)
741 && TREE_TYPE (type))
743 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
745 tree type_min = TYPE_MIN_VALUE (type);
746 int cmp = compare_values (limit, type_min);
748 /* For < or <= comparisons, if LIMIT is smaller than
749 TYPE_MIN, set the range to VR_VARYING. */
750 if (cmp == -1 || cmp == 0)
752 set_value_range_to_varying (vr_p);
753 return;
756 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
758 tree type_max = TYPE_MIN_VALUE (type);
759 int cmp = compare_values (limit, type_max);
761 /* For > or >= comparisons, if LIMIT is bigger than
762 TYPE_MAX, set the range to VR_VARYING. */
763 if (cmp == 1 || cmp == 0)
765 set_value_range_to_varying (vr_p);
766 return;
771 /* Initially, the new range has the same set of equivalences of
772 VAR's range. This will be revised before returning the final
773 value. Since assertions may be chained via mutually exclusive
774 predicates, we will need to trim the set of equivalences before
775 we are done. */
776 gcc_assert (vr_p->equiv == NULL);
777 vr_p->equiv = BITMAP_ALLOC (NULL);
778 add_equivalence (vr_p->equiv, var);
780 /* Extract a new range based on the asserted comparison for VAR and
781 LIMIT's value range. Notice that if LIMIT has an anti-range, we
782 will only use it for equality comparisons (EQ_EXPR). For any
783 other kind of assertion, we cannot derive a range from LIMIT's
784 anti-range that can be used to describe the new range. For
785 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
786 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
787 no single range for x_2 that could describe LE_EXPR, so we might
788 as well build the range [b_4, +INF] for it. */
789 if (cond_code == EQ_EXPR)
791 enum value_range_type range_type;
793 if (limit_vr)
795 range_type = limit_vr->type;
796 min = limit_vr->min;
797 max = limit_vr->max;
799 else
801 range_type = VR_RANGE;
802 min = limit;
803 max = limit;
806 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
808 /* When asserting the equality VAR == LIMIT and LIMIT is another
809 SSA name, the new range will also inherit the equivalence set
810 from LIMIT. */
811 if (TREE_CODE (limit) == SSA_NAME)
812 add_equivalence (vr_p->equiv, limit);
814 else if (cond_code == NE_EXPR)
816 /* As described above, when LIMIT's range is an anti-range and
817 this assertion is an inequality (NE_EXPR), then we cannot
818 derive anything from the anti-range. For instance, if
819 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
820 not imply that VAR's range is [0, 0]. So, in the case of
821 anti-ranges, we just assert the inequality using LIMIT and
822 not its anti-range.
824 If LIMIT_VR is a range, we can only use it to build a new
825 anti-range if LIMIT_VR is a single-valued range. For
826 instance, if LIMIT_VR is [0, 1], the predicate
827 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
828 Rather, it means that for value 0 VAR should be ~[0, 0]
829 and for value 1, VAR should be ~[1, 1]. We cannot
830 represent these ranges.
832 The only situation in which we can build a valid
833 anti-range is when LIMIT_VR is a single-valued range
834 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
835 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
836 if (limit_vr
837 && limit_vr->type == VR_RANGE
838 && compare_values (limit_vr->min, limit_vr->max) == 0)
840 min = limit_vr->min;
841 max = limit_vr->max;
843 else
845 /* In any other case, we cannot use LIMIT's range to build a
846 valid anti-range. */
847 min = max = limit;
850 /* If MIN and MAX cover the whole range for their type, then
851 just use the original LIMIT. */
852 if (INTEGRAL_TYPE_P (type)
853 && min == TYPE_MIN_VALUE (type)
854 && max == TYPE_MAX_VALUE (type))
855 min = max = limit;
857 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
859 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
861 min = TYPE_MIN_VALUE (type);
863 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
864 max = limit;
865 else
867 /* If LIMIT_VR is of the form [N1, N2], we need to build the
868 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
869 LT_EXPR. */
870 max = limit_vr->max;
873 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
874 if (cond_code == LT_EXPR)
876 tree one = build_int_cst (type, 1);
877 max = fold_build2 (MINUS_EXPR, type, max, one);
880 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
882 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
884 max = TYPE_MAX_VALUE (type);
886 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
887 min = limit;
888 else
890 /* If LIMIT_VR is of the form [N1, N2], we need to build the
891 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
892 GT_EXPR. */
893 min = limit_vr->min;
896 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
897 if (cond_code == GT_EXPR)
899 tree one = build_int_cst (type, 1);
900 min = fold_build2 (PLUS_EXPR, type, min, one);
903 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
905 else
906 gcc_unreachable ();
908 /* If VAR already had a known range, it may happen that the new
909 range we have computed and VAR's range are not compatible. For
910 instance,
912 if (p_5 == NULL)
913 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
914 x_7 = p_6->fld;
915 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
917 While the above comes from a faulty program, it will cause an ICE
918 later because p_8 and p_6 will have incompatible ranges and at
919 the same time will be considered equivalent. A similar situation
920 would arise from
922 if (i_5 > 10)
923 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
924 if (i_5 < 5)
925 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
927 Again i_6 and i_7 will have incompatible ranges. It would be
928 pointless to try and do anything with i_7's range because
929 anything dominated by 'if (i_5 < 5)' will be optimized away.
930 Note, due to the wa in which simulation proceeds, the statement
931 i_7 = ASSERT_EXPR <...> we would never be visited because the
932 conditional 'if (i_5 < 5)' always evaluates to false. However,
933 this extra check does not hurt and may protect against future
934 changes to VRP that may get into a situation similar to the
935 NULL pointer dereference example.
937 Note that these compatibility tests are only needed when dealing
938 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
939 are both anti-ranges, they will always be compatible, because two
940 anti-ranges will always have a non-empty intersection. */
942 var_vr = get_value_range (var);
944 /* We may need to make adjustments when VR_P and VAR_VR are numeric
945 ranges or anti-ranges. */
946 if (vr_p->type == VR_VARYING
947 || vr_p->type == VR_UNDEFINED
948 || var_vr->type == VR_VARYING
949 || var_vr->type == VR_UNDEFINED
950 || symbolic_range_p (vr_p)
951 || symbolic_range_p (var_vr))
952 return;
954 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
956 /* If the two ranges have a non-empty intersection, we can
957 refine the resulting range. Since the assert expression
958 creates an equivalency and at the same time it asserts a
959 predicate, we can take the intersection of the two ranges to
960 get better precision. */
961 if (value_ranges_intersect_p (var_vr, vr_p))
963 /* Use the larger of the two minimums. */
964 if (compare_values (vr_p->min, var_vr->min) == -1)
965 min = var_vr->min;
966 else
967 min = vr_p->min;
969 /* Use the smaller of the two maximums. */
970 if (compare_values (vr_p->max, var_vr->max) == 1)
971 max = var_vr->max;
972 else
973 max = vr_p->max;
975 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
977 else
979 /* The two ranges do not intersect, set the new range to
980 VARYING, because we will not be able to do anything
981 meaningful with it. */
982 set_value_range_to_varying (vr_p);
985 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
986 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
988 /* A range and an anti-range will cancel each other only if
989 their ends are the same. For instance, in the example above,
990 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
991 so VR_P should be set to VR_VARYING. */
992 if (compare_values (var_vr->min, vr_p->min) == 0
993 && compare_values (var_vr->max, vr_p->max) == 0)
994 set_value_range_to_varying (vr_p);
999 /* Extract range information from SSA name VAR and store it in VR. If
1000 VAR has an interesting range, use it. Otherwise, create the
1001 range [VAR, VAR] and return it. This is useful in situations where
1002 we may have conditionals testing values of VARYING names. For
1003 instance,
1005 x_3 = y_5;
1006 if (x_3 > y_5)
1009 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1010 always false. */
1012 static void
1013 extract_range_from_ssa_name (value_range_t *vr, tree var)
1015 value_range_t *var_vr = get_value_range (var);
1017 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1018 copy_value_range (vr, var_vr);
1019 else
1020 set_value_range (vr, VR_RANGE, var, var, NULL);
1022 add_equivalence (vr->equiv, var);
1026 /* Wrapper around int_const_binop. If the operation overflows and we
1027 are not using wrapping arithmetic, then adjust the result to be
1028 -INF or +INF depending on CODE, VAL1 and VAL2. */
1030 static inline tree
1031 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1033 tree res;
1035 if (flag_wrapv)
1036 return int_const_binop (code, val1, val2, 0);
1038 /* If we are not using wrapping arithmetic, operate symbolically
1039 on -INF and +INF. */
1040 res = int_const_binop (code, val1, val2, 0);
1042 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1044 int checkz = compare_values (res, val1);
1045 bool overflow = false;
1047 /* Ensure that res = val1 [+*] val2 >= val1
1048 or that res = val1 - val2 <= val1. */
1049 if ((code == PLUS_EXPR
1050 && !(checkz == 1 || checkz == 0))
1051 || (code == MINUS_EXPR
1052 && !(checkz == 0 || checkz == -1)))
1054 overflow = true;
1056 /* Checking for multiplication overflow is done by dividing the
1057 output of the multiplication by the first input of the
1058 multiplication. If the result of that division operation is
1059 not equal to the second input of the multiplication, then the
1060 multiplication overflowed. */
1061 else if (code == MULT_EXPR && !integer_zerop (val1))
1063 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1064 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1065 val1, 0);
1066 int check = compare_values (tmp, val2);
1068 if (check != 0)
1069 overflow = true;
1072 if (overflow)
1074 res = copy_node (res);
1075 TREE_OVERFLOW (res) = 1;
1079 else if (TREE_OVERFLOW (res)
1080 && !TREE_OVERFLOW (val1)
1081 && !TREE_OVERFLOW (val2))
1083 /* If the operation overflowed but neither VAL1 nor VAL2 are
1084 overflown, return -INF or +INF depending on the operation
1085 and the combination of signs of the operands. */
1086 int sgn1 = tree_int_cst_sgn (val1);
1087 int sgn2 = tree_int_cst_sgn (val2);
1089 /* Notice that we only need to handle the restricted set of
1090 operations handled by extract_range_from_binary_expr.
1091 Among them, only multiplication, addition and subtraction
1092 can yield overflow without overflown operands because we
1093 are working with integral types only... except in the
1094 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1095 for division too. */
1097 /* For multiplication, the sign of the overflow is given
1098 by the comparison of the signs of the operands. */
1099 if ((code == MULT_EXPR && sgn1 == sgn2)
1100 /* For addition, the operands must be of the same sign
1101 to yield an overflow. Its sign is therefore that
1102 of one of the operands, for example the first. */
1103 || (code == PLUS_EXPR && sgn1 > 0)
1104 /* For subtraction, the operands must be of different
1105 signs to yield an overflow. Its sign is therefore
1106 that of the first operand or the opposite of that
1107 of the second operand. A first operand of 0 counts
1108 as positive here, for the corner case 0 - (-INF),
1109 which overflows, but must yield +INF. */
1110 || (code == MINUS_EXPR && sgn1 >= 0)
1111 /* For division, the only case is -INF / -1 = +INF. */
1112 || code == TRUNC_DIV_EXPR
1113 || code == FLOOR_DIV_EXPR
1114 || code == CEIL_DIV_EXPR
1115 || code == EXACT_DIV_EXPR
1116 || code == ROUND_DIV_EXPR)
1117 return TYPE_MAX_VALUE (TREE_TYPE (res));
1118 else
1119 return TYPE_MIN_VALUE (TREE_TYPE (res));
1122 return res;
1126 /* Extract range information from a binary expression EXPR based on
1127 the ranges of each of its operands and the expression code. */
1129 static void
1130 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1132 enum tree_code code = TREE_CODE (expr);
1133 tree op0, op1, min, max;
1134 int cmp;
1135 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1136 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1138 /* Not all binary expressions can be applied to ranges in a
1139 meaningful way. Handle only arithmetic operations. */
1140 if (code != PLUS_EXPR
1141 && code != MINUS_EXPR
1142 && code != MULT_EXPR
1143 && code != TRUNC_DIV_EXPR
1144 && code != FLOOR_DIV_EXPR
1145 && code != CEIL_DIV_EXPR
1146 && code != EXACT_DIV_EXPR
1147 && code != ROUND_DIV_EXPR
1148 && code != MIN_EXPR
1149 && code != MAX_EXPR
1150 && code != TRUTH_ANDIF_EXPR
1151 && code != TRUTH_ORIF_EXPR
1152 && code != TRUTH_AND_EXPR
1153 && code != TRUTH_OR_EXPR
1154 && code != TRUTH_XOR_EXPR)
1156 set_value_range_to_varying (vr);
1157 return;
1160 /* Get value ranges for each operand. For constant operands, create
1161 a new value range with the operand to simplify processing. */
1162 op0 = TREE_OPERAND (expr, 0);
1163 if (TREE_CODE (op0) == SSA_NAME)
1164 vr0 = *(get_value_range (op0));
1165 else if (is_gimple_min_invariant (op0))
1166 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1167 else
1168 set_value_range_to_varying (&vr0);
1170 op1 = TREE_OPERAND (expr, 1);
1171 if (TREE_CODE (op1) == SSA_NAME)
1172 vr1 = *(get_value_range (op1));
1173 else if (is_gimple_min_invariant (op1))
1174 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1175 else
1176 set_value_range_to_varying (&vr1);
1178 /* If either range is UNDEFINED, so is the result. */
1179 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1181 set_value_range_to_undefined (vr);
1182 return;
1185 /* Refuse to operate on VARYING ranges, ranges of different kinds
1186 and symbolic ranges. TODO, we may be able to derive anti-ranges
1187 in some cases. */
1188 if (vr0.type == VR_VARYING
1189 || vr1.type == VR_VARYING
1190 || vr0.type != vr1.type
1191 || symbolic_range_p (&vr0)
1192 || symbolic_range_p (&vr1))
1194 set_value_range_to_varying (vr);
1195 return;
1198 /* Now evaluate the expression to determine the new range. */
1199 if (POINTER_TYPE_P (TREE_TYPE (expr))
1200 || POINTER_TYPE_P (TREE_TYPE (op0))
1201 || POINTER_TYPE_P (TREE_TYPE (op1)))
1203 /* For pointer types, we are really only interested in asserting
1204 whether the expression evaluates to non-NULL. FIXME, we used
1205 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1206 ivopts is generating expressions with pointer multiplication
1207 in them. */
1208 if (code == PLUS_EXPR)
1210 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1211 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1212 else if (range_is_null (&vr0) && range_is_null (&vr1))
1213 set_value_range_to_null (vr, TREE_TYPE (expr));
1214 else
1215 set_value_range_to_varying (vr);
1217 else
1219 /* Subtracting from a pointer, may yield 0, so just drop the
1220 resulting range to varying. */
1221 set_value_range_to_varying (vr);
1224 return;
1227 /* For integer ranges, apply the operation to each end of the
1228 range and see what we end up with. */
1229 if (code == TRUTH_ANDIF_EXPR
1230 || code == TRUTH_ORIF_EXPR
1231 || code == TRUTH_AND_EXPR
1232 || code == TRUTH_OR_EXPR
1233 || code == TRUTH_XOR_EXPR)
1235 /* Boolean expressions cannot be folded with int_const_binop. */
1236 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1237 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1239 else if (code == PLUS_EXPR
1240 || code == MIN_EXPR
1241 || code == MAX_EXPR)
1243 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1244 VR_VARYING. It would take more effort to compute a precise
1245 range for such a case. For example, if we have op0 == 1 and
1246 op1 == -1 with their ranges both being ~[0,0], we would have
1247 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1248 Note that we are guaranteed to have vr0.type == vr1.type at
1249 this point. */
1250 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1252 set_value_range_to_varying (vr);
1253 return;
1256 /* For operations that make the resulting range directly
1257 proportional to the original ranges, apply the operation to
1258 the same end of each range. */
1259 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1260 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1262 else if (code == MULT_EXPR
1263 || code == TRUNC_DIV_EXPR
1264 || code == FLOOR_DIV_EXPR
1265 || code == CEIL_DIV_EXPR
1266 || code == EXACT_DIV_EXPR
1267 || code == ROUND_DIV_EXPR)
1269 tree val[4];
1270 size_t i;
1272 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1273 drop to VR_VARYING. It would take more effort to compute a
1274 precise range for such a case. For example, if we have
1275 op0 == 65536 and op1 == 65536 with their ranges both being
1276 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1277 we cannot claim that the product is in ~[0,0]. Note that we
1278 are guaranteed to have vr0.type == vr1.type at this
1279 point. */
1280 if (code == MULT_EXPR
1281 && vr0.type == VR_ANTI_RANGE
1282 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1284 set_value_range_to_varying (vr);
1285 return;
1288 /* Multiplications and divisions are a bit tricky to handle,
1289 depending on the mix of signs we have in the two ranges, we
1290 need to operate on different values to get the minimum and
1291 maximum values for the new range. One approach is to figure
1292 out all the variations of range combinations and do the
1293 operations.
1295 However, this involves several calls to compare_values and it
1296 is pretty convoluted. It's simpler to do the 4 operations
1297 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1298 MAX1) and then figure the smallest and largest values to form
1299 the new range. */
1301 /* Divisions by zero result in a VARYING value. */
1302 if (code != MULT_EXPR
1303 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1305 set_value_range_to_varying (vr);
1306 return;
1309 /* Compute the 4 cross operations. */
1310 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1312 val[1] = (vr1.max != vr1.min)
1313 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1314 : NULL_TREE;
1316 val[2] = (vr0.max != vr0.min)
1317 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1318 : NULL_TREE;
1320 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1321 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1322 : NULL_TREE;
1324 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1325 of VAL[i]. */
1326 min = val[0];
1327 max = val[0];
1328 for (i = 1; i < 4; i++)
1330 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1331 break;
1333 if (val[i])
1335 if (TREE_OVERFLOW (val[i]))
1337 /* If we found an overflowed value, set MIN and MAX
1338 to it so that we set the resulting range to
1339 VARYING. */
1340 min = max = val[i];
1341 break;
1344 if (compare_values (val[i], min) == -1)
1345 min = val[i];
1347 if (compare_values (val[i], max) == 1)
1348 max = val[i];
1352 else if (code == MINUS_EXPR)
1354 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1355 VR_VARYING. It would take more effort to compute a precise
1356 range for such a case. For example, if we have op0 == 1 and
1357 op1 == 1 with their ranges both being ~[0,0], we would have
1358 op0 - op1 == 0, so we cannot claim that the difference is in
1359 ~[0,0]. Note that we are guaranteed to have
1360 vr0.type == vr1.type at this point. */
1361 if (vr0.type == VR_ANTI_RANGE)
1363 set_value_range_to_varying (vr);
1364 return;
1367 /* For MINUS_EXPR, apply the operation to the opposite ends of
1368 each range. */
1369 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1370 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1372 else
1373 gcc_unreachable ();
1375 /* If either MIN or MAX overflowed, then set the resulting range to
1376 VARYING. */
1377 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1379 set_value_range_to_varying (vr);
1380 return;
1383 cmp = compare_values (min, max);
1384 if (cmp == -2 || cmp == 1)
1386 /* If the new range has its limits swapped around (MIN > MAX),
1387 then the operation caused one of them to wrap around, mark
1388 the new range VARYING. */
1389 set_value_range_to_varying (vr);
1391 else
1392 set_value_range (vr, vr0.type, min, max, NULL);
1396 /* Extract range information from a unary expression EXPR based on
1397 the range of its operand and the expression code. */
1399 static void
1400 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1402 enum tree_code code = TREE_CODE (expr);
1403 tree min, max, op0;
1404 int cmp;
1405 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1407 /* Refuse to operate on certain unary expressions for which we
1408 cannot easily determine a resulting range. */
1409 if (code == FIX_TRUNC_EXPR
1410 || code == FIX_CEIL_EXPR
1411 || code == FIX_FLOOR_EXPR
1412 || code == FIX_ROUND_EXPR
1413 || code == FLOAT_EXPR
1414 || code == BIT_NOT_EXPR
1415 || code == NON_LVALUE_EXPR
1416 || code == CONJ_EXPR)
1418 set_value_range_to_varying (vr);
1419 return;
1422 /* Get value ranges for the operand. For constant operands, create
1423 a new value range with the operand to simplify processing. */
1424 op0 = TREE_OPERAND (expr, 0);
1425 if (TREE_CODE (op0) == SSA_NAME)
1426 vr0 = *(get_value_range (op0));
1427 else if (is_gimple_min_invariant (op0))
1428 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1429 else
1430 set_value_range_to_varying (&vr0);
1432 /* If VR0 is UNDEFINED, so is the result. */
1433 if (vr0.type == VR_UNDEFINED)
1435 set_value_range_to_undefined (vr);
1436 return;
1439 /* Refuse to operate on varying and symbolic ranges. Also, if the
1440 operand is neither a pointer nor an integral type, set the
1441 resulting range to VARYING. TODO, in some cases we may be able
1442 to derive anti-ranges (like nonzero values). */
1443 if (vr0.type == VR_VARYING
1444 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1445 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1446 || symbolic_range_p (&vr0))
1448 set_value_range_to_varying (vr);
1449 return;
1452 /* If the expression involves pointers, we are only interested in
1453 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1454 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1456 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1457 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1458 else if (range_is_null (&vr0))
1459 set_value_range_to_null (vr, TREE_TYPE (expr));
1460 else
1461 set_value_range_to_varying (vr);
1463 return;
1466 /* Handle unary expressions on integer ranges. */
1467 if (code == NOP_EXPR || code == CONVERT_EXPR)
1469 tree inner_type = TREE_TYPE (op0);
1470 tree outer_type = TREE_TYPE (expr);
1472 /* If VR0 represents a simple range, then try to convert
1473 the min and max values for the range to the same type
1474 as OUTER_TYPE. If the results compare equal to VR0's
1475 min and max values and the new min is still less than
1476 or equal to the new max, then we can safely use the newly
1477 computed range for EXPR. This allows us to compute
1478 accurate ranges through many casts. */
1479 if (vr0.type == VR_RANGE)
1481 tree new_min, new_max;
1483 /* Convert VR0's min/max to OUTER_TYPE. */
1484 new_min = fold_convert (outer_type, vr0.min);
1485 new_max = fold_convert (outer_type, vr0.max);
1487 /* Verify the new min/max values are gimple values and
1488 that they compare equal to VR0's min/max values. */
1489 if (is_gimple_val (new_min)
1490 && is_gimple_val (new_max)
1491 && tree_int_cst_equal (new_min, vr0.min)
1492 && tree_int_cst_equal (new_max, vr0.max)
1493 && compare_values (new_min, new_max) <= 0
1494 && compare_values (new_min, new_max) >= -1)
1496 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1497 return;
1501 /* When converting types of different sizes, set the result to
1502 VARYING. Things like sign extensions and precision loss may
1503 change the range. For instance, if x_3 is of type 'long long
1504 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1505 is impossible to know at compile time whether y_5 will be
1506 ~[0, 0]. */
1507 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1508 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1510 set_value_range_to_varying (vr);
1511 return;
1515 /* Apply the operation to each end of the range and see what we end
1516 up with. */
1517 if (code == NEGATE_EXPR
1518 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1520 /* NEGATE_EXPR flips the range around. We need to treat
1521 TYPE_MIN_VALUE specially dependent on wrapping, range type
1522 and if it was used as minimum or maximum value:
1523 -~[MIN, MIN] == ~[MIN, MIN]
1524 -[MIN, 0] == [0, MAX] for -fno-wrapv
1525 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1526 min = tree_int_cst_equal (vr0.max, TYPE_MIN_VALUE (TREE_TYPE (expr)))
1527 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1528 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1530 max = tree_int_cst_equal (vr0.min, TYPE_MIN_VALUE (TREE_TYPE (expr)))
1531 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1532 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1533 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1534 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1536 else if (code == ABS_EXPR
1537 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1539 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1540 useful range. */
1541 if (flag_wrapv
1542 && ((vr0.type == VR_RANGE
1543 && tree_int_cst_equal (vr0.min, TYPE_MIN_VALUE (TREE_TYPE (expr))))
1544 || (vr0.type == VR_ANTI_RANGE
1545 && !tree_int_cst_equal (vr0.min, TYPE_MIN_VALUE (TREE_TYPE (expr)))
1546 && !range_includes_zero_p (&vr0))))
1548 set_value_range_to_varying (vr);
1549 return;
1552 /* ABS_EXPR may flip the range around, if the original range
1553 included negative values. */
1554 min = (tree_int_cst_equal (vr0.min, TYPE_MIN_VALUE (TREE_TYPE (expr))))
1555 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1556 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1558 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1560 cmp = compare_values (min, max);
1562 /* If a VR_ANTI_RANGEs contains zero, then we have
1563 ~[-INF, min(MIN, MAX)]. */
1564 if (vr0.type == VR_ANTI_RANGE)
1566 if (range_includes_zero_p (&vr0))
1568 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1570 /* Take the lower of the two values. */
1571 if (cmp != 1)
1572 max = min;
1574 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1575 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1576 flag_wrapv is set and the original anti-range doesn't include
1577 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1578 min = (flag_wrapv && !tree_int_cst_equal (vr0.min, type_min_value)
1579 ? int_const_binop (PLUS_EXPR,
1580 type_min_value,
1581 integer_one_node, 0)
1582 : type_min_value);
1584 else
1586 /* All else has failed, so create the range [0, INF], even for
1587 flag_wrapv since TYPE_MIN_VALUE is in the original
1588 anti-range. */
1589 vr0.type = VR_RANGE;
1590 min = build_int_cst (TREE_TYPE (expr), 0);
1591 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1595 /* If the range contains zero then we know that the minimum value in the
1596 range will be zero. */
1597 else if (range_includes_zero_p (&vr0))
1599 if (cmp == 1)
1600 max = min;
1601 min = build_int_cst (TREE_TYPE (expr), 0);
1603 else
1605 /* If the range was reversed, swap MIN and MAX. */
1606 if (cmp == 1)
1608 tree t = min;
1609 min = max;
1610 max = t;
1614 else
1616 /* Otherwise, operate on each end of the range. */
1617 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1618 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1621 cmp = compare_values (min, max);
1622 if (cmp == -2 || cmp == 1)
1624 /* If the new range has its limits swapped around (MIN > MAX),
1625 then the operation caused one of them to wrap around, mark
1626 the new range VARYING. */
1627 set_value_range_to_varying (vr);
1629 else
1630 set_value_range (vr, vr0.type, min, max, NULL);
1634 /* Extract range information from a comparison expression EXPR based
1635 on the range of its operand and the expression code. */
1637 static void
1638 extract_range_from_comparison (value_range_t *vr, tree expr)
1640 tree val = vrp_evaluate_conditional (expr, false);
1641 if (val)
1643 /* Since this expression was found on the RHS of an assignment,
1644 its type may be different from _Bool. Convert VAL to EXPR's
1645 type. */
1646 val = fold_convert (TREE_TYPE (expr), val);
1647 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1649 else
1650 set_value_range_to_varying (vr);
1654 /* Try to compute a useful range out of expression EXPR and store it
1655 in *VR. */
1657 static void
1658 extract_range_from_expr (value_range_t *vr, tree expr)
1660 enum tree_code code = TREE_CODE (expr);
1662 if (code == ASSERT_EXPR)
1663 extract_range_from_assert (vr, expr);
1664 else if (code == SSA_NAME)
1665 extract_range_from_ssa_name (vr, expr);
1666 else if (TREE_CODE_CLASS (code) == tcc_binary
1667 || code == TRUTH_ANDIF_EXPR
1668 || code == TRUTH_ORIF_EXPR
1669 || code == TRUTH_AND_EXPR
1670 || code == TRUTH_OR_EXPR
1671 || code == TRUTH_XOR_EXPR)
1672 extract_range_from_binary_expr (vr, expr);
1673 else if (TREE_CODE_CLASS (code) == tcc_unary)
1674 extract_range_from_unary_expr (vr, expr);
1675 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1676 extract_range_from_comparison (vr, expr);
1677 else if (is_gimple_min_invariant (expr))
1678 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1679 else if (vrp_expr_computes_nonzero (expr))
1680 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1681 else
1682 set_value_range_to_varying (vr);
1685 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1686 would be profitable to adjust VR using scalar evolution information
1687 for VAR. If so, update VR with the new limits. */
1689 static void
1690 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1691 tree var)
1693 tree init, step, chrec;
1694 enum ev_direction dir;
1696 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1697 better opportunities than a regular range, but I'm not sure. */
1698 if (vr->type == VR_ANTI_RANGE)
1699 return;
1701 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1702 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1703 return;
1705 init = initial_condition_in_loop_num (chrec, loop->num);
1706 step = evolution_part_in_loop_num (chrec, loop->num);
1708 /* If STEP is symbolic, we can't know whether INIT will be the
1709 minimum or maximum value in the range. */
1710 if (step == NULL_TREE
1711 || !is_gimple_min_invariant (step))
1712 return;
1714 dir = scev_direction (chrec);
1715 if (/* Do not adjust ranges if we do not know whether the iv increases
1716 or decreases, ... */
1717 dir == EV_DIR_UNKNOWN
1718 /* ... or if it may wrap. */
1719 || scev_probably_wraps_p (init, step, stmt,
1720 cfg_loops->parray[CHREC_VARIABLE (chrec)],
1721 true))
1722 return;
1724 if (!POINTER_TYPE_P (TREE_TYPE (init))
1725 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1727 /* For VARYING or UNDEFINED ranges, just about anything we get
1728 from scalar evolutions should be better. */
1729 if (dir == EV_DIR_DECREASES)
1730 set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
1731 init, vr->equiv);
1732 else
1733 set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
1734 vr->equiv);
1736 else if (vr->type == VR_RANGE)
1738 tree min = vr->min;
1739 tree max = vr->max;
1741 if (dir == EV_DIR_DECREASES)
1743 /* INIT is the maximum value. If INIT is lower than VR->MAX
1744 but no smaller than VR->MIN, set VR->MAX to INIT. */
1745 if (compare_values (init, max) == -1)
1747 max = init;
1749 /* If we just created an invalid range with the minimum
1750 greater than the maximum, we fail conservatively.
1751 This should happen only in unreachable
1752 parts of code, or for invalid programs. */
1753 if (compare_values (min, max) == 1)
1754 return;
1757 else
1759 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1760 if (compare_values (init, min) == 1)
1762 min = init;
1764 /* Again, avoid creating invalid range by failing. */
1765 if (compare_values (min, max) == 1)
1766 return;
1770 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1775 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1777 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1778 all the values in the ranges.
1780 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1782 - Return NULL_TREE if it is not always possible to determine the
1783 value of the comparison. */
1786 static tree
1787 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1789 /* VARYING or UNDEFINED ranges cannot be compared. */
1790 if (vr0->type == VR_VARYING
1791 || vr0->type == VR_UNDEFINED
1792 || vr1->type == VR_VARYING
1793 || vr1->type == VR_UNDEFINED)
1794 return NULL_TREE;
1796 /* Anti-ranges need to be handled separately. */
1797 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1799 /* If both are anti-ranges, then we cannot compute any
1800 comparison. */
1801 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
1802 return NULL_TREE;
1804 /* These comparisons are never statically computable. */
1805 if (comp == GT_EXPR
1806 || comp == GE_EXPR
1807 || comp == LT_EXPR
1808 || comp == LE_EXPR)
1809 return NULL_TREE;
1811 /* Equality can be computed only between a range and an
1812 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1813 if (vr0->type == VR_RANGE)
1815 /* To simplify processing, make VR0 the anti-range. */
1816 value_range_t *tmp = vr0;
1817 vr0 = vr1;
1818 vr1 = tmp;
1821 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1823 if (compare_values (vr0->min, vr1->min) == 0
1824 && compare_values (vr0->max, vr1->max) == 0)
1825 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1827 return NULL_TREE;
1830 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1831 operands around and change the comparison code. */
1832 if (comp == GT_EXPR || comp == GE_EXPR)
1834 value_range_t *tmp;
1835 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1836 tmp = vr0;
1837 vr0 = vr1;
1838 vr1 = tmp;
1841 if (comp == EQ_EXPR)
1843 /* Equality may only be computed if both ranges represent
1844 exactly one value. */
1845 if (compare_values (vr0->min, vr0->max) == 0
1846 && compare_values (vr1->min, vr1->max) == 0)
1848 int cmp_min = compare_values (vr0->min, vr1->min);
1849 int cmp_max = compare_values (vr0->max, vr1->max);
1850 if (cmp_min == 0 && cmp_max == 0)
1851 return boolean_true_node;
1852 else if (cmp_min != -2 && cmp_max != -2)
1853 return boolean_false_node;
1856 return NULL_TREE;
1858 else if (comp == NE_EXPR)
1860 int cmp1, cmp2;
1862 /* If VR0 is completely to the left or completely to the right
1863 of VR1, they are always different. Notice that we need to
1864 make sure that both comparisons yield similar results to
1865 avoid comparing values that cannot be compared at
1866 compile-time. */
1867 cmp1 = compare_values (vr0->max, vr1->min);
1868 cmp2 = compare_values (vr0->min, vr1->max);
1869 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1870 return boolean_true_node;
1872 /* If VR0 and VR1 represent a single value and are identical,
1873 return false. */
1874 else if (compare_values (vr0->min, vr0->max) == 0
1875 && compare_values (vr1->min, vr1->max) == 0
1876 && compare_values (vr0->min, vr1->min) == 0
1877 && compare_values (vr0->max, vr1->max) == 0)
1878 return boolean_false_node;
1880 /* Otherwise, they may or may not be different. */
1881 else
1882 return NULL_TREE;
1884 else if (comp == LT_EXPR || comp == LE_EXPR)
1886 int tst;
1888 /* If VR0 is to the left of VR1, return true. */
1889 tst = compare_values (vr0->max, vr1->min);
1890 if ((comp == LT_EXPR && tst == -1)
1891 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1892 return boolean_true_node;
1894 /* If VR0 is to the right of VR1, return false. */
1895 tst = compare_values (vr0->min, vr1->max);
1896 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1897 || (comp == LE_EXPR && tst == 1))
1898 return boolean_false_node;
1900 /* Otherwise, we don't know. */
1901 return NULL_TREE;
1904 gcc_unreachable ();
1908 /* Given a value range VR, a value VAL and a comparison code COMP, return
1909 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1910 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1911 always returns false. Return NULL_TREE if it is not always
1912 possible to determine the value of the comparison. */
1914 static tree
1915 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
1917 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1918 return NULL_TREE;
1920 /* Anti-ranges need to be handled separately. */
1921 if (vr->type == VR_ANTI_RANGE)
1923 /* For anti-ranges, the only predicates that we can compute at
1924 compile time are equality and inequality. */
1925 if (comp == GT_EXPR
1926 || comp == GE_EXPR
1927 || comp == LT_EXPR
1928 || comp == LE_EXPR)
1929 return NULL_TREE;
1931 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1932 if (value_inside_range (val, vr) == 1)
1933 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1935 return NULL_TREE;
1938 if (comp == EQ_EXPR)
1940 /* EQ_EXPR may only be computed if VR represents exactly
1941 one value. */
1942 if (compare_values (vr->min, vr->max) == 0)
1944 int cmp = compare_values (vr->min, val);
1945 if (cmp == 0)
1946 return boolean_true_node;
1947 else if (cmp == -1 || cmp == 1 || cmp == 2)
1948 return boolean_false_node;
1950 else if (compare_values (val, vr->min) == -1
1951 || compare_values (vr->max, val) == -1)
1952 return boolean_false_node;
1954 return NULL_TREE;
1956 else if (comp == NE_EXPR)
1958 /* If VAL is not inside VR, then they are always different. */
1959 if (compare_values (vr->max, val) == -1
1960 || compare_values (vr->min, val) == 1)
1961 return boolean_true_node;
1963 /* If VR represents exactly one value equal to VAL, then return
1964 false. */
1965 if (compare_values (vr->min, vr->max) == 0
1966 && compare_values (vr->min, val) == 0)
1967 return boolean_false_node;
1969 /* Otherwise, they may or may not be different. */
1970 return NULL_TREE;
1972 else if (comp == LT_EXPR || comp == LE_EXPR)
1974 int tst;
1976 /* If VR is to the left of VAL, return true. */
1977 tst = compare_values (vr->max, val);
1978 if ((comp == LT_EXPR && tst == -1)
1979 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1980 return boolean_true_node;
1982 /* If VR is to the right of VAL, return false. */
1983 tst = compare_values (vr->min, val);
1984 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1985 || (comp == LE_EXPR && tst == 1))
1986 return boolean_false_node;
1988 /* Otherwise, we don't know. */
1989 return NULL_TREE;
1991 else if (comp == GT_EXPR || comp == GE_EXPR)
1993 int tst;
1995 /* If VR is to the right of VAL, return true. */
1996 tst = compare_values (vr->min, val);
1997 if ((comp == GT_EXPR && tst == 1)
1998 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
1999 return boolean_true_node;
2001 /* If VR is to the left of VAL, return false. */
2002 tst = compare_values (vr->max, val);
2003 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2004 || (comp == GE_EXPR && tst == -1))
2005 return boolean_false_node;
2007 /* Otherwise, we don't know. */
2008 return NULL_TREE;
2011 gcc_unreachable ();
2015 /* Debugging dumps. */
2017 void dump_value_range (FILE *, value_range_t *);
2018 void debug_value_range (value_range_t *);
2019 void dump_all_value_ranges (FILE *);
2020 void debug_all_value_ranges (void);
2021 void dump_vr_equiv (FILE *, bitmap);
2022 void debug_vr_equiv (bitmap);
2025 /* Dump value range VR to FILE. */
2027 void
2028 dump_value_range (FILE *file, value_range_t *vr)
2030 if (vr == NULL)
2031 fprintf (file, "[]");
2032 else if (vr->type == VR_UNDEFINED)
2033 fprintf (file, "UNDEFINED");
2034 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2036 tree type = TREE_TYPE (vr->min);
2038 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2040 if (INTEGRAL_TYPE_P (type)
2041 && !TYPE_UNSIGNED (type)
2042 && vr->min == TYPE_MIN_VALUE (type))
2043 fprintf (file, "-INF");
2044 else
2045 print_generic_expr (file, vr->min, 0);
2047 fprintf (file, ", ");
2049 if (INTEGRAL_TYPE_P (type)
2050 && vr->max == TYPE_MAX_VALUE (type))
2051 fprintf (file, "+INF");
2052 else
2053 print_generic_expr (file, vr->max, 0);
2055 fprintf (file, "]");
2057 if (vr->equiv)
2059 bitmap_iterator bi;
2060 unsigned i, c = 0;
2062 fprintf (file, " EQUIVALENCES: { ");
2064 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2066 print_generic_expr (file, ssa_name (i), 0);
2067 fprintf (file, " ");
2068 c++;
2071 fprintf (file, "} (%u elements)", c);
2074 else if (vr->type == VR_VARYING)
2075 fprintf (file, "VARYING");
2076 else
2077 fprintf (file, "INVALID RANGE");
2081 /* Dump value range VR to stderr. */
2083 void
2084 debug_value_range (value_range_t *vr)
2086 dump_value_range (stderr, vr);
2087 fprintf (stderr, "\n");
2091 /* Dump value ranges of all SSA_NAMEs to FILE. */
2093 void
2094 dump_all_value_ranges (FILE *file)
2096 size_t i;
2098 for (i = 0; i < num_ssa_names; i++)
2100 if (vr_value[i])
2102 print_generic_expr (file, ssa_name (i), 0);
2103 fprintf (file, ": ");
2104 dump_value_range (file, vr_value[i]);
2105 fprintf (file, "\n");
2109 fprintf (file, "\n");
2113 /* Dump all value ranges to stderr. */
2115 void
2116 debug_all_value_ranges (void)
2118 dump_all_value_ranges (stderr);
2122 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2123 create a new SSA name N and return the assertion assignment
2124 'V = ASSERT_EXPR <V, V OP W>'. */
2126 static tree
2127 build_assert_expr_for (tree cond, tree v)
2129 tree n, assertion;
2131 gcc_assert (TREE_CODE (v) == SSA_NAME);
2132 n = duplicate_ssa_name (v, NULL_TREE);
2134 if (COMPARISON_CLASS_P (cond))
2136 tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2137 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
2139 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2141 /* Given !V, build the assignment N = false. */
2142 tree op0 = TREE_OPERAND (cond, 0);
2143 gcc_assert (op0 == v);
2144 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2146 else if (TREE_CODE (cond) == SSA_NAME)
2148 /* Given V, build the assignment N = true. */
2149 gcc_assert (v == cond);
2150 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2152 else
2153 gcc_unreachable ();
2155 SSA_NAME_DEF_STMT (n) = assertion;
2157 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2158 operand of the ASSERT_EXPR. Register the new name and the old one
2159 in the replacement table so that we can fix the SSA web after
2160 adding all the ASSERT_EXPRs. */
2161 register_new_name_mapping (n, v);
2163 return assertion;
2167 /* Return false if EXPR is a predicate expression involving floating
2168 point values. */
2170 static inline bool
2171 fp_predicate (tree expr)
2173 return (COMPARISON_CLASS_P (expr)
2174 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2178 /* If the range of values taken by OP can be inferred after STMT executes,
2179 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2180 describes the inferred range. Return true if a range could be
2181 inferred. */
2183 static bool
2184 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2186 *val_p = NULL_TREE;
2187 *comp_code_p = ERROR_MARK;
2189 /* Do not attempt to infer anything in names that flow through
2190 abnormal edges. */
2191 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2192 return false;
2194 /* Similarly, don't infer anything from statements that may throw
2195 exceptions. */
2196 if (tree_could_throw_p (stmt))
2197 return false;
2199 /* If STMT is the last statement of a basic block with no
2200 successors, there is no point inferring anything about any of its
2201 operands. We would not be able to find a proper insertion point
2202 for the assertion, anyway. */
2203 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2204 return false;
2206 if (POINTER_TYPE_P (TREE_TYPE (op)))
2208 bool is_store;
2209 unsigned num_uses, num_derefs;
2211 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2212 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2214 /* We can only assume that a pointer dereference will yield
2215 non-NULL if -fdelete-null-pointer-checks is enabled. */
2216 *val_p = build_int_cst (TREE_TYPE (op), 0);
2217 *comp_code_p = NE_EXPR;
2218 return true;
2222 return false;
2226 void dump_asserts_for (FILE *, tree);
2227 void debug_asserts_for (tree);
2228 void dump_all_asserts (FILE *);
2229 void debug_all_asserts (void);
2231 /* Dump all the registered assertions for NAME to FILE. */
2233 void
2234 dump_asserts_for (FILE *file, tree name)
2236 assert_locus_t loc;
2238 fprintf (file, "Assertions to be inserted for ");
2239 print_generic_expr (file, name, 0);
2240 fprintf (file, "\n");
2242 loc = asserts_for[SSA_NAME_VERSION (name)];
2243 while (loc)
2245 fprintf (file, "\t");
2246 print_generic_expr (file, bsi_stmt (loc->si), 0);
2247 fprintf (file, "\n\tBB #%d", loc->bb->index);
2248 if (loc->e)
2250 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2251 loc->e->dest->index);
2252 dump_edge_info (file, loc->e, 0);
2254 fprintf (file, "\n\tPREDICATE: ");
2255 print_generic_expr (file, name, 0);
2256 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2257 print_generic_expr (file, loc->val, 0);
2258 fprintf (file, "\n\n");
2259 loc = loc->next;
2262 fprintf (file, "\n");
2266 /* Dump all the registered assertions for NAME to stderr. */
2268 void
2269 debug_asserts_for (tree name)
2271 dump_asserts_for (stderr, name);
2275 /* Dump all the registered assertions for all the names to FILE. */
2277 void
2278 dump_all_asserts (FILE *file)
2280 unsigned i;
2281 bitmap_iterator bi;
2283 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2284 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2285 dump_asserts_for (file, ssa_name (i));
2286 fprintf (file, "\n");
2290 /* Dump all the registered assertions for all the names to stderr. */
2292 void
2293 debug_all_asserts (void)
2295 dump_all_asserts (stderr);
2299 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2300 'NAME COMP_CODE VAL' at a location that dominates block BB or
2301 E->DEST, then register this location as a possible insertion point
2302 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2304 BB, E and SI provide the exact insertion point for the new
2305 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2306 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2307 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2308 must not be NULL. */
2310 static void
2311 register_new_assert_for (tree name,
2312 enum tree_code comp_code,
2313 tree val,
2314 basic_block bb,
2315 edge e,
2316 block_stmt_iterator si)
2318 assert_locus_t n, loc, last_loc;
2319 bool found;
2320 basic_block dest_bb;
2322 #if defined ENABLE_CHECKING
2323 gcc_assert (bb == NULL || e == NULL);
2325 if (e == NULL)
2326 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2327 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2328 #endif
2330 /* The new assertion A will be inserted at BB or E. We need to
2331 determine if the new location is dominated by a previously
2332 registered location for A. If we are doing an edge insertion,
2333 assume that A will be inserted at E->DEST. Note that this is not
2334 necessarily true.
2336 If E is a critical edge, it will be split. But even if E is
2337 split, the new block will dominate the same set of blocks that
2338 E->DEST dominates.
2340 The reverse, however, is not true, blocks dominated by E->DEST
2341 will not be dominated by the new block created to split E. So,
2342 if the insertion location is on a critical edge, we will not use
2343 the new location to move another assertion previously registered
2344 at a block dominated by E->DEST. */
2345 dest_bb = (bb) ? bb : e->dest;
2347 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2348 VAL at a block dominating DEST_BB, then we don't need to insert a new
2349 one. Similarly, if the same assertion already exists at a block
2350 dominated by DEST_BB and the new location is not on a critical
2351 edge, then update the existing location for the assertion (i.e.,
2352 move the assertion up in the dominance tree).
2354 Note, this is implemented as a simple linked list because there
2355 should not be more than a handful of assertions registered per
2356 name. If this becomes a performance problem, a table hashed by
2357 COMP_CODE and VAL could be implemented. */
2358 loc = asserts_for[SSA_NAME_VERSION (name)];
2359 last_loc = loc;
2360 found = false;
2361 while (loc)
2363 if (loc->comp_code == comp_code
2364 && (loc->val == val
2365 || operand_equal_p (loc->val, val, 0)))
2367 /* If the assertion NAME COMP_CODE VAL has already been
2368 registered at a basic block that dominates DEST_BB, then
2369 we don't need to insert the same assertion again. Note
2370 that we don't check strict dominance here to avoid
2371 replicating the same assertion inside the same basic
2372 block more than once (e.g., when a pointer is
2373 dereferenced several times inside a block).
2375 An exception to this rule are edge insertions. If the
2376 new assertion is to be inserted on edge E, then it will
2377 dominate all the other insertions that we may want to
2378 insert in DEST_BB. So, if we are doing an edge
2379 insertion, don't do this dominance check. */
2380 if (e == NULL
2381 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2382 return;
2384 /* Otherwise, if E is not a critical edge and DEST_BB
2385 dominates the existing location for the assertion, move
2386 the assertion up in the dominance tree by updating its
2387 location information. */
2388 if ((e == NULL || !EDGE_CRITICAL_P (e))
2389 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2391 loc->bb = dest_bb;
2392 loc->e = e;
2393 loc->si = si;
2394 return;
2398 /* Update the last node of the list and move to the next one. */
2399 last_loc = loc;
2400 loc = loc->next;
2403 /* If we didn't find an assertion already registered for
2404 NAME COMP_CODE VAL, add a new one at the end of the list of
2405 assertions associated with NAME. */
2406 n = xmalloc (sizeof (*n));
2407 n->bb = dest_bb;
2408 n->e = e;
2409 n->si = si;
2410 n->comp_code = comp_code;
2411 n->val = val;
2412 n->next = NULL;
2414 if (last_loc)
2415 last_loc->next = n;
2416 else
2417 asserts_for[SSA_NAME_VERSION (name)] = n;
2419 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2423 /* Try to register an edge assertion for SSA name NAME on edge E for
2424 the conditional jump pointed to by SI. Return true if an assertion
2425 for NAME could be registered. */
2427 static bool
2428 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2430 tree val, stmt;
2431 enum tree_code comp_code;
2433 stmt = bsi_stmt (si);
2435 /* Do not attempt to infer anything in names that flow through
2436 abnormal edges. */
2437 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2438 return false;
2440 /* If NAME was not found in the sub-graph reachable from E, then
2441 there's nothing to do. */
2442 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2443 return false;
2445 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2446 Register an assertion for NAME according to the value that NAME
2447 takes on edge E. */
2448 if (TREE_CODE (stmt) == COND_EXPR)
2450 /* If BB ends in a COND_EXPR then NAME then we should insert
2451 the original predicate on EDGE_TRUE_VALUE and the
2452 opposite predicate on EDGE_FALSE_VALUE. */
2453 tree cond = COND_EXPR_COND (stmt);
2454 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2456 /* Predicates may be a single SSA name or NAME OP VAL. */
2457 if (cond == name)
2459 /* If the predicate is a name, it must be NAME, in which
2460 case we create the predicate NAME == true or
2461 NAME == false accordingly. */
2462 comp_code = EQ_EXPR;
2463 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2465 else
2467 /* Otherwise, we have a comparison of the form NAME COMP VAL
2468 or VAL COMP NAME. */
2469 if (name == TREE_OPERAND (cond, 1))
2471 /* If the predicate is of the form VAL COMP NAME, flip
2472 COMP around because we need to register NAME as the
2473 first operand in the predicate. */
2474 comp_code = swap_tree_comparison (TREE_CODE (cond));
2475 val = TREE_OPERAND (cond, 0);
2477 else
2479 /* The comparison is of the form NAME COMP VAL, so the
2480 comparison code remains unchanged. */
2481 comp_code = TREE_CODE (cond);
2482 val = TREE_OPERAND (cond, 1);
2485 /* If we are inserting the assertion on the ELSE edge, we
2486 need to invert the sign comparison. */
2487 if (is_else_edge)
2488 comp_code = invert_tree_comparison (comp_code, 0);
2490 /* Do not register always-false predicates. FIXME, this
2491 works around a limitation in fold() when dealing with
2492 enumerations. Given 'enum { N1, N2 } x;', fold will not
2493 fold 'if (x > N2)' to 'if (0)'. */
2494 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2495 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2496 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2498 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2499 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2501 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2502 return false;
2504 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2505 return false;
2509 else
2511 /* FIXME. Handle SWITCH_EXPR. */
2512 gcc_unreachable ();
2515 register_new_assert_for (name, comp_code, val, NULL, e, si);
2516 return true;
2520 static bool find_assert_locations (basic_block bb);
2522 /* Determine whether the outgoing edges of BB should receive an
2523 ASSERT_EXPR for each of the operands of BB's last statement. The
2524 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2526 If any of the sub-graphs rooted at BB have an interesting use of
2527 the predicate operands, an assert location node is added to the
2528 list of assertions for the corresponding operands. */
2530 static bool
2531 find_conditional_asserts (basic_block bb)
2533 bool need_assert;
2534 block_stmt_iterator last_si;
2535 tree op, last;
2536 edge_iterator ei;
2537 edge e;
2538 ssa_op_iter iter;
2540 need_assert = false;
2541 last_si = bsi_last (bb);
2542 last = bsi_stmt (last_si);
2544 /* Look for uses of the operands in each of the sub-graphs
2545 rooted at BB. We need to check each of the outgoing edges
2546 separately, so that we know what kind of ASSERT_EXPR to
2547 insert. */
2548 FOR_EACH_EDGE (e, ei, bb->succs)
2550 if (e->dest == bb)
2551 continue;
2553 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2554 Otherwise, when we finish traversing each of the sub-graphs, we
2555 won't know whether the variables were found in the sub-graphs or
2556 if they had been found in a block upstream from BB. */
2557 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2558 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2560 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2561 to determine if any of the operands in the conditional
2562 predicate are used. */
2563 if (e->dest != bb)
2564 need_assert |= find_assert_locations (e->dest);
2566 /* Register the necessary assertions for each operand in the
2567 conditional predicate. */
2568 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2569 need_assert |= register_edge_assert_for (op, e, last_si);
2572 /* Finally, indicate that we have found the operands in the
2573 conditional. */
2574 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2575 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2577 return need_assert;
2581 /* Traverse all the statements in block BB looking for statements that
2582 may generate useful assertions for the SSA names in their operand.
2583 If a statement produces a useful assertion A for name N_i, then the
2584 list of assertions already generated for N_i is scanned to
2585 determine if A is actually needed.
2587 If N_i already had the assertion A at a location dominating the
2588 current location, then nothing needs to be done. Otherwise, the
2589 new location for A is recorded instead.
2591 1- For every statement S in BB, all the variables used by S are
2592 added to bitmap FOUND_IN_SUBGRAPH.
2594 2- If statement S uses an operand N in a way that exposes a known
2595 value range for N, then if N was not already generated by an
2596 ASSERT_EXPR, create a new assert location for N. For instance,
2597 if N is a pointer and the statement dereferences it, we can
2598 assume that N is not NULL.
2600 3- COND_EXPRs are a special case of #2. We can derive range
2601 information from the predicate but need to insert different
2602 ASSERT_EXPRs for each of the sub-graphs rooted at the
2603 conditional block. If the last statement of BB is a conditional
2604 expression of the form 'X op Y', then
2606 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2608 b) If the conditional is the only entry point to the sub-graph
2609 corresponding to the THEN_CLAUSE, recurse into it. On
2610 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2611 an ASSERT_EXPR is added for the corresponding variable.
2613 c) Repeat step (b) on the ELSE_CLAUSE.
2615 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2617 For instance,
2619 if (a == 9)
2620 b = a;
2621 else
2622 b = c + 1;
2624 In this case, an assertion on the THEN clause is useful to
2625 determine that 'a' is always 9 on that edge. However, an assertion
2626 on the ELSE clause would be unnecessary.
2628 4- If BB does not end in a conditional expression, then we recurse
2629 into BB's dominator children.
2631 At the end of the recursive traversal, every SSA name will have a
2632 list of locations where ASSERT_EXPRs should be added. When a new
2633 location for name N is found, it is registered by calling
2634 register_new_assert_for. That function keeps track of all the
2635 registered assertions to prevent adding unnecessary assertions.
2636 For instance, if a pointer P_4 is dereferenced more than once in a
2637 dominator tree, only the location dominating all the dereference of
2638 P_4 will receive an ASSERT_EXPR.
2640 If this function returns true, then it means that there are names
2641 for which we need to generate ASSERT_EXPRs. Those assertions are
2642 inserted by process_assert_insertions.
2644 TODO. Handle SWITCH_EXPR. */
2646 static bool
2647 find_assert_locations (basic_block bb)
2649 block_stmt_iterator si;
2650 tree last, phi;
2651 bool need_assert;
2652 basic_block son;
2654 if (TEST_BIT (blocks_visited, bb->index))
2655 return false;
2657 SET_BIT (blocks_visited, bb->index);
2659 need_assert = false;
2661 /* Traverse all PHI nodes in BB marking used operands. */
2662 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2664 use_operand_p arg_p;
2665 ssa_op_iter i;
2667 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2669 tree arg = USE_FROM_PTR (arg_p);
2670 if (TREE_CODE (arg) == SSA_NAME)
2672 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2673 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2678 /* Traverse all the statements in BB marking used names and looking
2679 for statements that may infer assertions for their used operands. */
2680 last = NULL_TREE;
2681 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2683 tree stmt, op;
2684 ssa_op_iter i;
2686 stmt = bsi_stmt (si);
2688 /* See if we can derive an assertion for any of STMT's operands. */
2689 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2691 tree value;
2692 enum tree_code comp_code;
2694 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2695 the sub-graph of a conditional block, when we return from
2696 this recursive walk, our parent will use the
2697 FOUND_IN_SUBGRAPH bitset to determine if one of the
2698 operands it was looking for was present in the sub-graph. */
2699 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2701 /* If OP is used only once, namely in this STMT, don't
2702 bother creating an ASSERT_EXPR for it. Such an
2703 ASSERT_EXPR would do nothing but increase compile time.
2704 Experiments show that with this simple check, we can save
2705 more than 20% of ASSERT_EXPRs. */
2706 if (has_single_use (op))
2707 continue;
2709 /* If OP is used in such a way that we can infer a value
2710 range for it, and we don't find a previous assertion for
2711 it, create a new assertion location node for OP. */
2712 if (infer_value_range (stmt, op, &comp_code, &value))
2714 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2715 need_assert = true;
2719 /* Remember the last statement of the block. */
2720 last = stmt;
2723 /* If BB's last statement is a conditional expression
2724 involving integer operands, recurse into each of the sub-graphs
2725 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2726 if (last
2727 && TREE_CODE (last) == COND_EXPR
2728 && !fp_predicate (COND_EXPR_COND (last))
2729 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2730 need_assert |= find_conditional_asserts (bb);
2732 /* Recurse into the dominator children of BB. */
2733 for (son = first_dom_son (CDI_DOMINATORS, bb);
2734 son;
2735 son = next_dom_son (CDI_DOMINATORS, son))
2736 need_assert |= find_assert_locations (son);
2738 return need_assert;
2742 /* Create an ASSERT_EXPR for NAME and insert it in the location
2743 indicated by LOC. Return true if we made any edge insertions. */
2745 static bool
2746 process_assert_insertions_for (tree name, assert_locus_t loc)
2748 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2749 tree stmt, cond, assert_expr;
2750 edge_iterator ei;
2751 edge e;
2753 cond = build (loc->comp_code, boolean_type_node, name, loc->val);
2754 assert_expr = build_assert_expr_for (cond, name);
2756 if (loc->e)
2758 /* We have been asked to insert the assertion on an edge. This
2759 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2760 #if defined ENABLE_CHECKING
2761 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2762 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2763 #endif
2765 bsi_insert_on_edge (loc->e, assert_expr);
2766 return true;
2769 /* Otherwise, we can insert right after LOC->SI iff the
2770 statement must not be the last statement in the block. */
2771 stmt = bsi_stmt (loc->si);
2772 if (!stmt_ends_bb_p (stmt))
2774 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2775 return false;
2778 /* If STMT must be the last statement in BB, we can only insert new
2779 assertions on the non-abnormal edge out of BB. Note that since
2780 STMT is not control flow, there may only be one non-abnormal edge
2781 out of BB. */
2782 FOR_EACH_EDGE (e, ei, loc->bb->succs)
2783 if (!(e->flags & EDGE_ABNORMAL))
2785 bsi_insert_on_edge (e, assert_expr);
2786 return true;
2789 gcc_unreachable ();
2793 /* Process all the insertions registered for every name N_i registered
2794 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2795 found in ASSERTS_FOR[i]. */
2797 static void
2798 process_assert_insertions (void)
2800 unsigned i;
2801 bitmap_iterator bi;
2802 bool update_edges_p = false;
2803 int num_asserts = 0;
2805 if (dump_file && (dump_flags & TDF_DETAILS))
2806 dump_all_asserts (dump_file);
2808 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2810 assert_locus_t loc = asserts_for[i];
2811 gcc_assert (loc);
2813 while (loc)
2815 assert_locus_t next = loc->next;
2816 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
2817 free (loc);
2818 loc = next;
2819 num_asserts++;
2823 if (update_edges_p)
2824 bsi_commit_edge_inserts ();
2826 if (dump_file && (dump_flags & TDF_STATS))
2827 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2828 num_asserts);
2832 /* Traverse the flowgraph looking for conditional jumps to insert range
2833 expressions. These range expressions are meant to provide information
2834 to optimizations that need to reason in terms of value ranges. They
2835 will not be expanded into RTL. For instance, given:
2837 x = ...
2838 y = ...
2839 if (x < y)
2840 y = x - 2;
2841 else
2842 x = y + 3;
2844 this pass will transform the code into:
2846 x = ...
2847 y = ...
2848 if (x < y)
2850 x = ASSERT_EXPR <x, x < y>
2851 y = x - 2
2853 else
2855 y = ASSERT_EXPR <y, x <= y>
2856 x = y + 3
2859 The idea is that once copy and constant propagation have run, other
2860 optimizations will be able to determine what ranges of values can 'x'
2861 take in different paths of the code, simply by checking the reaching
2862 definition of 'x'. */
2864 static void
2865 insert_range_assertions (void)
2867 edge e;
2868 edge_iterator ei;
2869 bool update_ssa_p;
2871 found_in_subgraph = sbitmap_alloc (num_ssa_names);
2872 sbitmap_zero (found_in_subgraph);
2874 blocks_visited = sbitmap_alloc (last_basic_block);
2875 sbitmap_zero (blocks_visited);
2877 need_assert_for = BITMAP_ALLOC (NULL);
2878 asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
2879 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
2881 calculate_dominance_info (CDI_DOMINATORS);
2883 update_ssa_p = false;
2884 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2885 if (find_assert_locations (e->dest))
2886 update_ssa_p = true;
2888 if (update_ssa_p)
2890 process_assert_insertions ();
2891 update_ssa (TODO_update_ssa_no_phi);
2894 if (dump_file && (dump_flags & TDF_DETAILS))
2896 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
2897 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2900 sbitmap_free (found_in_subgraph);
2901 free (asserts_for);
2902 BITMAP_FREE (need_assert_for);
2906 /* Replaces all uses of NAME by VAL. */
2908 static void
2909 replace_uses_by_vrp (tree name, tree val)
2911 imm_use_iterator imm_iter;
2912 use_operand_p use;
2913 tree stmt;
2914 edge e;
2915 unsigned i;
2916 VEC(tree,heap) *stmts = VEC_alloc (tree, heap, 20);
2918 FOR_EACH_IMM_USE_SAFE (use, imm_iter, name)
2920 stmt = USE_STMT (use);
2921 SET_USE (use, val);
2923 if (TREE_CODE (stmt) == PHI_NODE)
2925 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
2926 if (e->flags & EDGE_ABNORMAL)
2928 /* This can only occur for virtual operands, since
2929 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2930 would prevent replacement. */
2931 gcc_assert (!is_gimple_reg (name));
2932 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2935 else
2936 VEC_safe_push (tree, heap, stmts, stmt);
2939 /* We do not update the statements in the loop above. Consider
2940 x = w * w;
2942 If we performed the update in the first loop, the statement
2943 would be rescanned after first occurrence of w is replaced,
2944 the new uses would be placed to the beginning of the list,
2945 and we would never process them. */
2946 for (i = 0; VEC_iterate (tree, stmts, i, stmt); i++)
2947 update_stmt (stmt);
2949 VEC_free (tree, heap, stmts);
2951 /* Also update the trees stored in loop structures. */
2952 if (current_loops)
2954 struct loop *loop;
2956 for (i = 0; i < current_loops->num; i++)
2958 loop = current_loops->parray[i];
2959 if (loop)
2960 substitute_in_loop_info (loop, name, val);
2966 /* Convert range assertion expressions into the implied copies and
2967 copy propagate away the copies. Doing the trivial copy propagation
2968 here avoids the need to run the full copy propagation pass after
2969 VRP.
2971 FIXME, this will eventually lead to copy propagation removing the
2972 names that had useful range information attached to them. For
2973 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2974 then N_i will have the range [3, +INF].
2976 However, by converting the assertion into the implied copy
2977 operation N_i = N_j, we will then copy-propagate N_j into the uses
2978 of N_i and lose the range information. We may want to hold on to
2979 ASSERT_EXPRs a little while longer as the ranges could be used in
2980 things like jump threading.
2982 The problem with keeping ASSERT_EXPRs around is that passes after
2983 VRP need to handle them appropriately.
2985 Another approach would be to make the range information a first
2986 class property of the SSA_NAME so that it can be queried from
2987 any pass. This is made somewhat more complex by the need for
2988 multiple ranges to be associated with one SSA_NAME. */
2990 static void
2991 remove_range_assertions (void)
2993 basic_block bb;
2994 block_stmt_iterator si;
2996 /* Note that the BSI iterator bump happens at the bottom of the
2997 loop and no bump is necessary if we're removing the statement
2998 referenced by the current BSI. */
2999 FOR_EACH_BB (bb)
3000 for (si = bsi_start (bb); !bsi_end_p (si);)
3002 tree stmt = bsi_stmt (si);
3004 if (TREE_CODE (stmt) == MODIFY_EXPR
3005 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3007 tree rhs = TREE_OPERAND (stmt, 1);
3008 tree cond = fold (ASSERT_EXPR_COND (rhs));
3009 tree lhs = TREE_OPERAND (stmt, 0);
3011 gcc_assert (cond != boolean_false_node);
3012 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
3013 update_stmt (stmt);
3015 /* The statement is now a copy. Propagate the RHS into
3016 every use of the LHS. */
3017 replace_uses_by_vrp (lhs, ASSERT_EXPR_VAR (rhs));
3019 /* And finally, remove the copy, it is not needed. */
3020 bsi_remove (&si);
3022 else
3023 bsi_next (&si);
3026 sbitmap_free (blocks_visited);
3030 /* Return true if STMT is interesting for VRP. */
3032 static bool
3033 stmt_interesting_for_vrp (tree stmt)
3035 if (TREE_CODE (stmt) == PHI_NODE
3036 && is_gimple_reg (PHI_RESULT (stmt))
3037 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3038 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3039 return true;
3040 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3042 tree lhs = TREE_OPERAND (stmt, 0);
3044 if (TREE_CODE (lhs) == SSA_NAME
3045 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3046 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3047 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3048 return true;
3050 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3051 return true;
3053 return false;
3057 /* Initialize local data structures for VRP. */
3059 static void
3060 vrp_initialize (void)
3062 basic_block bb;
3064 vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
3065 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3067 FOR_EACH_BB (bb)
3069 block_stmt_iterator si;
3070 tree phi;
3072 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3074 if (!stmt_interesting_for_vrp (phi))
3076 tree lhs = PHI_RESULT (phi);
3077 set_value_range_to_varying (get_value_range (lhs));
3078 DONT_SIMULATE_AGAIN (phi) = true;
3080 else
3081 DONT_SIMULATE_AGAIN (phi) = false;
3084 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3086 tree stmt = bsi_stmt (si);
3088 if (!stmt_interesting_for_vrp (stmt))
3090 ssa_op_iter i;
3091 tree def;
3092 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3093 set_value_range_to_varying (get_value_range (def));
3094 DONT_SIMULATE_AGAIN (stmt) = true;
3096 else
3098 DONT_SIMULATE_AGAIN (stmt) = false;
3105 /* Visit assignment STMT. If it produces an interesting range, record
3106 the SSA name in *OUTPUT_P. */
3108 static enum ssa_prop_result
3109 vrp_visit_assignment (tree stmt, tree *output_p)
3111 tree lhs, rhs, def;
3112 ssa_op_iter iter;
3114 lhs = TREE_OPERAND (stmt, 0);
3115 rhs = TREE_OPERAND (stmt, 1);
3117 /* We only keep track of ranges in integral and pointer types. */
3118 if (TREE_CODE (lhs) == SSA_NAME
3119 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3120 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3122 struct loop *l;
3123 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3125 extract_range_from_expr (&new_vr, rhs);
3127 /* If STMT is inside a loop, we may be able to know something
3128 else about the range of LHS by examining scalar evolution
3129 information. */
3130 if (cfg_loops && (l = loop_containing_stmt (stmt)))
3131 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3133 if (update_value_range (lhs, &new_vr))
3135 *output_p = lhs;
3137 if (dump_file && (dump_flags & TDF_DETAILS))
3139 fprintf (dump_file, "Found new range for ");
3140 print_generic_expr (dump_file, lhs, 0);
3141 fprintf (dump_file, ": ");
3142 dump_value_range (dump_file, &new_vr);
3143 fprintf (dump_file, "\n\n");
3146 if (new_vr.type == VR_VARYING)
3147 return SSA_PROP_VARYING;
3149 return SSA_PROP_INTERESTING;
3152 return SSA_PROP_NOT_INTERESTING;
3155 /* Every other statement produces no useful ranges. */
3156 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3157 set_value_range_to_varying (get_value_range (def));
3159 return SSA_PROP_VARYING;
3163 /* Compare all the value ranges for names equivalent to VAR with VAL
3164 using comparison code COMP. Return the same value returned by
3165 compare_range_with_value. */
3167 static tree
3168 compare_name_with_value (enum tree_code comp, tree var, tree val)
3170 bitmap_iterator bi;
3171 unsigned i;
3172 bitmap e;
3173 tree retval, t;
3175 t = retval = NULL_TREE;
3177 /* Get the set of equivalences for VAR. */
3178 e = get_value_range (var)->equiv;
3180 /* Add VAR to its own set of equivalences so that VAR's value range
3181 is processed by this loop (otherwise, we would have to replicate
3182 the body of the loop just to check VAR's value range). */
3183 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3185 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3187 value_range_t equiv_vr = *(vr_value[i]);
3189 /* If name N_i does not have a valid range, use N_i as its own
3190 range. This allows us to compare against names that may
3191 have N_i in their ranges. */
3192 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3194 equiv_vr.type = VR_RANGE;
3195 equiv_vr.min = ssa_name (i);
3196 equiv_vr.max = ssa_name (i);
3199 t = compare_range_with_value (comp, &equiv_vr, val);
3200 if (t)
3202 /* If we get different answers from different members
3203 of the equivalence set this check must be in a dead
3204 code region. Folding it to a trap representation
3205 would be correct here. For now just return don't-know. */
3206 if (retval != NULL
3207 && t != retval)
3209 retval = NULL_TREE;
3210 break;
3212 retval = t;
3216 /* Remove VAR from its own equivalence set. */
3217 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3219 if (retval)
3220 return retval;
3222 /* We couldn't find a non-NULL value for the predicate. */
3223 return NULL_TREE;
3227 /* Given a comparison code COMP and names N1 and N2, compare all the
3228 ranges equivalent to N1 against all the ranges equivalent to N2
3229 to determine the value of N1 COMP N2. Return the same value
3230 returned by compare_ranges. */
3232 static tree
3233 compare_names (enum tree_code comp, tree n1, tree n2)
3235 tree t, retval;
3236 bitmap e1, e2;
3237 bitmap_iterator bi1, bi2;
3238 unsigned i1, i2;
3240 /* Compare the ranges of every name equivalent to N1 against the
3241 ranges of every name equivalent to N2. */
3242 e1 = get_value_range (n1)->equiv;
3243 e2 = get_value_range (n2)->equiv;
3245 /* Add N1 and N2 to their own set of equivalences to avoid
3246 duplicating the body of the loop just to check N1 and N2
3247 ranges. */
3248 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3249 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3251 /* If the equivalence sets have a common intersection, then the two
3252 names can be compared without checking their ranges. */
3253 if (bitmap_intersect_p (e1, e2))
3255 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3256 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3258 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3259 ? boolean_true_node
3260 : boolean_false_node;
3263 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3264 N2 to their own set of equivalences to avoid duplicating the body
3265 of the loop just to check N1 and N2 ranges. */
3266 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3268 value_range_t vr1 = *(vr_value[i1]);
3270 /* If the range is VARYING or UNDEFINED, use the name itself. */
3271 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3273 vr1.type = VR_RANGE;
3274 vr1.min = ssa_name (i1);
3275 vr1.max = ssa_name (i1);
3278 t = retval = NULL_TREE;
3279 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3281 value_range_t vr2 = *(vr_value[i2]);
3283 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3285 vr2.type = VR_RANGE;
3286 vr2.min = ssa_name (i2);
3287 vr2.max = ssa_name (i2);
3290 t = compare_ranges (comp, &vr1, &vr2);
3291 if (t)
3293 /* If we get different answers from different members
3294 of the equivalence set this check must be in a dead
3295 code region. Folding it to a trap representation
3296 would be correct here. For now just return don't-know. */
3297 if (retval != NULL
3298 && t != retval)
3300 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3301 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3302 return NULL_TREE;
3304 retval = t;
3308 if (retval)
3310 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3311 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3312 return retval;
3316 /* None of the equivalent ranges are useful in computing this
3317 comparison. */
3318 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3319 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3320 return NULL_TREE;
3324 /* Given a conditional predicate COND, try to determine if COND yields
3325 true or false based on the value ranges of its operands. Return
3326 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3327 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3328 NULL if the conditional cannot be evaluated at compile time.
3330 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3331 the operands in COND are used when trying to compute its value.
3332 This is only used during final substitution. During propagation,
3333 we only check the range of each variable and not its equivalents. */
3335 tree
3336 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3338 gcc_assert (TREE_CODE (cond) == SSA_NAME
3339 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3341 if (TREE_CODE (cond) == SSA_NAME)
3343 value_range_t *vr;
3344 tree retval;
3346 if (use_equiv_p)
3347 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3348 else
3350 value_range_t *vr = get_value_range (cond);
3351 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3354 /* If COND has a known boolean range, return it. */
3355 if (retval)
3356 return retval;
3358 /* Otherwise, if COND has a symbolic range of exactly one value,
3359 return it. */
3360 vr = get_value_range (cond);
3361 if (vr->type == VR_RANGE && vr->min == vr->max)
3362 return vr->min;
3364 else
3366 tree op0 = TREE_OPERAND (cond, 0);
3367 tree op1 = TREE_OPERAND (cond, 1);
3369 /* We only deal with integral and pointer types. */
3370 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3371 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3372 return NULL_TREE;
3374 if (use_equiv_p)
3376 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3377 return compare_names (TREE_CODE (cond), op0, op1);
3378 else if (TREE_CODE (op0) == SSA_NAME)
3379 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3380 else if (TREE_CODE (op1) == SSA_NAME)
3381 return compare_name_with_value (
3382 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3384 else
3386 value_range_t *vr0, *vr1;
3388 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3389 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3391 if (vr0 && vr1)
3392 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3393 else if (vr0 && vr1 == NULL)
3394 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3395 else if (vr0 == NULL && vr1)
3396 return compare_range_with_value (
3397 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3401 /* Anything else cannot be computed statically. */
3402 return NULL_TREE;
3406 /* Visit conditional statement STMT. If we can determine which edge
3407 will be taken out of STMT's basic block, record it in
3408 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3409 SSA_PROP_VARYING. */
3411 static enum ssa_prop_result
3412 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3414 tree cond, val;
3416 *taken_edge_p = NULL;
3418 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3419 add ASSERT_EXPRs for them. */
3420 if (TREE_CODE (stmt) == SWITCH_EXPR)
3421 return SSA_PROP_VARYING;
3423 cond = COND_EXPR_COND (stmt);
3425 if (dump_file && (dump_flags & TDF_DETAILS))
3427 tree use;
3428 ssa_op_iter i;
3430 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3431 print_generic_expr (dump_file, cond, 0);
3432 fprintf (dump_file, "\nWith known ranges\n");
3434 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3436 fprintf (dump_file, "\t");
3437 print_generic_expr (dump_file, use, 0);
3438 fprintf (dump_file, ": ");
3439 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3442 fprintf (dump_file, "\n");
3445 /* Compute the value of the predicate COND by checking the known
3446 ranges of each of its operands.
3448 Note that we cannot evaluate all the equivalent ranges here
3449 because those ranges may not yet be final and with the current
3450 propagation strategy, we cannot determine when the value ranges
3451 of the names in the equivalence set have changed.
3453 For instance, given the following code fragment
3455 i_5 = PHI <8, i_13>
3457 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3458 if (i_14 == 1)
3461 Assume that on the first visit to i_14, i_5 has the temporary
3462 range [8, 8] because the second argument to the PHI function is
3463 not yet executable. We derive the range ~[0, 0] for i_14 and the
3464 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3465 the first time, since i_14 is equivalent to the range [8, 8], we
3466 determine that the predicate is always false.
3468 On the next round of propagation, i_13 is determined to be
3469 VARYING, which causes i_5 to drop down to VARYING. So, another
3470 visit to i_14 is scheduled. In this second visit, we compute the
3471 exact same range and equivalence set for i_14, namely ~[0, 0] and
3472 { i_5 }. But we did not have the previous range for i_5
3473 registered, so vrp_visit_assignment thinks that the range for
3474 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3475 is not visited again, which stops propagation from visiting
3476 statements in the THEN clause of that if().
3478 To properly fix this we would need to keep the previous range
3479 value for the names in the equivalence set. This way we would've
3480 discovered that from one visit to the other i_5 changed from
3481 range [8, 8] to VR_VARYING.
3483 However, fixing this apparent limitation may not be worth the
3484 additional checking. Testing on several code bases (GCC, DLV,
3485 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3486 4 more predicates folded in SPEC. */
3487 val = vrp_evaluate_conditional (cond, false);
3488 if (val)
3489 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3493 fprintf (dump_file, "\nPredicate evaluates to: ");
3494 if (val == NULL_TREE)
3495 fprintf (dump_file, "DON'T KNOW\n");
3496 else
3497 print_generic_stmt (dump_file, val, 0);
3500 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3504 /* Evaluate statement STMT. If the statement produces a useful range,
3505 return SSA_PROP_INTERESTING and record the SSA name with the
3506 interesting range into *OUTPUT_P.
3508 If STMT is a conditional branch and we can determine its truth
3509 value, the taken edge is recorded in *TAKEN_EDGE_P.
3511 If STMT produces a varying value, return SSA_PROP_VARYING. */
3513 static enum ssa_prop_result
3514 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3516 tree def;
3517 ssa_op_iter iter;
3518 stmt_ann_t ann;
3520 if (dump_file && (dump_flags & TDF_DETAILS))
3522 fprintf (dump_file, "\nVisiting statement:\n");
3523 print_generic_stmt (dump_file, stmt, dump_flags);
3524 fprintf (dump_file, "\n");
3527 ann = stmt_ann (stmt);
3528 if (TREE_CODE (stmt) == MODIFY_EXPR
3529 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3530 return vrp_visit_assignment (stmt, output_p);
3531 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3532 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3534 /* All other statements produce nothing of interest for VRP, so mark
3535 their outputs varying and prevent further simulation. */
3536 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3537 set_value_range_to_varying (get_value_range (def));
3539 return SSA_PROP_VARYING;
3543 /* Meet operation for value ranges. Given two value ranges VR0 and
3544 VR1, store in VR0 the result of meeting VR0 and VR1.
3546 The meeting rules are as follows:
3548 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3550 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3551 union of VR0 and VR1. */
3553 static void
3554 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3556 if (vr0->type == VR_UNDEFINED)
3558 copy_value_range (vr0, vr1);
3559 return;
3562 if (vr1->type == VR_UNDEFINED)
3564 /* Nothing to do. VR0 already has the resulting range. */
3565 return;
3568 if (vr0->type == VR_VARYING)
3570 /* Nothing to do. VR0 already has the resulting range. */
3571 return;
3574 if (vr1->type == VR_VARYING)
3576 set_value_range_to_varying (vr0);
3577 return;
3580 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3582 /* If VR0 and VR1 have a non-empty intersection, compute the
3583 union of both ranges. */
3584 if (value_ranges_intersect_p (vr0, vr1))
3586 int cmp;
3587 tree min, max;
3589 /* The lower limit of the new range is the minimum of the
3590 two ranges. If they cannot be compared, the result is
3591 VARYING. */
3592 cmp = compare_values (vr0->min, vr1->min);
3593 if (cmp == 0 || cmp == 1)
3594 min = vr1->min;
3595 else if (cmp == -1)
3596 min = vr0->min;
3597 else
3599 set_value_range_to_varying (vr0);
3600 return;
3603 /* Similarly, the upper limit of the new range is the
3604 maximum of the two ranges. If they cannot be compared,
3605 the result is VARYING. */
3606 cmp = compare_values (vr0->max, vr1->max);
3607 if (cmp == 0 || cmp == -1)
3608 max = vr1->max;
3609 else if (cmp == 1)
3610 max = vr0->max;
3611 else
3613 set_value_range_to_varying (vr0);
3614 return;
3617 /* The resulting set of equivalences is the intersection of
3618 the two sets. */
3619 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3620 bitmap_and_into (vr0->equiv, vr1->equiv);
3621 else if (vr0->equiv && !vr1->equiv)
3622 bitmap_clear (vr0->equiv);
3624 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3626 else
3627 goto no_meet;
3629 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3631 /* Two anti-ranges meet only if they are both identical. */
3632 if (compare_values (vr0->min, vr1->min) == 0
3633 && compare_values (vr0->max, vr1->max) == 0
3634 && compare_values (vr0->min, vr0->max) == 0)
3636 /* The resulting set of equivalences is the intersection of
3637 the two sets. */
3638 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3639 bitmap_and_into (vr0->equiv, vr1->equiv);
3640 else if (vr0->equiv && !vr1->equiv)
3641 bitmap_clear (vr0->equiv);
3643 else
3644 goto no_meet;
3646 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3648 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3649 meet only if the ranges have an empty intersection. The
3650 result of the meet operation is the anti-range. */
3651 if (!symbolic_range_p (vr0)
3652 && !symbolic_range_p (vr1)
3653 && !value_ranges_intersect_p (vr0, vr1))
3655 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3656 set. We need to compute the intersection of the two
3657 equivalence sets. */
3658 if (vr1->type == VR_ANTI_RANGE)
3659 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3661 /* The resulting set of equivalences is the intersection of
3662 the two sets. */
3663 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3664 bitmap_and_into (vr0->equiv, vr1->equiv);
3665 else if (vr0->equiv && !vr1->equiv)
3666 bitmap_clear (vr0->equiv);
3668 else
3669 goto no_meet;
3671 else
3672 gcc_unreachable ();
3674 return;
3676 no_meet:
3677 /* The two range VR0 and VR1 do not meet. Before giving up and
3678 setting the result to VARYING, see if we can at least derive a
3679 useful anti-range. FIXME, all this nonsense about distinguishing
3680 anti-ranges from ranges is necessary because of the odd
3681 semantics of range_includes_zero_p and friends. */
3682 if (!symbolic_range_p (vr0)
3683 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3684 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3685 && !symbolic_range_p (vr1)
3686 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3687 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3689 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3691 /* Since this meet operation did not result from the meeting of
3692 two equivalent names, VR0 cannot have any equivalences. */
3693 if (vr0->equiv)
3694 bitmap_clear (vr0->equiv);
3696 else
3697 set_value_range_to_varying (vr0);
3701 /* Visit all arguments for PHI node PHI that flow through executable
3702 edges. If a valid value range can be derived from all the incoming
3703 value ranges, set a new range for the LHS of PHI. */
3705 static enum ssa_prop_result
3706 vrp_visit_phi_node (tree phi)
3708 int i;
3709 tree lhs = PHI_RESULT (phi);
3710 value_range_t *lhs_vr = get_value_range (lhs);
3711 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3713 copy_value_range (&vr_result, lhs_vr);
3715 if (dump_file && (dump_flags & TDF_DETAILS))
3717 fprintf (dump_file, "\nVisiting PHI node: ");
3718 print_generic_expr (dump_file, phi, dump_flags);
3721 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3723 edge e = PHI_ARG_EDGE (phi, i);
3725 if (dump_file && (dump_flags & TDF_DETAILS))
3727 fprintf (dump_file,
3728 "\n Argument #%d (%d -> %d %sexecutable)\n",
3729 i, e->src->index, e->dest->index,
3730 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3733 if (e->flags & EDGE_EXECUTABLE)
3735 tree arg = PHI_ARG_DEF (phi, i);
3736 value_range_t vr_arg;
3738 if (TREE_CODE (arg) == SSA_NAME)
3739 vr_arg = *(get_value_range (arg));
3740 else
3742 vr_arg.type = VR_RANGE;
3743 vr_arg.min = arg;
3744 vr_arg.max = arg;
3745 vr_arg.equiv = NULL;
3748 if (dump_file && (dump_flags & TDF_DETAILS))
3750 fprintf (dump_file, "\t");
3751 print_generic_expr (dump_file, arg, dump_flags);
3752 fprintf (dump_file, "\n\tValue: ");
3753 dump_value_range (dump_file, &vr_arg);
3754 fprintf (dump_file, "\n");
3757 vrp_meet (&vr_result, &vr_arg);
3759 if (vr_result.type == VR_VARYING)
3760 break;
3764 if (vr_result.type == VR_VARYING)
3765 goto varying;
3767 /* To prevent infinite iterations in the algorithm, derive ranges
3768 when the new value is slightly bigger or smaller than the
3769 previous one. */
3770 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3772 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3774 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3775 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3777 /* If the new minimum is smaller or larger than the previous
3778 one, go all the way to -INF. In the first case, to avoid
3779 iterating millions of times to reach -INF, and in the
3780 other case to avoid infinite bouncing between different
3781 minimums. */
3782 if (cmp_min > 0 || cmp_min < 0)
3783 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3785 /* Similarly, if the new maximum is smaller or larger than
3786 the previous one, go all the way to +INF. */
3787 if (cmp_max < 0 || cmp_max > 0)
3788 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3790 /* If we ended up with a (-INF, +INF) range, set it to
3791 VARYING. */
3792 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3793 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3794 goto varying;
3798 /* If the new range is different than the previous value, keep
3799 iterating. */
3800 if (update_value_range (lhs, &vr_result))
3801 return SSA_PROP_INTERESTING;
3803 /* Nothing changed, don't add outgoing edges. */
3804 return SSA_PROP_NOT_INTERESTING;
3806 /* No match found. Set the LHS to VARYING. */
3807 varying:
3808 set_value_range_to_varying (lhs_vr);
3809 return SSA_PROP_VARYING;
3812 /* Simplify a division or modulo operator to a right shift or
3813 bitwise and if the first operand is unsigned or is greater
3814 than zero and the second operand is an exact power of two. */
3816 static void
3817 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3819 tree val = NULL;
3820 tree op = TREE_OPERAND (rhs, 0);
3821 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3823 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3825 val = integer_one_node;
3827 else
3829 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3832 if (val && integer_onep (val))
3834 tree t;
3835 tree op0 = TREE_OPERAND (rhs, 0);
3836 tree op1 = TREE_OPERAND (rhs, 1);
3838 if (rhs_code == TRUNC_DIV_EXPR)
3840 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3841 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3843 else
3845 t = build_int_cst (TREE_TYPE (op1), 1);
3846 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3847 t = fold_convert (TREE_TYPE (op0), t);
3848 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3851 TREE_OPERAND (stmt, 1) = t;
3852 update_stmt (stmt);
3856 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3857 ABS_EXPR. If the operand is <= 0, then simplify the
3858 ABS_EXPR into a NEGATE_EXPR. */
3860 static void
3861 simplify_abs_using_ranges (tree stmt, tree rhs)
3863 tree val = NULL;
3864 tree op = TREE_OPERAND (rhs, 0);
3865 tree type = TREE_TYPE (op);
3866 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3868 if (TYPE_UNSIGNED (type))
3870 val = integer_zero_node;
3872 else if (vr)
3874 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
3875 if (!val)
3877 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
3879 if (val)
3881 if (integer_zerop (val))
3882 val = integer_one_node;
3883 else if (integer_onep (val))
3884 val = integer_zero_node;
3888 if (val
3889 && (integer_onep (val) || integer_zerop (val)))
3891 tree t;
3893 if (integer_onep (val))
3894 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
3895 else
3896 t = op;
3898 TREE_OPERAND (stmt, 1) = t;
3899 update_stmt (stmt);
3904 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3905 a known value range VR.
3907 If there is one and only one value which will satisfy the
3908 conditional, then return that value. Else return NULL. */
3910 static tree
3911 test_for_singularity (enum tree_code cond_code, tree op0,
3912 tree op1, value_range_t *vr)
3914 tree min = NULL;
3915 tree max = NULL;
3917 /* Extract minimum/maximum values which satisfy the
3918 the conditional as it was written. */
3919 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3921 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3923 max = op1;
3924 if (cond_code == LT_EXPR)
3926 tree one = build_int_cst (TREE_TYPE (op0), 1);
3927 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3930 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3932 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3934 min = op1;
3935 if (cond_code == GT_EXPR)
3937 tree one = build_int_cst (TREE_TYPE (op0), 1);
3938 max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
3942 /* Now refine the minimum and maximum values using any
3943 value range information we have for op0. */
3944 if (min && max)
3946 if (compare_values (vr->min, min) == -1)
3947 min = min;
3948 else
3949 min = vr->min;
3950 if (compare_values (vr->max, max) == 1)
3951 max = max;
3952 else
3953 max = vr->max;
3955 /* If the new min/max values have converged to a
3956 single value, then there is only one value which
3957 can satisfy the condition, return that value. */
3958 if (min == max && is_gimple_min_invariant (min))
3959 return min;
3961 return NULL;
3964 /* Simplify a conditional using a relational operator to an equality
3965 test if the range information indicates only one value can satisfy
3966 the original conditional. */
3968 static void
3969 simplify_cond_using_ranges (tree stmt)
3971 tree cond = COND_EXPR_COND (stmt);
3972 tree op0 = TREE_OPERAND (cond, 0);
3973 tree op1 = TREE_OPERAND (cond, 1);
3974 enum tree_code cond_code = TREE_CODE (cond);
3976 if (cond_code != NE_EXPR
3977 && cond_code != EQ_EXPR
3978 && TREE_CODE (op0) == SSA_NAME
3979 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3980 && is_gimple_min_invariant (op1))
3982 value_range_t *vr = get_value_range (op0);
3984 /* If we have range information for OP0, then we might be
3985 able to simplify this conditional. */
3986 if (vr->type == VR_RANGE)
3988 tree new = test_for_singularity (cond_code, op0, op1, vr);
3990 if (new)
3992 if (dump_file)
3994 fprintf (dump_file, "Simplified relational ");
3995 print_generic_expr (dump_file, cond, 0);
3996 fprintf (dump_file, " into ");
3999 COND_EXPR_COND (stmt)
4000 = build (EQ_EXPR, boolean_type_node, op0, new);
4001 update_stmt (stmt);
4003 if (dump_file)
4005 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4006 fprintf (dump_file, "\n");
4008 return;
4012 /* Try again after inverting the condition. We only deal
4013 with integral types here, so no need to worry about
4014 issues with inverting FP comparisons. */
4015 cond_code = invert_tree_comparison (cond_code, false);
4016 new = test_for_singularity (cond_code, op0, op1, vr);
4018 if (new)
4020 if (dump_file)
4022 fprintf (dump_file, "Simplified relational ");
4023 print_generic_expr (dump_file, cond, 0);
4024 fprintf (dump_file, " into ");
4027 COND_EXPR_COND (stmt)
4028 = build (NE_EXPR, boolean_type_node, op0, new);
4029 update_stmt (stmt);
4031 if (dump_file)
4033 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4034 fprintf (dump_file, "\n");
4036 return;
4043 /* Simplify STMT using ranges if possible. */
4045 void
4046 simplify_stmt_using_ranges (tree stmt)
4048 if (TREE_CODE (stmt) == MODIFY_EXPR)
4050 tree rhs = TREE_OPERAND (stmt, 1);
4051 enum tree_code rhs_code = TREE_CODE (rhs);
4053 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4054 and BIT_AND_EXPR respectively if the first operand is greater
4055 than zero and the second operand is an exact power of two. */
4056 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4057 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4058 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4059 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4061 /* Transform ABS (X) into X or -X as appropriate. */
4062 if (rhs_code == ABS_EXPR
4063 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4064 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4065 simplify_abs_using_ranges (stmt, rhs);
4067 else if (TREE_CODE (stmt) == COND_EXPR
4068 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4070 simplify_cond_using_ranges (stmt);
4076 /* Traverse all the blocks folding conditionals with known ranges. */
4078 static void
4079 vrp_finalize (void)
4081 size_t i;
4082 prop_value_t *single_val_range;
4083 bool do_value_subst_p;
4085 if (dump_file)
4087 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4088 dump_all_value_ranges (dump_file);
4089 fprintf (dump_file, "\n");
4092 /* We may have ended with ranges that have exactly one value. Those
4093 values can be substituted as any other copy/const propagated
4094 value using substitute_and_fold. */
4095 single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
4096 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4098 do_value_subst_p = false;
4099 for (i = 0; i < num_ssa_names; i++)
4100 if (vr_value[i]
4101 && vr_value[i]->type == VR_RANGE
4102 && vr_value[i]->min == vr_value[i]->max)
4104 single_val_range[i].value = vr_value[i]->min;
4105 do_value_subst_p = true;
4108 if (!do_value_subst_p)
4110 /* We found no single-valued ranges, don't waste time trying to
4111 do single value substitution in substitute_and_fold. */
4112 free (single_val_range);
4113 single_val_range = NULL;
4116 substitute_and_fold (single_val_range, true);
4118 /* Free allocated memory. */
4119 for (i = 0; i < num_ssa_names; i++)
4120 if (vr_value[i])
4122 BITMAP_FREE (vr_value[i]->equiv);
4123 free (vr_value[i]);
4126 free (single_val_range);
4127 free (vr_value);
4131 /* Main entry point to VRP (Value Range Propagation). This pass is
4132 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4133 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4134 Programming Language Design and Implementation, pp. 67-78, 1995.
4135 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4137 This is essentially an SSA-CCP pass modified to deal with ranges
4138 instead of constants.
4140 While propagating ranges, we may find that two or more SSA name
4141 have equivalent, though distinct ranges. For instance,
4143 1 x_9 = p_3->a;
4144 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4145 3 if (p_4 == q_2)
4146 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4147 5 endif
4148 6 if (q_2)
4150 In the code above, pointer p_5 has range [q_2, q_2], but from the
4151 code we can also determine that p_5 cannot be NULL and, if q_2 had
4152 a non-varying range, p_5's range should also be compatible with it.
4154 These equivalences are created by two expressions: ASSERT_EXPR and
4155 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4156 result of another assertion, then we can use the fact that p_5 and
4157 p_4 are equivalent when evaluating p_5's range.
4159 Together with value ranges, we also propagate these equivalences
4160 between names so that we can take advantage of information from
4161 multiple ranges when doing final replacement. Note that this
4162 equivalency relation is transitive but not symmetric.
4164 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4165 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4166 in contexts where that assertion does not hold (e.g., in line 6).
4168 TODO, the main difference between this pass and Patterson's is that
4169 we do not propagate edge probabilities. We only compute whether
4170 edges can be taken or not. That is, instead of having a spectrum
4171 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4172 DON'T KNOW. In the future, it may be worthwhile to propagate
4173 probabilities to aid branch prediction. */
4175 static void
4176 execute_vrp (void)
4178 insert_range_assertions ();
4180 cfg_loops = loop_optimizer_init (NULL);
4181 if (cfg_loops)
4182 scev_initialize (cfg_loops);
4184 vrp_initialize ();
4185 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4186 vrp_finalize ();
4188 if (cfg_loops)
4190 scev_finalize ();
4191 loop_optimizer_finalize (cfg_loops, NULL);
4192 current_loops = NULL;
4195 remove_range_assertions ();
4198 static bool
4199 gate_vrp (void)
4201 return flag_tree_vrp != 0;
4204 struct tree_opt_pass pass_vrp =
4206 "vrp", /* name */
4207 gate_vrp, /* gate */
4208 execute_vrp, /* execute */
4209 NULL, /* sub */
4210 NULL, /* next */
4211 0, /* static_pass_number */
4212 TV_TREE_VRP, /* tv_id */
4213 PROP_ssa | PROP_alias, /* properties_required */
4214 0, /* properties_provided */
4215 0, /* properties_destroyed */
4216 0, /* todo_flags_start */
4217 TODO_cleanup_cfg
4218 | TODO_ggc_collect
4219 | TODO_verify_ssa
4220 | TODO_dump_func
4221 | TODO_update_ssa, /* todo_flags_finish */
4222 0 /* letter */