1 /* e_jnf.c -- float version of e_jn.c.
2 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
13 * ====================================================
16 #include <sys/cdefs.h>
17 #if defined(LIBM_SCCS) && !defined(lint)
18 __RCSID("$NetBSD: e_jnf.c,v 1.9 2002/05/26 22:01:50 wiz Exp $");
22 #include "math_private.h"
26 invsqrtpi
= 5.6418961287e-01, /* 0x3f106ebb */
28 two
= 2.0000000000e+00, /* 0x40000000 */
29 one
= 1.0000000000e+00; /* 0x3F800000 */
31 static const float zero
= 0.0000000000e+00;
34 __ieee754_jnf(int n
, float x
)
40 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
41 * Thus, J(-n,x) = J(n,-x)
45 /* if J(n,NaN) is NaN */
46 if(ix
>0x7f800000) return x
+x
;
52 if(n
==0) return(__ieee754_j0f(x
));
53 if(n
==1) return(__ieee754_j1f(x
));
54 sgn
= (n
&1)&(hx
>>31); /* even n -- 0, odd n -- sign(x) */
56 if(ix
==0||ix
>=0x7f800000) /* if x is 0 or inf */
58 else if((float)n
<=x
) {
59 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
64 b
= b
*((float)(i
+i
)/x
) - a
; /* avoid underflow */
68 if(ix
<0x30800000) { /* x < 2**-29 */
69 /* x is tiny, return the first Taylor expansion of J(n,x)
70 * J(n,x) = 1/n!*(x/2)^n - ...
72 if(n
>33) /* underflow */
75 temp
= x
*(float)0.5; b
= temp
;
76 for (a
=one
,i
=2;i
<=n
;i
++) {
77 a
*= (float)i
; /* a = n! */
78 b
*= temp
; /* b = (x/2)^n */
83 /* use backward recurrence */
85 * J(n,x)/J(n-1,x) = ---- ------ ------ .....
86 * 2n - 2(n+1) - 2(n+2)
89 * (for large x) = ---- ------ ------ .....
91 * -- - ------ - ------ -
94 * Let w = 2n/x and h=2/x, then the above quotient
95 * is equal to the continued fraction:
97 * = -----------------------
99 * w - -----------------
104 * To determine how many terms needed, let
105 * Q(0) = w, Q(1) = w(w+h) - 1,
106 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
107 * When Q(k) > 1e4 good for single
108 * When Q(k) > 1e9 good for double
109 * When Q(k) > 1e17 good for quadruple
113 float q0
,q1
,h
,tmp
; int32_t k
,m
;
114 w
= (n
+n
)/(float)x
; h
= (float)2.0/(float)x
;
115 q0
= w
; z
= w
+h
; q1
= w
*z
- (float)1.0; k
=1;
116 while(q1
<(float)1.0e9
) {
123 for(t
=zero
, i
= 2*(n
+k
); i
>=m
; i
-= 2) t
= one
/(i
/x
-t
);
126 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
127 * Hence, if n*(log(2n/x)) > ...
128 * single 8.8722839355e+01
129 * double 7.09782712893383973096e+02
130 * long double 1.1356523406294143949491931077970765006170e+04
131 * then recurrent value may overflow and the result is
132 * likely underflow to zero
136 tmp
= tmp
*__ieee754_logf(fabsf(v
*tmp
));
137 if(tmp
<(float)8.8721679688e+01) {
138 for(i
=n
-1,di
=(float)(i
+i
);i
>0;i
--){
146 for(i
=n
-1,di
=(float)(i
+i
);i
>0;i
--){
152 /* scale b to avoid spurious overflow */
160 b
= (t
*__ieee754_j0f(x
)/b
);
163 if(sgn
==1) return -b
; else return b
;
167 __ieee754_ynf(int n
, float x
)
173 GET_FLOAT_WORD(hx
,x
);
175 /* if Y(n,NaN) is NaN */
176 if(ix
>0x7f800000) return x
+x
;
177 if(ix
==0) return -one
/zero
;
178 if(hx
<0) return zero
/zero
;
182 sign
= 1 - ((n
&1)<<1);
184 if(n
==0) return(__ieee754_y0f(x
));
185 if(n
==1) return(sign
*__ieee754_y1f(x
));
186 if(ix
==0x7f800000) return zero
;
188 a
= __ieee754_y0f(x
);
189 b
= __ieee754_y1f(x
);
190 /* quit if b is -inf */
191 GET_FLOAT_WORD(ib
,b
);
192 for(i
=1;i
<n
&&(uint32_t)ib
!=0xff800000;i
++){
194 b
= ((float)(i
+i
)/x
)*b
- a
;
195 GET_FLOAT_WORD(ib
,b
);
198 if(sign
>0) return b
; else return -b
;