Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / libstdc++-v3 / include / bits / stl_map.h
blob4d4dd7edf6d19ac83fbc0e34d6f7bce6a2e69a7a
1 // Map implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_map.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _MAP_H
62 #define _MAP_H 1
64 #include <bits/functexcept.h>
65 #include <bits/concept_check.h>
67 namespace _GLIBCXX_STD
69 /**
70 * @brief A standard container made up of (key,value) pairs, which can be
71 * retrieved based on a key, in logarithmic time.
73 * @ingroup Containers
74 * @ingroup Assoc_containers
76 * Meets the requirements of a <a href="tables.html#65">container</a>, a
77 * <a href="tables.html#66">reversible container</a>, and an
78 * <a href="tables.html#69">associative container</a> (using unique keys).
79 * For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
80 * value_type is std::pair<const Key,T>.
82 * Maps support bidirectional iterators.
84 * @if maint
85 * The private tree data is declared exactly the same way for map and
86 * multimap; the distinction is made entirely in how the tree functions are
87 * called (*_unique versus *_equal, same as the standard).
88 * @endif
90 template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
91 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
92 class map
94 public:
95 typedef _Key key_type;
96 typedef _Tp mapped_type;
97 typedef std::pair<const _Key, _Tp> value_type;
98 typedef _Compare key_compare;
99 typedef _Alloc allocator_type;
101 private:
102 // concept requirements
103 typedef typename _Alloc::value_type _Alloc_value_type;
104 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
105 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
106 _BinaryFunctionConcept)
107 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
109 public:
110 class value_compare
111 : public std::binary_function<value_type, value_type, bool>
113 friend class map<_Key, _Tp, _Compare, _Alloc>;
114 protected:
115 _Compare comp;
117 value_compare(_Compare __c)
118 : comp(__c) { }
120 public:
121 bool operator()(const value_type& __x, const value_type& __y) const
122 { return comp(__x.first, __y.first); }
125 private:
126 /// @if maint This turns a red-black tree into a [multi]map. @endif
127 typedef typename _Alloc::template rebind<value_type>::other
128 _Pair_alloc_type;
130 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
131 key_compare, _Pair_alloc_type> _Rep_type;
133 /// @if maint The actual tree structure. @endif
134 _Rep_type _M_t;
136 public:
137 // many of these are specified differently in ISO, but the following are
138 // "functionally equivalent"
139 typedef typename _Pair_alloc_type::pointer pointer;
140 typedef typename _Pair_alloc_type::const_pointer const_pointer;
141 typedef typename _Pair_alloc_type::reference reference;
142 typedef typename _Pair_alloc_type::const_reference const_reference;
143 typedef typename _Rep_type::iterator iterator;
144 typedef typename _Rep_type::const_iterator const_iterator;
145 typedef typename _Rep_type::size_type size_type;
146 typedef typename _Rep_type::difference_type difference_type;
147 typedef typename _Rep_type::reverse_iterator reverse_iterator;
148 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
150 // [23.3.1.1] construct/copy/destroy
151 // (get_allocator() is normally listed in this section, but seems to have
152 // been accidentally omitted in the printed standard)
154 * @brief Default constructor creates no elements.
156 map()
157 : _M_t(_Compare(), allocator_type()) { }
159 // for some reason this was made a separate function
161 * @brief Default constructor creates no elements.
163 explicit
164 map(const _Compare& __comp, const allocator_type& __a = allocator_type())
165 : _M_t(__comp, __a) { }
168 * @brief Map copy constructor.
169 * @param x A %map of identical element and allocator types.
171 * The newly-created %map uses a copy of the allocation object used
172 * by @a x.
174 map(const map& __x)
175 : _M_t(__x._M_t) { }
178 * @brief Builds a %map from a range.
179 * @param first An input iterator.
180 * @param last An input iterator.
182 * Create a %map consisting of copies of the elements from [first,last).
183 * This is linear in N if the range is already sorted, and NlogN
184 * otherwise (where N is distance(first,last)).
186 template <typename _InputIterator>
187 map(_InputIterator __first, _InputIterator __last)
188 : _M_t(_Compare(), allocator_type())
189 { _M_t.insert_unique(__first, __last); }
192 * @brief Builds a %map from a range.
193 * @param first An input iterator.
194 * @param last An input iterator.
195 * @param comp A comparison functor.
196 * @param a An allocator object.
198 * Create a %map consisting of copies of the elements from [first,last).
199 * This is linear in N if the range is already sorted, and NlogN
200 * otherwise (where N is distance(first,last)).
202 template <typename _InputIterator>
203 map(_InputIterator __first, _InputIterator __last,
204 const _Compare& __comp, const allocator_type& __a = allocator_type())
205 : _M_t(__comp, __a)
206 { _M_t.insert_unique(__first, __last); }
208 // FIXME There is no dtor declared, but we should have something generated
209 // by Doxygen. I don't know what tags to add to this paragraph to make
210 // that happen:
212 * The dtor only erases the elements, and note that if the elements
213 * themselves are pointers, the pointed-to memory is not touched in any
214 * way. Managing the pointer is the user's responsibilty.
218 * @brief Map assignment operator.
219 * @param x A %map of identical element and allocator types.
221 * All the elements of @a x are copied, but unlike the copy constructor,
222 * the allocator object is not copied.
224 map&
225 operator=(const map& __x)
227 _M_t = __x._M_t;
228 return *this;
231 /// Get a copy of the memory allocation object.
232 allocator_type
233 get_allocator() const
234 { return _M_t.get_allocator(); }
236 // iterators
238 * Returns a read/write iterator that points to the first pair in the
239 * %map.
240 * Iteration is done in ascending order according to the keys.
242 iterator
243 begin()
244 { return _M_t.begin(); }
247 * Returns a read-only (constant) iterator that points to the first pair
248 * in the %map. Iteration is done in ascending order according to the
249 * keys.
251 const_iterator
252 begin() const
253 { return _M_t.begin(); }
256 * Returns a read/write iterator that points one past the last pair in
257 * the %map. Iteration is done in ascending order according to the keys.
259 iterator
260 end()
261 { return _M_t.end(); }
264 * Returns a read-only (constant) iterator that points one past the last
265 * pair in the %map. Iteration is done in ascending order according to
266 * the keys.
268 const_iterator
269 end() const
270 { return _M_t.end(); }
273 * Returns a read/write reverse iterator that points to the last pair in
274 * the %map. Iteration is done in descending order according to the
275 * keys.
277 reverse_iterator
278 rbegin()
279 { return _M_t.rbegin(); }
282 * Returns a read-only (constant) reverse iterator that points to the
283 * last pair in the %map. Iteration is done in descending order
284 * according to the keys.
286 const_reverse_iterator
287 rbegin() const
288 { return _M_t.rbegin(); }
291 * Returns a read/write reverse iterator that points to one before the
292 * first pair in the %map. Iteration is done in descending order
293 * according to the keys.
295 reverse_iterator
296 rend()
297 { return _M_t.rend(); }
300 * Returns a read-only (constant) reverse iterator that points to one
301 * before the first pair in the %map. Iteration is done in descending
302 * order according to the keys.
304 const_reverse_iterator
305 rend() const
306 { return _M_t.rend(); }
308 // capacity
309 /** Returns true if the %map is empty. (Thus begin() would equal
310 * end().)
312 bool
313 empty() const
314 { return _M_t.empty(); }
316 /** Returns the size of the %map. */
317 size_type
318 size() const
319 { return _M_t.size(); }
321 /** Returns the maximum size of the %map. */
322 size_type
323 max_size() const
324 { return _M_t.max_size(); }
326 // [23.3.1.2] element access
328 * @brief Subscript ( @c [] ) access to %map data.
329 * @param k The key for which data should be retrieved.
330 * @return A reference to the data of the (key,data) %pair.
332 * Allows for easy lookup with the subscript ( @c [] ) operator. Returns
333 * data associated with the key specified in subscript. If the key does
334 * not exist, a pair with that key is created using default values, which
335 * is then returned.
337 * Lookup requires logarithmic time.
339 mapped_type&
340 operator[](const key_type& __k)
342 // concept requirements
343 __glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
345 iterator __i = lower_bound(__k);
346 // __i->first is greater than or equivalent to __k.
347 if (__i == end() || key_comp()(__k, (*__i).first))
348 __i = insert(__i, value_type(__k, mapped_type()));
349 return (*__i).second;
352 // _GLIBCXX_RESOLVE_LIB_DEFECTS
353 // DR 464. Suggestion for new member functions in standard containers.
355 * @brief Access to %map data.
356 * @param k The key for which data should be retrieved.
357 * @return A reference to the data whose key is equivalent to @a k, if
358 * such a data is present in the %map.
359 * @throw std::out_of_range If no such data is present.
361 mapped_type&
362 at(const key_type& __k)
364 iterator __i = lower_bound(__k);
365 if (__i == end() || key_comp()(__k, (*__i).first))
366 __throw_out_of_range(__N("map::at"));
367 return (*__i).second;
370 const mapped_type&
371 at(const key_type& __k) const
373 const_iterator __i = lower_bound(__k);
374 if (__i == end() || key_comp()(__k, (*__i).first))
375 __throw_out_of_range(__N("map::at"));
376 return (*__i).second;
379 // modifiers
381 * @brief Attempts to insert a std::pair into the %map.
382 * @param x Pair to be inserted (see std::make_pair for easy creation of
383 * pairs).
384 * @return A pair, of which the first element is an iterator that points
385 * to the possibly inserted pair, and the second is a bool that
386 * is true if the pair was actually inserted.
388 * This function attempts to insert a (key, value) %pair into the %map.
389 * A %map relies on unique keys and thus a %pair is only inserted if its
390 * first element (the key) is not already present in the %map.
392 * Insertion requires logarithmic time.
394 std::pair<iterator,bool>
395 insert(const value_type& __x)
396 { return _M_t.insert_unique(__x); }
399 * @brief Attempts to insert a std::pair into the %map.
400 * @param position An iterator that serves as a hint as to where the
401 * pair should be inserted.
402 * @param x Pair to be inserted (see std::make_pair for easy creation of
403 * pairs).
404 * @return An iterator that points to the element with key of @a x (may
405 * or may not be the %pair passed in).
407 * This function is not concerned about whether the insertion took place,
408 * and thus does not return a boolean like the single-argument
409 * insert() does. Note that the first parameter is only a hint and can
410 * potentially improve the performance of the insertion process. A bad
411 * hint would cause no gains in efficiency.
413 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
414 * for more on "hinting".
416 * Insertion requires logarithmic time (if the hint is not taken).
418 iterator
419 insert(iterator position, const value_type& __x)
420 { return _M_t.insert_unique(position, __x); }
423 * @brief A template function that attemps to insert a range of elements.
424 * @param first Iterator pointing to the start of the range to be
425 * inserted.
426 * @param last Iterator pointing to the end of the range.
428 * Complexity similar to that of the range constructor.
430 template <typename _InputIterator>
431 void
432 insert(_InputIterator __first, _InputIterator __last)
433 { _M_t.insert_unique(__first, __last); }
436 * @brief Erases an element from a %map.
437 * @param position An iterator pointing to the element to be erased.
439 * This function erases an element, pointed to by the given iterator,
440 * from a %map. Note that this function only erases the element, and
441 * that if the element is itself a pointer, the pointed-to memory is not
442 * touched in any way. Managing the pointer is the user's responsibilty.
444 void
445 erase(iterator __position)
446 { _M_t.erase(__position); }
449 * @brief Erases elements according to the provided key.
450 * @param x Key of element to be erased.
451 * @return The number of elements erased.
453 * This function erases all the elements located by the given key from
454 * a %map.
455 * Note that this function only erases the element, and that if
456 * the element is itself a pointer, the pointed-to memory is not touched
457 * in any way. Managing the pointer is the user's responsibilty.
459 size_type
460 erase(const key_type& __x)
461 { return _M_t.erase(__x); }
464 * @brief Erases a [first,last) range of elements from a %map.
465 * @param first Iterator pointing to the start of the range to be
466 * erased.
467 * @param last Iterator pointing to the end of the range to be erased.
469 * This function erases a sequence of elements from a %map.
470 * Note that this function only erases the element, and that if
471 * the element is itself a pointer, the pointed-to memory is not touched
472 * in any way. Managing the pointer is the user's responsibilty.
474 void
475 erase(iterator __first, iterator __last)
476 { _M_t.erase(__first, __last); }
479 * @brief Swaps data with another %map.
480 * @param x A %map of the same element and allocator types.
482 * This exchanges the elements between two maps in constant time.
483 * (It is only swapping a pointer, an integer, and an instance of
484 * the @c Compare type (which itself is often stateless and empty), so it
485 * should be quite fast.)
486 * Note that the global std::swap() function is specialized such that
487 * std::swap(m1,m2) will feed to this function.
489 void
490 swap(map& __x)
491 { _M_t.swap(__x._M_t); }
494 * Erases all elements in a %map. Note that this function only erases
495 * the elements, and that if the elements themselves are pointers, the
496 * pointed-to memory is not touched in any way. Managing the pointer is
497 * the user's responsibilty.
499 void
500 clear()
501 { _M_t.clear(); }
503 // observers
505 * Returns the key comparison object out of which the %map was
506 * constructed.
508 key_compare
509 key_comp() const
510 { return _M_t.key_comp(); }
513 * Returns a value comparison object, built from the key comparison
514 * object out of which the %map was constructed.
516 value_compare
517 value_comp() const
518 { return value_compare(_M_t.key_comp()); }
520 // [23.3.1.3] map operations
522 * @brief Tries to locate an element in a %map.
523 * @param x Key of (key, value) %pair to be located.
524 * @return Iterator pointing to sought-after element, or end() if not
525 * found.
527 * This function takes a key and tries to locate the element with which
528 * the key matches. If successful the function returns an iterator
529 * pointing to the sought after %pair. If unsuccessful it returns the
530 * past-the-end ( @c end() ) iterator.
532 iterator
533 find(const key_type& __x)
534 { return _M_t.find(__x); }
537 * @brief Tries to locate an element in a %map.
538 * @param x Key of (key, value) %pair to be located.
539 * @return Read-only (constant) iterator pointing to sought-after
540 * element, or end() if not found.
542 * This function takes a key and tries to locate the element with which
543 * the key matches. If successful the function returns a constant
544 * iterator pointing to the sought after %pair. If unsuccessful it
545 * returns the past-the-end ( @c end() ) iterator.
547 const_iterator
548 find(const key_type& __x) const
549 { return _M_t.find(__x); }
552 * @brief Finds the number of elements with given key.
553 * @param x Key of (key, value) pairs to be located.
554 * @return Number of elements with specified key.
556 * This function only makes sense for multimaps; for map the result will
557 * either be 0 (not present) or 1 (present).
559 size_type
560 count(const key_type& __x) const
561 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
564 * @brief Finds the beginning of a subsequence matching given key.
565 * @param x Key of (key, value) pair to be located.
566 * @return Iterator pointing to first element equal to or greater
567 * than key, or end().
569 * This function returns the first element of a subsequence of elements
570 * that matches the given key. If unsuccessful it returns an iterator
571 * pointing to the first element that has a greater value than given key
572 * or end() if no such element exists.
574 iterator
575 lower_bound(const key_type& __x)
576 { return _M_t.lower_bound(__x); }
579 * @brief Finds the beginning of a subsequence matching given key.
580 * @param x Key of (key, value) pair to be located.
581 * @return Read-only (constant) iterator pointing to first element
582 * equal to or greater than key, or end().
584 * This function returns the first element of a subsequence of elements
585 * that matches the given key. If unsuccessful it returns an iterator
586 * pointing to the first element that has a greater value than given key
587 * or end() if no such element exists.
589 const_iterator
590 lower_bound(const key_type& __x) const
591 { return _M_t.lower_bound(__x); }
594 * @brief Finds the end of a subsequence matching given key.
595 * @param x Key of (key, value) pair to be located.
596 * @return Iterator pointing to the first element
597 * greater than key, or end().
599 iterator
600 upper_bound(const key_type& __x)
601 { return _M_t.upper_bound(__x); }
604 * @brief Finds the end of a subsequence matching given key.
605 * @param x Key of (key, value) pair to be located.
606 * @return Read-only (constant) iterator pointing to first iterator
607 * greater than key, or end().
609 const_iterator
610 upper_bound(const key_type& __x) const
611 { return _M_t.upper_bound(__x); }
614 * @brief Finds a subsequence matching given key.
615 * @param x Key of (key, value) pairs to be located.
616 * @return Pair of iterators that possibly points to the subsequence
617 * matching given key.
619 * This function is equivalent to
620 * @code
621 * std::make_pair(c.lower_bound(val),
622 * c.upper_bound(val))
623 * @endcode
624 * (but is faster than making the calls separately).
626 * This function probably only makes sense for multimaps.
628 std::pair<iterator, iterator>
629 equal_range(const key_type& __x)
630 { return _M_t.equal_range(__x); }
633 * @brief Finds a subsequence matching given key.
634 * @param x Key of (key, value) pairs to be located.
635 * @return Pair of read-only (constant) iterators that possibly points
636 * to the subsequence matching given key.
638 * This function is equivalent to
639 * @code
640 * std::make_pair(c.lower_bound(val),
641 * c.upper_bound(val))
642 * @endcode
643 * (but is faster than making the calls separately).
645 * This function probably only makes sense for multimaps.
647 std::pair<const_iterator, const_iterator>
648 equal_range(const key_type& __x) const
649 { return _M_t.equal_range(__x); }
651 template <typename _K1, typename _T1, typename _C1, typename _A1>
652 friend bool
653 operator== (const map<_K1, _T1, _C1, _A1>&,
654 const map<_K1, _T1, _C1, _A1>&);
656 template <typename _K1, typename _T1, typename _C1, typename _A1>
657 friend bool
658 operator< (const map<_K1, _T1, _C1, _A1>&,
659 const map<_K1, _T1, _C1, _A1>&);
663 * @brief Map equality comparison.
664 * @param x A %map.
665 * @param y A %map of the same type as @a x.
666 * @return True iff the size and elements of the maps are equal.
668 * This is an equivalence relation. It is linear in the size of the
669 * maps. Maps are considered equivalent if their sizes are equal,
670 * and if corresponding elements compare equal.
672 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
673 inline bool
674 operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
675 const map<_Key, _Tp, _Compare, _Alloc>& __y)
676 { return __x._M_t == __y._M_t; }
679 * @brief Map ordering relation.
680 * @param x A %map.
681 * @param y A %map of the same type as @a x.
682 * @return True iff @a x is lexicographically less than @a y.
684 * This is a total ordering relation. It is linear in the size of the
685 * maps. The elements must be comparable with @c <.
687 * See std::lexicographical_compare() for how the determination is made.
689 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
690 inline bool
691 operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
692 const map<_Key, _Tp, _Compare, _Alloc>& __y)
693 { return __x._M_t < __y._M_t; }
695 /// Based on operator==
696 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
697 inline bool
698 operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
699 const map<_Key, _Tp, _Compare, _Alloc>& __y)
700 { return !(__x == __y); }
702 /// Based on operator<
703 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
704 inline bool
705 operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
706 const map<_Key, _Tp, _Compare, _Alloc>& __y)
707 { return __y < __x; }
709 /// Based on operator<
710 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
711 inline bool
712 operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
713 const map<_Key, _Tp, _Compare, _Alloc>& __y)
714 { return !(__y < __x); }
716 /// Based on operator<
717 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
718 inline bool
719 operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
720 const map<_Key, _Tp, _Compare, _Alloc>& __y)
721 { return !(__x < __y); }
723 /// See std::map::swap().
724 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
725 inline void
726 swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
727 map<_Key, _Tp, _Compare, _Alloc>& __y)
728 { __x.swap(__y); }
729 } // namespace std
731 #endif /* _MAP_H */