Sync usage with man page.
[netbsd-mini2440.git] / gnu / dist / gcc4 / libstdc++-v3 / include / std / std_complex.h
blobc7aab0e6e68981b177ec86787ebf19988bfa26f8
1 // The template and inlines for the -*- C++ -*- complex number classes.
3 // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
32 // ISO C++ 14882: 26.2 Complex Numbers
33 // Note: this is not a conforming implementation.
34 // Initially implemented by Ulrich Drepper <drepper@cygnus.com>
35 // Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
38 /** @file complex
39 * This is a Standard C++ Library header.
42 #ifndef _GLIBCXX_COMPLEX
43 #define _GLIBCXX_COMPLEX 1
45 #pragma GCC system_header
47 #include <bits/c++config.h>
48 #include <bits/cpp_type_traits.h>
49 #include <cmath>
50 #include <sstream>
52 namespace std
54 // Forward declarations.
55 template<typename _Tp> class complex;
56 template<> class complex<float>;
57 template<> class complex<double>;
58 template<> class complex<long double>;
60 /// Return magnitude of @a z.
61 template<typename _Tp> _Tp abs(const complex<_Tp>&);
62 /// Return phase angle of @a z.
63 template<typename _Tp> _Tp arg(const complex<_Tp>&);
64 /// Return @a z magnitude squared.
65 template<typename _Tp> _Tp norm(const complex<_Tp>&);
67 /// Return complex conjugate of @a z.
68 template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
69 /// Return complex with magnitude @a rho and angle @a theta.
70 template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
72 // Transcendentals:
73 /// Return complex cosine of @a z.
74 template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
75 /// Return complex hyperbolic cosine of @a z.
76 template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
77 /// Return complex base e exponential of @a z.
78 template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
79 /// Return complex natural logarithm of @a z.
80 template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
81 /// Return complex base 10 logarithm of @a z.
82 template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
83 /// Return complex cosine of @a z.
84 template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
85 /// Return @a x to the @a y'th power.
86 template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
87 /// Return @a x to the @a y'th power.
88 template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&,
89 const complex<_Tp>&);
90 /// Return @a x to the @a y'th power.
91 template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
92 /// Return complex sine of @a z.
93 template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
94 /// Return complex hyperbolic sine of @a z.
95 template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
96 /// Return complex square root of @a z.
97 template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
98 /// Return complex tangent of @a z.
99 template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
100 /// Return complex hyperbolic tangent of @a z.
101 template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
102 //@}
105 // 26.2.2 Primary template class complex
107 * Template to represent complex numbers.
109 * Specializations for float, double, and long double are part of the
110 * library. Results with any other type are not guaranteed.
112 * @param Tp Type of real and imaginary values.
114 template<typename _Tp>
115 struct complex
117 /// Value typedef.
118 typedef _Tp value_type;
120 /// Default constructor. First parameter is x, second parameter is y.
121 /// Unspecified parameters default to 0.
122 complex(const _Tp& = _Tp(), const _Tp & = _Tp());
124 // Lets the compiler synthesize the copy constructor
125 // complex (const complex<_Tp>&);
126 /// Copy constructor.
127 template<typename _Up>
128 complex(const complex<_Up>&);
130 /// Return real part of complex number.
131 _Tp& real();
132 /// Return real part of complex number.
133 const _Tp& real() const;
134 /// Return imaginary part of complex number.
135 _Tp& imag();
136 /// Return imaginary part of complex number.
137 const _Tp& imag() const;
139 /// Assign this complex number to scalar @a t.
140 complex<_Tp>& operator=(const _Tp&);
141 /// Add @a t to this complex number.
142 complex<_Tp>& operator+=(const _Tp&);
143 /// Subtract @a t from this complex number.
144 complex<_Tp>& operator-=(const _Tp&);
145 /// Multiply this complex number by @a t.
146 complex<_Tp>& operator*=(const _Tp&);
147 /// Divide this complex number by @a t.
148 complex<_Tp>& operator/=(const _Tp&);
150 // Lets the compiler synthesize the
151 // copy and assignment operator
152 // complex<_Tp>& operator= (const complex<_Tp>&);
153 /// Assign this complex number to complex @a z.
154 template<typename _Up>
155 complex<_Tp>& operator=(const complex<_Up>&);
156 /// Add @a z to this complex number.
157 template<typename _Up>
158 complex<_Tp>& operator+=(const complex<_Up>&);
159 /// Subtract @a z from this complex number.
160 template<typename _Up>
161 complex<_Tp>& operator-=(const complex<_Up>&);
162 /// Multiply this complex number by @a z.
163 template<typename _Up>
164 complex<_Tp>& operator*=(const complex<_Up>&);
165 /// Divide this complex number by @a z.
166 template<typename _Up>
167 complex<_Tp>& operator/=(const complex<_Up>&);
169 const complex& __rep() const;
171 private:
172 _Tp _M_real;
173 _Tp _M_imag;
176 template<typename _Tp>
177 inline _Tp&
178 complex<_Tp>::real() { return _M_real; }
180 template<typename _Tp>
181 inline const _Tp&
182 complex<_Tp>::real() const { return _M_real; }
184 template<typename _Tp>
185 inline _Tp&
186 complex<_Tp>::imag() { return _M_imag; }
188 template<typename _Tp>
189 inline const _Tp&
190 complex<_Tp>::imag() const { return _M_imag; }
192 template<typename _Tp>
193 inline
194 complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)
195 : _M_real(__r), _M_imag(__i) { }
197 template<typename _Tp>
198 template<typename _Up>
199 inline
200 complex<_Tp>::complex(const complex<_Up>& __z)
201 : _M_real(__z.real()), _M_imag(__z.imag()) { }
203 template<typename _Tp>
204 complex<_Tp>&
205 complex<_Tp>::operator=(const _Tp& __t)
207 _M_real = __t;
208 _M_imag = _Tp();
209 return *this;
212 // 26.2.5/1
213 template<typename _Tp>
214 inline complex<_Tp>&
215 complex<_Tp>::operator+=(const _Tp& __t)
217 _M_real += __t;
218 return *this;
221 // 26.2.5/3
222 template<typename _Tp>
223 inline complex<_Tp>&
224 complex<_Tp>::operator-=(const _Tp& __t)
226 _M_real -= __t;
227 return *this;
230 // 26.2.5/5
231 template<typename _Tp>
232 complex<_Tp>&
233 complex<_Tp>::operator*=(const _Tp& __t)
235 _M_real *= __t;
236 _M_imag *= __t;
237 return *this;
240 // 26.2.5/7
241 template<typename _Tp>
242 complex<_Tp>&
243 complex<_Tp>::operator/=(const _Tp& __t)
245 _M_real /= __t;
246 _M_imag /= __t;
247 return *this;
250 template<typename _Tp>
251 template<typename _Up>
252 complex<_Tp>&
253 complex<_Tp>::operator=(const complex<_Up>& __z)
255 _M_real = __z.real();
256 _M_imag = __z.imag();
257 return *this;
260 // 26.2.5/9
261 template<typename _Tp>
262 template<typename _Up>
263 complex<_Tp>&
264 complex<_Tp>::operator+=(const complex<_Up>& __z)
266 _M_real += __z.real();
267 _M_imag += __z.imag();
268 return *this;
271 // 26.2.5/11
272 template<typename _Tp>
273 template<typename _Up>
274 complex<_Tp>&
275 complex<_Tp>::operator-=(const complex<_Up>& __z)
277 _M_real -= __z.real();
278 _M_imag -= __z.imag();
279 return *this;
282 // 26.2.5/13
283 // XXX: This is a grammar school implementation.
284 template<typename _Tp>
285 template<typename _Up>
286 complex<_Tp>&
287 complex<_Tp>::operator*=(const complex<_Up>& __z)
289 const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
290 _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
291 _M_real = __r;
292 return *this;
295 // 26.2.5/15
296 // XXX: This is a grammar school implementation.
297 template<typename _Tp>
298 template<typename _Up>
299 complex<_Tp>&
300 complex<_Tp>::operator/=(const complex<_Up>& __z)
302 const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag();
303 const _Tp __n = std::norm(__z);
304 _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
305 _M_real = __r / __n;
306 return *this;
309 template<typename _Tp>
310 inline const complex<_Tp>&
311 complex<_Tp>::__rep() const { return *this; }
313 // Operators:
314 //@{
315 /// Return new complex value @a x plus @a y.
316 template<typename _Tp>
317 inline complex<_Tp>
318 operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
320 complex<_Tp> __r = __x;
321 __r += __y;
322 return __r;
325 template<typename _Tp>
326 inline complex<_Tp>
327 operator+(const complex<_Tp>& __x, const _Tp& __y)
329 complex<_Tp> __r = __x;
330 __r.real() += __y;
331 return __r;
334 template<typename _Tp>
335 inline complex<_Tp>
336 operator+(const _Tp& __x, const complex<_Tp>& __y)
338 complex<_Tp> __r = __y;
339 __r.real() += __x;
340 return __r;
342 //@}
344 //@{
345 /// Return new complex value @a x minus @a y.
346 template<typename _Tp>
347 inline complex<_Tp>
348 operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
350 complex<_Tp> __r = __x;
351 __r -= __y;
352 return __r;
355 template<typename _Tp>
356 inline complex<_Tp>
357 operator-(const complex<_Tp>& __x, const _Tp& __y)
359 complex<_Tp> __r = __x;
360 __r.real() -= __y;
361 return __r;
364 template<typename _Tp>
365 inline complex<_Tp>
366 operator-(const _Tp& __x, const complex<_Tp>& __y)
368 complex<_Tp> __r(__x, -__y.imag());
369 __r.real() -= __y.real();
370 return __r;
372 //@}
374 //@{
375 /// Return new complex value @a x times @a y.
376 template<typename _Tp>
377 inline complex<_Tp>
378 operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
380 complex<_Tp> __r = __x;
381 __r *= __y;
382 return __r;
385 template<typename _Tp>
386 inline complex<_Tp>
387 operator*(const complex<_Tp>& __x, const _Tp& __y)
389 complex<_Tp> __r = __x;
390 __r *= __y;
391 return __r;
394 template<typename _Tp>
395 inline complex<_Tp>
396 operator*(const _Tp& __x, const complex<_Tp>& __y)
398 complex<_Tp> __r = __y;
399 __r *= __x;
400 return __r;
402 //@}
404 //@{
405 /// Return new complex value @a x divided by @a y.
406 template<typename _Tp>
407 inline complex<_Tp>
408 operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
410 complex<_Tp> __r = __x;
411 __r /= __y;
412 return __r;
415 template<typename _Tp>
416 inline complex<_Tp>
417 operator/(const complex<_Tp>& __x, const _Tp& __y)
419 complex<_Tp> __r = __x;
420 __r /= __y;
421 return __r;
424 template<typename _Tp>
425 inline complex<_Tp>
426 operator/(const _Tp& __x, const complex<_Tp>& __y)
428 complex<_Tp> __r = __x;
429 __r /= __y;
430 return __r;
432 //@}
434 /// Return @a x.
435 template<typename _Tp>
436 inline complex<_Tp>
437 operator+(const complex<_Tp>& __x)
438 { return __x; }
440 /// Return complex negation of @a x.
441 template<typename _Tp>
442 inline complex<_Tp>
443 operator-(const complex<_Tp>& __x)
444 { return complex<_Tp>(-__x.real(), -__x.imag()); }
446 //@{
447 /// Return true if @a x is equal to @a y.
448 template<typename _Tp>
449 inline bool
450 operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
451 { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
453 template<typename _Tp>
454 inline bool
455 operator==(const complex<_Tp>& __x, const _Tp& __y)
456 { return __x.real() == __y && __x.imag() == _Tp(); }
458 template<typename _Tp>
459 inline bool
460 operator==(const _Tp& __x, const complex<_Tp>& __y)
461 { return __x == __y.real() && _Tp() == __y.imag(); }
462 //@}
464 //@{
465 /// Return false if @a x is equal to @a y.
466 template<typename _Tp>
467 inline bool
468 operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
469 { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
471 template<typename _Tp>
472 inline bool
473 operator!=(const complex<_Tp>& __x, const _Tp& __y)
474 { return __x.real() != __y || __x.imag() != _Tp(); }
476 template<typename _Tp>
477 inline bool
478 operator!=(const _Tp& __x, const complex<_Tp>& __y)
479 { return __x != __y.real() || _Tp() != __y.imag(); }
480 //@}
482 /// Extraction operator for complex values.
483 template<typename _Tp, typename _CharT, class _Traits>
484 basic_istream<_CharT, _Traits>&
485 operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
487 _Tp __re_x, __im_x;
488 _CharT __ch;
489 __is >> __ch;
490 if (__ch == '(')
492 __is >> __re_x >> __ch;
493 if (__ch == ',')
495 __is >> __im_x >> __ch;
496 if (__ch == ')')
497 __x = complex<_Tp>(__re_x, __im_x);
498 else
499 __is.setstate(ios_base::failbit);
501 else if (__ch == ')')
502 __x = __re_x;
503 else
504 __is.setstate(ios_base::failbit);
506 else
508 __is.putback(__ch);
509 __is >> __re_x;
510 __x = __re_x;
512 return __is;
515 /// Insertion operator for complex values.
516 template<typename _Tp, typename _CharT, class _Traits>
517 basic_ostream<_CharT, _Traits>&
518 operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
520 basic_ostringstream<_CharT, _Traits> __s;
521 __s.flags(__os.flags());
522 __s.imbue(__os.getloc());
523 __s.precision(__os.precision());
524 __s << '(' << __x.real() << ',' << __x.imag() << ')';
525 return __os << __s.str();
528 // Values
529 template<typename _Tp>
530 inline _Tp&
531 real(complex<_Tp>& __z)
532 { return __z.real(); }
534 template<typename _Tp>
535 inline const _Tp&
536 real(const complex<_Tp>& __z)
537 { return __z.real(); }
539 template<typename _Tp>
540 inline _Tp&
541 imag(complex<_Tp>& __z)
542 { return __z.imag(); }
544 template<typename _Tp>
545 inline const _Tp&
546 imag(const complex<_Tp>& __z)
547 { return __z.imag(); }
549 // 26.2.7/3 abs(__z): Returns the magnitude of __z.
550 template<typename _Tp>
551 inline _Tp
552 __complex_abs(const complex<_Tp>& __z)
554 _Tp __x = __z.real();
555 _Tp __y = __z.imag();
556 const _Tp __s = std::max(abs(__x), abs(__y));
557 if (__s == _Tp()) // well ...
558 return __s;
559 __x /= __s;
560 __y /= __s;
561 return __s * sqrt(__x * __x + __y * __y);
564 #if _GLIBCXX_USE_C99_COMPLEX
565 inline float
566 __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); }
568 inline double
569 __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); }
571 inline long double
572 __complex_abs(const __complex__ long double& __z)
573 { return __builtin_cabsl(__z); }
575 template<typename _Tp>
576 inline _Tp
577 abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); }
578 #else
579 template<typename _Tp>
580 inline _Tp
581 abs(const complex<_Tp>& __z) { return __complex_abs(__z); }
582 #endif
585 // 26.2.7/4: arg(__z): Returns the phase angle of __z.
586 template<typename _Tp>
587 inline _Tp
588 __complex_arg(const complex<_Tp>& __z)
589 { return atan2(__z.imag(), __z.real()); }
591 #if _GLIBCXX_USE_C99_COMPLEX
592 inline float
593 __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); }
595 inline double
596 __complex_arg(__complex__ double __z) { return __builtin_carg(__z); }
598 inline long double
599 __complex_arg(const __complex__ long double& __z)
600 { return __builtin_cargl(__z); }
602 template<typename _Tp>
603 inline _Tp
604 arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); }
605 #else
606 template<typename _Tp>
607 inline _Tp
608 arg(const complex<_Tp>& __z) { return __complex_arg(__z); }
609 #endif
611 // 26.2.7/5: norm(__z) returns the squared magintude of __z.
612 // As defined, norm() is -not- a norm is the common mathematical
613 // sens used in numerics. The helper class _Norm_helper<> tries to
614 // distinguish between builtin floating point and the rest, so as
615 // to deliver an answer as close as possible to the real value.
616 template<bool>
617 struct _Norm_helper
619 template<typename _Tp>
620 static inline _Tp _S_do_it(const complex<_Tp>& __z)
622 const _Tp __x = __z.real();
623 const _Tp __y = __z.imag();
624 return __x * __x + __y * __y;
628 template<>
629 struct _Norm_helper<true>
631 template<typename _Tp>
632 static inline _Tp _S_do_it(const complex<_Tp>& __z)
634 _Tp __res = std::abs(__z);
635 return __res * __res;
639 template<typename _Tp>
640 inline _Tp
641 norm(const complex<_Tp>& __z)
643 return _Norm_helper<__is_floating<_Tp>::__value
644 && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
647 template<typename _Tp>
648 inline complex<_Tp>
649 polar(const _Tp& __rho, const _Tp& __theta)
650 { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
652 template<typename _Tp>
653 inline complex<_Tp>
654 conj(const complex<_Tp>& __z)
655 { return complex<_Tp>(__z.real(), -__z.imag()); }
657 // Transcendentals
659 // 26.2.8/1 cos(__z): Returns the cosine of __z.
660 template<typename _Tp>
661 inline complex<_Tp>
662 __complex_cos(const complex<_Tp>& __z)
664 const _Tp __x = __z.real();
665 const _Tp __y = __z.imag();
666 return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
669 #if _GLIBCXX_USE_C99_COMPLEX
670 inline __complex__ float
671 __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); }
673 inline __complex__ double
674 __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); }
676 inline __complex__ long double
677 __complex_cos(const __complex__ long double& __z)
678 { return __builtin_ccosl(__z); }
680 template<typename _Tp>
681 inline complex<_Tp>
682 cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); }
683 #else
684 template<typename _Tp>
685 inline complex<_Tp>
686 cos(const complex<_Tp>& __z) { return __complex_cos(__z); }
687 #endif
689 // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z.
690 template<typename _Tp>
691 inline complex<_Tp>
692 __complex_cosh(const complex<_Tp>& __z)
694 const _Tp __x = __z.real();
695 const _Tp __y = __z.imag();
696 return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
699 #if _GLIBCXX_USE_C99_COMPLEX
700 inline __complex__ float
701 __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); }
703 inline __complex__ double
704 __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); }
706 inline __complex__ long double
707 __complex_cosh(const __complex__ long double& __z)
708 { return __builtin_ccoshl(__z); }
710 template<typename _Tp>
711 inline complex<_Tp>
712 cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); }
713 #else
714 template<typename _Tp>
715 inline complex<_Tp>
716 cosh(const complex<_Tp>& __z) { return __complex_cosh(__z); }
717 #endif
719 // 26.2.8/3 exp(__z): Returns the complex base e exponential of x
720 template<typename _Tp>
721 inline complex<_Tp>
722 __complex_exp(const complex<_Tp>& __z)
723 { return std::polar(exp(__z.real()), __z.imag()); }
725 #if _GLIBCXX_USE_C99_COMPLEX
726 inline __complex__ float
727 __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); }
729 inline __complex__ double
730 __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); }
732 inline __complex__ long double
733 __complex_exp(const __complex__ long double& __z)
734 { return __builtin_cexpl(__z); }
736 template<typename _Tp>
737 inline complex<_Tp>
738 exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); }
739 #else
740 template<typename _Tp>
741 inline complex<_Tp>
742 exp(const complex<_Tp>& __z) { return __complex_exp(__z); }
743 #endif
745 // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z.
746 // The branch cut is along the negative axis.
747 template<typename _Tp>
748 inline complex<_Tp>
749 __complex_log(const complex<_Tp>& __z)
750 { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
752 #if _GLIBCXX_USE_C99_COMPLEX
753 inline __complex__ float
754 __complex_log(__complex__ float __z) { return __builtin_clogf(__z); }
756 inline __complex__ double
757 __complex_log(__complex__ double __z) { return __builtin_clog(__z); }
759 inline __complex__ long double
760 __complex_log(const __complex__ long double& __z)
761 { return __builtin_clogl(__z); }
763 template<typename _Tp>
764 inline complex<_Tp>
765 log(const complex<_Tp>& __z) { return __complex_log(__z.__rep()); }
766 #else
767 template<typename _Tp>
768 inline complex<_Tp>
769 log(const complex<_Tp>& __z) { return __complex_log(__z); }
770 #endif
772 template<typename _Tp>
773 inline complex<_Tp>
774 log10(const complex<_Tp>& __z)
775 { return std::log(__z) / log(_Tp(10.0)); }
777 // 26.2.8/10 sin(__z): Returns the sine of __z.
778 template<typename _Tp>
779 inline complex<_Tp>
780 __complex_sin(const complex<_Tp>& __z)
782 const _Tp __x = __z.real();
783 const _Tp __y = __z.imag();
784 return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));
787 #if _GLIBCXX_USE_C99_COMPLEX
788 inline __complex__ float
789 __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); }
791 inline __complex__ double
792 __complex_sin(__complex__ double __z) { return __builtin_csin(__z); }
794 inline __complex__ long double
795 __complex_sin(const __complex__ long double& __z)
796 { return __builtin_csinl(__z); }
798 template<typename _Tp>
799 inline complex<_Tp>
800 sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); }
801 #else
802 template<typename _Tp>
803 inline complex<_Tp>
804 sin(const complex<_Tp>& __z) { return __complex_sin(__z); }
805 #endif
807 // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z.
808 template<typename _Tp>
809 inline complex<_Tp>
810 __complex_sinh(const complex<_Tp>& __z)
812 const _Tp __x = __z.real();
813 const _Tp __y = __z.imag();
814 return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
817 #if _GLIBCXX_USE_C99_COMPLEX
818 inline __complex__ float
819 __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); }
821 inline __complex__ double
822 __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); }
824 inline __complex__ long double
825 __complex_sinh(const __complex__ long double& __z)
826 { return __builtin_csinhl(__z); }
828 template<typename _Tp>
829 inline complex<_Tp>
830 sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); }
831 #else
832 template<typename _Tp>
833 inline complex<_Tp>
834 sinh(const complex<_Tp>& __z) { return __complex_sinh(__z); }
835 #endif
837 // 26.2.8/13 sqrt(__z): Returns the complex square root of __z.
838 // The branch cut is on the negative axis.
839 template<typename _Tp>
840 complex<_Tp>
841 __complex_sqrt(const complex<_Tp>& __z)
843 _Tp __x = __z.real();
844 _Tp __y = __z.imag();
846 if (__x == _Tp())
848 _Tp __t = sqrt(abs(__y) / 2);
849 return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
851 else
853 _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
854 _Tp __u = __t / 2;
855 return __x > _Tp()
856 ? complex<_Tp>(__u, __y / __t)
857 : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
861 #if _GLIBCXX_USE_C99_COMPLEX
862 inline __complex__ float
863 __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); }
865 inline __complex__ double
866 __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); }
868 inline __complex__ long double
869 __complex_sqrt(const __complex__ long double& __z)
870 { return __builtin_csqrtl(__z); }
872 template<typename _Tp>
873 inline complex<_Tp>
874 sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); }
875 #else
876 template<typename _Tp>
877 inline complex<_Tp>
878 sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z); }
879 #endif
881 // 26.2.8/14 tan(__z): Return the complex tangent of __z.
883 template<typename _Tp>
884 inline complex<_Tp>
885 __complex_tan(const complex<_Tp>& __z)
886 { return std::sin(__z) / std::cos(__z); }
888 #if _GLIBCXX_USE_C99_COMPLEX
889 inline __complex__ float
890 __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); }
892 inline __complex__ double
893 __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); }
895 inline __complex__ long double
896 __complex_tan(const __complex__ long double& __z)
897 { return __builtin_ctanl(__z); }
899 template<typename _Tp>
900 inline complex<_Tp>
901 tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); }
902 #else
903 template<typename _Tp>
904 inline complex<_Tp>
905 tan(const complex<_Tp>& __z) { return __complex_tan(__z); }
906 #endif
909 // 26.2.8/15 tanh(__z): Returns the hyperbolic tangent of __z.
911 template<typename _Tp>
912 inline complex<_Tp>
913 __complex_tanh(const complex<_Tp>& __z)
914 { return std::sinh(__z) / std::cosh(__z); }
916 #if _GLIBCXX_USE_C99_COMPLEX
917 inline __complex__ float
918 __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); }
920 inline __complex__ double
921 __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); }
923 inline __complex__ long double
924 __complex_tanh(const __complex__ long double& __z)
925 { return __builtin_ctanhl(__z); }
927 template<typename _Tp>
928 inline complex<_Tp>
929 tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); }
930 #else
931 template<typename _Tp>
932 inline complex<_Tp>
933 tanh(const complex<_Tp>& __z) { return __complex_tanh(__z); }
934 #endif
937 // 26.2.8/9 pow(__x, __y): Returns the complex power base of __x
938 // raised to the __y-th power. The branch
939 // cut is on the negative axis.
940 template<typename _Tp>
941 inline complex<_Tp>
942 pow(const complex<_Tp>& __z, int __n)
943 { return std::__pow_helper(__z, __n); }
945 template<typename _Tp>
946 complex<_Tp>
947 pow(const complex<_Tp>& __x, const _Tp& __y)
949 #ifndef _GLIBCXX_USE_C99_COMPLEX
950 if (__x == _Tp())
951 return _Tp();
952 #endif
953 if (__x.imag() == _Tp() && __x.real() > _Tp())
954 return pow(__x.real(), __y);
956 complex<_Tp> __t = std::log(__x);
957 return std::polar(exp(__y * __t.real()), __y * __t.imag());
960 template<typename _Tp>
961 inline complex<_Tp>
962 __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
963 { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); }
965 #if _GLIBCXX_USE_C99_COMPLEX
966 inline __complex__ float
967 __complex_pow(__complex__ float __x, __complex__ float __y)
968 { return __builtin_cpowf(__x, __y); }
970 inline __complex__ double
971 __complex_pow(__complex__ double __x, __complex__ double __y)
972 { return __builtin_cpow(__x, __y); }
974 inline __complex__ long double
975 __complex_pow(const __complex__ long double& __x,
976 const __complex__ long double& __y)
977 { return __builtin_cpowl(__x, __y); }
979 template<typename _Tp>
980 inline complex<_Tp>
981 pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
982 { return __complex_pow(__x.__rep(), __y.__rep()); }
983 #else
984 template<typename _Tp>
985 inline complex<_Tp>
986 pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
987 { return __complex_pow(__x, __y); }
988 #endif
990 template<typename _Tp>
991 inline complex<_Tp>
992 pow(const _Tp& __x, const complex<_Tp>& __y)
994 return __x > _Tp() ? std::polar(pow(__x, __y.real()),
995 __y.imag() * log(__x))
996 : std::pow(complex<_Tp>(__x, _Tp()), __y);
999 // 26.2.3 complex specializations
1000 // complex<float> specialization
1001 template<>
1002 struct complex<float>
1004 typedef float value_type;
1005 typedef __complex__ float _ComplexT;
1007 complex(_ComplexT __z) : _M_value(__z) { }
1009 complex(float = 0.0f, float = 0.0f);
1011 explicit complex(const complex<double>&);
1012 explicit complex(const complex<long double>&);
1014 float& real();
1015 const float& real() const;
1016 float& imag();
1017 const float& imag() const;
1019 complex<float>& operator=(float);
1020 complex<float>& operator+=(float);
1021 complex<float>& operator-=(float);
1022 complex<float>& operator*=(float);
1023 complex<float>& operator/=(float);
1025 // Let's the compiler synthetize the copy and assignment
1026 // operator. It always does a pretty good job.
1027 // complex& operator= (const complex&);
1028 template<typename _Tp>
1029 complex<float>&operator=(const complex<_Tp>&);
1030 template<typename _Tp>
1031 complex<float>& operator+=(const complex<_Tp>&);
1032 template<class _Tp>
1033 complex<float>& operator-=(const complex<_Tp>&);
1034 template<class _Tp>
1035 complex<float>& operator*=(const complex<_Tp>&);
1036 template<class _Tp>
1037 complex<float>&operator/=(const complex<_Tp>&);
1039 const _ComplexT& __rep() const { return _M_value; }
1041 private:
1042 _ComplexT _M_value;
1045 inline float&
1046 complex<float>::real()
1047 { return __real__ _M_value; }
1049 inline const float&
1050 complex<float>::real() const
1051 { return __real__ _M_value; }
1053 inline float&
1054 complex<float>::imag()
1055 { return __imag__ _M_value; }
1057 inline const float&
1058 complex<float>::imag() const
1059 { return __imag__ _M_value; }
1061 inline
1062 complex<float>::complex(float r, float i)
1064 __real__ _M_value = r;
1065 __imag__ _M_value = i;
1068 inline complex<float>&
1069 complex<float>::operator=(float __f)
1071 __real__ _M_value = __f;
1072 __imag__ _M_value = 0.0f;
1073 return *this;
1076 inline complex<float>&
1077 complex<float>::operator+=(float __f)
1079 __real__ _M_value += __f;
1080 return *this;
1083 inline complex<float>&
1084 complex<float>::operator-=(float __f)
1086 __real__ _M_value -= __f;
1087 return *this;
1090 inline complex<float>&
1091 complex<float>::operator*=(float __f)
1093 _M_value *= __f;
1094 return *this;
1097 inline complex<float>&
1098 complex<float>::operator/=(float __f)
1100 _M_value /= __f;
1101 return *this;
1104 template<typename _Tp>
1105 inline complex<float>&
1106 complex<float>::operator=(const complex<_Tp>& __z)
1108 __real__ _M_value = __z.real();
1109 __imag__ _M_value = __z.imag();
1110 return *this;
1113 template<typename _Tp>
1114 inline complex<float>&
1115 complex<float>::operator+=(const complex<_Tp>& __z)
1117 __real__ _M_value += __z.real();
1118 __imag__ _M_value += __z.imag();
1119 return *this;
1122 template<typename _Tp>
1123 inline complex<float>&
1124 complex<float>::operator-=(const complex<_Tp>& __z)
1126 __real__ _M_value -= __z.real();
1127 __imag__ _M_value -= __z.imag();
1128 return *this;
1131 template<typename _Tp>
1132 inline complex<float>&
1133 complex<float>::operator*=(const complex<_Tp>& __z)
1135 _ComplexT __t;
1136 __real__ __t = __z.real();
1137 __imag__ __t = __z.imag();
1138 _M_value *= __t;
1139 return *this;
1142 template<typename _Tp>
1143 inline complex<float>&
1144 complex<float>::operator/=(const complex<_Tp>& __z)
1146 _ComplexT __t;
1147 __real__ __t = __z.real();
1148 __imag__ __t = __z.imag();
1149 _M_value /= __t;
1150 return *this;
1153 // 26.2.3 complex specializations
1154 // complex<double> specialization
1155 template<>
1156 struct complex<double>
1158 typedef double value_type;
1159 typedef __complex__ double _ComplexT;
1161 complex(_ComplexT __z) : _M_value(__z) { }
1163 complex(double = 0.0, double = 0.0);
1165 complex(const complex<float>&);
1166 explicit complex(const complex<long double>&);
1168 double& real();
1169 const double& real() const;
1170 double& imag();
1171 const double& imag() const;
1173 complex<double>& operator=(double);
1174 complex<double>& operator+=(double);
1175 complex<double>& operator-=(double);
1176 complex<double>& operator*=(double);
1177 complex<double>& operator/=(double);
1179 // The compiler will synthetize this, efficiently.
1180 // complex& operator= (const complex&);
1181 template<typename _Tp>
1182 complex<double>& operator=(const complex<_Tp>&);
1183 template<typename _Tp>
1184 complex<double>& operator+=(const complex<_Tp>&);
1185 template<typename _Tp>
1186 complex<double>& operator-=(const complex<_Tp>&);
1187 template<typename _Tp>
1188 complex<double>& operator*=(const complex<_Tp>&);
1189 template<typename _Tp>
1190 complex<double>& operator/=(const complex<_Tp>&);
1192 const _ComplexT& __rep() const { return _M_value; }
1194 private:
1195 _ComplexT _M_value;
1198 inline double&
1199 complex<double>::real()
1200 { return __real__ _M_value; }
1202 inline const double&
1203 complex<double>::real() const
1204 { return __real__ _M_value; }
1206 inline double&
1207 complex<double>::imag()
1208 { return __imag__ _M_value; }
1210 inline const double&
1211 complex<double>::imag() const
1212 { return __imag__ _M_value; }
1214 inline
1215 complex<double>::complex(double __r, double __i)
1217 __real__ _M_value = __r;
1218 __imag__ _M_value = __i;
1221 inline complex<double>&
1222 complex<double>::operator=(double __d)
1224 __real__ _M_value = __d;
1225 __imag__ _M_value = 0.0;
1226 return *this;
1229 inline complex<double>&
1230 complex<double>::operator+=(double __d)
1232 __real__ _M_value += __d;
1233 return *this;
1236 inline complex<double>&
1237 complex<double>::operator-=(double __d)
1239 __real__ _M_value -= __d;
1240 return *this;
1243 inline complex<double>&
1244 complex<double>::operator*=(double __d)
1246 _M_value *= __d;
1247 return *this;
1250 inline complex<double>&
1251 complex<double>::operator/=(double __d)
1253 _M_value /= __d;
1254 return *this;
1257 template<typename _Tp>
1258 inline complex<double>&
1259 complex<double>::operator=(const complex<_Tp>& __z)
1261 __real__ _M_value = __z.real();
1262 __imag__ _M_value = __z.imag();
1263 return *this;
1266 template<typename _Tp>
1267 inline complex<double>&
1268 complex<double>::operator+=(const complex<_Tp>& __z)
1270 __real__ _M_value += __z.real();
1271 __imag__ _M_value += __z.imag();
1272 return *this;
1275 template<typename _Tp>
1276 inline complex<double>&
1277 complex<double>::operator-=(const complex<_Tp>& __z)
1279 __real__ _M_value -= __z.real();
1280 __imag__ _M_value -= __z.imag();
1281 return *this;
1284 template<typename _Tp>
1285 inline complex<double>&
1286 complex<double>::operator*=(const complex<_Tp>& __z)
1288 _ComplexT __t;
1289 __real__ __t = __z.real();
1290 __imag__ __t = __z.imag();
1291 _M_value *= __t;
1292 return *this;
1295 template<typename _Tp>
1296 inline complex<double>&
1297 complex<double>::operator/=(const complex<_Tp>& __z)
1299 _ComplexT __t;
1300 __real__ __t = __z.real();
1301 __imag__ __t = __z.imag();
1302 _M_value /= __t;
1303 return *this;
1306 // 26.2.3 complex specializations
1307 // complex<long double> specialization
1308 template<>
1309 struct complex<long double>
1311 typedef long double value_type;
1312 typedef __complex__ long double _ComplexT;
1314 complex(_ComplexT __z) : _M_value(__z) { }
1316 complex(long double = 0.0L, long double = 0.0L);
1318 complex(const complex<float>&);
1319 complex(const complex<double>&);
1321 long double& real();
1322 const long double& real() const;
1323 long double& imag();
1324 const long double& imag() const;
1326 complex<long double>& operator= (long double);
1327 complex<long double>& operator+= (long double);
1328 complex<long double>& operator-= (long double);
1329 complex<long double>& operator*= (long double);
1330 complex<long double>& operator/= (long double);
1332 // The compiler knows how to do this efficiently
1333 // complex& operator= (const complex&);
1334 template<typename _Tp>
1335 complex<long double>& operator=(const complex<_Tp>&);
1336 template<typename _Tp>
1337 complex<long double>& operator+=(const complex<_Tp>&);
1338 template<typename _Tp>
1339 complex<long double>& operator-=(const complex<_Tp>&);
1340 template<typename _Tp>
1341 complex<long double>& operator*=(const complex<_Tp>&);
1342 template<typename _Tp>
1343 complex<long double>& operator/=(const complex<_Tp>&);
1345 const _ComplexT& __rep() const { return _M_value; }
1347 private:
1348 _ComplexT _M_value;
1351 inline
1352 complex<long double>::complex(long double __r, long double __i)
1354 __real__ _M_value = __r;
1355 __imag__ _M_value = __i;
1358 inline long double&
1359 complex<long double>::real()
1360 { return __real__ _M_value; }
1362 inline const long double&
1363 complex<long double>::real() const
1364 { return __real__ _M_value; }
1366 inline long double&
1367 complex<long double>::imag()
1368 { return __imag__ _M_value; }
1370 inline const long double&
1371 complex<long double>::imag() const
1372 { return __imag__ _M_value; }
1374 inline complex<long double>&
1375 complex<long double>::operator=(long double __r)
1377 __real__ _M_value = __r;
1378 __imag__ _M_value = 0.0L;
1379 return *this;
1382 inline complex<long double>&
1383 complex<long double>::operator+=(long double __r)
1385 __real__ _M_value += __r;
1386 return *this;
1389 inline complex<long double>&
1390 complex<long double>::operator-=(long double __r)
1392 __real__ _M_value -= __r;
1393 return *this;
1396 inline complex<long double>&
1397 complex<long double>::operator*=(long double __r)
1399 _M_value *= __r;
1400 return *this;
1403 inline complex<long double>&
1404 complex<long double>::operator/=(long double __r)
1406 _M_value /= __r;
1407 return *this;
1410 template<typename _Tp>
1411 inline complex<long double>&
1412 complex<long double>::operator=(const complex<_Tp>& __z)
1414 __real__ _M_value = __z.real();
1415 __imag__ _M_value = __z.imag();
1416 return *this;
1419 template<typename _Tp>
1420 inline complex<long double>&
1421 complex<long double>::operator+=(const complex<_Tp>& __z)
1423 __real__ _M_value += __z.real();
1424 __imag__ _M_value += __z.imag();
1425 return *this;
1428 template<typename _Tp>
1429 inline complex<long double>&
1430 complex<long double>::operator-=(const complex<_Tp>& __z)
1432 __real__ _M_value -= __z.real();
1433 __imag__ _M_value -= __z.imag();
1434 return *this;
1437 template<typename _Tp>
1438 inline complex<long double>&
1439 complex<long double>::operator*=(const complex<_Tp>& __z)
1441 _ComplexT __t;
1442 __real__ __t = __z.real();
1443 __imag__ __t = __z.imag();
1444 _M_value *= __t;
1445 return *this;
1448 template<typename _Tp>
1449 inline complex<long double>&
1450 complex<long double>::operator/=(const complex<_Tp>& __z)
1452 _ComplexT __t;
1453 __real__ __t = __z.real();
1454 __imag__ __t = __z.imag();
1455 _M_value /= __t;
1456 return *this;
1459 // These bits have to be at the end of this file, so that the
1460 // specializations have all been defined.
1461 // ??? No, they have to be there because of compiler limitation at
1462 // inlining. It suffices that class specializations be defined.
1463 inline
1464 complex<float>::complex(const complex<double>& __z)
1465 : _M_value(__z.__rep()) { }
1467 inline
1468 complex<float>::complex(const complex<long double>& __z)
1469 : _M_value(__z.__rep()) { }
1471 inline
1472 complex<double>::complex(const complex<float>& __z)
1473 : _M_value(__z.__rep()) { }
1475 inline
1476 complex<double>::complex(const complex<long double>& __z)
1477 : _M_value(__z.__rep()) { }
1479 inline
1480 complex<long double>::complex(const complex<float>& __z)
1481 : _M_value(__z.__rep()) { }
1483 inline
1484 complex<long double>::complex(const complex<double>& __z)
1485 : _M_value(__z.__rep()) { }
1486 } // namespace std
1488 #endif /* _GLIBCXX_COMPLEX */