Sync usage with man page.
[netbsd-mini2440.git] / lib / libc / db / hash / hash_page.c
blob6440713b9aa89d0d65a6c85ec9f75659c1a6cdab
1 /* $NetBSD: hash_page.c,v 1.22 2008/09/10 17:52:35 joerg Exp $ */
3 /*-
4 * Copyright (c) 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Margo Seltzer.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
35 #if HAVE_NBTOOL_CONFIG_H
36 #include "nbtool_config.h"
37 #endif
39 #include <sys/cdefs.h>
40 __RCSID("$NetBSD: hash_page.c,v 1.22 2008/09/10 17:52:35 joerg Exp $");
43 * PACKAGE: hashing
45 * DESCRIPTION:
46 * Page manipulation for hashing package.
48 * ROUTINES:
50 * External
51 * __get_page
52 * __add_ovflpage
53 * Internal
54 * overflow_page
55 * open_temp
58 #include "namespace.h"
60 #include <sys/types.h>
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <signal.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #include <paths.h>
70 #include <assert.h>
72 #include <db.h>
73 #include "hash.h"
74 #include "page.h"
75 #include "extern.h"
77 static uint32_t *fetch_bitmap(HTAB *, int);
78 static uint32_t first_free(uint32_t);
79 static int open_temp(HTAB *);
80 static uint16_t overflow_page(HTAB *);
81 static void putpair(char *, const DBT *, const DBT *);
82 static void squeeze_key(uint16_t *, const DBT *, const DBT *);
83 static int ugly_split(HTAB *, uint32_t, BUFHEAD *, BUFHEAD *, int, int);
85 #define PAGE_INIT(P) { \
86 ((uint16_t *)(void *)(P))[0] = 0; \
87 temp = 3 * sizeof(uint16_t); \
88 _DIAGASSERT(hashp->BSIZE >= temp); \
89 ((uint16_t *)(void *)(P))[1] = (uint16_t)(hashp->BSIZE - temp); \
90 ((uint16_t *)(void *)(P))[2] = hashp->BSIZE; \
94 * This is called AFTER we have verified that there is room on the page for
95 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
96 * stuff on.
98 static void
99 putpair(char *p, const DBT *key, const DBT *val)
101 uint16_t *bp, n, off;
102 size_t temp;
104 bp = (uint16_t *)(void *)p;
106 /* Enter the key first. */
107 n = bp[0];
109 temp = OFFSET(bp);
110 _DIAGASSERT(temp >= key->size);
111 off = (uint16_t)(temp - key->size);
112 memmove(p + off, key->data, key->size);
113 bp[++n] = off;
115 /* Now the data. */
116 _DIAGASSERT(off >= val->size);
117 off -= (uint16_t)val->size;
118 memmove(p + off, val->data, val->size);
119 bp[++n] = off;
121 /* Adjust page info. */
122 bp[0] = n;
123 temp = (n + 3) * sizeof(uint16_t);
124 _DIAGASSERT(off >= temp);
125 bp[n + 1] = (uint16_t)(off - temp);
126 bp[n + 2] = off;
130 * Returns:
131 * 0 OK
132 * -1 error
135 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
137 uint16_t *bp, newoff;
138 int n;
139 uint16_t pairlen;
140 size_t temp;
142 bp = (uint16_t *)(void *)bufp->page;
143 n = bp[0];
145 if (bp[ndx + 1] < REAL_KEY)
146 return (__big_delete(hashp, bufp));
147 if (ndx != 1)
148 newoff = bp[ndx - 1];
149 else
150 newoff = hashp->BSIZE;
151 pairlen = newoff - bp[ndx + 1];
153 if (ndx != (n - 1)) {
154 /* Hard Case -- need to shuffle keys */
155 int i;
156 char *src = bufp->page + (int)OFFSET(bp);
157 char *dst = src + (int)pairlen;
158 memmove(dst, src, (size_t)(bp[ndx + 1] - OFFSET(bp)));
160 /* Now adjust the pointers */
161 for (i = ndx + 2; i <= n; i += 2) {
162 if (bp[i + 1] == OVFLPAGE) {
163 bp[i - 2] = bp[i];
164 bp[i - 1] = bp[i + 1];
165 } else {
166 bp[i - 2] = bp[i] + pairlen;
167 bp[i - 1] = bp[i + 1] + pairlen;
171 /* Finally adjust the page data */
172 bp[n] = OFFSET(bp) + pairlen;
173 temp = bp[n + 1] + pairlen + 2 * sizeof(uint16_t);
174 _DIAGASSERT(temp <= 0xffff);
175 bp[n - 1] = (uint16_t)temp;
176 bp[0] = n - 2;
177 hashp->NKEYS--;
179 bufp->flags |= BUF_MOD;
180 return (0);
183 * Returns:
184 * 0 ==> OK
185 * -1 ==> Error
188 __split_page(HTAB *hashp, uint32_t obucket, uint32_t nbucket)
190 BUFHEAD *new_bufp, *old_bufp;
191 uint16_t *ino;
192 char *np;
193 DBT key, val;
194 int n, ndx, retval;
195 uint16_t copyto, diff, off, moved;
196 char *op;
197 size_t temp;
199 copyto = (uint16_t)hashp->BSIZE;
200 off = (uint16_t)hashp->BSIZE;
201 old_bufp = __get_buf(hashp, obucket, NULL, 0);
202 if (old_bufp == NULL)
203 return (-1);
204 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
205 if (new_bufp == NULL)
206 return (-1);
208 old_bufp->flags |= (BUF_MOD | BUF_PIN);
209 new_bufp->flags |= (BUF_MOD | BUF_PIN);
211 ino = (uint16_t *)(void *)(op = old_bufp->page);
212 np = new_bufp->page;
214 moved = 0;
216 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
217 if (ino[n + 1] < REAL_KEY) {
218 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
219 (int)copyto, (int)moved);
220 old_bufp->flags &= ~BUF_PIN;
221 new_bufp->flags &= ~BUF_PIN;
222 return (retval);
225 key.data = (uint8_t *)op + ino[n];
226 key.size = off - ino[n];
228 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
229 /* Don't switch page */
230 diff = copyto - off;
231 if (diff) {
232 copyto = ino[n + 1] + diff;
233 memmove(op + copyto, op + ino[n + 1],
234 (size_t)(off - ino[n + 1]));
235 ino[ndx] = copyto + ino[n] - ino[n + 1];
236 ino[ndx + 1] = copyto;
237 } else
238 copyto = ino[n + 1];
239 ndx += 2;
240 } else {
241 /* Switch page */
242 val.data = (uint8_t *)op + ino[n + 1];
243 val.size = ino[n] - ino[n + 1];
244 putpair(np, &key, &val);
245 moved += 2;
248 off = ino[n + 1];
251 /* Now clean up the page */
252 ino[0] -= moved;
253 temp = sizeof(uint16_t) * (ino[0] + 3);
254 _DIAGASSERT(copyto >= temp);
255 FREESPACE(ino) = (uint16_t)(copyto - temp);
256 OFFSET(ino) = copyto;
258 #ifdef DEBUG3
259 (void)fprintf(stderr, "split %d/%d\n",
260 ((uint16_t *)np)[0] / 2,
261 ((uint16_t *)op)[0] / 2);
262 #endif
263 /* unpin both pages */
264 old_bufp->flags &= ~BUF_PIN;
265 new_bufp->flags &= ~BUF_PIN;
266 return (0);
270 * Called when we encounter an overflow or big key/data page during split
271 * handling. This is special cased since we have to begin checking whether
272 * the key/data pairs fit on their respective pages and because we may need
273 * overflow pages for both the old and new pages.
275 * The first page might be a page with regular key/data pairs in which case
276 * we have a regular overflow condition and just need to go on to the next
277 * page or it might be a big key/data pair in which case we need to fix the
278 * big key/data pair.
280 * Returns:
281 * 0 ==> success
282 * -1 ==> failure
284 static int
285 ugly_split(
286 HTAB *hashp,
287 uint32_t obucket, /* Same as __split_page. */
288 BUFHEAD *old_bufp,
289 BUFHEAD *new_bufp,
290 int copyto, /* First byte on page which contains key/data values. */
291 int moved /* Number of pairs moved to new page. */
294 BUFHEAD *bufp; /* Buffer header for ino */
295 uint16_t *ino; /* Page keys come off of */
296 uint16_t *np; /* New page */
297 uint16_t *op; /* Page keys go on to if they aren't moving */
298 size_t temp;
300 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
301 DBT key, val;
302 SPLIT_RETURN ret;
303 uint16_t n, off, ov_addr, scopyto;
304 char *cino; /* Character value of ino */
306 bufp = old_bufp;
307 ino = (uint16_t *)(void *)old_bufp->page;
308 np = (uint16_t *)(void *)new_bufp->page;
309 op = (uint16_t *)(void *)old_bufp->page;
310 last_bfp = NULL;
311 scopyto = (uint16_t)copyto; /* ANSI */
313 n = ino[0] - 1;
314 while (n < ino[0]) {
315 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
316 if (__big_split(hashp, old_bufp,
317 new_bufp, bufp, (int)bufp->addr, obucket, &ret))
318 return (-1);
319 old_bufp = ret.oldp;
320 if (!old_bufp)
321 return (-1);
322 op = (uint16_t *)(void *)old_bufp->page;
323 new_bufp = ret.newp;
324 if (!new_bufp)
325 return (-1);
326 np = (uint16_t *)(void *)new_bufp->page;
327 bufp = ret.nextp;
328 if (!bufp)
329 return (0);
330 cino = (char *)bufp->page;
331 ino = (uint16_t *)(void *)cino;
332 last_bfp = ret.nextp;
333 } else if (ino[n + 1] == OVFLPAGE) {
334 ov_addr = ino[n];
336 * Fix up the old page -- the extra 2 are the fields
337 * which contained the overflow information.
339 ino[0] -= (moved + 2);
340 temp = sizeof(uint16_t) * (ino[0] + 3);
341 _DIAGASSERT(scopyto >= temp);
342 FREESPACE(ino) = (uint16_t)(scopyto - temp);
343 OFFSET(ino) = scopyto;
345 bufp = __get_buf(hashp, (uint32_t)ov_addr, bufp, 0);
346 if (!bufp)
347 return (-1);
349 ino = (uint16_t *)(void *)bufp->page;
350 n = 1;
351 scopyto = hashp->BSIZE;
352 moved = 0;
354 if (last_bfp)
355 __free_ovflpage(hashp, last_bfp);
356 last_bfp = bufp;
358 /* Move regular sized pairs of there are any */
359 off = hashp->BSIZE;
360 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
361 cino = (char *)(void *)ino;
362 key.data = (uint8_t *)cino + ino[n];
363 key.size = off - ino[n];
364 val.data = (uint8_t *)cino + ino[n + 1];
365 val.size = ino[n] - ino[n + 1];
366 off = ino[n + 1];
368 if (__call_hash(hashp, key.data, (int)key.size) == obucket) {
369 /* Keep on old page */
370 if (PAIRFITS(op, (&key), (&val)))
371 putpair((char *)(void *)op, &key, &val);
372 else {
373 old_bufp =
374 __add_ovflpage(hashp, old_bufp);
375 if (!old_bufp)
376 return (-1);
377 op = (uint16_t *)(void *)old_bufp->page;
378 putpair((char *)(void *)op, &key, &val);
380 old_bufp->flags |= BUF_MOD;
381 } else {
382 /* Move to new page */
383 if (PAIRFITS(np, (&key), (&val)))
384 putpair((char *)(void *)np, &key, &val);
385 else {
386 new_bufp =
387 __add_ovflpage(hashp, new_bufp);
388 if (!new_bufp)
389 return (-1);
390 np = (uint16_t *)(void *)new_bufp->page;
391 putpair((char *)(void *)np, &key, &val);
393 new_bufp->flags |= BUF_MOD;
397 if (last_bfp)
398 __free_ovflpage(hashp, last_bfp);
399 return (0);
403 * Add the given pair to the page
405 * Returns:
406 * 0 ==> OK
407 * 1 ==> failure
410 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
412 uint16_t *bp, *sop;
413 int do_expand;
415 bp = (uint16_t *)(void *)bufp->page;
416 do_expand = 0;
417 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
418 /* Exception case */
419 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
420 /* This is the last page of a big key/data pair
421 and we need to add another page */
422 break;
423 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
424 bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
426 if (!bufp)
427 return (-1);
428 bp = (uint16_t *)(void *)bufp->page;
429 } else if (bp[bp[0]] != OVFLPAGE) {
430 /* Short key/data pairs, no more pages */
431 break;
432 } else {
433 /* Try to squeeze key on this page */
434 if (bp[2] >= REAL_KEY &&
435 FREESPACE(bp) >= PAIRSIZE(key, val)) {
436 squeeze_key(bp, key, val);
437 goto stats;
438 } else {
439 bufp = __get_buf(hashp,
440 (uint32_t)bp[bp[0] - 1], bufp, 0);
441 if (!bufp)
442 return (-1);
443 bp = (uint16_t *)(void *)bufp->page;
447 if (PAIRFITS(bp, key, val))
448 putpair(bufp->page, key, val);
449 else {
450 do_expand = 1;
451 bufp = __add_ovflpage(hashp, bufp);
452 if (!bufp)
453 return (-1);
454 sop = (uint16_t *)(void *)bufp->page;
456 if (PAIRFITS(sop, key, val))
457 putpair((char *)(void *)sop, key, val);
458 else
459 if (__big_insert(hashp, bufp, key, val))
460 return (-1);
462 stats:
463 bufp->flags |= BUF_MOD;
465 * If the average number of keys per bucket exceeds the fill factor,
466 * expand the table.
468 hashp->NKEYS++;
469 if (do_expand ||
470 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
471 return (__expand_table(hashp));
472 return (0);
477 * Returns:
478 * pointer on success
479 * NULL on error
481 BUFHEAD *
482 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
484 uint16_t *sp;
485 uint16_t ndx, ovfl_num;
486 size_t temp;
487 #ifdef DEBUG1
488 int tmp1, tmp2;
489 #endif
490 sp = (uint16_t *)(void *)bufp->page;
492 /* Check if we are dynamically determining the fill factor */
493 if (hashp->FFACTOR == DEF_FFACTOR) {
494 hashp->FFACTOR = (uint32_t)sp[0] >> 1;
495 if (hashp->FFACTOR < MIN_FFACTOR)
496 hashp->FFACTOR = MIN_FFACTOR;
498 bufp->flags |= BUF_MOD;
499 ovfl_num = overflow_page(hashp);
500 #ifdef DEBUG1
501 tmp1 = bufp->addr;
502 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
503 #endif
504 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, (uint32_t)ovfl_num,
505 bufp, 1)))
506 return (NULL);
507 bufp->ovfl->flags |= BUF_MOD;
508 #ifdef DEBUG1
509 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
510 tmp1, tmp2, bufp->ovfl->addr);
511 #endif
512 ndx = sp[0];
514 * Since a pair is allocated on a page only if there's room to add
515 * an overflow page, we know that the OVFL information will fit on
516 * the page.
518 sp[ndx + 4] = OFFSET(sp);
519 temp = FREESPACE(sp);
520 _DIAGASSERT(temp >= OVFLSIZE);
521 sp[ndx + 3] = (uint16_t)(temp - OVFLSIZE);
522 sp[ndx + 1] = ovfl_num;
523 sp[ndx + 2] = OVFLPAGE;
524 sp[0] = ndx + 2;
525 #ifdef HASH_STATISTICS
526 hash_overflows++;
527 #endif
528 return (bufp->ovfl);
532 * Returns:
533 * 0 indicates SUCCESS
534 * -1 indicates FAILURE
537 __get_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_disk,
538 int is_bitmap)
540 int fd, page, size;
541 ssize_t rsize;
542 uint16_t *bp;
543 size_t temp;
545 fd = hashp->fp;
546 size = hashp->BSIZE;
548 if ((fd == -1) || !is_disk) {
549 PAGE_INIT(p);
550 return (0);
552 if (is_bucket)
553 page = BUCKET_TO_PAGE(bucket);
554 else
555 page = OADDR_TO_PAGE(bucket);
556 if ((rsize = pread(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
557 return (-1);
558 bp = (uint16_t *)(void *)p;
559 if (!rsize)
560 bp[0] = 0; /* We hit the EOF, so initialize a new page */
561 else
562 if (rsize != size) {
563 errno = EFTYPE;
564 return (-1);
566 if (!is_bitmap && !bp[0]) {
567 PAGE_INIT(p);
568 } else
569 if (hashp->LORDER != BYTE_ORDER) {
570 int i, max;
572 if (is_bitmap) {
573 max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
574 for (i = 0; i < max; i++)
575 M_32_SWAP(((int *)(void *)p)[i]);
576 } else {
577 M_16_SWAP(bp[0]);
578 max = bp[0] + 2;
579 for (i = 1; i <= max; i++)
580 M_16_SWAP(bp[i]);
583 return (0);
587 * Write page p to disk
589 * Returns:
590 * 0 ==> OK
591 * -1 ==>failure
594 __put_page(HTAB *hashp, char *p, uint32_t bucket, int is_bucket, int is_bitmap)
596 int fd, page, size;
597 ssize_t wsize;
599 size = hashp->BSIZE;
600 if ((hashp->fp == -1) && open_temp(hashp))
601 return (-1);
602 fd = hashp->fp;
604 if (hashp->LORDER != BYTE_ORDER) {
605 int i;
606 int max;
608 if (is_bitmap) {
609 max = (uint32_t)hashp->BSIZE >> 2; /* divide by 4 */
610 for (i = 0; i < max; i++)
611 M_32_SWAP(((int *)(void *)p)[i]);
612 } else {
613 max = ((uint16_t *)(void *)p)[0] + 2;
614 for (i = 0; i <= max; i++)
615 M_16_SWAP(((uint16_t *)(void *)p)[i]);
618 if (is_bucket)
619 page = BUCKET_TO_PAGE(bucket);
620 else
621 page = OADDR_TO_PAGE(bucket);
622 if ((wsize = pwrite(fd, p, (size_t)size, (off_t)page << hashp->BSHIFT)) == -1)
623 /* Errno is set */
624 return (-1);
625 if (wsize != size) {
626 errno = EFTYPE;
627 return (-1);
629 return (0);
632 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
634 * Initialize a new bitmap page. Bitmap pages are left in memory
635 * once they are read in.
638 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
640 uint32_t *ip;
641 int clearbytes, clearints;
643 if ((ip = malloc((size_t)hashp->BSIZE)) == NULL)
644 return (1);
645 hashp->nmaps++;
646 clearints = ((uint32_t)(nbits - 1) >> INT_BYTE_SHIFT) + 1;
647 clearbytes = clearints << INT_TO_BYTE;
648 (void)memset(ip, 0, (size_t)clearbytes);
649 (void)memset(((char *)(void *)ip) + clearbytes, 0xFF,
650 (size_t)(hashp->BSIZE - clearbytes));
651 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
652 SETBIT(ip, 0);
653 hashp->BITMAPS[ndx] = (uint16_t)pnum;
654 hashp->mapp[ndx] = ip;
655 return (0);
658 static uint32_t
659 first_free(uint32_t map)
661 uint32_t i, mask;
663 mask = 0x1;
664 for (i = 0; i < BITS_PER_MAP; i++) {
665 if (!(mask & map))
666 return (i);
667 mask = mask << 1;
669 return (i);
672 static uint16_t
673 overflow_page(HTAB *hashp)
675 uint32_t *freep = NULL;
676 int max_free, offset, splitnum;
677 uint16_t addr;
678 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
679 #ifdef DEBUG2
680 int tmp1, tmp2;
681 #endif
682 splitnum = hashp->OVFL_POINT;
683 max_free = hashp->SPARES[splitnum];
685 free_page = (uint32_t)(max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
686 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
688 /* Look through all the free maps to find the first free block */
689 first_page = (uint32_t)hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
690 for ( i = first_page; i <= free_page; i++ ) {
691 if (!(freep = (uint32_t *)hashp->mapp[i]) &&
692 !(freep = fetch_bitmap(hashp, i)))
693 return (0);
694 if (i == free_page)
695 in_use_bits = free_bit;
696 else
697 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
699 if (i == first_page) {
700 bit = hashp->LAST_FREED &
701 ((hashp->BSIZE << BYTE_SHIFT) - 1);
702 j = bit / BITS_PER_MAP;
703 bit = bit & ~(BITS_PER_MAP - 1);
704 } else {
705 bit = 0;
706 j = 0;
708 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
709 if (freep[j] != ALL_SET)
710 goto found;
713 /* No Free Page Found */
714 hashp->LAST_FREED = hashp->SPARES[splitnum];
715 hashp->SPARES[splitnum]++;
716 offset = hashp->SPARES[splitnum] -
717 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
719 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
720 if (offset > SPLITMASK) {
721 if (++splitnum >= NCACHED) {
722 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
723 errno = EFBIG;
724 return (0);
726 hashp->OVFL_POINT = splitnum;
727 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
728 hashp->SPARES[splitnum-1]--;
729 offset = 1;
732 /* Check if we need to allocate a new bitmap page */
733 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
734 free_page++;
735 if (free_page >= NCACHED) {
736 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
737 errno = EFBIG;
738 return (0);
741 * This is tricky. The 1 indicates that you want the new page
742 * allocated with 1 clear bit. Actually, you are going to
743 * allocate 2 pages from this map. The first is going to be
744 * the map page, the second is the overflow page we were
745 * looking for. The init_bitmap routine automatically, sets
746 * the first bit of itself to indicate that the bitmap itself
747 * is in use. We would explicitly set the second bit, but
748 * don't have to if we tell init_bitmap not to leave it clear
749 * in the first place.
751 if (__ibitmap(hashp,
752 (int)OADDR_OF(splitnum, offset), 1, free_page))
753 return (0);
754 hashp->SPARES[splitnum]++;
755 #ifdef DEBUG2
756 free_bit = 2;
757 #endif
758 offset++;
759 if (offset > SPLITMASK) {
760 if (++splitnum >= NCACHED) {
761 (void)write(STDERR_FILENO, OVMSG,
762 sizeof(OVMSG) - 1);
763 errno = EFBIG;
764 return (0);
766 hashp->OVFL_POINT = splitnum;
767 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
768 hashp->SPARES[splitnum-1]--;
769 offset = 0;
771 } else {
773 * Free_bit addresses the last used bit. Bump it to address
774 * the first available bit.
776 free_bit++;
777 SETBIT(freep, free_bit);
780 /* Calculate address of the new overflow page */
781 addr = OADDR_OF(splitnum, offset);
782 #ifdef DEBUG2
783 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
784 addr, free_bit, free_page);
785 #endif
786 return (addr);
788 found:
789 bit = bit + first_free(freep[j]);
790 SETBIT(freep, bit);
791 #ifdef DEBUG2
792 tmp1 = bit;
793 tmp2 = i;
794 #endif
796 * Bits are addressed starting with 0, but overflow pages are addressed
797 * beginning at 1. Bit is a bit addressnumber, so we need to increment
798 * it to convert it to a page number.
800 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
801 if (bit >= hashp->LAST_FREED)
802 hashp->LAST_FREED = bit - 1;
804 /* Calculate the split number for this page */
805 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
806 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
807 if (offset >= SPLITMASK) {
808 (void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
809 errno = EFBIG;
810 return (0); /* Out of overflow pages */
812 addr = OADDR_OF(i, offset);
813 #ifdef DEBUG2
814 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
815 addr, tmp1, tmp2);
816 #endif
818 /* Allocate and return the overflow page */
819 return (addr);
823 * Mark this overflow page as free.
825 void
826 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
828 uint16_t addr;
829 uint32_t *freep;
830 int bit_address, free_page, free_bit;
831 uint16_t ndx;
833 addr = obufp->addr;
834 #ifdef DEBUG1
835 (void)fprintf(stderr, "Freeing %d\n", addr);
836 #endif
837 ndx = (((uint32_t)addr) >> SPLITSHIFT);
838 bit_address =
839 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
840 if (bit_address < hashp->LAST_FREED)
841 hashp->LAST_FREED = bit_address;
842 free_page = ((uint32_t)bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
843 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
845 if (!(freep = hashp->mapp[free_page]))
846 freep = fetch_bitmap(hashp, free_page);
848 * This had better never happen. It means we tried to read a bitmap
849 * that has already had overflow pages allocated off it, and we
850 * failed to read it from the file.
852 _DIAGASSERT(freep != NULL);
853 CLRBIT(freep, free_bit);
854 #ifdef DEBUG2
855 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
856 obufp->addr, free_bit, free_page);
857 #endif
858 __reclaim_buf(hashp, obufp);
862 * Returns:
863 * 0 success
864 * -1 failure
866 static int
867 open_temp(HTAB *hashp)
869 sigset_t set, oset;
870 char *envtmp;
871 char namestr[PATH_MAX];
873 if (issetugid())
874 envtmp = NULL;
875 else
876 envtmp = getenv("TMPDIR");
878 if (-1 == snprintf(namestr, sizeof(namestr), "%s/_hashXXXXXX",
879 envtmp ? envtmp : _PATH_TMP))
880 return -1;
882 /* Block signals; make sure file goes away at process exit. */
883 (void)sigfillset(&set);
884 (void)sigprocmask(SIG_BLOCK, &set, &oset);
885 if ((hashp->fp = mkstemp(namestr)) != -1) {
886 (void)unlink(namestr);
887 (void)fcntl(hashp->fp, F_SETFD, FD_CLOEXEC);
889 (void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
890 return (hashp->fp != -1 ? 0 : -1);
894 * We have to know that the key will fit, but the last entry on the page is
895 * an overflow pair, so we need to shift things.
897 static void
898 squeeze_key(uint16_t *sp, const DBT *key, const DBT *val)
900 char *p;
901 uint16_t free_space, n, off, pageno;
902 size_t temp;
904 p = (char *)(void *)sp;
905 n = sp[0];
906 free_space = FREESPACE(sp);
907 off = OFFSET(sp);
909 pageno = sp[n - 1];
910 _DIAGASSERT(off >= key->size);
911 off -= (uint16_t)key->size;
912 sp[n - 1] = off;
913 memmove(p + off, key->data, key->size);
914 _DIAGASSERT(off >= val->size);
915 off -= (uint16_t)val->size;
916 sp[n] = off;
917 memmove(p + off, val->data, val->size);
918 sp[0] = n + 2;
919 sp[n + 1] = pageno;
920 sp[n + 2] = OVFLPAGE;
921 temp = PAIRSIZE(key, val);
922 _DIAGASSERT(free_space >= temp);
923 FREESPACE(sp) = (uint16_t)(free_space - temp);
924 OFFSET(sp) = off;
927 static uint32_t *
928 fetch_bitmap(HTAB *hashp, int ndx)
930 if (ndx >= hashp->nmaps)
931 return (NULL);
932 if ((hashp->mapp[ndx] = malloc((size_t)hashp->BSIZE)) == NULL)
933 return (NULL);
934 if (__get_page(hashp,
935 (char *)(void *)hashp->mapp[ndx], (uint32_t)hashp->BITMAPS[ndx], 0, 1, 1)) {
936 free(hashp->mapp[ndx]);
937 return (NULL);
939 return (hashp->mapp[ndx]);
942 #ifdef DEBUG4
943 void print_chain(HTAB *, uint32_t);
944 void
945 print_chain(HTAB *hashp, uint32_t addr)
947 BUFHEAD *bufp;
948 uint16_t *bp, oaddr;
950 (void)fprintf(stderr, "%d ", addr);
951 bufp = __get_buf(hashp, addr, NULL, 0);
952 bp = (uint16_t *)bufp->page;
953 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
954 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
955 oaddr = bp[bp[0] - 1];
956 (void)fprintf(stderr, "%d ", (int)oaddr);
957 bufp = __get_buf(hashp, (uint32_t)oaddr, bufp, 0);
958 bp = (uint16_t *)bufp->page;
960 (void)fprintf(stderr, "\n");
962 #endif