Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / libstdc++-v3 / include / bits / stl_vector.h
blobd673b9a2875ff2dbc1cb5769fe6d5af620cdb1c8
1 // Vector implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
32 * Copyright (c) 1994
33 * Hewlett-Packard Company
35 * Permission to use, copy, modify, distribute and sell this software
36 * and its documentation for any purpose is hereby granted without fee,
37 * provided that the above copyright notice appear in all copies and
38 * that both that copyright notice and this permission notice appear
39 * in supporting documentation. Hewlett-Packard Company makes no
40 * representations about the suitability of this software for any
41 * purpose. It is provided "as is" without express or implied warranty.
44 * Copyright (c) 1996
45 * Silicon Graphics Computer Systems, Inc.
47 * Permission to use, copy, modify, distribute and sell this software
48 * and its documentation for any purpose is hereby granted without fee,
49 * provided that the above copyright notice appear in all copies and
50 * that both that copyright notice and this permission notice appear
51 * in supporting documentation. Silicon Graphics makes no
52 * representations about the suitability of this software for any
53 * purpose. It is provided "as is" without express or implied warranty.
56 /** @file stl_vector.h
57 * This is an internal header file, included by other library headers.
58 * You should not attempt to use it directly.
61 #ifndef _VECTOR_H
62 #define _VECTOR_H 1
64 #include <bits/stl_iterator_base_funcs.h>
65 #include <bits/functexcept.h>
66 #include <bits/concept_check.h>
68 namespace _GLIBCXX_STD
70 /**
71 * @if maint
72 * See bits/stl_deque.h's _Deque_base for an explanation.
73 * @endif
75 template<typename _Tp, typename _Alloc>
76 struct _Vector_base
78 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
80 struct _Vector_impl
81 : public _Tp_alloc_type
83 _Tp* _M_start;
84 _Tp* _M_finish;
85 _Tp* _M_end_of_storage;
86 _Vector_impl(_Tp_alloc_type const& __a)
87 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 { }
91 public:
92 typedef _Alloc allocator_type;
94 _Tp_alloc_type&
95 _M_get_Tp_allocator()
96 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
98 const _Tp_alloc_type&
99 _M_get_Tp_allocator() const
100 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
102 allocator_type
103 get_allocator() const
104 { return _M_get_Tp_allocator(); }
106 _Vector_base(const allocator_type& __a)
107 : _M_impl(__a)
110 _Vector_base(size_t __n, const allocator_type& __a)
111 : _M_impl(__a)
113 this->_M_impl._M_start = this->_M_allocate(__n);
114 this->_M_impl._M_finish = this->_M_impl._M_start;
115 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
118 ~_Vector_base()
119 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
120 - this->_M_impl._M_start); }
122 public:
123 _Vector_impl _M_impl;
125 _Tp*
126 _M_allocate(size_t __n)
127 { return _M_impl.allocate(__n); }
129 void
130 _M_deallocate(_Tp* __p, size_t __n)
132 if (__p)
133 _M_impl.deallocate(__p, __n);
139 * @brief A standard container which offers fixed time access to
140 * individual elements in any order.
142 * @ingroup Containers
143 * @ingroup Sequences
145 * Meets the requirements of a <a href="tables.html#65">container</a>, a
146 * <a href="tables.html#66">reversible container</a>, and a
147 * <a href="tables.html#67">sequence</a>, including the
148 * <a href="tables.html#68">optional sequence requirements</a> with the
149 * %exception of @c push_front and @c pop_front.
151 * In some terminology a %vector can be described as a dynamic
152 * C-style array, it offers fast and efficient access to individual
153 * elements in any order and saves the user from worrying about
154 * memory and size allocation. Subscripting ( @c [] ) access is
155 * also provided as with C-style arrays.
157 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
158 class vector : protected _Vector_base<_Tp, _Alloc>
160 // Concept requirements.
161 typedef typename _Alloc::value_type _Alloc_value_type;
162 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
163 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
165 typedef _Vector_base<_Tp, _Alloc> _Base;
166 typedef vector<_Tp, _Alloc> vector_type;
167 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
169 public:
170 typedef _Tp value_type;
171 typedef typename _Tp_alloc_type::pointer pointer;
172 typedef typename _Tp_alloc_type::const_pointer const_pointer;
173 typedef typename _Tp_alloc_type::reference reference;
174 typedef typename _Tp_alloc_type::const_reference const_reference;
175 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
176 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
177 const_iterator;
178 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
179 typedef std::reverse_iterator<iterator> reverse_iterator;
180 typedef size_t size_type;
181 typedef ptrdiff_t difference_type;
182 typedef _Alloc allocator_type;
184 protected:
185 /** @if maint
186 * These two functions and three data members are all from the
187 * base class. They should be pretty self-explanatory, as
188 * %vector uses a simple contiguous allocation scheme. @endif
190 using _Base::_M_allocate;
191 using _Base::_M_deallocate;
192 using _Base::_M_impl;
193 using _Base::_M_get_Tp_allocator;
195 public:
196 // [23.2.4.1] construct/copy/destroy
197 // (assign() and get_allocator() are also listed in this section)
199 * @brief Default constructor creates no elements.
201 explicit
202 vector(const allocator_type& __a = allocator_type())
203 : _Base(__a)
207 * @brief Create a %vector with copies of an exemplar element.
208 * @param n The number of elements to initially create.
209 * @param value An element to copy.
211 * This constructor fills the %vector with @a n copies of @a value.
213 explicit
214 vector(size_type __n, const value_type& __value = value_type(),
215 const allocator_type& __a = allocator_type())
216 : _Base(__n, __a)
218 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
219 _M_get_Tp_allocator());
220 this->_M_impl._M_finish = this->_M_impl._M_start + __n;
224 * @brief %Vector copy constructor.
225 * @param x A %vector of identical element and allocator types.
227 * The newly-created %vector uses a copy of the allocation
228 * object used by @a x. All the elements of @a x are copied,
229 * but any extra memory in
230 * @a x (for fast expansion) will not be copied.
232 vector(const vector& __x)
233 : _Base(__x.size(), __x.get_allocator())
234 { this->_M_impl._M_finish =
235 std::__uninitialized_copy_a(__x.begin(), __x.end(),
236 this->_M_impl._M_start,
237 _M_get_Tp_allocator());
241 * @brief Builds a %vector from a range.
242 * @param first An input iterator.
243 * @param last An input iterator.
245 * Create a %vector consisting of copies of the elements from
246 * [first,last).
248 * If the iterators are forward, bidirectional, or
249 * random-access, then this will call the elements' copy
250 * constructor N times (where N is distance(first,last)) and do
251 * no memory reallocation. But if only input iterators are
252 * used, then this will do at most 2N calls to the copy
253 * constructor, and logN memory reallocations.
255 template<typename _InputIterator>
256 vector(_InputIterator __first, _InputIterator __last,
257 const allocator_type& __a = allocator_type())
258 : _Base(__a)
260 // Check whether it's an integral type. If so, it's not an iterator.
261 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
262 _M_initialize_dispatch(__first, __last, _Integral());
266 * The dtor only erases the elements, and note that if the
267 * elements themselves are pointers, the pointed-to memory is
268 * not touched in any way. Managing the pointer is the user's
269 * responsibilty.
271 ~vector()
272 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
273 _M_get_Tp_allocator());
277 * @brief %Vector assignment operator.
278 * @param x A %vector of identical element and allocator types.
280 * All the elements of @a x are copied, but any extra memory in
281 * @a x (for fast expansion) will not be copied. Unlike the
282 * copy constructor, the allocator object is not copied.
284 vector&
285 operator=(const vector& __x);
288 * @brief Assigns a given value to a %vector.
289 * @param n Number of elements to be assigned.
290 * @param val Value to be assigned.
292 * This function fills a %vector with @a n copies of the given
293 * value. Note that the assignment completely changes the
294 * %vector and that the resulting %vector's size is the same as
295 * the number of elements assigned. Old data may be lost.
297 void
298 assign(size_type __n, const value_type& __val)
299 { _M_fill_assign(__n, __val); }
302 * @brief Assigns a range to a %vector.
303 * @param first An input iterator.
304 * @param last An input iterator.
306 * This function fills a %vector with copies of the elements in the
307 * range [first,last).
309 * Note that the assignment completely changes the %vector and
310 * that the resulting %vector's size is the same as the number
311 * of elements assigned. Old data may be lost.
313 template<typename _InputIterator>
314 void
315 assign(_InputIterator __first, _InputIterator __last)
317 // Check whether it's an integral type. If so, it's not an iterator.
318 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
319 _M_assign_dispatch(__first, __last, _Integral());
322 /// Get a copy of the memory allocation object.
323 using _Base::get_allocator;
325 // iterators
327 * Returns a read/write iterator that points to the first
328 * element in the %vector. Iteration is done in ordinary
329 * element order.
331 iterator
332 begin()
333 { return iterator (this->_M_impl._M_start); }
336 * Returns a read-only (constant) iterator that points to the
337 * first element in the %vector. Iteration is done in ordinary
338 * element order.
340 const_iterator
341 begin() const
342 { return const_iterator (this->_M_impl._M_start); }
345 * Returns a read/write iterator that points one past the last
346 * element in the %vector. Iteration is done in ordinary
347 * element order.
349 iterator
350 end()
351 { return iterator (this->_M_impl._M_finish); }
354 * Returns a read-only (constant) iterator that points one past
355 * the last element in the %vector. Iteration is done in
356 * ordinary element order.
358 const_iterator
359 end() const
360 { return const_iterator (this->_M_impl._M_finish); }
363 * Returns a read/write reverse iterator that points to the
364 * last element in the %vector. Iteration is done in reverse
365 * element order.
367 reverse_iterator
368 rbegin()
369 { return reverse_iterator(end()); }
372 * Returns a read-only (constant) reverse iterator that points
373 * to the last element in the %vector. Iteration is done in
374 * reverse element order.
376 const_reverse_iterator
377 rbegin() const
378 { return const_reverse_iterator(end()); }
381 * Returns a read/write reverse iterator that points to one
382 * before the first element in the %vector. Iteration is done
383 * in reverse element order.
385 reverse_iterator
386 rend()
387 { return reverse_iterator(begin()); }
390 * Returns a read-only (constant) reverse iterator that points
391 * to one before the first element in the %vector. Iteration
392 * is done in reverse element order.
394 const_reverse_iterator
395 rend() const
396 { return const_reverse_iterator(begin()); }
398 // [23.2.4.2] capacity
399 /** Returns the number of elements in the %vector. */
400 size_type
401 size() const
402 { return size_type(end() - begin()); }
404 /** Returns the size() of the largest possible %vector. */
405 size_type
406 max_size() const
407 { return size_type(-1) / sizeof(value_type); }
410 * @brief Resizes the %vector to the specified number of elements.
411 * @param new_size Number of elements the %vector should contain.
412 * @param x Data with which new elements should be populated.
414 * This function will %resize the %vector to the specified
415 * number of elements. If the number is smaller than the
416 * %vector's current size the %vector is truncated, otherwise
417 * the %vector is extended and new elements are populated with
418 * given data.
420 void
421 resize(size_type __new_size, value_type __x = value_type())
423 if (__new_size < size())
424 erase(begin() + __new_size, end());
425 else
426 insert(end(), __new_size - size(), __x);
430 * Returns the total number of elements that the %vector can
431 * hold before needing to allocate more memory.
433 size_type
434 capacity() const
435 { return size_type(const_iterator(this->_M_impl._M_end_of_storage)
436 - begin()); }
439 * Returns true if the %vector is empty. (Thus begin() would
440 * equal end().)
442 bool
443 empty() const
444 { return begin() == end(); }
447 * @brief Attempt to preallocate enough memory for specified number of
448 * elements.
449 * @param n Number of elements required.
450 * @throw std::length_error If @a n exceeds @c max_size().
452 * This function attempts to reserve enough memory for the
453 * %vector to hold the specified number of elements. If the
454 * number requested is more than max_size(), length_error is
455 * thrown.
457 * The advantage of this function is that if optimal code is a
458 * necessity and the user can determine the number of elements
459 * that will be required, the user can reserve the memory in
460 * %advance, and thus prevent a possible reallocation of memory
461 * and copying of %vector data.
463 void
464 reserve(size_type __n);
466 // element access
468 * @brief Subscript access to the data contained in the %vector.
469 * @param n The index of the element for which data should be
470 * accessed.
471 * @return Read/write reference to data.
473 * This operator allows for easy, array-style, data access.
474 * Note that data access with this operator is unchecked and
475 * out_of_range lookups are not defined. (For checked lookups
476 * see at().)
478 reference
479 operator[](size_type __n)
480 { return *(begin() + __n); }
483 * @brief Subscript access to the data contained in the %vector.
484 * @param n The index of the element for which data should be
485 * accessed.
486 * @return Read-only (constant) reference to data.
488 * This operator allows for easy, array-style, data access.
489 * Note that data access with this operator is unchecked and
490 * out_of_range lookups are not defined. (For checked lookups
491 * see at().)
493 const_reference
494 operator[](size_type __n) const
495 { return *(begin() + __n); }
497 protected:
498 /// @if maint Safety check used only from at(). @endif
499 void
500 _M_range_check(size_type __n) const
502 if (__n >= this->size())
503 __throw_out_of_range(__N("vector::_M_range_check"));
506 public:
508 * @brief Provides access to the data contained in the %vector.
509 * @param n The index of the element for which data should be
510 * accessed.
511 * @return Read/write reference to data.
512 * @throw std::out_of_range If @a n is an invalid index.
514 * This function provides for safer data access. The parameter
515 * is first checked that it is in the range of the vector. The
516 * function throws out_of_range if the check fails.
518 reference
519 at(size_type __n)
521 _M_range_check(__n);
522 return (*this)[__n];
526 * @brief Provides access to the data contained in the %vector.
527 * @param n The index of the element for which data should be
528 * accessed.
529 * @return Read-only (constant) reference to data.
530 * @throw std::out_of_range If @a n is an invalid index.
532 * This function provides for safer data access. The parameter
533 * is first checked that it is in the range of the vector. The
534 * function throws out_of_range if the check fails.
536 const_reference
537 at(size_type __n) const
539 _M_range_check(__n);
540 return (*this)[__n];
544 * Returns a read/write reference to the data at the first
545 * element of the %vector.
547 reference
548 front()
549 { return *begin(); }
552 * Returns a read-only (constant) reference to the data at the first
553 * element of the %vector.
555 const_reference
556 front() const
557 { return *begin(); }
560 * Returns a read/write reference to the data at the last
561 * element of the %vector.
563 reference
564 back()
565 { return *(end() - 1); }
568 * Returns a read-only (constant) reference to the data at the
569 * last element of the %vector.
571 const_reference
572 back() const
573 { return *(end() - 1); }
575 // _GLIBCXX_RESOLVE_LIB_DEFECTS
576 // DR 464. Suggestion for new member functions in standard containers.
577 // data access
579 * Returns a pointer such that [data(), data() + size()) is a valid
580 * range. For a non-empty %vector, data() == &front().
582 pointer
583 data()
584 { return pointer(this->_M_impl._M_start); }
586 const_pointer
587 data() const
588 { return const_pointer(this->_M_impl._M_start); }
590 // [23.2.4.3] modifiers
592 * @brief Add data to the end of the %vector.
593 * @param x Data to be added.
595 * This is a typical stack operation. The function creates an
596 * element at the end of the %vector and assigns the given data
597 * to it. Due to the nature of a %vector this operation can be
598 * done in constant time if the %vector has preallocated space
599 * available.
601 void
602 push_back(const value_type& __x)
604 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
606 this->_M_impl.construct(this->_M_impl._M_finish, __x);
607 ++this->_M_impl._M_finish;
609 else
610 _M_insert_aux(end(), __x);
614 * @brief Removes last element.
616 * This is a typical stack operation. It shrinks the %vector by one.
618 * Note that no data is returned, and if the last element's
619 * data is needed, it should be retrieved before pop_back() is
620 * called.
622 void
623 pop_back()
625 --this->_M_impl._M_finish;
626 this->_M_impl.destroy(this->_M_impl._M_finish);
630 * @brief Inserts given value into %vector before specified iterator.
631 * @param position An iterator into the %vector.
632 * @param x Data to be inserted.
633 * @return An iterator that points to the inserted data.
635 * This function will insert a copy of the given value before
636 * the specified location. Note that this kind of operation
637 * could be expensive for a %vector and if it is frequently
638 * used the user should consider using std::list.
640 iterator
641 insert(iterator __position, const value_type& __x);
644 * @brief Inserts a number of copies of given data into the %vector.
645 * @param position An iterator into the %vector.
646 * @param n Number of elements to be inserted.
647 * @param x Data to be inserted.
649 * This function will insert a specified number of copies of
650 * the given data before the location specified by @a position.
652 * Note that this kind of operation could be expensive for a
653 * %vector and if it is frequently used the user should
654 * consider using std::list.
656 void
657 insert(iterator __position, size_type __n, const value_type& __x)
658 { _M_fill_insert(__position, __n, __x); }
661 * @brief Inserts a range into the %vector.
662 * @param position An iterator into the %vector.
663 * @param first An input iterator.
664 * @param last An input iterator.
666 * This function will insert copies of the data in the range
667 * [first,last) into the %vector before the location specified
668 * by @a pos.
670 * Note that this kind of operation could be expensive for a
671 * %vector and if it is frequently used the user should
672 * consider using std::list.
674 template<typename _InputIterator>
675 void
676 insert(iterator __position, _InputIterator __first,
677 _InputIterator __last)
679 // Check whether it's an integral type. If so, it's not an iterator.
680 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
681 _M_insert_dispatch(__position, __first, __last, _Integral());
685 * @brief Remove element at given position.
686 * @param position Iterator pointing to element to be erased.
687 * @return An iterator pointing to the next element (or end()).
689 * This function will erase the element at the given position and thus
690 * shorten the %vector by one.
692 * Note This operation could be expensive and if it is
693 * frequently used the user should consider using std::list.
694 * The user is also cautioned that this function only erases
695 * the element, and that if the element is itself a pointer,
696 * the pointed-to memory is not touched in any way. Managing
697 * the pointer is the user's responsibilty.
699 iterator
700 erase(iterator __position);
703 * @brief Remove a range of elements.
704 * @param first Iterator pointing to the first element to be erased.
705 * @param last Iterator pointing to one past the last element to be
706 * erased.
707 * @return An iterator pointing to the element pointed to by @a last
708 * prior to erasing (or end()).
710 * This function will erase the elements in the range [first,last) and
711 * shorten the %vector accordingly.
713 * Note This operation could be expensive and if it is
714 * frequently used the user should consider using std::list.
715 * The user is also cautioned that this function only erases
716 * the elements, and that if the elements themselves are
717 * pointers, the pointed-to memory is not touched in any way.
718 * Managing the pointer is the user's responsibilty.
720 iterator
721 erase(iterator __first, iterator __last);
724 * @brief Swaps data with another %vector.
725 * @param x A %vector of the same element and allocator types.
727 * This exchanges the elements between two vectors in constant time.
728 * (Three pointers, so it should be quite fast.)
729 * Note that the global std::swap() function is specialized such that
730 * std::swap(v1,v2) will feed to this function.
732 void
733 swap(vector& __x)
735 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
736 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
737 std::swap(this->_M_impl._M_end_of_storage,
738 __x._M_impl._M_end_of_storage);
742 * Erases all the elements. Note that this function only erases the
743 * elements, and that if the elements themselves are pointers, the
744 * pointed-to memory is not touched in any way. Managing the pointer is
745 * the user's responsibilty.
747 void
748 clear()
750 std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
751 _M_get_Tp_allocator());
752 this->_M_impl._M_finish = this->_M_impl._M_start;
755 protected:
757 * @if maint
758 * Memory expansion handler. Uses the member allocation function to
759 * obtain @a n bytes of memory, and then copies [first,last) into it.
760 * @endif
762 template<typename _ForwardIterator>
763 pointer
764 _M_allocate_and_copy(size_type __n,
765 _ForwardIterator __first, _ForwardIterator __last)
767 pointer __result = this->_M_allocate(__n);
770 std::__uninitialized_copy_a(__first, __last, __result,
771 _M_get_Tp_allocator());
772 return __result;
774 catch(...)
776 _M_deallocate(__result, __n);
777 __throw_exception_again;
782 // Internal constructor functions follow.
784 // Called by the range constructor to implement [23.1.1]/9
785 template<typename _Integer>
786 void
787 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
789 this->_M_impl._M_start = _M_allocate(__n);
790 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
791 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
792 _M_get_Tp_allocator());
793 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
796 // Called by the range constructor to implement [23.1.1]/9
797 template<typename _InputIterator>
798 void
799 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
800 __false_type)
802 typedef typename std::iterator_traits<_InputIterator>::
803 iterator_category _IterCategory;
804 _M_range_initialize(__first, __last, _IterCategory());
807 // Called by the second initialize_dispatch above
808 template<typename _InputIterator>
809 void
810 _M_range_initialize(_InputIterator __first,
811 _InputIterator __last, std::input_iterator_tag)
813 for (; __first != __last; ++__first)
814 push_back(*__first);
817 // Called by the second initialize_dispatch above
818 template<typename _ForwardIterator>
819 void
820 _M_range_initialize(_ForwardIterator __first,
821 _ForwardIterator __last, std::forward_iterator_tag)
823 const size_type __n = std::distance(__first, __last);
824 this->_M_impl._M_start = this->_M_allocate(__n);
825 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
826 this->_M_impl._M_finish =
827 std::__uninitialized_copy_a(__first, __last,
828 this->_M_impl._M_start,
829 _M_get_Tp_allocator());
833 // Internal assign functions follow. The *_aux functions do the actual
834 // assignment work for the range versions.
836 // Called by the range assign to implement [23.1.1]/9
837 template<typename _Integer>
838 void
839 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
841 _M_fill_assign(static_cast<size_type>(__n),
842 static_cast<value_type>(__val));
845 // Called by the range assign to implement [23.1.1]/9
846 template<typename _InputIterator>
847 void
848 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
849 __false_type)
851 typedef typename std::iterator_traits<_InputIterator>::
852 iterator_category _IterCategory;
853 _M_assign_aux(__first, __last, _IterCategory());
856 // Called by the second assign_dispatch above
857 template<typename _InputIterator>
858 void
859 _M_assign_aux(_InputIterator __first, _InputIterator __last,
860 std::input_iterator_tag);
862 // Called by the second assign_dispatch above
863 template<typename _ForwardIterator>
864 void
865 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
866 std::forward_iterator_tag);
868 // Called by assign(n,t), and the range assign when it turns out
869 // to be the same thing.
870 void
871 _M_fill_assign(size_type __n, const value_type& __val);
874 // Internal insert functions follow.
876 // Called by the range insert to implement [23.1.1]/9
877 template<typename _Integer>
878 void
879 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
880 __true_type)
882 _M_fill_insert(__pos, static_cast<size_type>(__n),
883 static_cast<value_type>(__val));
886 // Called by the range insert to implement [23.1.1]/9
887 template<typename _InputIterator>
888 void
889 _M_insert_dispatch(iterator __pos, _InputIterator __first,
890 _InputIterator __last, __false_type)
892 typedef typename std::iterator_traits<_InputIterator>::
893 iterator_category _IterCategory;
894 _M_range_insert(__pos, __first, __last, _IterCategory());
897 // Called by the second insert_dispatch above
898 template<typename _InputIterator>
899 void
900 _M_range_insert(iterator __pos, _InputIterator __first,
901 _InputIterator __last, std::input_iterator_tag);
903 // Called by the second insert_dispatch above
904 template<typename _ForwardIterator>
905 void
906 _M_range_insert(iterator __pos, _ForwardIterator __first,
907 _ForwardIterator __last, std::forward_iterator_tag);
909 // Called by insert(p,n,x), and the range insert when it turns out to be
910 // the same thing.
911 void
912 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
914 // Called by insert(p,x)
915 void
916 _M_insert_aux(iterator __position, const value_type& __x);
921 * @brief Vector equality comparison.
922 * @param x A %vector.
923 * @param y A %vector of the same type as @a x.
924 * @return True iff the size and elements of the vectors are equal.
926 * This is an equivalence relation. It is linear in the size of the
927 * vectors. Vectors are considered equivalent if their sizes are equal,
928 * and if corresponding elements compare equal.
930 template<typename _Tp, typename _Alloc>
931 inline bool
932 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
933 { return (__x.size() == __y.size()
934 && std::equal(__x.begin(), __x.end(), __y.begin())); }
937 * @brief Vector ordering relation.
938 * @param x A %vector.
939 * @param y A %vector of the same type as @a x.
940 * @return True iff @a x is lexicographically less than @a y.
942 * This is a total ordering relation. It is linear in the size of the
943 * vectors. The elements must be comparable with @c <.
945 * See std::lexicographical_compare() for how the determination is made.
947 template<typename _Tp, typename _Alloc>
948 inline bool
949 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
950 { return std::lexicographical_compare(__x.begin(), __x.end(),
951 __y.begin(), __y.end()); }
953 /// Based on operator==
954 template<typename _Tp, typename _Alloc>
955 inline bool
956 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
957 { return !(__x == __y); }
959 /// Based on operator<
960 template<typename _Tp, typename _Alloc>
961 inline bool
962 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
963 { return __y < __x; }
965 /// Based on operator<
966 template<typename _Tp, typename _Alloc>
967 inline bool
968 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
969 { return !(__y < __x); }
971 /// Based on operator<
972 template<typename _Tp, typename _Alloc>
973 inline bool
974 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
975 { return !(__x < __y); }
977 /// See std::vector::swap().
978 template<typename _Tp, typename _Alloc>
979 inline void
980 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
981 { __x.swap(__y); }
982 } // namespace std
984 #endif /* _VECTOR_H */