1 // Multimap implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2004, 2005 Free Software Foundation, Inc.
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996,1997
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_multimap.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
64 #include <bits/concept_check.h>
66 namespace _GLIBCXX_STD
68 // Forward declaration of operators < and ==, needed for friend declaration.
70 template <typename _Key
, typename _Tp
,
71 typename _Compare
= std::less
<_Key
>,
72 typename _Alloc
= std::allocator
<std::pair
<const _Key
, _Tp
> > >
75 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
77 operator==(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
78 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
);
80 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
82 operator<(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
83 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
);
86 * @brief A standard container made up of (key,value) pairs, which can be
87 * retrieved based on a key, in logarithmic time.
90 * @ingroup Assoc_containers
92 * Meets the requirements of a <a href="tables.html#65">container</a>, a
93 * <a href="tables.html#66">reversible container</a>, and an
94 * <a href="tables.html#69">associative container</a> (using equivalent
95 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
96 * is T, and the value_type is std::pair<const Key,T>.
98 * Multimaps support bidirectional iterators.
101 * The private tree data is declared exactly the same way for map and
102 * multimap; the distinction is made entirely in how the tree functions are
103 * called (*_unique versus *_equal, same as the standard).
106 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
110 typedef _Key key_type
;
111 typedef _Tp mapped_type
;
112 typedef std::pair
<const _Key
, _Tp
> value_type
;
113 typedef _Compare key_compare
;
114 typedef _Alloc allocator_type
;
117 // concept requirements
118 typedef typename
_Alloc::value_type _Alloc_value_type
;
119 __glibcxx_class_requires(_Tp
, _SGIAssignableConcept
)
120 __glibcxx_class_requires4(_Compare
, bool, _Key
, _Key
,
121 _BinaryFunctionConcept
)
122 __glibcxx_class_requires2(value_type
, _Alloc_value_type
, _SameTypeConcept
)
126 : public std::binary_function
<value_type
, value_type
, bool>
128 friend class multimap
<_Key
, _Tp
, _Compare
, _Alloc
>;
132 value_compare(_Compare __c
)
136 bool operator()(const value_type
& __x
, const value_type
& __y
) const
137 { return comp(__x
.first
, __y
.first
); }
141 /// @if maint This turns a red-black tree into a [multi]map. @endif
142 typedef typename
_Alloc::template rebind
<value_type
>::other
145 typedef _Rb_tree
<key_type
, value_type
, _Select1st
<value_type
>,
146 key_compare
, _Pair_alloc_type
> _Rep_type
;
147 /// @if maint The actual tree structure. @endif
151 // many of these are specified differently in ISO, but the following are
152 // "functionally equivalent"
153 typedef typename
_Pair_alloc_type::pointer pointer
;
154 typedef typename
_Pair_alloc_type::const_pointer const_pointer
;
155 typedef typename
_Pair_alloc_type::reference reference
;
156 typedef typename
_Pair_alloc_type::const_reference const_reference
;
157 typedef typename
_Rep_type::iterator iterator
;
158 typedef typename
_Rep_type::const_iterator const_iterator
;
159 typedef typename
_Rep_type::size_type size_type
;
160 typedef typename
_Rep_type::difference_type difference_type
;
161 typedef typename
_Rep_type::reverse_iterator reverse_iterator
;
162 typedef typename
_Rep_type::const_reverse_iterator const_reverse_iterator
;
164 // [23.3.2] construct/copy/destroy
165 // (get_allocator() is also listed in this section)
167 * @brief Default constructor creates no elements.
170 : _M_t(_Compare(), allocator_type()) { }
172 // for some reason this was made a separate function
174 * @brief Default constructor creates no elements.
177 multimap(const _Compare
& __comp
,
178 const allocator_type
& __a
= allocator_type())
179 : _M_t(__comp
, __a
) { }
182 * @brief %Multimap copy constructor.
183 * @param x A %multimap of identical element and allocator types.
185 * The newly-created %multimap uses a copy of the allocation object used
188 multimap(const multimap
& __x
)
192 * @brief Builds a %multimap from a range.
193 * @param first An input iterator.
194 * @param last An input iterator.
196 * Create a %multimap consisting of copies of the elements from
197 * [first,last). This is linear in N if the range is already sorted,
198 * and NlogN otherwise (where N is distance(first,last)).
200 template <typename _InputIterator
>
201 multimap(_InputIterator __first
, _InputIterator __last
)
202 : _M_t(_Compare(), allocator_type())
203 { _M_t
.insert_equal(__first
, __last
); }
206 * @brief Builds a %multimap from a range.
207 * @param first An input iterator.
208 * @param last An input iterator.
209 * @param comp A comparison functor.
210 * @param a An allocator object.
212 * Create a %multimap consisting of copies of the elements from
213 * [first,last). This is linear in N if the range is already sorted,
214 * and NlogN otherwise (where N is distance(first,last)).
216 template <typename _InputIterator
>
217 multimap(_InputIterator __first
, _InputIterator __last
,
218 const _Compare
& __comp
,
219 const allocator_type
& __a
= allocator_type())
221 { _M_t
.insert_equal(__first
, __last
); }
223 // FIXME There is no dtor declared, but we should have something generated
224 // by Doxygen. I don't know what tags to add to this paragraph to make
227 * The dtor only erases the elements, and note that if the elements
228 * themselves are pointers, the pointed-to memory is not touched in any
229 * way. Managing the pointer is the user's responsibilty.
233 * @brief %Multimap assignment operator.
234 * @param x A %multimap of identical element and allocator types.
236 * All the elements of @a x are copied, but unlike the copy constructor,
237 * the allocator object is not copied.
240 operator=(const multimap
& __x
)
246 /// Get a copy of the memory allocation object.
248 get_allocator() const
249 { return _M_t
.get_allocator(); }
253 * Returns a read/write iterator that points to the first pair in the
254 * %multimap. Iteration is done in ascending order according to the
259 { return _M_t
.begin(); }
262 * Returns a read-only (constant) iterator that points to the first pair
263 * in the %multimap. Iteration is done in ascending order according to
268 { return _M_t
.begin(); }
271 * Returns a read/write iterator that points one past the last pair in
272 * the %multimap. Iteration is done in ascending order according to the
277 { return _M_t
.end(); }
280 * Returns a read-only (constant) iterator that points one past the last
281 * pair in the %multimap. Iteration is done in ascending order according
286 { return _M_t
.end(); }
289 * Returns a read/write reverse iterator that points to the last pair in
290 * the %multimap. Iteration is done in descending order according to the
295 { return _M_t
.rbegin(); }
298 * Returns a read-only (constant) reverse iterator that points to the
299 * last pair in the %multimap. Iteration is done in descending order
300 * according to the keys.
302 const_reverse_iterator
304 { return _M_t
.rbegin(); }
307 * Returns a read/write reverse iterator that points to one before the
308 * first pair in the %multimap. Iteration is done in descending order
309 * according to the keys.
313 { return _M_t
.rend(); }
316 * Returns a read-only (constant) reverse iterator that points to one
317 * before the first pair in the %multimap. Iteration is done in
318 * descending order according to the keys.
320 const_reverse_iterator
322 { return _M_t
.rend(); }
325 /** Returns true if the %multimap is empty. */
328 { return _M_t
.empty(); }
330 /** Returns the size of the %multimap. */
333 { return _M_t
.size(); }
335 /** Returns the maximum size of the %multimap. */
338 { return _M_t
.max_size(); }
342 * @brief Inserts a std::pair into the %multimap.
343 * @param x Pair to be inserted (see std::make_pair for easy creation
345 * @return An iterator that points to the inserted (key,value) pair.
347 * This function inserts a (key, value) pair into the %multimap.
348 * Contrary to a std::map the %multimap does not rely on unique keys and
349 * thus multiple pairs with the same key can be inserted.
351 * Insertion requires logarithmic time.
354 insert(const value_type
& __x
)
355 { return _M_t
.insert_equal(__x
); }
358 * @brief Inserts a std::pair into the %multimap.
359 * @param position An iterator that serves as a hint as to where the
360 * pair should be inserted.
361 * @param x Pair to be inserted (see std::make_pair for easy creation
363 * @return An iterator that points to the inserted (key,value) pair.
365 * This function inserts a (key, value) pair into the %multimap.
366 * Contrary to a std::map the %multimap does not rely on unique keys and
367 * thus multiple pairs with the same key can be inserted.
368 * Note that the first parameter is only a hint and can potentially
369 * improve the performance of the insertion process. A bad hint would
370 * cause no gains in efficiency.
372 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
373 * for more on "hinting".
375 * Insertion requires logarithmic time (if the hint is not taken).
378 insert(iterator __position
, const value_type
& __x
)
379 { return _M_t
.insert_equal(__position
, __x
); }
382 * @brief A template function that attemps to insert a range of elements.
383 * @param first Iterator pointing to the start of the range to be
385 * @param last Iterator pointing to the end of the range.
387 * Complexity similar to that of the range constructor.
389 template <typename _InputIterator
>
391 insert(_InputIterator __first
, _InputIterator __last
)
392 { _M_t
.insert_equal(__first
, __last
); }
395 * @brief Erases an element from a %multimap.
396 * @param position An iterator pointing to the element to be erased.
398 * This function erases an element, pointed to by the given iterator,
399 * from a %multimap. Note that this function only erases the element,
400 * and that if the element is itself a pointer, the pointed-to memory is
401 * not touched in any way. Managing the pointer is the user's
405 erase(iterator __position
)
406 { _M_t
.erase(__position
); }
409 * @brief Erases elements according to the provided key.
410 * @param x Key of element to be erased.
411 * @return The number of elements erased.
413 * This function erases all elements located by the given key from a
415 * Note that this function only erases the element, and that if
416 * the element is itself a pointer, the pointed-to memory is not touched
417 * in any way. Managing the pointer is the user's responsibilty.
420 erase(const key_type
& __x
)
421 { return _M_t
.erase(__x
); }
424 * @brief Erases a [first,last) range of elements from a %multimap.
425 * @param first Iterator pointing to the start of the range to be
427 * @param last Iterator pointing to the end of the range to be erased.
429 * This function erases a sequence of elements from a %multimap.
430 * Note that this function only erases the elements, and that if
431 * the elements themselves are pointers, the pointed-to memory is not
432 * touched in any way. Managing the pointer is the user's responsibilty.
435 erase(iterator __first
, iterator __last
)
436 { _M_t
.erase(__first
, __last
); }
439 * @brief Swaps data with another %multimap.
440 * @param x A %multimap of the same element and allocator types.
442 * This exchanges the elements between two multimaps in constant time.
443 * (It is only swapping a pointer, an integer, and an instance of
444 * the @c Compare type (which itself is often stateless and empty), so it
445 * should be quite fast.)
446 * Note that the global std::swap() function is specialized such that
447 * std::swap(m1,m2) will feed to this function.
451 { _M_t
.swap(__x
._M_t
); }
454 * Erases all elements in a %multimap. Note that this function only
455 * erases the elements, and that if the elements themselves are pointers,
456 * the pointed-to memory is not touched in any way. Managing the pointer
457 * is the user's responsibilty.
465 * Returns the key comparison object out of which the %multimap
470 { return _M_t
.key_comp(); }
473 * Returns a value comparison object, built from the key comparison
474 * object out of which the %multimap was constructed.
478 { return value_compare(_M_t
.key_comp()); }
480 // multimap operations
482 * @brief Tries to locate an element in a %multimap.
483 * @param x Key of (key, value) pair to be located.
484 * @return Iterator pointing to sought-after element,
485 * or end() if not found.
487 * This function takes a key and tries to locate the element with which
488 * the key matches. If successful the function returns an iterator
489 * pointing to the sought after %pair. If unsuccessful it returns the
490 * past-the-end ( @c end() ) iterator.
493 find(const key_type
& __x
)
494 { return _M_t
.find(__x
); }
497 * @brief Tries to locate an element in a %multimap.
498 * @param x Key of (key, value) pair to be located.
499 * @return Read-only (constant) iterator pointing to sought-after
500 * element, or end() if not found.
502 * This function takes a key and tries to locate the element with which
503 * the key matches. If successful the function returns a constant
504 * iterator pointing to the sought after %pair. If unsuccessful it
505 * returns the past-the-end ( @c end() ) iterator.
508 find(const key_type
& __x
) const
509 { return _M_t
.find(__x
); }
512 * @brief Finds the number of elements with given key.
513 * @param x Key of (key, value) pairs to be located.
514 * @return Number of elements with specified key.
517 count(const key_type
& __x
) const
518 { return _M_t
.count(__x
); }
521 * @brief Finds the beginning of a subsequence matching given key.
522 * @param x Key of (key, value) pair to be located.
523 * @return Iterator pointing to first element equal to or greater
524 * than key, or end().
526 * This function returns the first element of a subsequence of elements
527 * that matches the given key. If unsuccessful it returns an iterator
528 * pointing to the first element that has a greater value than given key
529 * or end() if no such element exists.
532 lower_bound(const key_type
& __x
)
533 { return _M_t
.lower_bound(__x
); }
536 * @brief Finds the beginning of a subsequence matching given key.
537 * @param x Key of (key, value) pair to be located.
538 * @return Read-only (constant) iterator pointing to first element
539 * equal to or greater than key, or end().
541 * This function returns the first element of a subsequence of elements
542 * that matches the given key. If unsuccessful the iterator will point
543 * to the next greatest element or, if no such greater element exists, to
547 lower_bound(const key_type
& __x
) const
548 { return _M_t
.lower_bound(__x
); }
551 * @brief Finds the end of a subsequence matching given key.
552 * @param x Key of (key, value) pair to be located.
553 * @return Iterator pointing to the first element
554 * greater than key, or end().
557 upper_bound(const key_type
& __x
)
558 { return _M_t
.upper_bound(__x
); }
561 * @brief Finds the end of a subsequence matching given key.
562 * @param x Key of (key, value) pair to be located.
563 * @return Read-only (constant) iterator pointing to first iterator
564 * greater than key, or end().
567 upper_bound(const key_type
& __x
) const
568 { return _M_t
.upper_bound(__x
); }
571 * @brief Finds a subsequence matching given key.
572 * @param x Key of (key, value) pairs to be located.
573 * @return Pair of iterators that possibly points to the subsequence
574 * matching given key.
576 * This function is equivalent to
578 * std::make_pair(c.lower_bound(val),
579 * c.upper_bound(val))
581 * (but is faster than making the calls separately).
583 std::pair
<iterator
, iterator
>
584 equal_range(const key_type
& __x
)
585 { return _M_t
.equal_range(__x
); }
588 * @brief Finds a subsequence matching given key.
589 * @param x Key of (key, value) pairs to be located.
590 * @return Pair of read-only (constant) iterators that possibly points
591 * to the subsequence matching given key.
593 * This function is equivalent to
595 * std::make_pair(c.lower_bound(val),
596 * c.upper_bound(val))
598 * (but is faster than making the calls separately).
600 std::pair
<const_iterator
, const_iterator
>
601 equal_range(const key_type
& __x
) const
602 { return _M_t
.equal_range(__x
); }
604 template <typename _K1
, typename _T1
, typename _C1
, typename _A1
>
606 operator== (const multimap
<_K1
, _T1
, _C1
, _A1
>&,
607 const multimap
<_K1
, _T1
, _C1
, _A1
>&);
609 template <typename _K1
, typename _T1
, typename _C1
, typename _A1
>
611 operator< (const multimap
<_K1
, _T1
, _C1
, _A1
>&,
612 const multimap
<_K1
, _T1
, _C1
, _A1
>&);
616 * @brief Multimap equality comparison.
617 * @param x A %multimap.
618 * @param y A %multimap of the same type as @a x.
619 * @return True iff the size and elements of the maps are equal.
621 * This is an equivalence relation. It is linear in the size of the
622 * multimaps. Multimaps are considered equivalent if their sizes are equal,
623 * and if corresponding elements compare equal.
625 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
627 operator==(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
628 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
629 { return __x
._M_t
== __y
._M_t
; }
632 * @brief Multimap ordering relation.
633 * @param x A %multimap.
634 * @param y A %multimap of the same type as @a x.
635 * @return True iff @a x is lexicographically less than @a y.
637 * This is a total ordering relation. It is linear in the size of the
638 * multimaps. The elements must be comparable with @c <.
640 * See std::lexicographical_compare() for how the determination is made.
642 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
644 operator<(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
645 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
646 { return __x
._M_t
< __y
._M_t
; }
648 /// Based on operator==
649 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
651 operator!=(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
652 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
653 { return !(__x
== __y
); }
655 /// Based on operator<
656 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
658 operator>(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
659 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
660 { return __y
< __x
; }
662 /// Based on operator<
663 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
665 operator<=(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
666 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
667 { return !(__y
< __x
); }
669 /// Based on operator<
670 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
672 operator>=(const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
673 const multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
674 { return !(__x
< __y
); }
676 /// See std::multimap::swap().
677 template <typename _Key
, typename _Tp
, typename _Compare
, typename _Alloc
>
679 swap(multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __x
,
680 multimap
<_Key
, _Tp
, _Compare
, _Alloc
>& __y
)
684 #endif /* _MULTIMAP_H */