1 /* $NetBSD: n_cosh.c,v 1.7 2003/08/07 16:44:50 agc Exp $ */
3 * Copyright (c) 1985, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 static char sccsid
[] = "@(#)cosh.c 8.1 (Berkeley) 6/4/93";
38 * RETURN THE HYPERBOLIC COSINE OF X
39 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
40 * CODED IN C BY K.C. NG, 1/8/85;
41 * REVISED BY K.C. NG on 2/8/85, 2/23/85, 3/7/85, 3/29/85, 4/16/85.
43 * Required system supported functions :
47 * Required kernel function:
49 * exp__E(x,c) ...return exp(x+c)-1-x for |x|<0.3465
52 * 1. Replace x by |x|.
55 * 0 <= x <= 0.3465 : cosh(x) := 1 + -------------------
59 * 0.3465 <= x <= 22 : cosh(x) := -------------------
61 * 22 <= x <= lnovfl : cosh(x) := exp(x)/2
62 * lnovfl <= x <= lnovfl+log(2)
63 * : cosh(x) := exp(x)/2 (avoid overflow)
64 * log(2)+lnovfl < x < INF: overflow to INF
66 * Note: .3465 is a number near one half of ln2.
69 * cosh(x) is x if x is +INF, -INF, or NaN.
70 * only cosh(0)=1 is exact for finite x.
73 * cosh(x) returns the exact hyperbolic cosine of x nearly rounded.
74 * In a test run with 768,000 random arguments on a VAX, the maximum
75 * observed error was 1.23 ulps (units in the last place).
78 * The hexadecimal values are the intended ones for the following constants.
79 * The decimal values may be used, provided that the compiler will convert
80 * from decimal to binary accurately enough to produce the hexadecimal values
85 #include "../src/namespace.h"
89 __weak_alias(cosh
, _cosh
);
90 __weak_alias(coshf
, _coshf
);
93 vc(mln2hi
, 8.8029691931113054792E1
,0f33
,43b0
,2bdb
,c7e2
, 7, .B00F33C7E22BDB
)
94 vc(mln2lo
,-4.9650192275318476525E-16 ,1b60
,a70f
,582a
,279e
, -50,-.8F1B60279E582A
)
95 vc(lnovfl
, 8.8029691931113053016E1
,0f33
,43b0
,2bda
,c7e2
, 7, .B00F33C7E22BDA
)
97 ic(mln2hi
, 7.0978271289338397310E2
, 10, 1.62E42FEFA39EF
)
98 ic(mln2lo
, 2.3747039373786107478E-14, -45, 1.ABC9E3B39803F
)
99 ic(lnovfl
, 7.0978271289338397310E2
, 9, 1.62E42FEFA39EF
)
102 #define mln2hi vccast(mln2hi)
103 #define mln2lo vccast(mln2lo)
104 #define lnovfl vccast(lnovfl)
107 #if defined(__vax__)||defined(tahoe)
111 #endif /* defined(__vax__)||defined(tahoe) */
116 static const double half
=1.0/2.0,
117 one
=1.0, small
=1.0E-18; /* fl(1+small)==1 */
120 #if !defined(__vax__)&&!defined(tahoe)
121 if(x
!=x
) return(x
); /* x is NaN */
122 #endif /* !defined(__vax__)&&!defined(tahoe) */
123 if((x
=copysign(x
,one
)) <= 22) {
125 if(x
<small
) { return(one
+x
); }
126 else {t
=x
+__exp__E(x
,0.0);x
=t
+t
; return(one
+t
*t
/(2.0+x
)); }
128 } else /* for x lies in [0.3465,22] */
129 { t
=exp(x
); return((t
+one
/t
)*half
); }
132 if( lnovfl
<= x
&& x
<= (lnovfl
+0.7))
133 /* for x lies in [lnovfl, lnovfl+ln2], decrease x by ln(2^(EXPMAX+1))
134 * and return 2^EXPMAX*exp(x) to avoid unnecessary overflow
136 return(scalb(exp((x
-mln2hi
)-mln2lo
), EXPMAX
));
139 return(exp(x
)*half
); /* for large x, cosh(x)=exp(x)/2 */
145 return(cosh((double)x
));