Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / libstdc++-v3 / include / ext / rc_string_base.h
blob3fdeea66de1a37ed5aba754113621da693a7c7d1
1 // Reference-counted versatile string base -*- C++ -*-
3 // Copyright (C) 2005, 2006 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING. If not, write to the Free
18 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19 // USA.
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction. Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License. This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
30 /** @file ext/rc_string_base.h
31 * This file is a GNU extension to the Standard C++ Library.
32 * This is an internal header file, included by other library headers.
33 * You should not attempt to use it directly.
36 #ifndef _RC_STRING_BASE_H
37 #define _RC_STRING_BASE_H 1
39 #include <bits/atomicity.h>
41 namespace __gnu_cxx
43 /**
44 * @if maint
45 * Documentation? What's that?
46 * Nathan Myers <ncm@cantrip.org>.
48 * A string looks like this:
50 * @code
51 * [_Rep]
52 * _M_length
53 * [__rc_string_base<char_type>] _M_capacity
54 * _M_dataplus _M_refcount
55 * _M_p ----------------> unnamed array of char_type
56 * @endcode
58 * Where the _M_p points to the first character in the string, and
59 * you cast it to a pointer-to-_Rep and subtract 1 to get a
60 * pointer to the header.
62 * This approach has the enormous advantage that a string object
63 * requires only one allocation. All the ugliness is confined
64 * within a single pair of inline functions, which each compile to
65 * a single "add" instruction: _Rep::_M_refdata(), and
66 * __rc_string_base::_M_rep(); and the allocation function which gets a
67 * block of raw bytes and with room enough and constructs a _Rep
68 * object at the front.
70 * The reason you want _M_data pointing to the character array and
71 * not the _Rep is so that the debugger can see the string
72 * contents. (Probably we should add a non-inline member to get
73 * the _Rep for the debugger to use, so users can check the actual
74 * string length.)
76 * Note that the _Rep object is a POD so that you can have a
77 * static "empty string" _Rep object already "constructed" before
78 * static constructors have run. The reference-count encoding is
79 * chosen so that a 0 indicates one reference, so you never try to
80 * destroy the empty-string _Rep object.
82 * All but the last paragraph is considered pretty conventional
83 * for a C++ string implementation.
84 * @endif
86 template<typename _CharT, typename _Traits, typename _Alloc>
87 class __rc_string_base
88 : protected __vstring_utility<_CharT, _Traits, _Alloc>
90 public:
91 typedef _Traits traits_type;
92 typedef typename _Traits::char_type value_type;
93 typedef _Alloc allocator_type;
95 typedef __vstring_utility<_CharT, _Traits, _Alloc> _Util_Base;
96 typedef typename _Util_Base::_CharT_alloc_type _CharT_alloc_type;
97 typedef typename _CharT_alloc_type::size_type size_type;
99 private:
100 // _Rep: string representation
101 // Invariants:
102 // 1. String really contains _M_length + 1 characters: due to 21.3.4
103 // must be kept null-terminated.
104 // 2. _M_capacity >= _M_length
105 // Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
106 // 3. _M_refcount has three states:
107 // -1: leaked, one reference, no ref-copies allowed, non-const.
108 // 0: one reference, non-const.
109 // n>0: n + 1 references, operations require a lock, const.
110 // 4. All fields == 0 is an empty string, given the extra storage
111 // beyond-the-end for a null terminator; thus, the shared
112 // empty string representation needs no constructor.
113 struct _Rep
115 union
117 struct
119 size_type _M_length;
120 size_type _M_capacity;
121 _Atomic_word _M_refcount;
122 } _M_info;
124 // Only for alignment purposes.
125 _CharT _M_align;
128 typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;
130 _CharT*
131 _M_refdata() throw()
132 { return reinterpret_cast<_CharT*>(this + 1); }
134 _CharT*
135 _M_refcopy() throw()
137 __atomic_add(&_M_info._M_refcount, 1);
138 return _M_refdata();
139 } // XXX MT
141 void
142 _M_set_length(size_type __n)
144 _M_info._M_refcount = 0; // One reference.
145 _M_info._M_length = __n;
146 // grrr. (per 21.3.4)
147 // You cannot leave those LWG people alone for a second.
148 traits_type::assign(_M_refdata()[__n], _CharT());
151 // Create & Destroy
152 static _Rep*
153 _S_create(size_type, size_type, const _Alloc&);
155 void
156 _M_destroy(const _Alloc&) throw();
158 _CharT*
159 _M_clone(const _Alloc&, size_type __res = 0);
162 struct _Rep_empty
163 : public _Rep
165 _CharT _M_terminal;
168 static _Rep_empty _S_empty_rep;
170 // The maximum number of individual char_type elements of an
171 // individual string is determined by _S_max_size. This is the
172 // value that will be returned by max_size(). (Whereas npos
173 // is the maximum number of bytes the allocator can allocate.)
174 // If one was to divvy up the theoretical largest size string,
175 // with a terminating character and m _CharT elements, it'd
176 // look like this:
177 // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
178 // + sizeof(_Rep) - 1
179 // (NB: last two terms for rounding reasons, see _M_create below)
180 // Solving for m:
181 // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
182 // In addition, this implementation halfs this amount.
183 enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
184 + 1) / sizeof(_CharT)) - 1) / 2 };
186 // Data Member (private):
187 mutable typename _Util_Base::template _Alloc_hider<_Alloc> _M_dataplus;
189 void
190 _M_data(_CharT* __p)
191 { _M_dataplus._M_p = __p; }
193 _Rep*
194 _M_rep() const
195 { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }
197 _CharT*
198 _M_grab(const _Alloc& __alloc) const
200 return (!_M_is_leaked() && _M_get_allocator() == __alloc)
201 ? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
204 void
205 _M_dispose()
207 if (__exchange_and_add(&_M_rep()->_M_info._M_refcount, -1) <= 0)
208 _M_rep()->_M_destroy(_M_get_allocator());
209 } // XXX MT
211 bool
212 _M_is_leaked() const
213 { return _M_rep()->_M_info._M_refcount < 0; }
215 void
216 _M_set_sharable()
217 { _M_rep()->_M_info._M_refcount = 0; }
219 void
220 _M_leak_hard();
222 // _S_construct_aux is used to implement the 21.3.1 para 15 which
223 // requires special behaviour if _InIterator is an integral type
224 template<typename _InIterator>
225 static _CharT*
226 _S_construct_aux(_InIterator __beg, _InIterator __end,
227 const _Alloc& __a, __false_type)
229 typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
230 return _S_construct(__beg, __end, __a, _Tag());
233 template<typename _InIterator>
234 static _CharT*
235 _S_construct_aux(_InIterator __beg, _InIterator __end,
236 const _Alloc& __a, __true_type)
237 { return _S_construct(static_cast<size_type>(__beg),
238 static_cast<value_type>(__end), __a); }
240 template<typename _InIterator>
241 static _CharT*
242 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
244 typedef typename std::__is_integer<_InIterator>::__type _Integral;
245 return _S_construct_aux(__beg, __end, __a, _Integral());
248 // For Input Iterators, used in istreambuf_iterators, etc.
249 template<typename _InIterator>
250 static _CharT*
251 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
252 std::input_iterator_tag);
254 // For forward_iterators up to random_access_iterators, used for
255 // string::iterator, _CharT*, etc.
256 template<typename _FwdIterator>
257 static _CharT*
258 _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
259 std::forward_iterator_tag);
261 static _CharT*
262 _S_construct(size_type __req, _CharT __c, const _Alloc& __a);
264 public:
265 size_type
266 _M_max_size() const
267 { return size_type(_S_max_size); }
269 _CharT*
270 _M_data() const
271 { return _M_dataplus._M_p; }
273 size_type
274 _M_length() const
275 { return _M_rep()->_M_info._M_length; }
277 size_type
278 _M_capacity() const
279 { return _M_rep()->_M_info._M_capacity; }
281 bool
282 _M_is_shared() const
283 { return _M_rep()->_M_info._M_refcount > 0; }
285 void
286 _M_set_leaked()
287 { _M_rep()->_M_info._M_refcount = -1; }
289 void
290 _M_leak() // for use in begin() & non-const op[]
292 if (!_M_is_leaked())
293 _M_leak_hard();
296 void
297 _M_set_length(size_type __n)
298 { _M_rep()->_M_set_length(__n); }
300 __rc_string_base()
301 : _M_dataplus(_Alloc(), _S_empty_rep._M_refcopy()) { }
303 __rc_string_base(const _Alloc& __a);
305 __rc_string_base(const __rc_string_base& __rcs);
307 __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);
309 template<typename _InputIterator>
310 __rc_string_base(_InputIterator __beg, _InputIterator __end,
311 const _Alloc& __a);
313 ~__rc_string_base()
314 { _M_dispose(); }
316 allocator_type&
317 _M_get_allocator()
318 { return _M_dataplus; }
320 const allocator_type&
321 _M_get_allocator() const
322 { return _M_dataplus; }
324 void
325 _M_swap(__rc_string_base& __rcs);
327 void
328 _M_assign(const __rc_string_base& __rcs);
330 void
331 _M_reserve(size_type __res);
333 void
334 _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
335 size_type __len2);
337 void
338 _M_erase(size_type __pos, size_type __n);
340 void
341 _M_clear()
342 { _M_erase(size_type(0), _M_length()); }
344 bool
345 _M_compare(const __rc_string_base&) const
346 { return false; }
349 template<typename _CharT, typename _Traits, typename _Alloc>
350 typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
351 __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;
353 template<typename _CharT, typename _Traits, typename _Alloc>
354 typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
355 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
356 _S_create(size_type __capacity, size_type __old_capacity,
357 const _Alloc& __alloc)
359 // _GLIBCXX_RESOLVE_LIB_DEFECTS
360 // 83. String::npos vs. string::max_size()
361 if (__capacity > size_type(_S_max_size))
362 std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));
364 // The standard places no restriction on allocating more memory
365 // than is strictly needed within this layer at the moment or as
366 // requested by an explicit application call to reserve().
368 // Many malloc implementations perform quite poorly when an
369 // application attempts to allocate memory in a stepwise fashion
370 // growing each allocation size by only 1 char. Additionally,
371 // it makes little sense to allocate less linear memory than the
372 // natural blocking size of the malloc implementation.
373 // Unfortunately, we would need a somewhat low-level calculation
374 // with tuned parameters to get this perfect for any particular
375 // malloc implementation. Fortunately, generalizations about
376 // common features seen among implementations seems to suffice.
378 // __pagesize need not match the actual VM page size for good
379 // results in practice, thus we pick a common value on the low
380 // side. __malloc_header_size is an estimate of the amount of
381 // overhead per memory allocation (in practice seen N * sizeof
382 // (void*) where N is 0, 2 or 4). According to folklore,
383 // picking this value on the high side is better than
384 // low-balling it (especially when this algorithm is used with
385 // malloc implementations that allocate memory blocks rounded up
386 // to a size which is a power of 2).
387 const size_type __pagesize = 4096;
388 const size_type __malloc_header_size = 4 * sizeof(void*);
390 // The below implements an exponential growth policy, necessary to
391 // meet amortized linear time requirements of the library: see
392 // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
393 if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
395 __capacity = 2 * __old_capacity;
396 // Never allocate a string bigger than _S_max_size.
397 if (__capacity > size_type(_S_max_size))
398 __capacity = size_type(_S_max_size);
401 // NB: Need an array of char_type[__capacity], plus a terminating
402 // null char_type() element, plus enough for the _Rep data structure,
403 // plus sizeof(_Rep) - 1 to upper round to a size multiple of
404 // sizeof(_Rep).
405 // Whew. Seemingly so needy, yet so elemental.
406 size_type __size = ((__capacity + 1) * sizeof(_CharT)
407 + 2 * sizeof(_Rep) - 1);
409 const size_type __adj_size = __size + __malloc_header_size;
410 if (__adj_size > __pagesize && __capacity > __old_capacity)
412 const size_type __extra = __pagesize - __adj_size % __pagesize;
413 __capacity += __extra / sizeof(_CharT);
414 if (__capacity > size_type(_S_max_size))
415 __capacity = size_type(_S_max_size);
416 __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
419 // NB: Might throw, but no worries about a leak, mate: _Rep()
420 // does not throw.
421 _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
422 _Rep* __p = new (__place) _Rep;
423 __p->_M_info._M_capacity = __capacity;
424 return __p;
427 template<typename _CharT, typename _Traits, typename _Alloc>
428 void
429 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
430 _M_destroy(const _Alloc& __a) throw ()
432 const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
433 + 2 * sizeof(_Rep) - 1);
434 _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
437 template<typename _CharT, typename _Traits, typename _Alloc>
438 _CharT*
439 __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
440 _M_clone(const _Alloc& __alloc, size_type __res)
442 // Requested capacity of the clone.
443 const size_type __requested_cap = _M_info._M_length + __res;
444 _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
445 __alloc);
447 if (_M_info._M_length)
448 _S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);
450 __r->_M_set_length(_M_info._M_length);
451 return __r->_M_refdata();
454 template<typename _CharT, typename _Traits, typename _Alloc>
455 __rc_string_base<_CharT, _Traits, _Alloc>::
456 __rc_string_base(const _Alloc& __a)
457 : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }
459 template<typename _CharT, typename _Traits, typename _Alloc>
460 __rc_string_base<_CharT, _Traits, _Alloc>::
461 __rc_string_base(const __rc_string_base& __rcs)
462 : _M_dataplus(__rcs._M_get_allocator(),
463 __rcs._M_grab(__rcs._M_get_allocator())) { }
465 template<typename _CharT, typename _Traits, typename _Alloc>
466 __rc_string_base<_CharT, _Traits, _Alloc>::
467 __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
468 : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }
470 template<typename _CharT, typename _Traits, typename _Alloc>
471 template<typename _InputIterator>
472 __rc_string_base<_CharT, _Traits, _Alloc>::
473 __rc_string_base(_InputIterator __beg, _InputIterator __end,
474 const _Alloc& __a)
475 : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }
477 template<typename _CharT, typename _Traits, typename _Alloc>
478 void
479 __rc_string_base<_CharT, _Traits, _Alloc>::
480 _M_leak_hard()
482 if (_M_is_shared())
483 _M_erase(0, 0);
484 _M_set_leaked();
487 // NB: This is the special case for Input Iterators, used in
488 // istreambuf_iterators, etc.
489 // Input Iterators have a cost structure very different from
490 // pointers, calling for a different coding style.
491 template<typename _CharT, typename _Traits, typename _Alloc>
492 template<typename _InIterator>
493 _CharT*
494 __rc_string_base<_CharT, _Traits, _Alloc>::
495 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
496 std::input_iterator_tag)
498 if (__beg == __end && __a == _Alloc())
499 return _S_empty_rep._M_refcopy();
501 // Avoid reallocation for common case.
502 _CharT __buf[128];
503 size_type __len = 0;
504 while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
506 __buf[__len++] = *__beg;
507 ++__beg;
509 _Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
510 _S_copy(__r->_M_refdata(), __buf, __len);
513 while (__beg != __end)
515 if (__len == __r->_M_info._M_capacity)
517 // Allocate more space.
518 _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
519 _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
520 __r->_M_destroy(__a);
521 __r = __another;
523 __r->_M_refdata()[__len++] = *__beg;
524 ++__beg;
527 catch(...)
529 __r->_M_destroy(__a);
530 __throw_exception_again;
532 __r->_M_set_length(__len);
533 return __r->_M_refdata();
536 template<typename _CharT, typename _Traits, typename _Alloc>
537 template<typename _InIterator>
538 _CharT*
539 __rc_string_base<_CharT, _Traits, _Alloc>::
540 _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
541 std::forward_iterator_tag)
543 if (__beg == __end && __a == _Alloc())
544 return _S_empty_rep._M_refcopy();
546 // NB: Not required, but considered best practice.
547 if (__builtin_expect(_S_is_null_pointer(__beg) && __beg != __end, 0))
548 std::__throw_logic_error(__N("__rc_string_base::"
549 "_S_construct NULL not valid"));
551 const size_type __dnew = static_cast<size_type>(std::distance(__beg,
552 __end));
553 // Check for out_of_range and length_error exceptions.
554 _Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
556 { _S_copy_chars(__r->_M_refdata(), __beg, __end); }
557 catch(...)
559 __r->_M_destroy(__a);
560 __throw_exception_again;
562 __r->_M_set_length(__dnew);
563 return __r->_M_refdata();
566 template<typename _CharT, typename _Traits, typename _Alloc>
567 _CharT*
568 __rc_string_base<_CharT, _Traits, _Alloc>::
569 _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
571 if (__n == 0 && __a == _Alloc())
572 return _S_empty_rep._M_refcopy();
574 // Check for out_of_range and length_error exceptions.
575 _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
576 if (__n)
577 _S_assign(__r->_M_refdata(), __n, __c);
579 __r->_M_set_length(__n);
580 return __r->_M_refdata();
583 template<typename _CharT, typename _Traits, typename _Alloc>
584 void
585 __rc_string_base<_CharT, _Traits, _Alloc>::
586 _M_swap(__rc_string_base& __rcs)
588 if (_M_is_leaked())
589 _M_set_sharable();
590 if (__rcs._M_is_leaked())
591 __rcs._M_set_sharable();
593 _CharT* __tmp = _M_data();
594 _M_data(__rcs._M_data());
595 __rcs._M_data(__tmp);
597 // NB: Implement Option 3 of DR 431 (see N1599).
598 std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
599 __rcs._M_get_allocator());
602 template<typename _CharT, typename _Traits, typename _Alloc>
603 void
604 __rc_string_base<_CharT, _Traits, _Alloc>::
605 _M_assign(const __rc_string_base& __rcs)
607 if (_M_rep() != __rcs._M_rep())
609 _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
610 _M_dispose();
611 _M_data(__tmp);
615 template<typename _CharT, typename _Traits, typename _Alloc>
616 void
617 __rc_string_base<_CharT, _Traits, _Alloc>::
618 _M_reserve(size_type __res)
620 // Make sure we don't shrink below the current size.
621 if (__res < _M_length())
622 __res = _M_length();
624 if (__res != _M_capacity() || _M_is_shared())
626 _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
627 __res - _M_length());
628 _M_dispose();
629 _M_data(__tmp);
633 template<typename _CharT, typename _Traits, typename _Alloc>
634 void
635 __rc_string_base<_CharT, _Traits, _Alloc>::
636 _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
637 size_type __len2)
639 const size_type __how_much = _M_length() - __pos - __len1;
641 _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
642 _M_capacity(), _M_get_allocator());
644 if (__pos)
645 _S_copy(__r->_M_refdata(), _M_data(), __pos);
646 if (__s && __len2)
647 _S_copy(__r->_M_refdata() + __pos, __s, __len2);
648 if (__how_much)
649 _S_copy(__r->_M_refdata() + __pos + __len2,
650 _M_data() + __pos + __len1, __how_much);
652 _M_dispose();
653 _M_data(__r->_M_refdata());
656 template<typename _CharT, typename _Traits, typename _Alloc>
657 void
658 __rc_string_base<_CharT, _Traits, _Alloc>::
659 _M_erase(size_type __pos, size_type __n)
661 const size_type __new_size = _M_length() - __n;
662 const size_type __how_much = _M_length() - __pos - __n;
664 if (_M_is_shared())
666 // Must reallocate.
667 _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
668 _M_get_allocator());
670 if (__pos)
671 _S_copy(__r->_M_refdata(), _M_data(), __pos);
672 if (__how_much)
673 _S_copy(__r->_M_refdata() + __pos,
674 _M_data() + __pos + __n, __how_much);
676 _M_dispose();
677 _M_data(__r->_M_refdata());
679 else if (__how_much && __n)
681 // Work in-place.
682 _S_move(_M_data() + __pos,
683 _M_data() + __pos + __n, __how_much);
686 _M_rep()->_M_set_length(__new_size);
689 template<>
690 inline bool
691 __rc_string_base<char, std::char_traits<char>,
692 std::allocator<char> >::
693 _M_compare(const __rc_string_base& __rcs) const
695 if (_M_rep() == __rcs._M_rep())
696 return true;
697 return false;
700 template<>
701 inline bool
702 __rc_string_base<wchar_t, std::char_traits<wchar_t>,
703 std::allocator<wchar_t> >::
704 _M_compare(const __rc_string_base& __rcs) const
706 if (_M_rep() == __rcs._M_rep())
707 return true;
708 return false;
710 } // namespace __gnu_cxx
712 #endif /* _RC_STRING_BASE_H */