3 * MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
4 * M68000 Hi-Performance Microprocessor Division
5 * M68040 Software Package
7 * M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
10 * THE SOFTWARE is provided on an "AS IS" basis and without warranty.
11 * To the maximum extent permitted by applicable law,
12 * MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
13 * INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
14 * PARTICULAR PURPOSE and any warranty against infringement with
15 * regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
16 * and any accompanying written materials.
18 * To the maximum extent permitted by applicable law,
19 * IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
20 * (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
21 * PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
22 * OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
23 * SOFTWARE. Motorola assumes no responsibility for the maintenance
24 * and support of the SOFTWARE.
26 * You are hereby granted a copyright license to use, modify, and
27 * distribute the SOFTWARE so long as this entire notice is retained
28 * without alteration in any modified and/or redistributed versions,
29 * and that such modified versions are clearly identified as such.
30 * No licenses are granted by implication, estoppel or otherwise
31 * under any patents or trademarks of Motorola, Inc.
34 * stwotox.sa 3.1 12/10/90
37 * stwotoxd --- 2**X for denormalized X
39 * stentoxd --- 10**X for denormalized X
41 * Input: Double-extended number X in location pointed to
42 * by address register a0.
44 * Output: The function values are returned in Fp0.
46 * Accuracy and Monotonicity: The returned result is within 2 ulps in
47 * 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
48 * result is subsequently rounded to double precision. The
49 * result is provably monotonic in double precision.
51 * Speed: The program stwotox takes approximately 190 cycles and the
52 * program stentox takes approximately 200 cycles.
57 * 1. If |X| > 16480, go to ExpBig.
59 * 2. If |X| < 2**(-70), go to ExpSm.
61 * 3. Decompose X as X = N/64 + r where |r| <= 1/128. Furthermore
63 * N = 64(M + M') + j, j = 0,1,2,...,63.
65 * 4. Overwrite r := r * log2. Then
66 * 2**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
67 * Go to expr to compute that expression.
70 * 1. If |X| > 16480*log_10(2) (base 10 log of 2), go to ExpBig.
72 * 2. If |X| < 2**(-70), go to ExpSm.
74 * 3. Set y := X*log_2(10)*64 (base 2 log of 10). Set
75 * N := round-to-int(y). Decompose N as
76 * N = 64(M + M') + j, j = 0,1,2,...,63.
79 * r := ((X - N*L1)-N*L2) * L10
80 * where L1, L2 are the leading and trailing parts of log_10(2)/64
81 * and L10 is the natural log of 10. Then
82 * 10**X = 2**(M') * 2**(M) * 2**(j/64) * exp(r).
83 * Go to expr to compute that expression.
86 * 1. Fetch 2**(j/64) from table as Fact1 and Fact2.
88 * 2. Overwrite Fact1 and Fact2 by
89 * Fact1 := 2**(M) * Fact1
90 * Fact2 := 2**(M) * Fact2
91 * Thus Fact1 + Fact2 = 2**(M) * 2**(j/64).
93 * 3. Calculate P where 1 + P approximates exp(r):
94 * P = r + r*r*(A1+r*(A2+...+r*A5)).
96 * 4. Let AdjFact := 2**(M'). Return
97 * AdjFact * ( Fact1 + ((Fact1*P) + Fact2) ).
101 * 1. Generate overflow by Huge * Huge if X > 0; otherwise, generate
102 * underflow by Tiny * Tiny.
108 STWOTOX IDNT 2,1 Motorola 040 Floating Point Software Package
114 BOUNDS1 DC.L $3FB98000,$400D80C0 ... 2^(-70),16480
115 BOUNDS2 DC.L $3FB98000,$400B9B07 ... 2^(-70),16480 LOG2/LOG10
117 L2TEN64 DC.L $406A934F,$0979A371 ... 64LOG10/LOG2
118 L10TWO1 DC.L $3F734413,$509F8000 ... LOG2/64LOG10
120 L10TWO2 DC.L $BFCD0000,$C0219DC1,$DA994FD2,$00000000
122 LOG10 DC.L $40000000,$935D8DDD,$AAA8AC17,$00000000
124 LOG2 DC.L $3FFE0000,$B17217F7,$D1CF79AC,$00000000
126 EXPA5 DC.L $3F56C16D,$6F7BD0B2
127 EXPA4 DC.L $3F811112,$302C712C
128 EXPA3 DC.L $3FA55555,$55554CC1
129 EXPA2 DC.L $3FC55555,$55554A54
130 EXPA1 DC.L $3FE00000,$00000000,$00000000,$00000000
132 HUGE DC.L $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
133 TINY DC.L $00010000,$FFFFFFFF,$FFFFFFFF,$00000000
136 DC.L $3FFF0000,$80000000,$00000000,$3F738000
137 DC.L $3FFF0000,$8164D1F3,$BC030773,$3FBEF7CA
138 DC.L $3FFF0000,$82CD8698,$AC2BA1D7,$3FBDF8A9
139 DC.L $3FFF0000,$843A28C3,$ACDE4046,$3FBCD7C9
140 DC.L $3FFF0000,$85AAC367,$CC487B15,$BFBDE8DA
141 DC.L $3FFF0000,$871F6196,$9E8D1010,$3FBDE85C
142 DC.L $3FFF0000,$88980E80,$92DA8527,$3FBEBBF1
143 DC.L $3FFF0000,$8A14D575,$496EFD9A,$3FBB80CA
144 DC.L $3FFF0000,$8B95C1E3,$EA8BD6E7,$BFBA8373
145 DC.L $3FFF0000,$8D1ADF5B,$7E5BA9E6,$BFBE9670
146 DC.L $3FFF0000,$8EA4398B,$45CD53C0,$3FBDB700
147 DC.L $3FFF0000,$9031DC43,$1466B1DC,$3FBEEEB0
148 DC.L $3FFF0000,$91C3D373,$AB11C336,$3FBBFD6D
149 DC.L $3FFF0000,$935A2B2F,$13E6E92C,$BFBDB319
150 DC.L $3FFF0000,$94F4EFA8,$FEF70961,$3FBDBA2B
151 DC.L $3FFF0000,$96942D37,$20185A00,$3FBE91D5
152 DC.L $3FFF0000,$9837F051,$8DB8A96F,$3FBE8D5A
153 DC.L $3FFF0000,$99E04593,$20B7FA65,$BFBCDE7B
154 DC.L $3FFF0000,$9B8D39B9,$D54E5539,$BFBEBAAF
155 DC.L $3FFF0000,$9D3ED9A7,$2CFFB751,$BFBD86DA
156 DC.L $3FFF0000,$9EF53260,$91A111AE,$BFBEBEDD
157 DC.L $3FFF0000,$A0B0510F,$B9714FC2,$3FBCC96E
158 DC.L $3FFF0000,$A2704303,$0C496819,$BFBEC90B
159 DC.L $3FFF0000,$A43515AE,$09E6809E,$3FBBD1DB
160 DC.L $3FFF0000,$A5FED6A9,$B15138EA,$3FBCE5EB
161 DC.L $3FFF0000,$A7CD93B4,$E965356A,$BFBEC274
162 DC.L $3FFF0000,$A9A15AB4,$EA7C0EF8,$3FBEA83C
163 DC.L $3FFF0000,$AB7A39B5,$A93ED337,$3FBECB00
164 DC.L $3FFF0000,$AD583EEA,$42A14AC6,$3FBE9301
165 DC.L $3FFF0000,$AF3B78AD,$690A4375,$BFBD8367
166 DC.L $3FFF0000,$B123F581,$D2AC2590,$BFBEF05F
167 DC.L $3FFF0000,$B311C412,$A9112489,$3FBDFB3C
168 DC.L $3FFF0000,$B504F333,$F9DE6484,$3FBEB2FB
169 DC.L $3FFF0000,$B6FD91E3,$28D17791,$3FBAE2CB
170 DC.L $3FFF0000,$B8FBAF47,$62FB9EE9,$3FBCDC3C
171 DC.L $3FFF0000,$BAFF5AB2,$133E45FB,$3FBEE9AA
172 DC.L $3FFF0000,$BD08A39F,$580C36BF,$BFBEAEFD
173 DC.L $3FFF0000,$BF1799B6,$7A731083,$BFBCBF51
174 DC.L $3FFF0000,$C12C4CCA,$66709456,$3FBEF88A
175 DC.L $3FFF0000,$C346CCDA,$24976407,$3FBD83B2
176 DC.L $3FFF0000,$C5672A11,$5506DADD,$3FBDF8AB
177 DC.L $3FFF0000,$C78D74C8,$ABB9B15D,$BFBDFB17
178 DC.L $3FFF0000,$C9B9BD86,$6E2F27A3,$BFBEFE3C
179 DC.L $3FFF0000,$CBEC14FE,$F2727C5D,$BFBBB6F8
180 DC.L $3FFF0000,$CE248C15,$1F8480E4,$BFBCEE53
181 DC.L $3FFF0000,$D06333DA,$EF2B2595,$BFBDA4AE
182 DC.L $3FFF0000,$D2A81D91,$F12AE45A,$3FBC9124
183 DC.L $3FFF0000,$D4F35AAB,$CFEDFA1F,$3FBEB243
184 DC.L $3FFF0000,$D744FCCA,$D69D6AF4,$3FBDE69A
185 DC.L $3FFF0000,$D99D15C2,$78AFD7B6,$BFB8BC61
186 DC.L $3FFF0000,$DBFBB797,$DAF23755,$3FBDF610
187 DC.L $3FFF0000,$DE60F482,$5E0E9124,$BFBD8BE1
188 DC.L $3FFF0000,$E0CCDEEC,$2A94E111,$3FBACB12
189 DC.L $3FFF0000,$E33F8972,$BE8A5A51,$3FBB9BFE
190 DC.L $3FFF0000,$E5B906E7,$7C8348A8,$3FBCF2F4
191 DC.L $3FFF0000,$E8396A50,$3C4BDC68,$3FBEF22F
192 DC.L $3FFF0000,$EAC0C6E7,$DD24392F,$BFBDBF4A
193 DC.L $3FFF0000,$ED4F301E,$D9942B84,$3FBEC01A
194 DC.L $3FFF0000,$EFE4B99B,$DCDAF5CB,$3FBE8CAC
195 DC.L $3FFF0000,$F281773C,$59FFB13A,$BFBCBB3F
196 DC.L $3FFF0000,$F5257D15,$2486CC2C,$3FBEF73A
197 DC.L $3FFF0000,$F7D0DF73,$0AD13BB9,$BFB8B795
198 DC.L $3FFF0000,$FA83B2DB,$722A033A,$3FBEF84B
199 DC.L $3FFF0000,$FD3E0C0C,$F486C175,$BFBEF581
223 *--ENTRY POINT FOR 2**(X) FOR DENORMALIZED ARGUMENT
225 fmove.l d1,fpcr ...set user's rounding mode/precision
226 Fmove.S #:3F800000,FP0 ...RETURN 1 + X
234 *--ENTRY POINT FOR 2**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
235 FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
242 CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
247 CMPI.L #$400D80C0,D0 ...|X| > 16480?
253 *--USUAL CASE, 2^(-70) <= |X| <= 16480
256 FMUL.S #:42800000,FP1 ...64 * X
258 FMOVE.L FP1,N(a6) ...N = ROUND-TO-INT(64 X)
260 LEA EXPTBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64)
261 FMOVE.L N(a6),FP1 ...N --> FLOATING FMT
264 ANDI.L #$3F,D0 ...D0 IS J
265 ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
266 ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
267 ASR.L #6,d2 ...d2 IS L, N = 64L + J
269 ASR.L #1,D0 ...D0 IS M
270 SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
272 MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
274 *--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
275 *--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
277 *--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
279 FMUL.S #:3C800000,FP1 ...(1/64)*N
280 MOVE.L (a1)+,FACT1(a6)
281 MOVE.L (a1)+,FACT1HI(a6)
282 MOVE.L (a1)+,FACT1LOW(a6)
283 MOVE.W (a1)+,FACT2(a6)
286 FSUB.X FP1,FP0 ...X - (1/64)*INT(64 X)
288 MOVE.W (a1)+,FACT2HI(a6)
293 FMUL.X LOG2,FP0 ...FP0 IS R
304 *--|X| IS SMALL, RETURN 1 + X
306 FMOVE.L d1,FPCR ;restore users exceptions
307 FADD.S #:3F800000,FP0 ...RETURN 1 + X
312 *--|X| IS LARGE, GENERATE OVERFLOW IF X > 0; ELSE GENERATE UNDERFLOW
313 *--REGISTERS SAVE SO FAR ARE FPCR AND D0
318 bclr.b #7,(a0) ;t_ovfl expects positive value
322 bclr.b #7,(a0) ;t_unfl expects positive value
327 *--ENTRY POINT FOR 10**(X) FOR DENORMALIZED ARGUMENT
329 fmove.l d1,fpcr ...set user's rounding mode/precision
330 Fmove.S #:3F800000,FP0 ...RETURN 1 + X
338 *--ENTRY POINT FOR 10**(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S
339 FMOVEM.X (a0),FP0 ...LOAD INPUT, do not set cc's
346 CMPI.L #$3FB98000,D0 ...|X| >= 2**(-70)?
351 CMPI.L #$400B9B07,D0 ...|X| <= 16480*log2/log10 ?
356 *--USUAL CASE, 2^(-70) <= |X| <= 16480 LOG 2 / LOG 10
359 FMUL.D L2TEN64,FP1 ...X*64*LOG10/LOG2
361 FMOVE.L FP1,N(a6) ...N=INT(X*64*LOG10/LOG2)
363 LEA EXPTBL,a1 ...LOAD ADDRESS OF TABLE OF 2^(J/64)
364 FMOVE.L N(a6),FP1 ...N --> FLOATING FMT
367 ANDI.L #$3F,D0 ...D0 IS J
368 ASL.L #4,D0 ...DISPLACEMENT FOR 2^(J/64)
369 ADDA.L D0,a1 ...ADDRESS FOR 2^(J/64)
370 ASR.L #6,d2 ...d2 IS L, N = 64L + J
372 ASR.L #1,D0 ...D0 IS M
373 SUB.L D0,d2 ...d2 IS M', N = 64(M+M') + J
375 MOVE.W d2,ADJFACT(a6) ...ADJFACT IS 2^(M')
378 *--SUMMARY: a1 IS ADDRESS FOR THE LEADING PORTION OF 2^(J/64),
379 *--D0 IS M WHERE N = 64(M+M') + J. NOTE THAT |M| <= 16140 BY DESIGN.
381 *--REGISTERS SAVED SO FAR ARE (IN ORDER) FPCR, D0, FP1, a1, AND FP2.
385 FMUL.D L10TWO1,FP1 ...N*(LOG2/64LOG10)_LEAD
386 MOVE.L (a1)+,FACT1(a6)
388 FMUL.X L10TWO2,FP2 ...N*(LOG2/64LOG10)_TRAIL
390 MOVE.L (a1)+,FACT1HI(a6)
391 MOVE.L (a1)+,FACT1LOW(a6)
392 FSUB.X FP1,FP0 ...X - N L_LEAD
393 MOVE.W (a1)+,FACT2(a6)
395 FSUB.X FP2,FP0 ...X - N L_TRAIL
398 MOVE.W (a1)+,FACT2HI(a6)
402 FMUL.X LOG10,FP0 ...FP0 IS R
408 *--FPCR, FP2, FP3 ARE SAVED IN ORDER AS SHOWN.
409 *--ADJFACT CONTAINS 2**(M'), FACT1 + FACT2 = 2**(M) * 2**(J/64).
410 *--FP0 IS R. THE FOLLOWING CODE COMPUTES
411 *-- 2**(M'+M) * 2**(J/64) * EXP(R)
414 FMUL.X FP1,FP1 ...FP1 IS S = R*R
416 FMOVE.D EXPA5,FP2 ...FP2 IS A5
417 FMOVE.D EXPA4,FP3 ...FP3 IS A4
419 FMUL.X FP1,FP2 ...FP2 IS S*A5
420 FMUL.X FP1,FP3 ...FP3 IS S*A4
422 FADD.D EXPA3,FP2 ...FP2 IS A3+S*A5
423 FADD.D EXPA2,FP3 ...FP3 IS A2+S*A4
425 FMUL.X FP1,FP2 ...FP2 IS S*(A3+S*A5)
426 FMUL.X FP1,FP3 ...FP3 IS S*(A2+S*A4)
428 FADD.D EXPA1,FP2 ...FP2 IS A1+S*(A3+S*A5)
429 FMUL.X FP0,FP3 ...FP3 IS R*S*(A2+S*A4)
431 FMUL.X FP1,FP2 ...FP2 IS S*(A1+S*(A3+S*A5))
432 FADD.X FP3,FP0 ...FP0 IS R+R*S*(A2+S*A4)
434 FADD.X FP2,FP0 ...FP0 IS EXP(R) - 1
437 *--FINAL RECONSTRUCTION PROCESS
438 *--EXP(X) = 2^M*2^(J/64) + 2^M*2^(J/64)*(EXP(R)-1) - (1 OR 0)
444 FMOVE.L d1,FPCR ;restore users exceptions
446 move.l #$80000000,ADJFACT+4(a6)
448 FMUL.X ADJFACT(a6),FP0 ...FINAL ADJUSTMENT