1 // The template and inlines for the -*- C++ -*- complex number classes.
3 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 // Free Software Foundation, Inc.
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
32 // ISO C++ 14882: 26.2 Complex Numbers
33 // Note: this is not a conforming implementation.
34 // Initially implemented by Ulrich Drepper <drepper@cygnus.com>
35 // Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
39 * This is a Standard C++ Library header.
42 #ifndef _GLIBCXX_COMPLEX
43 #define _GLIBCXX_COMPLEX 1
45 #pragma GCC system_header
47 #include <bits/c++config.h>
48 #include <bits/cpp_type_traits.h>
54 // Forward declarations.
55 template<typename _Tp
> class complex;
56 template<> class complex<float>;
57 template<> class complex<double>;
58 template<> class complex<long double>;
60 /// Return magnitude of @a z.
61 template<typename _Tp
> _Tp
abs(const complex<_Tp
>&);
62 /// Return phase angle of @a z.
63 template<typename _Tp
> _Tp
arg(const complex<_Tp
>&);
64 /// Return @a z magnitude squared.
65 template<typename _Tp
> _Tp
norm(const complex<_Tp
>&);
67 /// Return complex conjugate of @a z.
68 template<typename _Tp
> complex<_Tp
> conj(const complex<_Tp
>&);
69 /// Return complex with magnitude @a rho and angle @a theta.
70 template<typename _Tp
> complex<_Tp
> polar(const _Tp
&, const _Tp
& = 0);
73 /// Return complex cosine of @a z.
74 template<typename _Tp
> complex<_Tp
> cos(const complex<_Tp
>&);
75 /// Return complex hyperbolic cosine of @a z.
76 template<typename _Tp
> complex<_Tp
> cosh(const complex<_Tp
>&);
77 /// Return complex base e exponential of @a z.
78 template<typename _Tp
> complex<_Tp
> exp(const complex<_Tp
>&);
79 /// Return complex natural logarithm of @a z.
80 template<typename _Tp
> complex<_Tp
> log(const complex<_Tp
>&);
81 /// Return complex base 10 logarithm of @a z.
82 template<typename _Tp
> complex<_Tp
> log10(const complex<_Tp
>&);
83 /// Return complex cosine of @a z.
84 template<typename _Tp
> complex<_Tp
> pow(const complex<_Tp
>&, int);
85 /// Return @a x to the @a y'th power.
86 template<typename _Tp
> complex<_Tp
> pow(const complex<_Tp
>&, const _Tp
&);
87 /// Return @a x to the @a y'th power.
88 template<typename _Tp
> complex<_Tp
> pow(const complex<_Tp
>&,
90 /// Return @a x to the @a y'th power.
91 template<typename _Tp
> complex<_Tp
> pow(const _Tp
&, const complex<_Tp
>&);
92 /// Return complex sine of @a z.
93 template<typename _Tp
> complex<_Tp
> sin(const complex<_Tp
>&);
94 /// Return complex hyperbolic sine of @a z.
95 template<typename _Tp
> complex<_Tp
> sinh(const complex<_Tp
>&);
96 /// Return complex square root of @a z.
97 template<typename _Tp
> complex<_Tp
> sqrt(const complex<_Tp
>&);
98 /// Return complex tangent of @a z.
99 template<typename _Tp
> complex<_Tp
> tan(const complex<_Tp
>&);
100 /// Return complex hyperbolic tangent of @a z.
101 template<typename _Tp
> complex<_Tp
> tanh(const complex<_Tp
>&);
105 // 26.2.2 Primary template class complex
107 * Template to represent complex numbers.
109 * Specializations for float, double, and long double are part of the
110 * library. Results with any other type are not guaranteed.
112 * @param Tp Type of real and imaginary values.
114 template<typename _Tp
>
118 typedef _Tp value_type
;
120 /// Default constructor. First parameter is x, second parameter is y.
121 /// Unspecified parameters default to 0.
122 complex(const _Tp
& = _Tp(), const _Tp
& = _Tp());
124 // Lets the compiler synthesize the copy constructor
125 // complex (const complex<_Tp>&);
126 /// Copy constructor.
127 template<typename _Up
>
128 complex(const complex<_Up
>&);
130 /// Return real part of complex number.
132 /// Return real part of complex number.
133 const _Tp
& real() const;
134 /// Return imaginary part of complex number.
136 /// Return imaginary part of complex number.
137 const _Tp
& imag() const;
139 /// Assign this complex number to scalar @a t.
140 complex<_Tp
>& operator=(const _Tp
&);
141 /// Add @a t to this complex number.
142 complex<_Tp
>& operator+=(const _Tp
&);
143 /// Subtract @a t from this complex number.
144 complex<_Tp
>& operator-=(const _Tp
&);
145 /// Multiply this complex number by @a t.
146 complex<_Tp
>& operator*=(const _Tp
&);
147 /// Divide this complex number by @a t.
148 complex<_Tp
>& operator/=(const _Tp
&);
150 // Lets the compiler synthesize the
151 // copy and assignment operator
152 // complex<_Tp>& operator= (const complex<_Tp>&);
153 /// Assign this complex number to complex @a z.
154 template<typename _Up
>
155 complex<_Tp
>& operator=(const complex<_Up
>&);
156 /// Add @a z to this complex number.
157 template<typename _Up
>
158 complex<_Tp
>& operator+=(const complex<_Up
>&);
159 /// Subtract @a z from this complex number.
160 template<typename _Up
>
161 complex<_Tp
>& operator-=(const complex<_Up
>&);
162 /// Multiply this complex number by @a z.
163 template<typename _Up
>
164 complex<_Tp
>& operator*=(const complex<_Up
>&);
165 /// Divide this complex number by @a z.
166 template<typename _Up
>
167 complex<_Tp
>& operator/=(const complex<_Up
>&);
169 const complex& __rep() const;
176 template<typename _Tp
>
178 complex<_Tp
>::real() { return _M_real
; }
180 template<typename _Tp
>
182 complex<_Tp
>::real() const { return _M_real
; }
184 template<typename _Tp
>
186 complex<_Tp
>::imag() { return _M_imag
; }
188 template<typename _Tp
>
190 complex<_Tp
>::imag() const { return _M_imag
; }
192 template<typename _Tp
>
194 complex<_Tp
>::complex(const _Tp
& __r
, const _Tp
& __i
)
195 : _M_real(__r
), _M_imag(__i
) { }
197 template<typename _Tp
>
198 template<typename _Up
>
200 complex<_Tp
>::complex(const complex<_Up
>& __z
)
201 : _M_real(__z
.real()), _M_imag(__z
.imag()) { }
203 template<typename _Tp
>
205 complex<_Tp
>::operator=(const _Tp
& __t
)
213 template<typename _Tp
>
215 complex<_Tp
>::operator+=(const _Tp
& __t
)
222 template<typename _Tp
>
224 complex<_Tp
>::operator-=(const _Tp
& __t
)
231 template<typename _Tp
>
233 complex<_Tp
>::operator*=(const _Tp
& __t
)
241 template<typename _Tp
>
243 complex<_Tp
>::operator/=(const _Tp
& __t
)
250 template<typename _Tp
>
251 template<typename _Up
>
253 complex<_Tp
>::operator=(const complex<_Up
>& __z
)
255 _M_real
= __z
.real();
256 _M_imag
= __z
.imag();
261 template<typename _Tp
>
262 template<typename _Up
>
264 complex<_Tp
>::operator+=(const complex<_Up
>& __z
)
266 _M_real
+= __z
.real();
267 _M_imag
+= __z
.imag();
272 template<typename _Tp
>
273 template<typename _Up
>
275 complex<_Tp
>::operator-=(const complex<_Up
>& __z
)
277 _M_real
-= __z
.real();
278 _M_imag
-= __z
.imag();
283 // XXX: This is a grammar school implementation.
284 template<typename _Tp
>
285 template<typename _Up
>
287 complex<_Tp
>::operator*=(const complex<_Up
>& __z
)
289 const _Tp __r
= _M_real
* __z
.real() - _M_imag
* __z
.imag();
290 _M_imag
= _M_real
* __z
.imag() + _M_imag
* __z
.real();
296 // XXX: This is a grammar school implementation.
297 template<typename _Tp
>
298 template<typename _Up
>
300 complex<_Tp
>::operator/=(const complex<_Up
>& __z
)
302 const _Tp __r
= _M_real
* __z
.real() + _M_imag
* __z
.imag();
303 const _Tp __n
= std::norm(__z
);
304 _M_imag
= (_M_imag
* __z
.real() - _M_real
* __z
.imag()) / __n
;
309 template<typename _Tp
>
310 inline const complex<_Tp
>&
311 complex<_Tp
>::__rep() const { return *this; }
315 /// Return new complex value @a x plus @a y.
316 template<typename _Tp
>
318 operator+(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
320 complex<_Tp
> __r
= __x
;
325 template<typename _Tp
>
327 operator+(const complex<_Tp
>& __x
, const _Tp
& __y
)
329 complex<_Tp
> __r
= __x
;
334 template<typename _Tp
>
336 operator+(const _Tp
& __x
, const complex<_Tp
>& __y
)
338 complex<_Tp
> __r
= __y
;
345 /// Return new complex value @a x minus @a y.
346 template<typename _Tp
>
348 operator-(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
350 complex<_Tp
> __r
= __x
;
355 template<typename _Tp
>
357 operator-(const complex<_Tp
>& __x
, const _Tp
& __y
)
359 complex<_Tp
> __r
= __x
;
364 template<typename _Tp
>
366 operator-(const _Tp
& __x
, const complex<_Tp
>& __y
)
368 complex<_Tp
> __r(__x
, -__y
.imag());
369 __r
.real() -= __y
.real();
375 /// Return new complex value @a x times @a y.
376 template<typename _Tp
>
378 operator*(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
380 complex<_Tp
> __r
= __x
;
385 template<typename _Tp
>
387 operator*(const complex<_Tp
>& __x
, const _Tp
& __y
)
389 complex<_Tp
> __r
= __x
;
394 template<typename _Tp
>
396 operator*(const _Tp
& __x
, const complex<_Tp
>& __y
)
398 complex<_Tp
> __r
= __y
;
405 /// Return new complex value @a x divided by @a y.
406 template<typename _Tp
>
408 operator/(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
410 complex<_Tp
> __r
= __x
;
415 template<typename _Tp
>
417 operator/(const complex<_Tp
>& __x
, const _Tp
& __y
)
419 complex<_Tp
> __r
= __x
;
424 template<typename _Tp
>
426 operator/(const _Tp
& __x
, const complex<_Tp
>& __y
)
428 complex<_Tp
> __r
= __x
;
435 template<typename _Tp
>
437 operator+(const complex<_Tp
>& __x
)
440 /// Return complex negation of @a x.
441 template<typename _Tp
>
443 operator-(const complex<_Tp
>& __x
)
444 { return complex<_Tp
>(-__x
.real(), -__x
.imag()); }
447 /// Return true if @a x is equal to @a y.
448 template<typename _Tp
>
450 operator==(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
451 { return __x
.real() == __y
.real() && __x
.imag() == __y
.imag(); }
453 template<typename _Tp
>
455 operator==(const complex<_Tp
>& __x
, const _Tp
& __y
)
456 { return __x
.real() == __y
&& __x
.imag() == _Tp(); }
458 template<typename _Tp
>
460 operator==(const _Tp
& __x
, const complex<_Tp
>& __y
)
461 { return __x
== __y
.real() && _Tp() == __y
.imag(); }
465 /// Return false if @a x is equal to @a y.
466 template<typename _Tp
>
468 operator!=(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
469 { return __x
.real() != __y
.real() || __x
.imag() != __y
.imag(); }
471 template<typename _Tp
>
473 operator!=(const complex<_Tp
>& __x
, const _Tp
& __y
)
474 { return __x
.real() != __y
|| __x
.imag() != _Tp(); }
476 template<typename _Tp
>
478 operator!=(const _Tp
& __x
, const complex<_Tp
>& __y
)
479 { return __x
!= __y
.real() || _Tp() != __y
.imag(); }
482 /// Extraction operator for complex values.
483 template<typename _Tp
, typename _CharT
, class _Traits
>
484 basic_istream
<_CharT
, _Traits
>&
485 operator>>(basic_istream
<_CharT
, _Traits
>& __is
, complex<_Tp
>& __x
)
492 __is
>> __re_x
>> __ch
;
495 __is
>> __im_x
>> __ch
;
497 __x
= complex<_Tp
>(__re_x
, __im_x
);
499 __is
.setstate(ios_base::failbit
);
501 else if (__ch
== ')')
504 __is
.setstate(ios_base::failbit
);
515 /// Insertion operator for complex values.
516 template<typename _Tp
, typename _CharT
, class _Traits
>
517 basic_ostream
<_CharT
, _Traits
>&
518 operator<<(basic_ostream
<_CharT
, _Traits
>& __os
, const complex<_Tp
>& __x
)
520 basic_ostringstream
<_CharT
, _Traits
> __s
;
521 __s
.flags(__os
.flags());
522 __s
.imbue(__os
.getloc());
523 __s
.precision(__os
.precision());
524 __s
<< '(' << __x
.real() << ',' << __x
.imag() << ')';
525 return __os
<< __s
.str();
529 template<typename _Tp
>
531 real(complex<_Tp
>& __z
)
532 { return __z
.real(); }
534 template<typename _Tp
>
536 real(const complex<_Tp
>& __z
)
537 { return __z
.real(); }
539 template<typename _Tp
>
541 imag(complex<_Tp
>& __z
)
542 { return __z
.imag(); }
544 template<typename _Tp
>
546 imag(const complex<_Tp
>& __z
)
547 { return __z
.imag(); }
549 // 26.2.7/3 abs(__z): Returns the magnitude of __z.
550 template<typename _Tp
>
552 __complex_abs(const complex<_Tp
>& __z
)
554 _Tp __x
= __z
.real();
555 _Tp __y
= __z
.imag();
556 const _Tp __s
= std::max(abs(__x
), abs(__y
));
557 if (__s
== _Tp()) // well ...
561 return __s
* sqrt(__x
* __x
+ __y
* __y
);
564 #if _GLIBCXX_USE_C99_COMPLEX
566 __complex_abs(__complex__
float __z
) { return __builtin_cabsf(__z
); }
569 __complex_abs(__complex__
double __z
) { return __builtin_cabs(__z
); }
572 __complex_abs(const __complex__
long double& __z
)
573 { return __builtin_cabsl(__z
); }
575 template<typename _Tp
>
577 abs(const complex<_Tp
>& __z
) { return __complex_abs(__z
.__rep()); }
579 template<typename _Tp
>
581 abs(const complex<_Tp
>& __z
) { return __complex_abs(__z
); }
585 // 26.2.7/4: arg(__z): Returns the phase angle of __z.
586 template<typename _Tp
>
588 __complex_arg(const complex<_Tp
>& __z
)
589 { return atan2(__z
.imag(), __z
.real()); }
591 #if _GLIBCXX_USE_C99_COMPLEX
593 __complex_arg(__complex__
float __z
) { return __builtin_cargf(__z
); }
596 __complex_arg(__complex__
double __z
) { return __builtin_carg(__z
); }
599 __complex_arg(const __complex__
long double& __z
)
600 { return __builtin_cargl(__z
); }
602 template<typename _Tp
>
604 arg(const complex<_Tp
>& __z
) { return __complex_arg(__z
.__rep()); }
606 template<typename _Tp
>
608 arg(const complex<_Tp
>& __z
) { return __complex_arg(__z
); }
611 // 26.2.7/5: norm(__z) returns the squared magintude of __z.
612 // As defined, norm() is -not- a norm is the common mathematical
613 // sens used in numerics. The helper class _Norm_helper<> tries to
614 // distinguish between builtin floating point and the rest, so as
615 // to deliver an answer as close as possible to the real value.
619 template<typename _Tp
>
620 static inline _Tp
_S_do_it(const complex<_Tp
>& __z
)
622 const _Tp __x
= __z
.real();
623 const _Tp __y
= __z
.imag();
624 return __x
* __x
+ __y
* __y
;
629 struct _Norm_helper
<true>
631 template<typename _Tp
>
632 static inline _Tp
_S_do_it(const complex<_Tp
>& __z
)
634 _Tp __res
= std::abs(__z
);
635 return __res
* __res
;
639 template<typename _Tp
>
641 norm(const complex<_Tp
>& __z
)
643 return _Norm_helper
<__is_floating
<_Tp
>::__value
644 && !_GLIBCXX_FAST_MATH
>::_S_do_it(__z
);
647 template<typename _Tp
>
649 polar(const _Tp
& __rho
, const _Tp
& __theta
)
650 { return complex<_Tp
>(__rho
* cos(__theta
), __rho
* sin(__theta
)); }
652 template<typename _Tp
>
654 conj(const complex<_Tp
>& __z
)
655 { return complex<_Tp
>(__z
.real(), -__z
.imag()); }
659 // 26.2.8/1 cos(__z): Returns the cosine of __z.
660 template<typename _Tp
>
662 __complex_cos(const complex<_Tp
>& __z
)
664 const _Tp __x
= __z
.real();
665 const _Tp __y
= __z
.imag();
666 return complex<_Tp
>(cos(__x
) * cosh(__y
), -sin(__x
) * sinh(__y
));
669 #if _GLIBCXX_USE_C99_COMPLEX
670 inline __complex__
float
671 __complex_cos(__complex__
float __z
) { return __builtin_ccosf(__z
); }
673 inline __complex__
double
674 __complex_cos(__complex__
double __z
) { return __builtin_ccos(__z
); }
676 inline __complex__
long double
677 __complex_cos(const __complex__
long double& __z
)
678 { return __builtin_ccosl(__z
); }
680 template<typename _Tp
>
682 cos(const complex<_Tp
>& __z
) { return __complex_cos(__z
.__rep()); }
684 template<typename _Tp
>
686 cos(const complex<_Tp
>& __z
) { return __complex_cos(__z
); }
689 // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
690 template<typename _Tp
>
692 __complex_cosh(const complex<_Tp
>& __z
)
694 const _Tp __x
= __z
.real();
695 const _Tp __y
= __z
.imag();
696 return complex<_Tp
>(cosh(__x
) * cos(__y
), sinh(__x
) * sin(__y
));
699 #if _GLIBCXX_USE_C99_COMPLEX
700 inline __complex__
float
701 __complex_cosh(__complex__
float __z
) { return __builtin_ccoshf(__z
); }
703 inline __complex__
double
704 __complex_cosh(__complex__
double __z
) { return __builtin_ccosh(__z
); }
706 inline __complex__
long double
707 __complex_cosh(const __complex__
long double& __z
)
708 { return __builtin_ccoshl(__z
); }
710 template<typename _Tp
>
712 cosh(const complex<_Tp
>& __z
) { return __complex_cosh(__z
.__rep()); }
714 template<typename _Tp
>
716 cosh(const complex<_Tp
>& __z
) { return __complex_cosh(__z
); }
719 // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
720 template<typename _Tp
>
722 __complex_exp(const complex<_Tp
>& __z
)
723 { return std::polar(exp(__z
.real()), __z
.imag()); }
725 #if _GLIBCXX_USE_C99_COMPLEX
726 inline __complex__
float
727 __complex_exp(__complex__
float __z
) { return __builtin_cexpf(__z
); }
729 inline __complex__
double
730 __complex_exp(__complex__
double __z
) { return __builtin_cexp(__z
); }
732 inline __complex__
long double
733 __complex_exp(const __complex__
long double& __z
)
734 { return __builtin_cexpl(__z
); }
736 template<typename _Tp
>
738 exp(const complex<_Tp
>& __z
) { return __complex_exp(__z
.__rep()); }
740 template<typename _Tp
>
742 exp(const complex<_Tp
>& __z
) { return __complex_exp(__z
); }
745 // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.
746 // The branch cut is along the negative axis.
747 template<typename _Tp
>
749 __complex_log(const complex<_Tp
>& __z
)
750 { return complex<_Tp
>(log(std::abs(__z
)), std::arg(__z
)); }
752 #if _GLIBCXX_USE_C99_COMPLEX
753 inline __complex__
float
754 __complex_log(__complex__
float __z
) { return __builtin_clogf(__z
); }
756 inline __complex__
double
757 __complex_log(__complex__
double __z
) { return __builtin_clog(__z
); }
759 inline __complex__
long double
760 __complex_log(const __complex__
long double& __z
)
761 { return __builtin_clogl(__z
); }
763 template<typename _Tp
>
765 log(const complex<_Tp
>& __z
) { return __complex_log(__z
.__rep()); }
767 template<typename _Tp
>
769 log(const complex<_Tp
>& __z
) { return __complex_log(__z
); }
772 template<typename _Tp
>
774 log10(const complex<_Tp
>& __z
)
775 { return std::log(__z
) / log(_Tp(10.0)); }
777 // 26.2.8/10 sin(__z): Returns the sine of __z.
778 template<typename _Tp
>
780 __complex_sin(const complex<_Tp
>& __z
)
782 const _Tp __x
= __z
.real();
783 const _Tp __y
= __z
.imag();
784 return complex<_Tp
>(sin(__x
) * cosh(__y
), cos(__x
) * sinh(__y
));
787 #if _GLIBCXX_USE_C99_COMPLEX
788 inline __complex__
float
789 __complex_sin(__complex__
float __z
) { return __builtin_csinf(__z
); }
791 inline __complex__
double
792 __complex_sin(__complex__
double __z
) { return __builtin_csin(__z
); }
794 inline __complex__
long double
795 __complex_sin(const __complex__
long double& __z
)
796 { return __builtin_csinl(__z
); }
798 template<typename _Tp
>
800 sin(const complex<_Tp
>& __z
) { return __complex_sin(__z
.__rep()); }
802 template<typename _Tp
>
804 sin(const complex<_Tp
>& __z
) { return __complex_sin(__z
); }
807 // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
808 template<typename _Tp
>
810 __complex_sinh(const complex<_Tp
>& __z
)
812 const _Tp __x
= __z
.real();
813 const _Tp __y
= __z
.imag();
814 return complex<_Tp
>(sinh(__x
) * cos(__y
), cosh(__x
) * sin(__y
));
817 #if _GLIBCXX_USE_C99_COMPLEX
818 inline __complex__
float
819 __complex_sinh(__complex__
float __z
) { return __builtin_csinhf(__z
); }
821 inline __complex__
double
822 __complex_sinh(__complex__
double __z
) { return __builtin_csinh(__z
); }
824 inline __complex__
long double
825 __complex_sinh(const __complex__
long double& __z
)
826 { return __builtin_csinhl(__z
); }
828 template<typename _Tp
>
830 sinh(const complex<_Tp
>& __z
) { return __complex_sinh(__z
.__rep()); }
832 template<typename _Tp
>
834 sinh(const complex<_Tp
>& __z
) { return __complex_sinh(__z
); }
837 // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
838 // The branch cut is on the negative axis.
839 template<typename _Tp
>
841 __complex_sqrt(const complex<_Tp
>& __z
)
843 _Tp __x
= __z
.real();
844 _Tp __y
= __z
.imag();
848 _Tp __t
= sqrt(abs(__y
) / 2);
849 return complex<_Tp
>(__t
, __y
< _Tp() ? -__t
: __t
);
853 _Tp __t
= sqrt(2 * (std::abs(__z
) + abs(__x
)));
856 ? complex<_Tp
>(__u
, __y
/ __t
)
857 : complex<_Tp
>(abs(__y
) / __t
, __y
< _Tp() ? -__u
: __u
);
861 #if _GLIBCXX_USE_C99_COMPLEX
862 inline __complex__
float
863 __complex_sqrt(__complex__
float __z
) { return __builtin_csqrtf(__z
); }
865 inline __complex__
double
866 __complex_sqrt(__complex__
double __z
) { return __builtin_csqrt(__z
); }
868 inline __complex__
long double
869 __complex_sqrt(const __complex__
long double& __z
)
870 { return __builtin_csqrtl(__z
); }
872 template<typename _Tp
>
874 sqrt(const complex<_Tp
>& __z
) { return __complex_sqrt(__z
.__rep()); }
876 template<typename _Tp
>
878 sqrt(const complex<_Tp
>& __z
) { return __complex_sqrt(__z
); }
881 // 26.2.8/14 tan(__z): Return the complex tangent of __z.
883 template<typename _Tp
>
885 __complex_tan(const complex<_Tp
>& __z
)
886 { return std::sin(__z
) / std::cos(__z
); }
888 #if _GLIBCXX_USE_C99_COMPLEX
889 inline __complex__
float
890 __complex_tan(__complex__
float __z
) { return __builtin_ctanf(__z
); }
892 inline __complex__
double
893 __complex_tan(__complex__
double __z
) { return __builtin_ctan(__z
); }
895 inline __complex__
long double
896 __complex_tan(const __complex__
long double& __z
)
897 { return __builtin_ctanl(__z
); }
899 template<typename _Tp
>
901 tan(const complex<_Tp
>& __z
) { return __complex_tan(__z
.__rep()); }
903 template<typename _Tp
>
905 tan(const complex<_Tp
>& __z
) { return __complex_tan(__z
); }
909 // 26.2.8/15 tanh(__z): Returns the hyperbolic tangent of __z.
911 template<typename _Tp
>
913 __complex_tanh(const complex<_Tp
>& __z
)
914 { return std::sinh(__z
) / std::cosh(__z
); }
916 #if _GLIBCXX_USE_C99_COMPLEX
917 inline __complex__
float
918 __complex_tanh(__complex__
float __z
) { return __builtin_ctanhf(__z
); }
920 inline __complex__
double
921 __complex_tanh(__complex__
double __z
) { return __builtin_ctanh(__z
); }
923 inline __complex__
long double
924 __complex_tanh(const __complex__
long double& __z
)
925 { return __builtin_ctanhl(__z
); }
927 template<typename _Tp
>
929 tanh(const complex<_Tp
>& __z
) { return __complex_tanh(__z
.__rep()); }
931 template<typename _Tp
>
933 tanh(const complex<_Tp
>& __z
) { return __complex_tanh(__z
); }
937 // 26.2.8/9 pow(__x, __y): Returns the complex power base of __x
938 // raised to the __y-th power. The branch
939 // cut is on the negative axis.
940 template<typename _Tp
>
942 pow(const complex<_Tp
>& __z
, int __n
)
943 { return std::__pow_helper(__z
, __n
); }
945 template<typename _Tp
>
947 pow(const complex<_Tp
>& __x
, const _Tp
& __y
)
949 #ifndef _GLIBCXX_USE_C99_COMPLEX
953 if (__x
.imag() == _Tp() && __x
.real() > _Tp())
954 return pow(__x
.real(), __y
);
956 complex<_Tp
> __t
= std::log(__x
);
957 return std::polar(exp(__y
* __t
.real()), __y
* __t
.imag());
960 template<typename _Tp
>
962 __complex_pow(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
963 { return __x
== _Tp() ? _Tp() : std::exp(__y
* std::log(__x
)); }
965 #if _GLIBCXX_USE_C99_COMPLEX
966 inline __complex__
float
967 __complex_pow(__complex__
float __x
, __complex__
float __y
)
968 { return __builtin_cpowf(__x
, __y
); }
970 inline __complex__
double
971 __complex_pow(__complex__
double __x
, __complex__
double __y
)
972 { return __builtin_cpow(__x
, __y
); }
974 inline __complex__
long double
975 __complex_pow(const __complex__
long double& __x
,
976 const __complex__
long double& __y
)
977 { return __builtin_cpowl(__x
, __y
); }
979 template<typename _Tp
>
981 pow(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
982 { return __complex_pow(__x
.__rep(), __y
.__rep()); }
984 template<typename _Tp
>
986 pow(const complex<_Tp
>& __x
, const complex<_Tp
>& __y
)
987 { return __complex_pow(__x
, __y
); }
990 template<typename _Tp
>
992 pow(const _Tp
& __x
, const complex<_Tp
>& __y
)
994 return __x
> _Tp() ? std::polar(pow(__x
, __y
.real()),
995 __y
.imag() * log(__x
))
996 : std::pow(complex<_Tp
>(__x
, _Tp()), __y
);
999 // 26.2.3 complex specializations
1000 // complex<float> specialization
1002 struct complex<float>
1004 typedef float value_type
;
1005 typedef __complex__
float _ComplexT
;
1007 complex(_ComplexT __z
) : _M_value(__z
) { }
1009 complex(float = 0.0f
, float = 0.0f
);
1011 explicit complex(const complex<double>&);
1012 explicit complex(const complex<long double>&);
1015 const float& real() const;
1017 const float& imag() const;
1019 complex<float>& operator=(float);
1020 complex<float>& operator+=(float);
1021 complex<float>& operator-=(float);
1022 complex<float>& operator*=(float);
1023 complex<float>& operator/=(float);
1025 // Let's the compiler synthetize the copy and assignment
1026 // operator. It always does a pretty good job.
1027 // complex& operator= (const complex&);
1028 template<typename _Tp
>
1029 complex<float>&operator=(const complex<_Tp
>&);
1030 template<typename _Tp
>
1031 complex<float>& operator+=(const complex<_Tp
>&);
1033 complex<float>& operator-=(const complex<_Tp
>&);
1035 complex<float>& operator*=(const complex<_Tp
>&);
1037 complex<float>&operator/=(const complex<_Tp
>&);
1039 const _ComplexT
& __rep() const { return _M_value
; }
1046 complex<float>::real()
1047 { return __real__ _M_value
; }
1050 complex<float>::real() const
1051 { return __real__ _M_value
; }
1054 complex<float>::imag()
1055 { return __imag__ _M_value
; }
1058 complex<float>::imag() const
1059 { return __imag__ _M_value
; }
1062 complex<float>::complex(float r
, float i
)
1064 __real__ _M_value
= r
;
1065 __imag__ _M_value
= i
;
1068 inline complex<float>&
1069 complex<float>::operator=(float __f
)
1071 __real__ _M_value
= __f
;
1072 __imag__ _M_value
= 0.0f
;
1076 inline complex<float>&
1077 complex<float>::operator+=(float __f
)
1079 __real__ _M_value
+= __f
;
1083 inline complex<float>&
1084 complex<float>::operator-=(float __f
)
1086 __real__ _M_value
-= __f
;
1090 inline complex<float>&
1091 complex<float>::operator*=(float __f
)
1097 inline complex<float>&
1098 complex<float>::operator/=(float __f
)
1104 template<typename _Tp
>
1105 inline complex<float>&
1106 complex<float>::operator=(const complex<_Tp
>& __z
)
1108 __real__ _M_value
= __z
.real();
1109 __imag__ _M_value
= __z
.imag();
1113 template<typename _Tp
>
1114 inline complex<float>&
1115 complex<float>::operator+=(const complex<_Tp
>& __z
)
1117 __real__ _M_value
+= __z
.real();
1118 __imag__ _M_value
+= __z
.imag();
1122 template<typename _Tp
>
1123 inline complex<float>&
1124 complex<float>::operator-=(const complex<_Tp
>& __z
)
1126 __real__ _M_value
-= __z
.real();
1127 __imag__ _M_value
-= __z
.imag();
1131 template<typename _Tp
>
1132 inline complex<float>&
1133 complex<float>::operator*=(const complex<_Tp
>& __z
)
1136 __real__ __t
= __z
.real();
1137 __imag__ __t
= __z
.imag();
1142 template<typename _Tp
>
1143 inline complex<float>&
1144 complex<float>::operator/=(const complex<_Tp
>& __z
)
1147 __real__ __t
= __z
.real();
1148 __imag__ __t
= __z
.imag();
1153 // 26.2.3 complex specializations
1154 // complex<double> specialization
1156 struct complex<double>
1158 typedef double value_type
;
1159 typedef __complex__
double _ComplexT
;
1161 complex(_ComplexT __z
) : _M_value(__z
) { }
1163 complex(double = 0.0, double = 0.0);
1165 complex(const complex<float>&);
1166 explicit complex(const complex<long double>&);
1169 const double& real() const;
1171 const double& imag() const;
1173 complex<double>& operator=(double);
1174 complex<double>& operator+=(double);
1175 complex<double>& operator-=(double);
1176 complex<double>& operator*=(double);
1177 complex<double>& operator/=(double);
1179 // The compiler will synthetize this, efficiently.
1180 // complex& operator= (const complex&);
1181 template<typename _Tp
>
1182 complex<double>& operator=(const complex<_Tp
>&);
1183 template<typename _Tp
>
1184 complex<double>& operator+=(const complex<_Tp
>&);
1185 template<typename _Tp
>
1186 complex<double>& operator-=(const complex<_Tp
>&);
1187 template<typename _Tp
>
1188 complex<double>& operator*=(const complex<_Tp
>&);
1189 template<typename _Tp
>
1190 complex<double>& operator/=(const complex<_Tp
>&);
1192 const _ComplexT
& __rep() const { return _M_value
; }
1199 complex<double>::real()
1200 { return __real__ _M_value
; }
1202 inline const double&
1203 complex<double>::real() const
1204 { return __real__ _M_value
; }
1207 complex<double>::imag()
1208 { return __imag__ _M_value
; }
1210 inline const double&
1211 complex<double>::imag() const
1212 { return __imag__ _M_value
; }
1215 complex<double>::complex(double __r
, double __i
)
1217 __real__ _M_value
= __r
;
1218 __imag__ _M_value
= __i
;
1221 inline complex<double>&
1222 complex<double>::operator=(double __d
)
1224 __real__ _M_value
= __d
;
1225 __imag__ _M_value
= 0.0;
1229 inline complex<double>&
1230 complex<double>::operator+=(double __d
)
1232 __real__ _M_value
+= __d
;
1236 inline complex<double>&
1237 complex<double>::operator-=(double __d
)
1239 __real__ _M_value
-= __d
;
1243 inline complex<double>&
1244 complex<double>::operator*=(double __d
)
1250 inline complex<double>&
1251 complex<double>::operator/=(double __d
)
1257 template<typename _Tp
>
1258 inline complex<double>&
1259 complex<double>::operator=(const complex<_Tp
>& __z
)
1261 __real__ _M_value
= __z
.real();
1262 __imag__ _M_value
= __z
.imag();
1266 template<typename _Tp
>
1267 inline complex<double>&
1268 complex<double>::operator+=(const complex<_Tp
>& __z
)
1270 __real__ _M_value
+= __z
.real();
1271 __imag__ _M_value
+= __z
.imag();
1275 template<typename _Tp
>
1276 inline complex<double>&
1277 complex<double>::operator-=(const complex<_Tp
>& __z
)
1279 __real__ _M_value
-= __z
.real();
1280 __imag__ _M_value
-= __z
.imag();
1284 template<typename _Tp
>
1285 inline complex<double>&
1286 complex<double>::operator*=(const complex<_Tp
>& __z
)
1289 __real__ __t
= __z
.real();
1290 __imag__ __t
= __z
.imag();
1295 template<typename _Tp
>
1296 inline complex<double>&
1297 complex<double>::operator/=(const complex<_Tp
>& __z
)
1300 __real__ __t
= __z
.real();
1301 __imag__ __t
= __z
.imag();
1306 // 26.2.3 complex specializations
1307 // complex<long double> specialization
1309 struct complex<long double>
1311 typedef long double value_type
;
1312 typedef __complex__
long double _ComplexT
;
1314 complex(_ComplexT __z
) : _M_value(__z
) { }
1316 complex(long double = 0.0L, long double = 0.0L);
1318 complex(const complex<float>&);
1319 complex(const complex<double>&);
1321 long double& real();
1322 const long double& real() const;
1323 long double& imag();
1324 const long double& imag() const;
1326 complex<long double>& operator= (long double);
1327 complex<long double>& operator+= (long double);
1328 complex<long double>& operator-= (long double);
1329 complex<long double>& operator*= (long double);
1330 complex<long double>& operator/= (long double);
1332 // The compiler knows how to do this efficiently
1333 // complex& operator= (const complex&);
1334 template<typename _Tp
>
1335 complex<long double>& operator=(const complex<_Tp
>&);
1336 template<typename _Tp
>
1337 complex<long double>& operator+=(const complex<_Tp
>&);
1338 template<typename _Tp
>
1339 complex<long double>& operator-=(const complex<_Tp
>&);
1340 template<typename _Tp
>
1341 complex<long double>& operator*=(const complex<_Tp
>&);
1342 template<typename _Tp
>
1343 complex<long double>& operator/=(const complex<_Tp
>&);
1345 const _ComplexT
& __rep() const { return _M_value
; }
1352 complex<long double>::complex(long double __r
, long double __i
)
1354 __real__ _M_value
= __r
;
1355 __imag__ _M_value
= __i
;
1359 complex<long double>::real()
1360 { return __real__ _M_value
; }
1362 inline const long double&
1363 complex<long double>::real() const
1364 { return __real__ _M_value
; }
1367 complex<long double>::imag()
1368 { return __imag__ _M_value
; }
1370 inline const long double&
1371 complex<long double>::imag() const
1372 { return __imag__ _M_value
; }
1374 inline complex<long double>&
1375 complex<long double>::operator=(long double __r
)
1377 __real__ _M_value
= __r
;
1378 __imag__ _M_value
= 0.0L;
1382 inline complex<long double>&
1383 complex<long double>::operator+=(long double __r
)
1385 __real__ _M_value
+= __r
;
1389 inline complex<long double>&
1390 complex<long double>::operator-=(long double __r
)
1392 __real__ _M_value
-= __r
;
1396 inline complex<long double>&
1397 complex<long double>::operator*=(long double __r
)
1403 inline complex<long double>&
1404 complex<long double>::operator/=(long double __r
)
1410 template<typename _Tp
>
1411 inline complex<long double>&
1412 complex<long double>::operator=(const complex<_Tp
>& __z
)
1414 __real__ _M_value
= __z
.real();
1415 __imag__ _M_value
= __z
.imag();
1419 template<typename _Tp
>
1420 inline complex<long double>&
1421 complex<long double>::operator+=(const complex<_Tp
>& __z
)
1423 __real__ _M_value
+= __z
.real();
1424 __imag__ _M_value
+= __z
.imag();
1428 template<typename _Tp
>
1429 inline complex<long double>&
1430 complex<long double>::operator-=(const complex<_Tp
>& __z
)
1432 __real__ _M_value
-= __z
.real();
1433 __imag__ _M_value
-= __z
.imag();
1437 template<typename _Tp
>
1438 inline complex<long double>&
1439 complex<long double>::operator*=(const complex<_Tp
>& __z
)
1442 __real__ __t
= __z
.real();
1443 __imag__ __t
= __z
.imag();
1448 template<typename _Tp
>
1449 inline complex<long double>&
1450 complex<long double>::operator/=(const complex<_Tp
>& __z
)
1453 __real__ __t
= __z
.real();
1454 __imag__ __t
= __z
.imag();
1459 // These bits have to be at the end of this file, so that the
1460 // specializations have all been defined.
1461 // ??? No, they have to be there because of compiler limitation at
1462 // inlining. It suffices that class specializations be defined.
1464 complex<float>::complex(const complex<double>& __z
)
1465 : _M_value(__z
.__rep()) { }
1468 complex<float>::complex(const complex<long double>& __z
)
1469 : _M_value(__z
.__rep()) { }
1472 complex<double>::complex(const complex<float>& __z
)
1473 : _M_value(__z
.__rep()) { }
1476 complex<double>::complex(const complex<long double>& __z
)
1477 : _M_value(__z
.__rep()) { }
1480 complex<long double>::complex(const complex<float>& __z
)
1481 : _M_value(__z
.__rep()) { }
1484 complex<long double>::complex(const complex<double>& __z
)
1485 : _M_value(__z
.__rep()) { }
1488 #endif /* _GLIBCXX_COMPLEX */