Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / libstdc++-v3 / include / bits / stl_multimap.h
blob5c6622751307e7d29cbb446656ab3d9fc9e17fb4
1 // Multimap implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_multimap.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _MULTIMAP_H
62 #define _MULTIMAP_H 1
64 #include <bits/concept_check.h>
66 namespace _GLIBCXX_STD
68 // Forward declaration of operators < and ==, needed for friend declaration.
70 template <typename _Key, typename _Tp,
71 typename _Compare = std::less<_Key>,
72 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
73 class multimap;
75 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76 inline bool
77 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
78 const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
80 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
81 inline bool
82 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
83 const multimap<_Key, _Tp, _Compare, _Alloc>& __y);
85 /**
86 * @brief A standard container made up of (key,value) pairs, which can be
87 * retrieved based on a key, in logarithmic time.
89 * @ingroup Containers
90 * @ingroup Assoc_containers
92 * Meets the requirements of a <a href="tables.html#65">container</a>, a
93 * <a href="tables.html#66">reversible container</a>, and an
94 * <a href="tables.html#69">associative container</a> (using equivalent
95 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
96 * is T, and the value_type is std::pair<const Key,T>.
98 * Multimaps support bidirectional iterators.
100 * @if maint
101 * The private tree data is declared exactly the same way for map and
102 * multimap; the distinction is made entirely in how the tree functions are
103 * called (*_unique versus *_equal, same as the standard).
104 * @endif
106 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
107 class multimap
109 public:
110 typedef _Key key_type;
111 typedef _Tp mapped_type;
112 typedef std::pair<const _Key, _Tp> value_type;
113 typedef _Compare key_compare;
114 typedef _Alloc allocator_type;
116 private:
117 // concept requirements
118 typedef typename _Alloc::value_type _Alloc_value_type;
119 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
120 __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
121 _BinaryFunctionConcept)
122 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
124 public:
125 class value_compare
126 : public std::binary_function<value_type, value_type, bool>
128 friend class multimap<_Key, _Tp, _Compare, _Alloc>;
129 protected:
130 _Compare comp;
132 value_compare(_Compare __c)
133 : comp(__c) { }
135 public:
136 bool operator()(const value_type& __x, const value_type& __y) const
137 { return comp(__x.first, __y.first); }
140 private:
141 /// @if maint This turns a red-black tree into a [multi]map. @endif
142 typedef typename _Alloc::template rebind<value_type>::other
143 _Pair_alloc_type;
145 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
146 key_compare, _Pair_alloc_type> _Rep_type;
147 /// @if maint The actual tree structure. @endif
148 _Rep_type _M_t;
150 public:
151 // many of these are specified differently in ISO, but the following are
152 // "functionally equivalent"
153 typedef typename _Pair_alloc_type::pointer pointer;
154 typedef typename _Pair_alloc_type::const_pointer const_pointer;
155 typedef typename _Pair_alloc_type::reference reference;
156 typedef typename _Pair_alloc_type::const_reference const_reference;
157 typedef typename _Rep_type::iterator iterator;
158 typedef typename _Rep_type::const_iterator const_iterator;
159 typedef typename _Rep_type::size_type size_type;
160 typedef typename _Rep_type::difference_type difference_type;
161 typedef typename _Rep_type::reverse_iterator reverse_iterator;
162 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
164 // [23.3.2] construct/copy/destroy
165 // (get_allocator() is also listed in this section)
167 * @brief Default constructor creates no elements.
169 multimap()
170 : _M_t(_Compare(), allocator_type()) { }
172 // for some reason this was made a separate function
174 * @brief Default constructor creates no elements.
176 explicit
177 multimap(const _Compare& __comp,
178 const allocator_type& __a = allocator_type())
179 : _M_t(__comp, __a) { }
182 * @brief %Multimap copy constructor.
183 * @param x A %multimap of identical element and allocator types.
185 * The newly-created %multimap uses a copy of the allocation object used
186 * by @a x.
188 multimap(const multimap& __x)
189 : _M_t(__x._M_t) { }
192 * @brief Builds a %multimap from a range.
193 * @param first An input iterator.
194 * @param last An input iterator.
196 * Create a %multimap consisting of copies of the elements from
197 * [first,last). This is linear in N if the range is already sorted,
198 * and NlogN otherwise (where N is distance(first,last)).
200 template <typename _InputIterator>
201 multimap(_InputIterator __first, _InputIterator __last)
202 : _M_t(_Compare(), allocator_type())
203 { _M_t.insert_equal(__first, __last); }
206 * @brief Builds a %multimap from a range.
207 * @param first An input iterator.
208 * @param last An input iterator.
209 * @param comp A comparison functor.
210 * @param a An allocator object.
212 * Create a %multimap consisting of copies of the elements from
213 * [first,last). This is linear in N if the range is already sorted,
214 * and NlogN otherwise (where N is distance(first,last)).
216 template <typename _InputIterator>
217 multimap(_InputIterator __first, _InputIterator __last,
218 const _Compare& __comp,
219 const allocator_type& __a = allocator_type())
220 : _M_t(__comp, __a)
221 { _M_t.insert_equal(__first, __last); }
223 // FIXME There is no dtor declared, but we should have something generated
224 // by Doxygen. I don't know what tags to add to this paragraph to make
225 // that happen:
227 * The dtor only erases the elements, and note that if the elements
228 * themselves are pointers, the pointed-to memory is not touched in any
229 * way. Managing the pointer is the user's responsibilty.
233 * @brief %Multimap assignment operator.
234 * @param x A %multimap of identical element and allocator types.
236 * All the elements of @a x are copied, but unlike the copy constructor,
237 * the allocator object is not copied.
239 multimap&
240 operator=(const multimap& __x)
242 _M_t = __x._M_t;
243 return *this;
246 /// Get a copy of the memory allocation object.
247 allocator_type
248 get_allocator() const
249 { return _M_t.get_allocator(); }
251 // iterators
253 * Returns a read/write iterator that points to the first pair in the
254 * %multimap. Iteration is done in ascending order according to the
255 * keys.
257 iterator
258 begin()
259 { return _M_t.begin(); }
262 * Returns a read-only (constant) iterator that points to the first pair
263 * in the %multimap. Iteration is done in ascending order according to
264 * the keys.
266 const_iterator
267 begin() const
268 { return _M_t.begin(); }
271 * Returns a read/write iterator that points one past the last pair in
272 * the %multimap. Iteration is done in ascending order according to the
273 * keys.
275 iterator
276 end()
277 { return _M_t.end(); }
280 * Returns a read-only (constant) iterator that points one past the last
281 * pair in the %multimap. Iteration is done in ascending order according
282 * to the keys.
284 const_iterator
285 end() const
286 { return _M_t.end(); }
289 * Returns a read/write reverse iterator that points to the last pair in
290 * the %multimap. Iteration is done in descending order according to the
291 * keys.
293 reverse_iterator
294 rbegin()
295 { return _M_t.rbegin(); }
298 * Returns a read-only (constant) reverse iterator that points to the
299 * last pair in the %multimap. Iteration is done in descending order
300 * according to the keys.
302 const_reverse_iterator
303 rbegin() const
304 { return _M_t.rbegin(); }
307 * Returns a read/write reverse iterator that points to one before the
308 * first pair in the %multimap. Iteration is done in descending order
309 * according to the keys.
311 reverse_iterator
312 rend()
313 { return _M_t.rend(); }
316 * Returns a read-only (constant) reverse iterator that points to one
317 * before the first pair in the %multimap. Iteration is done in
318 * descending order according to the keys.
320 const_reverse_iterator
321 rend() const
322 { return _M_t.rend(); }
324 // capacity
325 /** Returns true if the %multimap is empty. */
326 bool
327 empty() const
328 { return _M_t.empty(); }
330 /** Returns the size of the %multimap. */
331 size_type
332 size() const
333 { return _M_t.size(); }
335 /** Returns the maximum size of the %multimap. */
336 size_type
337 max_size() const
338 { return _M_t.max_size(); }
340 // modifiers
342 * @brief Inserts a std::pair into the %multimap.
343 * @param x Pair to be inserted (see std::make_pair for easy creation
344 * of pairs).
345 * @return An iterator that points to the inserted (key,value) pair.
347 * This function inserts a (key, value) pair into the %multimap.
348 * Contrary to a std::map the %multimap does not rely on unique keys and
349 * thus multiple pairs with the same key can be inserted.
351 * Insertion requires logarithmic time.
353 iterator
354 insert(const value_type& __x)
355 { return _M_t.insert_equal(__x); }
358 * @brief Inserts a std::pair into the %multimap.
359 * @param position An iterator that serves as a hint as to where the
360 * pair should be inserted.
361 * @param x Pair to be inserted (see std::make_pair for easy creation
362 * of pairs).
363 * @return An iterator that points to the inserted (key,value) pair.
365 * This function inserts a (key, value) pair into the %multimap.
366 * Contrary to a std::map the %multimap does not rely on unique keys and
367 * thus multiple pairs with the same key can be inserted.
368 * Note that the first parameter is only a hint and can potentially
369 * improve the performance of the insertion process. A bad hint would
370 * cause no gains in efficiency.
372 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
373 * for more on "hinting".
375 * Insertion requires logarithmic time (if the hint is not taken).
377 iterator
378 insert(iterator __position, const value_type& __x)
379 { return _M_t.insert_equal(__position, __x); }
382 * @brief A template function that attemps to insert a range of elements.
383 * @param first Iterator pointing to the start of the range to be
384 * inserted.
385 * @param last Iterator pointing to the end of the range.
387 * Complexity similar to that of the range constructor.
389 template <typename _InputIterator>
390 void
391 insert(_InputIterator __first, _InputIterator __last)
392 { _M_t.insert_equal(__first, __last); }
395 * @brief Erases an element from a %multimap.
396 * @param position An iterator pointing to the element to be erased.
398 * This function erases an element, pointed to by the given iterator,
399 * from a %multimap. Note that this function only erases the element,
400 * and that if the element is itself a pointer, the pointed-to memory is
401 * not touched in any way. Managing the pointer is the user's
402 * responsibilty.
404 void
405 erase(iterator __position)
406 { _M_t.erase(__position); }
409 * @brief Erases elements according to the provided key.
410 * @param x Key of element to be erased.
411 * @return The number of elements erased.
413 * This function erases all elements located by the given key from a
414 * %multimap.
415 * Note that this function only erases the element, and that if
416 * the element is itself a pointer, the pointed-to memory is not touched
417 * in any way. Managing the pointer is the user's responsibilty.
419 size_type
420 erase(const key_type& __x)
421 { return _M_t.erase(__x); }
424 * @brief Erases a [first,last) range of elements from a %multimap.
425 * @param first Iterator pointing to the start of the range to be
426 * erased.
427 * @param last Iterator pointing to the end of the range to be erased.
429 * This function erases a sequence of elements from a %multimap.
430 * Note that this function only erases the elements, and that if
431 * the elements themselves are pointers, the pointed-to memory is not
432 * touched in any way. Managing the pointer is the user's responsibilty.
434 void
435 erase(iterator __first, iterator __last)
436 { _M_t.erase(__first, __last); }
439 * @brief Swaps data with another %multimap.
440 * @param x A %multimap of the same element and allocator types.
442 * This exchanges the elements between two multimaps in constant time.
443 * (It is only swapping a pointer, an integer, and an instance of
444 * the @c Compare type (which itself is often stateless and empty), so it
445 * should be quite fast.)
446 * Note that the global std::swap() function is specialized such that
447 * std::swap(m1,m2) will feed to this function.
449 void
450 swap(multimap& __x)
451 { _M_t.swap(__x._M_t); }
454 * Erases all elements in a %multimap. Note that this function only
455 * erases the elements, and that if the elements themselves are pointers,
456 * the pointed-to memory is not touched in any way. Managing the pointer
457 * is the user's responsibilty.
459 void
460 clear()
461 { _M_t.clear(); }
463 // observers
465 * Returns the key comparison object out of which the %multimap
466 * was constructed.
468 key_compare
469 key_comp() const
470 { return _M_t.key_comp(); }
473 * Returns a value comparison object, built from the key comparison
474 * object out of which the %multimap was constructed.
476 value_compare
477 value_comp() const
478 { return value_compare(_M_t.key_comp()); }
480 // multimap operations
482 * @brief Tries to locate an element in a %multimap.
483 * @param x Key of (key, value) pair to be located.
484 * @return Iterator pointing to sought-after element,
485 * or end() if not found.
487 * This function takes a key and tries to locate the element with which
488 * the key matches. If successful the function returns an iterator
489 * pointing to the sought after %pair. If unsuccessful it returns the
490 * past-the-end ( @c end() ) iterator.
492 iterator
493 find(const key_type& __x)
494 { return _M_t.find(__x); }
497 * @brief Tries to locate an element in a %multimap.
498 * @param x Key of (key, value) pair to be located.
499 * @return Read-only (constant) iterator pointing to sought-after
500 * element, or end() if not found.
502 * This function takes a key and tries to locate the element with which
503 * the key matches. If successful the function returns a constant
504 * iterator pointing to the sought after %pair. If unsuccessful it
505 * returns the past-the-end ( @c end() ) iterator.
507 const_iterator
508 find(const key_type& __x) const
509 { return _M_t.find(__x); }
512 * @brief Finds the number of elements with given key.
513 * @param x Key of (key, value) pairs to be located.
514 * @return Number of elements with specified key.
516 size_type
517 count(const key_type& __x) const
518 { return _M_t.count(__x); }
521 * @brief Finds the beginning of a subsequence matching given key.
522 * @param x Key of (key, value) pair to be located.
523 * @return Iterator pointing to first element equal to or greater
524 * than key, or end().
526 * This function returns the first element of a subsequence of elements
527 * that matches the given key. If unsuccessful it returns an iterator
528 * pointing to the first element that has a greater value than given key
529 * or end() if no such element exists.
531 iterator
532 lower_bound(const key_type& __x)
533 { return _M_t.lower_bound(__x); }
536 * @brief Finds the beginning of a subsequence matching given key.
537 * @param x Key of (key, value) pair to be located.
538 * @return Read-only (constant) iterator pointing to first element
539 * equal to or greater than key, or end().
541 * This function returns the first element of a subsequence of elements
542 * that matches the given key. If unsuccessful the iterator will point
543 * to the next greatest element or, if no such greater element exists, to
544 * end().
546 const_iterator
547 lower_bound(const key_type& __x) const
548 { return _M_t.lower_bound(__x); }
551 * @brief Finds the end of a subsequence matching given key.
552 * @param x Key of (key, value) pair to be located.
553 * @return Iterator pointing to the first element
554 * greater than key, or end().
556 iterator
557 upper_bound(const key_type& __x)
558 { return _M_t.upper_bound(__x); }
561 * @brief Finds the end of a subsequence matching given key.
562 * @param x Key of (key, value) pair to be located.
563 * @return Read-only (constant) iterator pointing to first iterator
564 * greater than key, or end().
566 const_iterator
567 upper_bound(const key_type& __x) const
568 { return _M_t.upper_bound(__x); }
571 * @brief Finds a subsequence matching given key.
572 * @param x Key of (key, value) pairs to be located.
573 * @return Pair of iterators that possibly points to the subsequence
574 * matching given key.
576 * This function is equivalent to
577 * @code
578 * std::make_pair(c.lower_bound(val),
579 * c.upper_bound(val))
580 * @endcode
581 * (but is faster than making the calls separately).
583 std::pair<iterator, iterator>
584 equal_range(const key_type& __x)
585 { return _M_t.equal_range(__x); }
588 * @brief Finds a subsequence matching given key.
589 * @param x Key of (key, value) pairs to be located.
590 * @return Pair of read-only (constant) iterators that possibly points
591 * to the subsequence matching given key.
593 * This function is equivalent to
594 * @code
595 * std::make_pair(c.lower_bound(val),
596 * c.upper_bound(val))
597 * @endcode
598 * (but is faster than making the calls separately).
600 std::pair<const_iterator, const_iterator>
601 equal_range(const key_type& __x) const
602 { return _M_t.equal_range(__x); }
604 template <typename _K1, typename _T1, typename _C1, typename _A1>
605 friend bool
606 operator== (const multimap<_K1, _T1, _C1, _A1>&,
607 const multimap<_K1, _T1, _C1, _A1>&);
609 template <typename _K1, typename _T1, typename _C1, typename _A1>
610 friend bool
611 operator< (const multimap<_K1, _T1, _C1, _A1>&,
612 const multimap<_K1, _T1, _C1, _A1>&);
616 * @brief Multimap equality comparison.
617 * @param x A %multimap.
618 * @param y A %multimap of the same type as @a x.
619 * @return True iff the size and elements of the maps are equal.
621 * This is an equivalence relation. It is linear in the size of the
622 * multimaps. Multimaps are considered equivalent if their sizes are equal,
623 * and if corresponding elements compare equal.
625 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
626 inline bool
627 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
628 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
629 { return __x._M_t == __y._M_t; }
632 * @brief Multimap ordering relation.
633 * @param x A %multimap.
634 * @param y A %multimap of the same type as @a x.
635 * @return True iff @a x is lexicographically less than @a y.
637 * This is a total ordering relation. It is linear in the size of the
638 * multimaps. The elements must be comparable with @c <.
640 * See std::lexicographical_compare() for how the determination is made.
642 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
643 inline bool
644 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
645 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
646 { return __x._M_t < __y._M_t; }
648 /// Based on operator==
649 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
650 inline bool
651 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
652 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
653 { return !(__x == __y); }
655 /// Based on operator<
656 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
657 inline bool
658 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
659 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
660 { return __y < __x; }
662 /// Based on operator<
663 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
664 inline bool
665 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
666 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
667 { return !(__y < __x); }
669 /// Based on operator<
670 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
671 inline bool
672 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
673 const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
674 { return !(__x < __y); }
676 /// See std::multimap::swap().
677 template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
678 inline void
679 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
680 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
681 { __x.swap(__y); }
682 } // namespace std
684 #endif /* _MULTIMAP_H */