Sync usage with man page.
[netbsd-mini2440.git] / sys / arch / m68k / fpe / fpu_emulate.c
blobb780b0f0cfbfbdd14a75258a6e7b040a13f8f292
1 /* $NetBSD: fpu_emulate.c,v 1.29 2009/03/14 14:46:01 dsl Exp $ */
3 /*
4 * Copyright (c) 1995 Gordon W. Ross
5 * some portion Copyright (c) 1995 Ken Nakata
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * mc68881 emulator
36 * XXX - Just a start at it for now...
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: fpu_emulate.c,v 1.29 2009/03/14 14:46:01 dsl Exp $");
42 #include <sys/param.h>
43 #include <sys/types.h>
44 #include <sys/signal.h>
45 #include <sys/systm.h>
46 #include <machine/frame.h>
48 #if defined(DDB) && defined(DEBUG_FPE)
49 # include <m68k/db_machdep.h>
50 #endif
52 #include "fpu_emulate.h"
54 #define fpe_abort(tfp, ksi, signo, code) \
55 do { \
56 (ksi)->ksi_signo = (signo); \
57 (ksi)->ksi_code = (code); \
58 (ksi)->ksi_addr = (void *)(frame)->f_pc; \
59 return -1; \
60 } while (/*CONSTCOND*/0)
62 static int fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn);
63 static int fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn);
64 static int fpu_emul_arith(struct fpemu *fe, struct instruction *insn);
65 static int fpu_emul_type1(struct fpemu *fe, struct instruction *insn);
66 static int fpu_emul_brcc(struct fpemu *fe, struct instruction *insn);
67 static int test_cc(struct fpemu *fe, int pred);
68 static struct fpn *fpu_cmp(struct fpemu *fe);
70 #if DEBUG_FPE
71 # define DUMP_INSN(insn) \
72 printf("fpu_emulate: insn={adv=%d,siz=%d,op=%04x,w1=%04x}\n", \
73 (insn)->is_advance, (insn)->is_datasize, \
74 (insn)->is_opcode, (insn)->is_word1)
75 #else
76 # define DUMP_INSN(insn)
77 #endif
80 * Emulate a floating-point instruction.
81 * Return zero for success, else signal number.
82 * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
84 int
85 fpu_emulate(struct frame *frame, struct fpframe *fpf, ksiginfo_t *ksi)
87 static struct instruction insn;
88 static struct fpemu fe;
89 int word, optype, sig;
92 /* initialize insn.is_datasize to tell it is *not* initialized */
93 insn.is_datasize = -1;
95 fe.fe_frame = frame;
96 fe.fe_fpframe = fpf;
97 fe.fe_fpsr = fpf->fpf_fpsr;
98 fe.fe_fpcr = fpf->fpf_fpcr;
100 #if DEBUG_FPE
101 printf("ENTERING fpu_emulate: FPSR=%08x, FPCR=%08x\n",
102 fe.fe_fpsr, fe.fe_fpcr);
103 #endif
105 /* always set this (to avoid a warning) */
106 insn.is_pc = frame->f_pc;
107 insn.is_nextpc = 0;
108 if (frame->f_format == 4) {
110 * A format 4 is generated by the 68{EC,LC}040. The PC is
111 * already set to the instruction following the faulting
112 * instruction. We need to calculate that, anyway. The
113 * fslw is the PC of the faulted instruction, which is what
114 * we expect to be in f_pc.
116 * XXX - This is a hack; it assumes we at least know the
117 * sizes of all instructions we run across.
118 * XXX TODO: This may not be true, so we might want to save the PC
119 * in order to restore it later.
121 /* insn.is_nextpc = frame->f_pc; */
122 insn.is_pc = frame->f_fmt4.f_fslw;
123 frame->f_pc = insn.is_pc;
126 word = fusword((void *) (insn.is_pc));
127 if (word < 0) {
128 #ifdef DEBUG
129 printf("fpu_emulate: fault reading opcode\n");
130 #endif
131 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
134 if ((word & 0xf000) != 0xf000) {
135 #ifdef DEBUG
136 printf("fpu_emulate: not coproc. insn.: opcode=0x%x\n", word);
137 #endif
138 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
141 if ((word & 0x0E00) != 0x0200) {
142 #ifdef DEBUG
143 printf("fpu_emulate: bad coproc. id: opcode=0x%x\n", word);
144 #endif
145 fpe_abort(frame, ksi, SIGILL, ILL_ILLOPC);
148 insn.is_opcode = word;
149 optype = (word & 0x01C0);
151 word = fusword((void *) (insn.is_pc + 2));
152 if (word < 0) {
153 #ifdef DEBUG
154 printf("fpu_emulate: fault reading word1\n");
155 #endif
156 fpe_abort(frame, ksi, SIGSEGV, SEGV_ACCERR);
158 insn.is_word1 = word;
159 /* all FPU instructions are at least 4-byte long */
160 insn.is_advance = 4;
162 DUMP_INSN(&insn);
165 * Which family (or type) of opcode is it?
166 * Tests ordered by likelihood (hopefully).
167 * Certainly, type 0 is the most common.
169 if (optype == 0x0000) {
170 /* type=0: generic */
171 if ((word & 0xc000) == 0xc000) {
172 #if DEBUG_FPE
173 printf("fpu_emulate: fmovm FPr\n");
174 #endif
175 sig = fpu_emul_fmovm(&fe, &insn);
176 } else if ((word & 0xc000) == 0x8000) {
177 #if DEBUG_FPE
178 printf("fpu_emulate: fmovm FPcr\n");
179 #endif
180 sig = fpu_emul_fmovmcr(&fe, &insn);
181 } else if ((word & 0xe000) == 0x6000) {
182 /* fstore = fmove FPn,mem */
183 #if DEBUG_FPE
184 printf("fpu_emulate: fmove to mem\n");
185 #endif
186 sig = fpu_emul_fstore(&fe, &insn);
187 } else if ((word & 0xfc00) == 0x5c00) {
188 /* fmovecr */
189 #if DEBUG_FPE
190 printf("fpu_emulate: fmovecr\n");
191 #endif
192 sig = fpu_emul_fmovecr(&fe, &insn);
193 } else if ((word & 0xa07f) == 0x26) {
194 /* fscale */
195 #if DEBUG_FPE
196 printf("fpu_emulate: fscale\n");
197 #endif
198 sig = fpu_emul_fscale(&fe, &insn);
199 } else {
200 #if DEBUG_FPE
201 printf("fpu_emulate: other type0\n");
202 #endif
203 /* all other type0 insns are arithmetic */
204 sig = fpu_emul_arith(&fe, &insn);
206 if (sig == 0) {
207 #if DEBUG_FPE
208 printf("fpu_emulate: type 0 returned 0\n");
209 #endif
210 sig = fpu_upd_excp(&fe);
212 } else if (optype == 0x0080 || optype == 0x00C0) {
213 /* type=2 or 3: fbcc, short or long disp. */
214 #if DEBUG_FPE
215 printf("fpu_emulate: fbcc %s\n",
216 (optype & 0x40) ? "long" : "short");
217 #endif
218 sig = fpu_emul_brcc(&fe, &insn);
219 } else if (optype == 0x0040) {
220 /* type=1: fdbcc, fscc, ftrapcc */
221 #if DEBUG_FPE
222 printf("fpu_emulate: type1\n");
223 #endif
224 sig = fpu_emul_type1(&fe, &insn);
225 } else {
226 /* type=4: fsave (privileged) */
227 /* type=5: frestore (privileged) */
228 /* type=6: reserved */
229 /* type=7: reserved */
230 #ifdef DEBUG
231 printf("fpu_emulate: bad opcode type: opcode=0x%x\n", insn.is_opcode);
232 #endif
233 sig = SIGILL;
236 DUMP_INSN(&insn);
239 * XXX it is not clear to me, if we should progress the PC always,
240 * for SIGFPE || 0, or only for 0; however, without SIGFPE, we
241 * don't pass the signalling regression tests. -is
243 if ((sig == 0) || (sig == SIGFPE))
244 frame->f_pc += insn.is_advance;
245 #if defined(DDB) && defined(DEBUG_FPE)
246 else {
247 printf("fpu_emulate: sig=%d, opcode=%x, word1=%x\n",
248 sig, insn.is_opcode, insn.is_word1);
249 kdb_trap(-1, (db_regs_t *)&frame);
251 #endif
252 #if 0 /* XXX something is wrong */
253 if (frame->f_format == 4) {
254 /* XXX Restore PC -- 68{EC,LC}040 only */
255 if (insn.is_nextpc)
256 frame->f_pc = insn.is_nextpc;
258 #endif
260 #if DEBUG_FPE
261 printf("EXITING fpu_emulate: w/FPSR=%08x, FPCR=%08x\n",
262 fe.fe_fpsr, fe.fe_fpcr);
263 #endif
265 if (sig)
266 fpe_abort(frame, ksi, sig, 0);
267 return (sig);
270 /* update accrued exception bits and see if there's an FP exception */
272 fpu_upd_excp(struct fpemu *fe)
274 u_int fpsr;
275 u_int fpcr;
277 fpsr = fe->fe_fpsr;
278 fpcr = fe->fe_fpcr;
279 /* update fpsr accrued exception bits; each insn doesn't have to
280 update this */
281 if (fpsr & (FPSR_BSUN | FPSR_SNAN | FPSR_OPERR)) {
282 fpsr |= FPSR_AIOP;
284 if (fpsr & FPSR_OVFL) {
285 fpsr |= FPSR_AOVFL;
287 if ((fpsr & FPSR_UNFL) && (fpsr & FPSR_INEX2)) {
288 fpsr |= FPSR_AUNFL;
290 if (fpsr & FPSR_DZ) {
291 fpsr |= FPSR_ADZ;
293 if (fpsr & (FPSR_INEX1 | FPSR_INEX2 | FPSR_OVFL)) {
294 fpsr |= FPSR_AINEX;
297 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
299 return (fpsr & fpcr & FPSR_EXCP) ? SIGFPE : 0;
302 /* update fpsr according to fp (= result of an fp op) */
303 u_int
304 fpu_upd_fpsr(struct fpemu *fe, struct fpn *fp)
306 u_int fpsr;
308 #if DEBUG_FPE
309 printf("fpu_upd_fpsr: previous fpsr=%08x\n", fe->fe_fpsr);
310 #endif
311 /* clear all condition code */
312 fpsr = fe->fe_fpsr & ~FPSR_CCB;
314 #if DEBUG_FPE
315 printf("fpu_upd_fpsr: result is a ");
316 #endif
317 if (fp->fp_sign) {
318 #if DEBUG_FPE
319 printf("negative ");
320 #endif
321 fpsr |= FPSR_NEG;
322 #if DEBUG_FPE
323 } else {
324 printf("positive ");
325 #endif
328 switch (fp->fp_class) {
329 case FPC_SNAN:
330 #if DEBUG_FPE
331 printf("signaling NAN\n");
332 #endif
333 fpsr |= (FPSR_NAN | FPSR_SNAN);
334 break;
335 case FPC_QNAN:
336 #if DEBUG_FPE
337 printf("quiet NAN\n");
338 #endif
339 fpsr |= FPSR_NAN;
340 break;
341 case FPC_ZERO:
342 #if DEBUG_FPE
343 printf("Zero\n");
344 #endif
345 fpsr |= FPSR_ZERO;
346 break;
347 case FPC_INF:
348 #if DEBUG_FPE
349 printf("Inf\n");
350 #endif
351 fpsr |= FPSR_INF;
352 break;
353 default:
354 #if DEBUG_FPE
355 printf("Number\n");
356 #endif
357 /* anything else is treated as if it is a number */
358 break;
361 fe->fe_fpsr = fe->fe_fpframe->fpf_fpsr = fpsr;
363 #if DEBUG_FPE
364 printf("fpu_upd_fpsr: new fpsr=%08x\n", fe->fe_fpframe->fpf_fpsr);
365 #endif
367 return fpsr;
370 static int
371 fpu_emul_fmovmcr(struct fpemu *fe, struct instruction *insn)
373 struct frame *frame = fe->fe_frame;
374 struct fpframe *fpf = fe->fe_fpframe;
375 int sig;
376 int reglist;
377 int fpu_to_mem;
379 /* move to/from control registers */
380 reglist = (insn->is_word1 & 0x1c00) >> 10;
381 /* Bit 13 selects direction (FPU to/from Mem) */
382 fpu_to_mem = insn->is_word1 & 0x2000;
384 insn->is_datasize = 4;
385 insn->is_advance = 4;
386 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
387 if (sig) { return sig; }
389 if (reglist != 1 && reglist != 2 && reglist != 4 &&
390 (insn->is_ea.ea_flags & EA_DIRECT)) {
391 /* attempted to copy more than one FPcr to CPU regs */
392 #ifdef DEBUG
393 printf("fpu_emul_fmovmcr: tried to copy too many FPcr\n");
394 #endif
395 return SIGILL;
398 if (reglist & 4) {
399 /* fpcr */
400 if ((insn->is_ea.ea_flags & EA_DIRECT) &&
401 insn->is_ea.ea_regnum >= 8 /* address reg */) {
402 /* attempted to copy FPCR to An */
403 #ifdef DEBUG
404 printf("fpu_emul_fmovmcr: tried to copy FPCR from/to A%d\n",
405 insn->is_ea.ea_regnum & 7);
406 #endif
407 return SIGILL;
409 if (fpu_to_mem) {
410 sig = fpu_store_ea(frame, insn, &insn->is_ea,
411 (char *)&fpf->fpf_fpcr);
412 } else {
413 sig = fpu_load_ea(frame, insn, &insn->is_ea,
414 (char *)&fpf->fpf_fpcr);
417 if (sig) { return sig; }
419 if (reglist & 2) {
420 /* fpsr */
421 if ((insn->is_ea.ea_flags & EA_DIRECT) &&
422 insn->is_ea.ea_regnum >= 8 /* address reg */) {
423 /* attempted to copy FPSR to An */
424 #ifdef DEBUG
425 printf("fpu_emul_fmovmcr: tried to copy FPSR from/to A%d\n",
426 insn->is_ea.ea_regnum & 7);
427 #endif
428 return SIGILL;
430 if (fpu_to_mem) {
431 sig = fpu_store_ea(frame, insn, &insn->is_ea,
432 (char *)&fpf->fpf_fpsr);
433 } else {
434 sig = fpu_load_ea(frame, insn, &insn->is_ea,
435 (char *)&fpf->fpf_fpsr);
438 if (sig) { return sig; }
440 if (reglist & 1) {
441 /* fpiar - can be moved to/from An */
442 if (fpu_to_mem) {
443 sig = fpu_store_ea(frame, insn, &insn->is_ea,
444 (char *)&fpf->fpf_fpiar);
445 } else {
446 sig = fpu_load_ea(frame, insn, &insn->is_ea,
447 (char *)&fpf->fpf_fpiar);
450 return sig;
454 * type 0: fmovem
455 * Separated out of fpu_emul_type0 for efficiency.
456 * In this function, we know:
457 * (opcode & 0x01C0) == 0
458 * (word1 & 0x8000) == 0x8000
460 * No conversion or rounding is done by this instruction,
461 * and the FPSR is not affected.
463 static int
464 fpu_emul_fmovm(struct fpemu *fe, struct instruction *insn)
466 struct frame *frame = fe->fe_frame;
467 struct fpframe *fpf = fe->fe_fpframe;
468 int word1, sig;
469 int reglist, regmask, regnum;
470 int fpu_to_mem, order;
471 int w1_post_incr;
472 int *fpregs;
474 insn->is_advance = 4;
475 insn->is_datasize = 12;
476 word1 = insn->is_word1;
478 /* Bit 13 selects direction (FPU to/from Mem) */
479 fpu_to_mem = word1 & 0x2000;
482 * Bits 12,11 select register list mode:
483 * 0,0: Static reg list, pre-decr.
484 * 0,1: Dynamic reg list, pre-decr.
485 * 1,0: Static reg list, post-incr.
486 * 1,1: Dynamic reg list, post-incr
488 w1_post_incr = word1 & 0x1000;
489 if (word1 & 0x0800) {
490 /* dynamic reg list */
491 reglist = frame->f_regs[(word1 & 0x70) >> 4];
492 } else {
493 reglist = word1;
495 reglist &= 0xFF;
497 /* Get effective address. (modreg=opcode&077) */
498 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
499 if (sig) { return sig; }
501 /* Get address of soft coprocessor regs. */
502 fpregs = &fpf->fpf_regs[0];
504 if (insn->is_ea.ea_flags & EA_PREDECR) {
505 regnum = 7;
506 order = -1;
507 } else {
508 regnum = 0;
509 order = 1;
512 regmask = 0x80;
513 while ((0 <= regnum) && (regnum < 8)) {
514 if (regmask & reglist) {
515 if (fpu_to_mem) {
516 sig = fpu_store_ea(frame, insn, &insn->is_ea,
517 (char*)&fpregs[regnum * 3]);
518 #if DEBUG_FPE
519 printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) saved\n",
520 regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
521 fpregs[regnum * 3 + 2]);
522 #endif
523 } else { /* mem to fpu */
524 sig = fpu_load_ea(frame, insn, &insn->is_ea,
525 (char*)&fpregs[regnum * 3]);
526 #if DEBUG_FPE
527 printf("fpu_emul_fmovm: FP%d (%08x,%08x,%08x) loaded\n",
528 regnum, fpregs[regnum * 3], fpregs[regnum * 3 + 1],
529 fpregs[regnum * 3 + 2]);
530 #endif
532 if (sig) { break; }
534 regnum += order;
535 regmask >>= 1;
538 return sig;
541 static struct fpn *
542 fpu_cmp(struct fpemu *fe)
544 struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
546 /* take care of special cases */
547 if (x->fp_class < 0 || y->fp_class < 0) {
548 /* if either of two is a SNAN, result is SNAN */
549 x->fp_class = (y->fp_class < x->fp_class) ? y->fp_class : x->fp_class;
550 } else if (x->fp_class == FPC_INF) {
551 if (y->fp_class == FPC_INF) {
552 /* both infinities */
553 if (x->fp_sign == y->fp_sign) {
554 x->fp_class = FPC_ZERO; /* return a signed zero */
555 } else {
556 x->fp_class = FPC_NUM; /* return a faked number w/x's sign */
557 x->fp_exp = 16383;
558 x->fp_mant[0] = FP_1;
560 } else {
561 /* y is a number */
562 x->fp_class = FPC_NUM; /* return a forged number w/x's sign */
563 x->fp_exp = 16383;
564 x->fp_mant[0] = FP_1;
566 } else if (y->fp_class == FPC_INF) {
567 /* x is a Num but y is an Inf */
568 /* return a forged number w/y's sign inverted */
569 x->fp_class = FPC_NUM;
570 x->fp_sign = !y->fp_sign;
571 x->fp_exp = 16383;
572 x->fp_mant[0] = FP_1;
573 } else {
574 /* x and y are both numbers or zeros, or pair of a number and a zero */
575 y->fp_sign = !y->fp_sign;
576 x = fpu_add(fe); /* (x - y) */
578 * FCMP does not set Inf bit in CC, so return a forged number
579 * (value doesn't matter) if Inf is the result of fsub.
581 if (x->fp_class == FPC_INF) {
582 x->fp_class = FPC_NUM;
583 x->fp_exp = 16383;
584 x->fp_mant[0] = FP_1;
587 return x;
591 * arithmetic oprations
593 static int
594 fpu_emul_arith(struct fpemu *fe, struct instruction *insn)
596 struct frame *frame = fe->fe_frame;
597 u_int *fpregs = &(fe->fe_fpframe->fpf_regs[0]);
598 struct fpn *res;
599 int word1, sig = 0;
600 int regnum, format;
601 int discard_result = 0;
602 u_int buf[3];
603 #if DEBUG_FPE
604 int flags;
605 char regname;
606 #endif
608 fe->fe_fpsr &= ~FPSR_EXCP;
610 DUMP_INSN(insn);
612 #if DEBUG_FPE
613 printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
614 fe->fe_fpsr, fe->fe_fpcr);
615 #endif
617 word1 = insn->is_word1;
618 format = (word1 >> 10) & 7;
619 regnum = (word1 >> 7) & 7;
621 /* fetch a source operand : may not be used */
622 #if DEBUG_FPE
623 printf("fpu_emul_arith: dst/src FP%d=%08x,%08x,%08x\n",
624 regnum, fpregs[regnum*3], fpregs[regnum*3+1],
625 fpregs[regnum*3+2]);
626 #endif
628 fpu_explode(fe, &fe->fe_f1, FTYPE_EXT, &fpregs[regnum * 3]);
630 DUMP_INSN(insn);
632 /* get the other operand which is always the source */
633 if ((word1 & 0x4000) == 0) {
634 #if DEBUG_FPE
635 printf("fpu_emul_arith: FP%d op FP%d => FP%d\n",
636 format, regnum, regnum);
637 printf("fpu_emul_arith: src opr FP%d=%08x,%08x,%08x\n",
638 format, fpregs[format*3], fpregs[format*3+1],
639 fpregs[format*3+2]);
640 #endif
641 fpu_explode(fe, &fe->fe_f2, FTYPE_EXT, &fpregs[format * 3]);
642 } else {
643 /* the operand is in memory */
644 if (format == FTYPE_DBL) {
645 insn->is_datasize = 8;
646 } else if (format == FTYPE_SNG || format == FTYPE_LNG) {
647 insn->is_datasize = 4;
648 } else if (format == FTYPE_WRD) {
649 insn->is_datasize = 2;
650 } else if (format == FTYPE_BYT) {
651 insn->is_datasize = 1;
652 } else if (format == FTYPE_EXT) {
653 insn->is_datasize = 12;
654 } else {
655 /* invalid or unsupported operand format */
656 sig = SIGFPE;
657 return sig;
660 /* Get effective address. (modreg=opcode&077) */
661 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
662 if (sig) {
663 #if DEBUG_FPE
664 printf("fpu_emul_arith: error in fpu_decode_ea\n");
665 #endif
666 return sig;
669 DUMP_INSN(insn);
671 #if DEBUG_FPE
672 printf("fpu_emul_arith: addr mode = ");
673 flags = insn->is_ea.ea_flags;
674 regname = (insn->is_ea.ea_regnum & 8) ? 'a' : 'd';
676 if (flags & EA_DIRECT) {
677 printf("%c%d\n",
678 regname, insn->is_ea.ea_regnum & 7);
679 } else if (flags & EA_PC_REL) {
680 if (flags & EA_OFFSET) {
681 printf("pc@(%d)\n", insn->is_ea.ea_offset);
682 } else if (flags & EA_INDEXED) {
683 printf("pc@(...)\n");
685 } else if (flags & EA_PREDECR) {
686 printf("%c%d@-\n",
687 regname, insn->is_ea.ea_regnum & 7);
688 } else if (flags & EA_POSTINCR) {
689 printf("%c%d@+\n", regname, insn->is_ea.ea_regnum & 7);
690 } else if (flags & EA_OFFSET) {
691 printf("%c%d@(%d)\n", regname, insn->is_ea.ea_regnum & 7,
692 insn->is_ea.ea_offset);
693 } else if (flags & EA_INDEXED) {
694 printf("%c%d@(...)\n", regname, insn->is_ea.ea_regnum & 7);
695 } else if (flags & EA_ABS) {
696 printf("0x%08x\n", insn->is_ea.ea_absaddr);
697 } else if (flags & EA_IMMED) {
699 printf("#0x%08x,%08x,%08x\n", insn->is_ea.ea_immed[0],
700 insn->is_ea.ea_immed[1], insn->is_ea.ea_immed[2]);
701 } else {
702 printf("%c%d@\n", regname, insn->is_ea.ea_regnum & 7);
704 #endif /* DEBUG_FPE */
706 fpu_load_ea(frame, insn, &insn->is_ea, (char*)buf);
707 if (format == FTYPE_WRD) {
708 /* sign-extend */
709 buf[0] &= 0xffff;
710 if (buf[0] & 0x8000) {
711 buf[0] |= 0xffff0000;
713 format = FTYPE_LNG;
714 } else if (format == FTYPE_BYT) {
715 /* sign-extend */
716 buf[0] &= 0xff;
717 if (buf[0] & 0x80) {
718 buf[0] |= 0xffffff00;
720 format = FTYPE_LNG;
722 #if DEBUG_FPE
723 printf("fpu_emul_arith: src = %08x %08x %08x, siz = %d\n",
724 buf[0], buf[1], buf[2], insn->is_datasize);
725 #endif
726 fpu_explode(fe, &fe->fe_f2, format, buf);
729 DUMP_INSN(insn);
731 /* An arithmetic instruction emulate function has a prototype of
732 * struct fpn *fpu_op(struct fpemu *);
734 * 1) If the instruction is monadic, then fpu_op() must use
735 * fe->fe_f2 as its operand, and return a pointer to the
736 * result.
738 * 2) If the instruction is diadic, then fpu_op() must use
739 * fe->fe_f1 and fe->fe_f2 as its two operands, and return a
740 * pointer to the result.
743 res = NULL;
744 switch (word1 & 0x7f) {
745 case 0x00: /* fmove */
746 res = &fe->fe_f2;
747 break;
749 case 0x01: /* fint */
750 res = fpu_int(fe);
751 break;
753 case 0x02: /* fsinh */
754 res = fpu_sinh(fe);
755 break;
757 case 0x03: /* fintrz */
758 res = fpu_intrz(fe);
759 break;
761 case 0x04: /* fsqrt */
762 res = fpu_sqrt(fe);
763 break;
765 case 0x06: /* flognp1 */
766 res = fpu_lognp1(fe);
767 break;
769 case 0x08: /* fetoxm1 */
770 res = fpu_etoxm1(fe);
771 break;
773 case 0x09: /* ftanh */
774 res = fpu_tanh(fe);
775 break;
777 case 0x0A: /* fatan */
778 res = fpu_atan(fe);
779 break;
781 case 0x0C: /* fasin */
782 res = fpu_asin(fe);
783 break;
785 case 0x0D: /* fatanh */
786 res = fpu_atanh(fe);
787 break;
789 case 0x0E: /* fsin */
790 res = fpu_sin(fe);
791 break;
793 case 0x0F: /* ftan */
794 res = fpu_tan(fe);
795 break;
797 case 0x10: /* fetox */
798 res = fpu_etox(fe);
799 break;
801 case 0x11: /* ftwotox */
802 res = fpu_twotox(fe);
803 break;
805 case 0x12: /* ftentox */
806 res = fpu_tentox(fe);
807 break;
809 case 0x14: /* flogn */
810 res = fpu_logn(fe);
811 break;
813 case 0x15: /* flog10 */
814 res = fpu_log10(fe);
815 break;
817 case 0x16: /* flog2 */
818 res = fpu_log2(fe);
819 break;
821 case 0x18: /* fabs */
822 fe->fe_f2.fp_sign = 0;
823 res = &fe->fe_f2;
824 break;
826 case 0x19: /* fcosh */
827 res = fpu_cosh(fe);
828 break;
830 case 0x1A: /* fneg */
831 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign;
832 res = &fe->fe_f2;
833 break;
835 case 0x1C: /* facos */
836 res = fpu_acos(fe);
837 break;
839 case 0x1D: /* fcos */
840 res = fpu_cos(fe);
841 break;
843 case 0x1E: /* fgetexp */
844 res = fpu_getexp(fe);
845 break;
847 case 0x1F: /* fgetman */
848 res = fpu_getman(fe);
849 break;
851 case 0x20: /* fdiv */
852 case 0x24: /* fsgldiv: cheating - better than nothing */
853 res = fpu_div(fe);
854 break;
856 case 0x21: /* fmod */
857 res = fpu_mod(fe);
858 break;
860 case 0x28: /* fsub */
861 fe->fe_f2.fp_sign = !fe->fe_f2.fp_sign; /* f2 = -f2 */
862 case 0x22: /* fadd */
863 res = fpu_add(fe);
864 break;
866 case 0x23: /* fmul */
867 case 0x27: /* fsglmul: cheating - better than nothing */
868 res = fpu_mul(fe);
869 break;
871 case 0x25: /* frem */
872 res = fpu_rem(fe);
873 break;
875 case 0x26:
876 /* fscale is handled by a separate function */
877 break;
879 case 0x30:
880 case 0x31:
881 case 0x32:
882 case 0x33:
883 case 0x34:
884 case 0x35:
885 case 0x36:
886 case 0x37: /* fsincos */
887 res = fpu_sincos(fe, word1 & 7);
888 break;
890 case 0x38: /* fcmp */
891 res = fpu_cmp(fe);
892 discard_result = 1;
893 break;
895 case 0x3A: /* ftst */
896 res = &fe->fe_f2;
897 discard_result = 1;
898 break;
900 default: /* possibly 040/060 instructions */
901 #ifdef DEBUG
902 printf("fpu_emul_arith: bad opcode=0x%x, word1=0x%x\n",
903 insn->is_opcode, insn->is_word1);
904 #endif
905 sig = SIGILL;
906 } /* switch (word1 & 0x3f) */
908 /* for sanity */
909 if (res == NULL)
910 sig = SIGILL;
912 if (!discard_result && sig == 0) {
913 fpu_implode(fe, res, FTYPE_EXT, &fpregs[regnum * 3]);
915 /* update fpsr according to the result of operation */
916 fpu_upd_fpsr(fe, res);
917 #if DEBUG_FPE
918 printf("fpu_emul_arith: %08x,%08x,%08x stored in FP%d\n",
919 fpregs[regnum*3], fpregs[regnum*3+1],
920 fpregs[regnum*3+2], regnum);
921 } else if (sig == 0) {
922 static const char *class_name[] =
923 { "SNAN", "QNAN", "ZERO", "NUM", "INF" };
924 printf("fpu_emul_arith: result(%s,%c,%d,%08x,%08x,%08x) discarded\n",
925 class_name[res->fp_class + 2],
926 res->fp_sign ? '-' : '+', res->fp_exp,
927 res->fp_mant[0], res->fp_mant[1],
928 res->fp_mant[2]);
929 } else {
930 printf("fpu_emul_arith: received signal %d\n", sig);
931 #endif
934 #if DEBUG_FPE
935 printf("fpu_emul_arith: FPSR = %08x, FPCR = %08x\n",
936 fe->fe_fpsr, fe->fe_fpcr);
937 #endif
939 DUMP_INSN(insn);
941 return sig;
944 /* test condition code according to the predicate in the opcode.
945 * returns -1 when the predicate evaluates to true, 0 when false.
946 * signal numbers are returned when an error is detected.
948 static int
949 test_cc(struct fpemu *fe, int pred)
951 int result, sig_bsun, invert;
952 int fpsr;
954 fpsr = fe->fe_fpsr;
955 invert = 0;
956 fpsr &= ~FPSR_EXCP; /* clear all exceptions */
957 #if DEBUG_FPE
958 printf("test_cc: fpsr=0x%08x\n", fpsr);
959 #endif
960 pred &= 0x3f; /* lowest 6 bits */
962 #if DEBUG_FPE
963 printf("test_cc: ");
964 #endif
966 if (pred >= 0x20) {
967 return SIGILL;
968 } else if (pred & 0x10) {
969 /* IEEE nonaware tests */
970 sig_bsun = 1;
971 pred &= 0x0f; /* lower 4 bits */
972 } else {
973 /* IEEE aware tests */
974 #if DEBUG_FPE
975 printf("IEEE ");
976 #endif
977 sig_bsun = 0;
980 if (pred & 0x08) {
981 #if DEBUG_FPE
982 printf("Not ");
983 #endif
984 /* predicate is "NOT ..." */
985 pred ^= 0xf; /* invert */
986 invert = -1;
988 switch (pred) {
989 case 0: /* (Signaling) False */
990 #if DEBUG_FPE
991 printf("False");
992 #endif
993 result = 0;
994 break;
995 case 1: /* (Signaling) Equal */
996 #if DEBUG_FPE
997 printf("Equal");
998 #endif
999 result = -((fpsr & FPSR_ZERO) == FPSR_ZERO);
1000 break;
1001 case 2: /* Greater Than */
1002 #if DEBUG_FPE
1003 printf("GT");
1004 #endif
1005 result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == 0);
1006 break;
1007 case 3: /* Greater or Equal */
1008 #if DEBUG_FPE
1009 printf("GE");
1010 #endif
1011 result = -((fpsr & FPSR_ZERO) ||
1012 (fpsr & (FPSR_NAN|FPSR_NEG)) == 0);
1013 break;
1014 case 4: /* Less Than */
1015 #if DEBUG_FPE
1016 printf("LT");
1017 #endif
1018 result = -((fpsr & (FPSR_NAN|FPSR_ZERO|FPSR_NEG)) == FPSR_NEG);
1019 break;
1020 case 5: /* Less or Equal */
1021 #if DEBUG_FPE
1022 printf("LE");
1023 #endif
1024 result = -((fpsr & FPSR_ZERO) ||
1025 ((fpsr & (FPSR_NAN|FPSR_NEG)) == FPSR_NEG));
1026 break;
1027 case 6: /* Greater or Less than */
1028 #if DEBUG_FPE
1029 printf("GLT");
1030 #endif
1031 result = -((fpsr & (FPSR_NAN|FPSR_ZERO)) == 0);
1032 break;
1033 case 7: /* Greater, Less or Equal */
1034 #if DEBUG_FPE
1035 printf("GLE");
1036 #endif
1037 result = -((fpsr & FPSR_NAN) == 0);
1038 break;
1039 default:
1040 /* invalid predicate */
1041 return SIGILL;
1043 result ^= invert; /* if the predicate is "NOT ...", then
1044 invert the result */
1045 #if DEBUG_FPE
1046 printf("=> %s (%d)\n", result ? "true" : "false", result);
1047 #endif
1048 /* if it's an IEEE unaware test and NAN is set, BSUN is set */
1049 if (sig_bsun && (fpsr & FPSR_NAN)) {
1050 fpsr |= FPSR_BSUN;
1053 /* put fpsr back */
1054 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr = fpsr;
1056 return result;
1060 * type 1: fdbcc, fscc, ftrapcc
1061 * In this function, we know:
1062 * (opcode & 0x01C0) == 0x0040
1064 static int
1065 fpu_emul_type1(struct fpemu *fe, struct instruction *insn)
1067 struct frame *frame = fe->fe_frame;
1068 int advance, sig, branch, displ;
1070 branch = test_cc(fe, insn->is_word1);
1071 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1073 insn->is_advance = 4;
1074 sig = 0;
1076 switch (insn->is_opcode & 070) {
1077 case 010: /* fdbcc */
1078 if (branch == -1) {
1079 /* advance */
1080 insn->is_advance = 6;
1081 } else if (!branch) {
1082 /* decrement Dn and if (Dn != -1) branch */
1083 u_int16_t count = frame->f_regs[insn->is_opcode & 7];
1085 if (count-- != 0) {
1086 displ = fusword((void *) (insn->is_pc + insn->is_advance));
1087 if (displ < 0) {
1088 #ifdef DEBUG
1089 printf("fpu_emul_type1: fault reading displacement\n");
1090 #endif
1091 return SIGSEGV;
1093 /* sign-extend the displacement */
1094 displ &= 0xffff;
1095 if (displ & 0x8000) {
1096 displ |= 0xffff0000;
1098 insn->is_advance += displ;
1099 /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1100 } else {
1101 insn->is_advance = 6;
1103 /* write it back */
1104 frame->f_regs[insn->is_opcode & 7] &= 0xffff0000;
1105 frame->f_regs[insn->is_opcode & 7] |= (u_int32_t)count;
1106 } else { /* got a signal */
1107 sig = SIGFPE;
1109 break;
1111 case 070: /* ftrapcc or fscc */
1112 advance = 4;
1113 if ((insn->is_opcode & 07) >= 2) {
1114 switch (insn->is_opcode & 07) {
1115 case 3: /* long opr */
1116 advance += 2;
1117 case 2: /* word opr */
1118 advance += 2;
1119 case 4: /* no opr */
1120 break;
1121 default:
1122 return SIGILL;
1123 break;
1126 if (branch == 0) {
1127 /* no trap */
1128 insn->is_advance = advance;
1129 sig = 0;
1130 } else {
1131 /* trap */
1132 sig = SIGFPE;
1134 break;
1135 } /* if ((insn->is_opcode & 7) < 2), fall through to FScc */
1137 default: /* fscc */
1138 insn->is_advance = 4;
1139 insn->is_datasize = 1; /* always byte */
1140 sig = fpu_decode_ea(frame, insn, &insn->is_ea, insn->is_opcode);
1141 if (sig) {
1142 break;
1144 if (branch == -1 || branch == 0) {
1145 /* set result */
1146 sig = fpu_store_ea(frame, insn, &insn->is_ea, (char *)&branch);
1147 } else {
1148 /* got an exception */
1149 sig = branch;
1151 break;
1153 return sig;
1157 * Type 2 or 3: fbcc (also fnop)
1158 * In this function, we know:
1159 * (opcode & 0x0180) == 0x0080
1161 static int
1162 fpu_emul_brcc(struct fpemu *fe, struct instruction *insn)
1164 int displ, word2;
1165 int sig;
1168 * Get branch displacement.
1170 insn->is_advance = 4;
1171 displ = insn->is_word1;
1173 if (insn->is_opcode & 0x40) {
1174 word2 = fusword((void *) (insn->is_pc + insn->is_advance));
1175 if (word2 < 0) {
1176 #ifdef DEBUG
1177 printf("fpu_emul_brcc: fault reading word2\n");
1178 #endif
1179 return SIGSEGV;
1181 displ <<= 16;
1182 displ |= word2;
1183 insn->is_advance += 2;
1184 } else /* displacement is word sized */
1185 if (displ & 0x8000)
1186 displ |= 0xFFFF0000;
1188 /* XXX: If CC, insn->is_pc += displ */
1189 sig = test_cc(fe, insn->is_opcode);
1190 fe->fe_fpframe->fpf_fpsr = fe->fe_fpsr;
1192 if (fe->fe_fpsr & fe->fe_fpcr & FPSR_EXCP) {
1193 return SIGFPE; /* caught an exception */
1195 if (sig == -1) {
1196 /* branch does take place; 2 is the offset to the 1st disp word */
1197 insn->is_advance = displ + 2;
1198 /* XXX insn->is_nextpc = insn->is_pc + insn->is_advance; */
1199 } else if (sig) {
1200 return SIGILL; /* got a signal */
1202 #if DEBUG_FPE
1203 printf("fpu_emul_brcc: %s insn @ %x (%x+%x) (disp=%x)\n",
1204 (sig == -1) ? "BRANCH to" : "NEXT",
1205 insn->is_pc + insn->is_advance, insn->is_pc, insn->is_advance,
1206 displ);
1207 #endif
1208 return 0;