Sync usage with man page.
[netbsd-mini2440.git] / sys / arch / arm / include / arm32 / pte.h
blob82f3d6b634574afd4ceb82cced14b117d7c68d0c
1 /* $NetBSD: pte.h,v 1.7.82.2 2007/11/09 05:37:39 matt Exp $ */
3 /*
4 * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5 * All rights reserved.
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
38 #ifndef _ARM_PTE_H_
39 #define _ARM_PTE_H_
42 * The ARM MMU architecture was introduced with ARM v3 (previous ARM
43 * architecture versions used an optional off-CPU memory controller
44 * to perform address translation).
46 * The ARM MMU consists of a TLB and translation table walking logic.
47 * There is typically one TLB per memory interface (or, put another
48 * way, one TLB per software-visible cache).
50 * The ARM MMU is capable of mapping memory in the following chunks:
52 * 16M SuperSections (L1 table, ARMv6+)
54 * 1M Sections (L1 table)
56 * 64K Large Pages (L2 table)
58 * 4K Small Pages (L2 table)
60 * 1K Tiny Pages (L2 table)
62 * There are two types of L2 tables: Coarse Tables and Fine Tables (not
63 * available on ARMv6+). Coarse Tables can map Large and Small Pages.
64 * Fine Tables can map Tiny Pages.
66 * Coarse Tables can define 4 Subpages within Large and Small pages.
67 * Subpages define different permissions for each Subpage within
68 * a Page. ARMv6 format Coarse Tables have no subpages.
70 * Coarse Tables are 1K in length. Fine tables are 4K in length.
72 * The Translation Table Base register holds the pointer to the
73 * L1 Table. The L1 Table is a 16K contiguous chunk of memory
74 * aligned to a 16K boundary. Each entry in the L1 Table maps
75 * 1M of virtual address space, either via a Section mapping or
76 * via an L2 Table.
78 * ARMv6+ has a second TTBR register which can be used if any of the
79 * upper address bits are non-zero (think kernel). For NetBSD, this
80 * would be 1 upper bit splitting user/kernel in a 2GB/2GB split.
81 * This would also reduce the size of the L1 Table to 8K.
83 * In addition, the Fast Context Switching Extension (FCSE) is available
84 * on some ARM v4 and ARM v5 processors. FCSE is a way of eliminating
85 * TLB/cache flushes on context switch by use of a smaller address space
86 * and a "process ID" that modifies the virtual address before being
87 * presented to the translation logic.
90 #ifndef _LOCORE
91 typedef uint32_t pd_entry_t; /* L1 table entry */
92 typedef uint32_t pt_entry_t; /* L2 table entry */
93 #endif /* _LOCORE */
95 #define L1_SS_SIZE 0x01000000 /* 16M */
96 #define L1_SS_OFFSET (L1_SS_SIZE - 1)
97 #define L1_SS_FRAME (~L1_SS_OFFSET)
98 #define L1_SS_SHIFT 24
100 #define L1_S_SIZE 0x00100000 /* 1M */
101 #define L1_S_OFFSET (L1_S_SIZE - 1)
102 #define L1_S_FRAME (~L1_S_OFFSET)
103 #define L1_S_SHIFT 20
105 #define L2_L_SIZE 0x00010000 /* 64K */
106 #define L2_L_OFFSET (L2_L_SIZE - 1)
107 #define L2_L_FRAME (~L2_L_OFFSET)
108 #define L2_L_SHIFT 16
110 #define L2_S_SIZE 0x00001000 /* 4K */
111 #define L2_S_OFFSET (L2_S_SIZE - 1)
112 #define L2_S_FRAME (~L2_S_OFFSET)
113 #define L2_S_SHIFT 12
115 #define L2_T_SIZE 0x00000400 /* 1K */
116 #define L2_T_OFFSET (L2_T_SIZE - 1)
117 #define L2_T_FRAME (~L2_T_OFFSET)
118 #define L2_T_SHIFT 10
121 * The NetBSD VM implementation only works on whole pages (4K),
122 * whereas the ARM MMU's Coarse tables are sized in terms of 1K
123 * (16K L1 table, 1K L2 table).
125 * So, we allocate L2 tables 4 at a time, thus yielding a 4K L2
126 * table.
128 #define L1_ADDR_BITS 0xfff00000 /* L1 PTE address bits */
129 #define L2_ADDR_BITS 0x000ff000 /* L2 PTE address bits */
131 #define L1_TABLE_SIZE 0x4000 /* 16K */
132 #define L2_TABLE_SIZE 0x1000 /* 4K */
134 * The new pmap deals with the 1KB coarse L2 tables by
135 * allocating them from a pool. Until every port has been converted,
136 * keep the old L2_TABLE_SIZE define lying around. Converted ports
137 * should use L2_TABLE_SIZE_REAL until then.
139 #define L2_TABLE_SIZE_REAL 0x400 /* 1K */
142 * ARM L1 Descriptors
145 #define L1_TYPE_INV 0x00 /* Invalid (fault) */
146 #define L1_TYPE_C 0x01 /* Coarse L2 */
147 #define L1_TYPE_S 0x02 /* Section */
148 #define L1_TYPE_F 0x03 /* Fine L2 */
149 #define L1_TYPE_MASK 0x03 /* mask of type bits */
151 /* L1 Section Descriptor */
152 #define L1_S_B 0x00000004 /* bufferable Section */
153 #define L1_S_C 0x00000008 /* cacheable Section */
154 #define L1_S_IMP 0x00000010 /* implementation defined */
155 #define L1_S_DOM(x) ((x) << 5) /* domain */
156 #define L1_S_DOM_MASK L1_S_DOM(0xf)
157 #define L1_S_AP(x) ((x) << 10) /* access permissions */
158 #define L1_S_ADDR_MASK 0xfff00000 /* phys address of section */
160 #define L1_S_XSCALE_P 0x00000200 /* ECC enable for this section */
161 #define L1_S_XS_TEX(x) ((x) << 12) /* Type Extension */
162 #define L1_S_V6_TEX(x) ((x) << 12) /* Type Extension */
163 #define L1_S_V6_P 0x00000200 /* ECC enable for this section */
164 #define L1_S_V6_SUPER 0x00040000 /* ARMv6 SuperSection (16MB) bit */
165 #define L1_S_V6_XN L1_S_IMP /* ARMv6 eXecute Never */
166 #define L1_S_V6_APX 0x00008000 /* ARMv6 AP eXtension */
167 #define L1_S_V6_S 0x00010000 /* ARMv6 Shared */
168 #define L1_S_V6_nG 0x00020000 /* ARMv6 not-Global */
170 /* L1 Coarse Descriptor */
171 #define L1_C_IMP0 0x00000004 /* implementation defined */
172 #define L1_C_IMP1 0x00000008 /* implementation defined */
173 #define L1_C_IMP2 0x00000010 /* implementation defined */
174 #define L1_C_DOM(x) ((x) << 5) /* domain */
175 #define L1_C_DOM_MASK L1_C_DOM(0xf)
176 #define L1_C_ADDR_MASK 0xfffffc00 /* phys address of L2 Table */
178 #define L1_C_XSCALE_P 0x00000200 /* ECC enable for this section */
179 #define L1_C_V6_P 0x00000200 /* ECC enable for this section */
181 /* L1 Fine Descriptor */
182 #define L1_F_IMP0 0x00000004 /* implementation defined */
183 #define L1_F_IMP1 0x00000008 /* implementation defined */
184 #define L1_F_IMP2 0x00000010 /* implementation defined */
185 #define L1_F_DOM(x) ((x) << 5) /* domain */
186 #define L1_F_DOM_MASK L1_F_DOM(0xf)
187 #define L1_F_ADDR_MASK 0xfffff000 /* phys address of L2 Table */
189 #define L1_F_XSCALE_P 0x00000200 /* ECC enable for this section */
192 * ARM L2 Descriptors
195 #define L2_TYPE_INV 0x00 /* Invalid (fault) */
196 #define L2_TYPE_L 0x01 /* Large Page */
197 #define L2_TYPE_S 0x02 /* Small Page */
198 #define L2_TYPE_T 0x03 /* Tiny Page */
199 #define L2_TYPE_MASK 0x03 /* mask of type bits */
202 * This L2 Descriptor type is available on XScale processors
203 * when using a Coarse L1 Descriptor. The Extended Small
204 * Descriptor has the same format as the XScale Tiny Descriptor,
205 * but describes a 4K page, rather than a 1K page.
207 #define L2_TYPE_XS 0x03 /* XScale/ARMv6 Extended Small Page */
209 #define L2_B 0x00000004 /* Bufferable page */
210 #define L2_C 0x00000008 /* Cacheable page */
211 #define L2_AP0(x) ((x) << 4) /* access permissions (sp 0) */
212 #define L2_AP1(x) ((x) << 6) /* access permissions (sp 1) */
213 #define L2_AP2(x) ((x) << 8) /* access permissions (sp 2) */
214 #define L2_AP3(x) ((x) << 10) /* access permissions (sp 3) */
215 #define L2_AP(x) (L2_AP0(x) | L2_AP1(x) | L2_AP2(x) | L2_AP3(x))
217 #define L2_XS_L_TEX(x) ((x) << 12) /* Type Extension */
218 #define L2_XS_T_TEX(x) ((x) << 6) /* Type Extension */
219 #define L2_XS_XN 0x00000001 /* ARMv6 eXecute Never */
220 #define L2_XS_APX 0x00000200 /* ARMv6 AP eXtension */
221 #define L2_XS_S 0x00000400 /* ARMv6 Shared */
222 #define L2_XS_nG 0x00000800 /* ARMv6 Not-Global */
225 * Access Permissions for L1 and L2 Descriptors.
227 #define AP_W 0x01 /* writable */
228 #define AP_U 0x02 /* user */
231 * Short-hand for common AP_* constants.
233 * Note: These values assume the S (System) bit is set and
234 * the R (ROM) bit is clear in CP15 register 1.
236 #define AP_KR 0x00 /* kernel read */
237 #define AP_KRW 0x01 /* kernel read/write */
238 #define AP_KRWUR 0x02 /* kernel read/write usr read */
239 #define AP_KRWURW 0x03 /* kernel read/write usr read/write */
242 * Note: These values assume the S (System) and the R (ROM) bits are clear and
243 * the XP (eXtended page table) bit is set in CP15 register 1. ARMv6 only.
245 #define APX_KR(APX) (APX|0x01) /* kernel read */
246 #define APX_KRUR(APX) (APX|0x02) /* kernel read user read */
247 #define APX_KRW(APX) ( 0x01) /* kernel read/write */
248 #define APX_KRWUR(APX) ( 0x02) /* kernel read/write user read */
249 #define APX_KRWURW(APX) ( 0x03) /* kernel read/write user read/write */
252 * Domain Types for the Domain Access Control Register.
254 #define DOMAIN_FAULT 0x00 /* no access */
255 #define DOMAIN_CLIENT 0x01 /* client */
256 #define DOMAIN_RESERVED 0x02 /* reserved */
257 #define DOMAIN_MANAGER 0x03 /* manager */
260 * Type Extension bits for XScale processors.
262 * Behavior of C and B when X == 0:
264 * C B Cacheable Bufferable Write Policy Line Allocate Policy
265 * 0 0 N N - -
266 * 0 1 N Y - -
267 * 1 0 Y Y Write-through Read Allocate
268 * 1 1 Y Y Write-back Read Allocate
270 * Behavior of C and B when X == 1:
271 * C B Cacheable Bufferable Write Policy Line Allocate Policy
272 * 0 0 - - - - DO NOT USE
273 * 0 1 N Y - -
274 * 1 0 Mini-Data - - -
275 * 1 1 Y Y Write-back R/W Allocate
277 #define TEX_XSCALE_X 0x01 /* X modifies C and B */
279 #endif /* _ARM_PTE_H_ */