1 /* $NetBSD: trig.h,v 1.5 2002/06/15 00:10:18 matt Exp $ */
3 * Copyright (c) 1987, 1993
4 * The Regents of the University of California. All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Neither the name of the University nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * @(#)trig.h 8.1 (Berkeley) 6/4/93
33 vc(thresh
, 2.6117239648121182150E-1 ,b863
,3f85
,6ea0
,6b02
, -1, .85B8636B026EA0
)
34 vc(PIo4
, 7.8539816339744830676E-1 ,0fda
,4049,68c2
,a221
, 0, .C90FDAA22168C2
)
35 vc(PIo2
, 1.5707963267948966135E0
,0fda
,40c9
,68c2
,a221
, 1, .C90FDAA22168C2
)
36 vc(PI3o4
, 2.3561944901923449203E0
,cbe3
,4116,0e92
,f999
, 2, .96CBE3F9990E92
)
37 vc(PI
, 3.1415926535897932270E0
,0fda
,4149,68c2
,a221
, 2, .C90FDAA22168C2
)
38 vc(PI2
, 6.2831853071795864540E0
,0fda
,41c9
,68c2
,a221
, 3, .C90FDAA22168C2
)
40 ic(thresh
, 2.6117239648121182150E-1 , -2, 1.0B70C6D604DD4
)
41 ic(PIo4
, 7.8539816339744827900E-1 , -1, 1.921FB54442D18
)
42 ic(PIo2
, 1.5707963267948965580E0
, 0, 1.921FB54442D18
)
43 ic(PI3o4
, 2.3561944901923448370E0
, 1, 1.2D97C7F3321D2
)
44 ic(PI
, 3.1415926535897931160E0
, 1, 1.921FB54442D18
)
45 ic(PI2
, 6.2831853071795862320E0
, 2, 1.921FB54442D18
)
48 #define thresh vccast(thresh)
49 #define PIo4 vccast(PIo4)
50 #define PIo2 vccast(PIo2)
51 #define PI3o4 vccast(PI3o4)
53 #define PI2 vccast(PI2)
57 static long fmaxx
[] = { 0xffffffff, 0x7fefffff};
58 #define fmax (*(double*)fmaxx)
68 __small
= 1E-9, /* 1+small**2 == 1; better values for small:
69 * small = 1.5E-9 for VAX D
70 * = 1.2E-8 for IEEE Double
71 * = 2.8E-10 for IEEE Extended
73 __big
= 1E18
; /* big := 1/(small**2) */
75 __small
= 1E-10, /* 1+small**2 == 1; better values for small:
76 * small = 1.5E-9 for VAX D
77 * = 1.2E-8 for IEEE Double
78 * = 2.8E-10 for IEEE Extended
80 __big
= 1E20
; /* big := 1/(small**2) */
83 extern const double __zero
, __one
, __negone
, __half
, __small
, __big
;
86 /* sin__S(x*x) ... re-implemented as a macro
87 * DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
88 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
89 * CODED IN C BY K.C. NG, 1/21/85;
90 * REVISED BY K.C. NG on 8/13/85.
93 * RETURN --------------- on [-PI/4,PI/4] , where k=pi/PI, PI is the rounded
95 * value of pi in machine precision:
98 * pi = 3.141592653589793 23846264338327 .....
99 * 53 bits PI = 3.141592653589793 115997963 ..... ,
100 * 56 bits PI = 3.141592653589793 227020265 ..... ,
103 * pi = 3.243F6A8885A308D313198A2E....
104 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
105 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
108 * 1. Let z=x*x. Create a polynomial approximation to
109 * (sin(k*x)-x)/x = z*(S0 + S1*z^1 + ... + S5*z^5).
111 * sin__S(x*x) = z*(S0 + S1*z^1 + ... + S5*z^5)
113 * The coefficient S's are obtained by a special Remez algorithm.
116 * In the absence of rounding error, the approximation has absolute error
117 * less than 2**(-61.11) for VAX D FORMAT, 2**(-57.45) for IEEE DOUBLE.
120 * The hexadecimal values are the intended ones for the following constants.
121 * The decimal values may be used, provided that the compiler will convert
122 * from decimal to binary accurately enough to produce the hexadecimal values
127 vc(S0
, -1.6666666666666646660E-1 ,aaaa
,bf2a
,aa71
,aaaa
, -2, -.AAAAAAAAAAAA71
)
128 vc(S1
, 8.3333333333297230413E-3 ,8888,3d08
,477f
,8888, -6, .8888888888477F
)
129 vc(S2
, -1.9841269838362403710E-4 ,0d00
,ba50
,1057,cf8a
, -12, -.D00D00CF8A1057
)
130 vc(S3
, 2.7557318019967078930E-6 ,ef1c
,3738,bedc
,a326
, -18, .B8EF1CA326BEDC
)
131 vc(S4
, -2.5051841873876551398E-8 ,3195,b3d7
,e1d3
,374c
, -25, -.D73195374CE1D3
)
132 vc(S5
, 1.6028995389845827653E-10 ,3d9c
,3030,cccc
,6d26
, -32, .B03D9C6D26CCCC
)
133 vc(S6
, -6.2723499671769283121E-13 ,8d0b
,ac30
,ea82
,7561, -40, -.B08D0B7561EA82
)
135 ic(S0
, -1.6666666666666463126E-1 , -3, -1.555555555550C
)
136 ic(S1
, 8.3333333332992771264E-3 , -7, 1.111111110C461
)
137 ic(S2
, -1.9841269816180999116E-4 , -13, -1.A01A019746345
)
138 ic(S3
, 2.7557309793219876880E-6 , -19, 1.71DE3209CDCD9
)
139 ic(S4
, -2.5050225177523807003E-8 , -26, -1.AE5C0E319A4EF
)
140 ic(S5
, 1.5868926979889205164E-10 , -33, 1.5CF61DF672B13
)
143 #define S0 vccast(S0)
144 #define S1 vccast(S1)
145 #define S2 vccast(S2)
146 #define S3 vccast(S3)
147 #define S4 vccast(S4)
148 #define S5 vccast(S5)
149 #define S6 vccast(S6)
152 #if defined(__vax__)||defined(tahoe)
153 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*(S5+z*S6)))))))
154 #else /* defined(__vax__)||defined(tahoe) */
155 # define sin__S(z) (z*(S0+z*(S1+z*(S2+z*(S3+z*(S4+z*S5))))))
156 #endif /* defined(__vax__)||defined(tahoe) */
158 /* cos__C(x*x) ... re-implemented as a macro
159 * DOUBLE PRECISION (VAX D FORMAT 56 BITS, IEEE DOUBLE 53 BITS)
160 * STATIC KERNEL FUNCTION OF SIN(X), COS(X), AND TAN(X)
161 * CODED IN C BY K.C. NG, 1/21/85;
162 * REVISED BY K.C. NG on 8/13/85.
165 * RETURN cos(k*x) - 1 + ----- on [-PI/4,PI/4], where k = pi/PI,
167 * PI is the rounded value of pi in machine precision :
170 * pi = 3.141592653589793 23846264338327 .....
171 * 53 bits PI = 3.141592653589793 115997963 ..... ,
172 * 56 bits PI = 3.141592653589793 227020265 ..... ,
175 * pi = 3.243F6A8885A308D313198A2E....
176 * 53 bits PI = 3.243F6A8885A30 = 2 * 1.921FB54442D18
177 * 56 bits PI = 3.243F6A8885A308 = 4 * .C90FDAA22168C2
181 * 1. Let z=x*x. Create a polynomial approximation to
182 * cos(k*x)-1+z/2 = z*z*(C0 + C1*z^1 + ... + C5*z^5)
184 * cos__C(z) = z*z*(C0 + C1*z^1 + ... + C5*z^5)
186 * The coefficient C's are obtained by a special Remez algorithm.
189 * In the absence of rounding error, the approximation has absolute error
190 * less than 2**(-64) for VAX D FORMAT, 2**(-58.3) for IEEE DOUBLE.
194 * The hexadecimal values are the intended ones for the following constants.
195 * The decimal values may be used, provided that the compiler will convert
196 * from decimal to binary accurately enough to produce the hexadecimal values
200 vc(C0
, 4.1666666666666504759E-2 ,aaaa
,3e2a
,a9f0
,aaaa
, -4, .AAAAAAAAAAA9F0
)
201 vc(C1
, -1.3888888888865302059E-3 ,0b60,bbb6
,0cca
,b60a
, -9, -.B60B60B60A0CCA
)
202 vc(C2
, 2.4801587285601038265E-5 ,0d00
,38d0
,098f
,cdcd
, -15, .D00D00CDCD098F
)
203 vc(C3
, -2.7557313470902390219E-7 ,f27b
,b593
,e805
,b593
, -21, -.93F27BB593E805
)
204 vc(C4
, 2.0875623401082232009E-9 ,74c8
,320f
,3ff0
,fa1e
, -28, .8F74C8FA1E3FF0
)
205 vc(C5
, -1.1355178117642986178E-11 ,c32d
,ae47
,5a63
,0a5c
, -36, -.C7C32D0A5C5A63
)
207 ic(C0
, 4.1666666666666504759E-2 , -5, 1.555555555553E
)
208 ic(C1
, -1.3888888888865301516E-3 , -10, -1.6C16C16C14199
)
209 ic(C2
, 2.4801587269650015769E-5 , -16, 1.A01A01971CAEB
)
210 ic(C3
, -2.7557304623183959811E-7 , -22, -1.27E4F1314AD1A
)
211 ic(C4
, 2.0873958177697780076E-9 , -29, 1.1EE3B60DDDC8C
)
212 ic(C5
, -1.1250289076471311557E-11 , -37, -1.8BD5986B2A52E
)
215 #define C0 vccast(C0)
216 #define C1 vccast(C1)
217 #define C2 vccast(C2)
218 #define C3 vccast(C3)
219 #define C4 vccast(C4)
220 #define C5 vccast(C5)
223 #define cos__C(z) (z*z*(C0+z*(C1+z*(C2+z*(C3+z*(C4+z*C5))))))