1 /* $NetBSD: sbmac.c,v 1.34 2009/10/26 19:16:57 cegger Exp $ */
4 * Copyright 2000, 2001, 2004
5 * Broadcom Corporation. All rights reserved.
7 * This software is furnished under license and may be used and copied only
8 * in accordance with the following terms and conditions. Subject to these
9 * conditions, you may download, copy, install, use, modify and distribute
10 * modified or unmodified copies of this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
13 * 1) Any source code used, modified or distributed must reproduce and
14 * retain this copyright notice and list of conditions as they appear in
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 * used to endorse or promote products derived from this software
20 * without the prior written permission of Broadcom Corporation.
22 * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.34 2009/10/26 19:16:57 cegger Exp $");
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
69 #include <netns/ns_if.h>
72 #include <machine/locore.h>
74 #include "sbobiovar.h"
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
88 typedef u_long sbmac_port_t
;
89 typedef uint64_t sbmac_physaddr_t
;
90 typedef uint64_t sbmac_enetaddr_t
;
92 typedef enum { sbmac_speed_auto
, sbmac_speed_10
,
93 sbmac_speed_100
, sbmac_speed_1000
} sbmac_speed_t
;
95 typedef enum { sbmac_duplex_auto
, sbmac_duplex_half
,
96 sbmac_duplex_full
} sbmac_duplex_t
;
98 typedef enum { sbmac_fc_auto
, sbmac_fc_disabled
, sbmac_fc_frame
,
99 sbmac_fc_collision
, sbmac_fc_carrier
} sbmac_fc_t
;
101 typedef enum { sbmac_state_uninit
, sbmac_state_off
, sbmac_state_on
,
102 sbmac_state_broken
} sbmac_state_t
;
107 #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
109 #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask)
111 #define CACHELINESIZE 32
112 #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
113 #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
114 #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
117 #define dprintf(x) printf x
122 #define SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
123 #define SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
125 #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
127 /* These are limited to fit within one virtual page, and must be 2**N. */
128 #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
129 #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
131 #define ETHER_ALIGN 2
133 /* DMA Descriptor structure */
135 typedef struct sbdmadscr_s
{
141 /* DMA Controller structure */
143 typedef struct sbmacdma_s
{
146 * This stuff is used to identify the channel and the registers
147 * associated with it.
150 struct sbmac_softc
*sbdma_eth
; /* back pointer to associated MAC */
151 int sbdma_channel
; /* channel number */
152 int sbdma_txdir
; /* direction (1=transmit) */
153 int sbdma_maxdescr
; /* total # of descriptors in ring */
154 sbmac_port_t sbdma_config0
; /* DMA config register 0 */
155 sbmac_port_t sbdma_config1
; /* DMA config register 1 */
156 sbmac_port_t sbdma_dscrbase
; /* Descriptor base address */
157 sbmac_port_t sbdma_dscrcnt
; /* Descriptor count register */
158 sbmac_port_t sbdma_curdscr
; /* current descriptor address */
161 * This stuff is for maintenance of the ring
163 sbdmadscr_t
*sbdma_dscrtable
; /* base of descriptor table */
164 struct mbuf
**sbdma_ctxtable
; /* context table, one per descr */
165 unsigned int sbdma_dscr_mask
; /* sbdma_maxdescr - 1 */
166 paddr_t sbdma_dscrtable_phys
; /* and also the phys addr */
167 unsigned int sbdma_add_index
; /* next dscr for sw to add */
168 unsigned int sbdma_rem_index
; /* next dscr for sw to remove */
172 /* Ethernet softc structure */
177 * NetBSD-specific things
179 struct device sc_dev
; /* base device (must be first) */
180 struct ethercom sc_ethercom
; /* Ethernet common part */
181 struct mii_data sc_mii
;
182 struct callout sc_tick_ch
;
188 * Controller-specific things
191 sbmac_port_t sbm_base
; /* MAC's base address */
192 sbmac_state_t sbm_state
; /* current state */
194 sbmac_port_t sbm_macenable
; /* MAC Enable Register */
195 sbmac_port_t sbm_maccfg
; /* MAC Configuration Register */
196 sbmac_port_t sbm_fifocfg
; /* FIFO configuration register */
197 sbmac_port_t sbm_framecfg
; /* Frame configuration register */
198 sbmac_port_t sbm_rxfilter
; /* receive filter register */
199 sbmac_port_t sbm_isr
; /* Interrupt status register */
200 sbmac_port_t sbm_imr
; /* Interrupt mask register */
202 sbmac_speed_t sbm_speed
; /* current speed */
203 sbmac_duplex_t sbm_duplex
; /* current duplex */
204 sbmac_fc_t sbm_fc
; /* current flow control setting */
205 int sbm_rxflags
; /* received packet flags */
207 u_char sbm_hwaddr
[ETHER_ADDR_LEN
];
209 sbmacdma_t sbm_txdma
; /* for now, only use channel 0 */
210 sbmacdma_t sbm_rxdma
;
212 int sbm_pass3_dma
; /* chip has pass3 SOC DMA features */
214 #ifdef SBMAC_EVENT_COUNTERS
215 struct evcnt sbm_ev_rxintr
; /* Rx interrupts */
216 struct evcnt sbm_ev_txintr
; /* Tx interrupts */
217 struct evcnt sbm_ev_txdrop
; /* Tx dropped due to no mbuf alloc failed */
218 struct evcnt sbm_ev_txstall
; /* Tx stalled due to no descriptors free */
220 struct evcnt sbm_ev_txsplit
; /* pass3 Tx split mbuf */
221 struct evcnt sbm_ev_txkeep
; /* pass3 Tx didn't split mbuf */
226 #ifdef SBMAC_EVENT_COUNTERS
227 #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
229 #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
234 extern paddr_t
kvtophys(vaddr_t
);
238 static void sbdma_initctx(sbmacdma_t
*d
, struct sbmac_softc
*s
, int chan
,
239 int txrx
, int maxdescr
);
240 static void sbdma_channel_start(sbmacdma_t
*d
);
241 static int sbdma_add_rcvbuffer(sbmacdma_t
*d
, struct mbuf
*m
);
242 static int sbdma_add_txbuffer(sbmacdma_t
*d
, struct mbuf
*m
);
243 static void sbdma_emptyring(sbmacdma_t
*d
);
244 static void sbdma_fillring(sbmacdma_t
*d
);
245 static void sbdma_rx_process(struct sbmac_softc
*sc
, sbmacdma_t
*d
);
246 static void sbdma_tx_process(struct sbmac_softc
*sc
, sbmacdma_t
*d
);
247 static void sbmac_initctx(struct sbmac_softc
*s
);
248 static void sbmac_channel_start(struct sbmac_softc
*s
);
249 static void sbmac_channel_stop(struct sbmac_softc
*s
);
250 static sbmac_state_t
sbmac_set_channel_state(struct sbmac_softc
*,
252 static void sbmac_promiscuous_mode(struct sbmac_softc
*sc
, int onoff
);
253 static void sbmac_init_and_start(struct sbmac_softc
*sc
);
254 static uint64_t sbmac_addr2reg(u_char
*ptr
);
255 static void sbmac_intr(void *xsc
, uint32_t status
, vaddr_t pc
);
256 static void sbmac_start(struct ifnet
*ifp
);
257 static void sbmac_setmulti(struct sbmac_softc
*sc
);
258 static int sbmac_ether_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
);
259 static int sbmac_ioctl(struct ifnet
*, u_long
, void *);
260 static void sbmac_watchdog(struct ifnet
*ifp
);
261 static int sbmac_match(struct device
*parent
, struct cfdata
*match
, void *aux
);
262 static void sbmac_attach(struct device
*parent
, struct device
*self
, void *aux
);
263 static int sbmac_set_speed(struct sbmac_softc
*s
, sbmac_speed_t speed
);
264 static int sbmac_set_duplex(struct sbmac_softc
*s
, sbmac_duplex_t duplex
,
266 static void sbmac_tick(void *arg
);
271 CFATTACH_DECL(sbmac
, sizeof(struct sbmac_softc
),
272 sbmac_match
, sbmac_attach
, NULL
, NULL
);
274 static uint32_t sbmac_mii_bitbang_read(struct device
*self
);
275 static void sbmac_mii_bitbang_write(struct device
*self
, uint32_t val
);
277 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops
= {
278 sbmac_mii_bitbang_read
,
279 sbmac_mii_bitbang_write
,
281 (uint32_t)M_MAC_MDIO_OUT
, /* MII_BIT_MDO */
282 (uint32_t)M_MAC_MDIO_IN
, /* MII_BIT_MDI */
283 (uint32_t)M_MAC_MDC
, /* MII_BIT_MDC */
284 0, /* MII_BIT_DIR_HOST_PHY */
285 (uint32_t)M_MAC_MDIO_DIR
/* MII_BIT_DIR_PHY_HOST */
290 sbmac_mii_bitbang_read(struct device
*self
)
292 struct sbmac_softc
*sc
= (void *) self
;
295 reg
= PKSEG1(sc
->sbm_base
+ R_MAC_MDIO
);
296 return (uint32_t) SBMAC_READCSR(reg
);
300 sbmac_mii_bitbang_write(struct device
*self
, uint32_t val
)
302 struct sbmac_softc
*sc
= (void *) self
;
305 reg
= PKSEG1(sc
->sbm_base
+ R_MAC_MDIO
);
307 SBMAC_WRITECSR(reg
, (val
&
308 (M_MAC_MDC
|M_MAC_MDIO_DIR
|M_MAC_MDIO_OUT
|M_MAC_MDIO_IN
)));
312 * Read an PHY register through the MII.
315 sbmac_mii_readreg(struct device
*self
, int phy
, int reg
)
318 return (mii_bitbang_readreg(self
, &sbmac_mii_bitbang_ops
, phy
, reg
));
322 * Write to a PHY register through the MII.
325 sbmac_mii_writereg(struct device
*self
, int phy
, int reg
, int val
)
328 mii_bitbang_writereg(self
, &sbmac_mii_bitbang_ops
, phy
, reg
, val
);
332 sbmac_mii_statchg(struct device
*self
)
334 struct sbmac_softc
*sc
= (struct sbmac_softc
*)self
;
335 sbmac_state_t oldstate
;
337 /* Stop the MAC in preparation for changing all of the parameters. */
338 oldstate
= sbmac_set_channel_state(sc
, sbmac_state_off
);
340 switch (sc
->sc_ethercom
.ec_if
.if_baudrate
) {
341 default: /* if autonegotiation fails, assume 10Mbit */
343 sbmac_set_speed(sc
, sbmac_speed_10
);
347 sbmac_set_speed(sc
, sbmac_speed_100
);
351 sbmac_set_speed(sc
, sbmac_speed_1000
);
355 if (sc
->sc_mii
.mii_media_active
& IFM_FDX
) {
356 /* Configure for full-duplex */
357 /* XXX: is flow control right for 10, 100? */
358 sbmac_set_duplex(sc
, sbmac_duplex_full
, sbmac_fc_frame
);
360 /* Configure for half-duplex */
361 /* XXX: is flow control right? */
362 sbmac_set_duplex(sc
, sbmac_duplex_half
, sbmac_fc_disabled
);
365 /* And put it back into its former state. */
366 sbmac_set_channel_state(sc
, oldstate
);
370 * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
372 * Initialize a DMA channel context. Since there are potentially
373 * eight DMA channels per MAC, it's nice to do this in a standard
377 * d - sbmacdma_t structure (DMA channel context)
378 * s - sbmac_softc structure (pointer to a MAC)
379 * chan - channel number (0..1 right now)
380 * txrx - Identifies DMA_TX or DMA_RX for channel direction
381 * maxdescr - number of descriptors
388 sbdma_initctx(sbmacdma_t
*d
, struct sbmac_softc
*s
, int chan
, int txrx
,
392 * Save away interesting stuff in the structure
396 d
->sbdma_channel
= chan
;
397 d
->sbdma_txdir
= txrx
;
400 * initialize register pointers
403 d
->sbdma_config0
= PKSEG1(s
->sbm_base
+
404 R_MAC_DMA_REGISTER(txrx
, chan
, R_MAC_DMA_CONFIG0
));
405 d
->sbdma_config1
= PKSEG1(s
->sbm_base
+
406 R_MAC_DMA_REGISTER(txrx
, chan
, R_MAC_DMA_CONFIG1
));
407 d
->sbdma_dscrbase
= PKSEG1(s
->sbm_base
+
408 R_MAC_DMA_REGISTER(txrx
, chan
, R_MAC_DMA_DSCR_BASE
));
409 d
->sbdma_dscrcnt
= PKSEG1(s
->sbm_base
+
410 R_MAC_DMA_REGISTER(txrx
, chan
, R_MAC_DMA_DSCR_CNT
));
411 d
->sbdma_curdscr
= PKSEG1(s
->sbm_base
+
412 R_MAC_DMA_REGISTER(txrx
, chan
, R_MAC_DMA_CUR_DSCRADDR
));
415 * Allocate memory for the ring
418 d
->sbdma_maxdescr
= maxdescr
;
419 d
->sbdma_dscr_mask
= d
->sbdma_maxdescr
- 1;
421 d
->sbdma_dscrtable
= (sbdmadscr_t
*)
422 KMALLOC(d
->sbdma_maxdescr
* sizeof(sbdmadscr_t
));
424 memset(d
->sbdma_dscrtable
, 0, d
->sbdma_maxdescr
*sizeof(sbdmadscr_t
));
426 d
->sbdma_dscrtable_phys
= KVTOPHYS(d
->sbdma_dscrtable
);
432 d
->sbdma_ctxtable
= (struct mbuf
**)
433 KMALLOC(d
->sbdma_maxdescr
*sizeof(struct mbuf
*));
435 memset(d
->sbdma_ctxtable
, 0, d
->sbdma_maxdescr
*sizeof(struct mbuf
*));
439 * SBDMA_CHANNEL_START(d)
441 * Initialize the hardware registers for a DMA channel.
444 * d - DMA channel to init (context must be previously init'd
451 sbdma_channel_start(sbmacdma_t
*d
)
454 * Turn on the DMA channel
457 SBMAC_WRITECSR(d
->sbdma_config1
, 0);
459 SBMAC_WRITECSR(d
->sbdma_dscrbase
, d
->sbdma_dscrtable_phys
);
461 SBMAC_WRITECSR(d
->sbdma_config0
, V_DMA_RINGSZ(d
->sbdma_maxdescr
) | 0);
464 * Initialize ring pointers
467 d
->sbdma_add_index
= 0;
468 d
->sbdma_rem_index
= 0;
472 * SBDMA_ADD_RCVBUFFER(d, m)
474 * Add a buffer to the specified DMA channel. For receive channels,
475 * this queues a buffer for inbound packets.
478 * d - DMA channel descriptor
479 * m - mbuf to add, or NULL if we should allocate one.
482 * 0 if buffer could not be added (ring is full)
483 * 1 if buffer added successfully
487 sbdma_add_rcvbuffer(sbmacdma_t
*d
, struct mbuf
*m
)
489 unsigned int dsc
, nextdsc
;
490 struct mbuf
*m_new
= NULL
;
492 /* get pointer to our current place in the ring */
494 dsc
= d
->sbdma_add_index
;
495 nextdsc
= SBDMA_NEXTBUF(d
, d
->sbdma_add_index
);
498 * figure out if the ring is full - if the next descriptor
499 * is the same as the one that we're going to remove from
500 * the ring, the ring is full
503 if (nextdsc
== d
->sbdma_rem_index
)
507 * Allocate an mbuf if we don't already have one.
508 * If we do have an mbuf, reset it so that it's empty.
512 MGETHDR(m_new
, M_DONTWAIT
, MT_DATA
);
514 printf("%s: mbuf allocation failed\n",
515 d
->sbdma_eth
->sc_dev
.dv_xname
);
519 MCLGET(m_new
, M_DONTWAIT
);
520 if (!(m_new
->m_flags
& M_EXT
)) {
521 printf("%s: mbuf cluster allocation failed\n",
522 d
->sbdma_eth
->sc_dev
.dv_xname
);
527 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
528 m_adj(m_new
, ETHER_ALIGN
);
531 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
532 m_new
->m_data
= m_new
->m_ext
.ext_buf
;
533 m_adj(m_new
, ETHER_ALIGN
);
537 * fill in the descriptor
540 d
->sbdma_dscrtable
[dsc
].dscr_a
= KVTOPHYS(mtod(m_new
, void *)) |
541 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN
+ m_new
->m_len
)) |
542 M_DMA_DSCRA_INTERRUPT
;
544 /* receiving: no options */
545 d
->sbdma_dscrtable
[dsc
].dscr_b
= 0;
548 * fill in the context
551 d
->sbdma_ctxtable
[dsc
] = m_new
;
554 * point at next packet
557 d
->sbdma_add_index
= nextdsc
;
560 * Give the buffer to the DMA engine.
563 SBMAC_WRITECSR(d
->sbdma_dscrcnt
, 1);
565 return 0; /* we did it */
569 * SBDMA_ADD_TXBUFFER(d, m)
571 * Add a transmit buffer to the specified DMA channel, causing a
575 * d - DMA channel descriptor
579 * 0 transmit queued successfully
580 * otherwise error code
584 sbdma_add_txbuffer(sbmacdma_t
*d
, struct mbuf
*m
)
586 unsigned int dsc
, nextdsc
, prevdsc
, origdesc
;
589 struct sbmac_softc
*sc
= d
->sbdma_eth
;
591 /* get pointer to our current place in the ring */
593 dsc
= d
->sbdma_add_index
;
594 nextdsc
= SBDMA_NEXTBUF(d
, d
->sbdma_add_index
);
597 * figure out if the ring is full - if the next descriptor
598 * is the same as the one that we're going to remove from
599 * the ring, the ring is full
602 if (nextdsc
== d
->sbdma_rem_index
) {
603 SBMAC_EVCNT_INCR(sc
->sbm_ev_txstall
);
608 * PASS3 parts do not have buffer alignment restriction.
609 * No need to copy/coalesce to new mbuf. Also has different
612 if (sc
->sbm_pass3_dma
) {
613 struct mbuf
*m_temp
= NULL
;
616 * Loop thru this mbuf record.
617 * The head mbuf will have SOP set.
619 d
->sbdma_dscrtable
[dsc
].dscr_a
= KVTOPHYS(mtod(m
,void *)) |
623 * transmitting: set outbound options,buffer A size(+ low 5
624 * bits of start addr),and packet length.
626 d
->sbdma_dscrtable
[dsc
].dscr_b
=
627 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
628 V_DMA_DSCRB_A_SIZE((m
->m_len
+
629 (mtod(m
,uintptr_t) & 0x0000001F))) |
630 V_DMA_DSCRB_PKT_SIZE_MSB((m
->m_pkthdr
.len
& 0xc000) >> 14) |
631 V_DMA_DSCRB_PKT_SIZE(m
->m_pkthdr
.len
& 0x3fff);
633 d
->sbdma_add_index
= nextdsc
;
634 origdesc
= prevdsc
= dsc
;
635 dsc
= d
->sbdma_add_index
;
638 /* Start with first non-head mbuf */
639 for(m_temp
= m
->m_next
; m_temp
!= 0; m_temp
= m_temp
->m_next
) {
643 if (m_temp
->m_len
== 0)
644 continue; /* Skip 0-length mbufs */
647 addr
= KVTOPHYS(mtod(m_temp
, void *));
650 * Check to see if the mbuf spans a page boundary. If
651 * it does, and the physical pages behind the virtual
652 * pages are not contiguous, split it so that each
653 * virtual page uses it's own Tx descriptor.
655 if (trunc_page(addr
) != trunc_page(addr
+ len
- 1)) {
656 next_len
= (addr
+ len
) - trunc_page(addr
+ len
);
661 KVTOPHYS(mtod(m_temp
, char *) + len
)) {
662 SBMAC_EVCNT_INCR(sc
->sbm_ev_txkeep
);
666 SBMAC_EVCNT_INCR(sc
->sbm_ev_txsplit
);
674 * fill in the descriptor
676 d
->sbdma_dscrtable
[dsc
].dscr_a
= addr
;
679 * transmitting: set outbound options,buffer A
680 * size(+ low 5 bits of start addr)
682 d
->sbdma_dscrtable
[dsc
].dscr_b
= V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP
) |
683 V_DMA_DSCRB_A_SIZE((len
+ (addr
& 0x0000001F)));
685 d
->sbdma_ctxtable
[dsc
] = NULL
;
688 * point at next descriptor
690 nextdsc
= SBDMA_NEXTBUF(d
, d
->sbdma_add_index
);
691 if (nextdsc
== d
->sbdma_rem_index
) {
692 d
->sbdma_add_index
= origdesc
;
693 SBMAC_EVCNT_INCR(sc
->sbm_ev_txstall
);
696 d
->sbdma_add_index
= nextdsc
;
699 dsc
= d
->sbdma_add_index
;
703 addr
= KVTOPHYS(mtod(m_temp
, char *) + len
);
711 /* Set head mbuf to last context index */
712 d
->sbdma_ctxtable
[prevdsc
] = m
;
714 /* Interrupt on last dscr of packet. */
715 d
->sbdma_dscrtable
[prevdsc
].dscr_a
|= M_DMA_DSCRA_INTERRUPT
;
717 struct mbuf
*m_new
= NULL
;
720 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
721 * assume it will fit). This is a temporary hack to get us
725 MGETHDR(m_new
,M_DONTWAIT
,MT_DATA
);
727 printf("%s: mbuf allocation failed\n",
728 d
->sbdma_eth
->sc_dev
.dv_xname
);
729 SBMAC_EVCNT_INCR(sc
->sbm_ev_txdrop
);
733 MCLGET(m_new
,M_DONTWAIT
);
734 if (!(m_new
->m_flags
& M_EXT
)) {
735 printf("%s: mbuf cluster allocation failed\n",
736 d
->sbdma_eth
->sc_dev
.dv_xname
);
738 SBMAC_EVCNT_INCR(sc
->sbm_ev_txdrop
);
742 m_new
->m_len
= m_new
->m_pkthdr
.len
= MCLBYTES
;
743 /*m_adj(m_new,ETHER_ALIGN);*/
746 * XXX Don't forget to include the offset portion in the
747 * XXX cache block calculation when this code is rewritten!
754 m_copydata(m
,0,m
->m_pkthdr
.len
,mtod(m_new
,void *));
755 m_new
->m_len
= m_new
->m_pkthdr
.len
= m
->m_pkthdr
.len
;
757 /* Free old mbuf 'm', actual mbuf is now 'm_new' */
759 // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
760 // XXX: function succeeds.
762 length
= m_new
->m_len
;
766 * fill in the descriptor
769 d
->sbdma_dscrtable
[dsc
].dscr_a
= KVTOPHYS(mtod(m_new
,void *)) |
770 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new
->m_len
)) |
771 M_DMA_DSCRA_INTERRUPT
|
774 /* transmitting: set outbound options and length */
775 d
->sbdma_dscrtable
[dsc
].dscr_b
=
776 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD
) |
777 V_DMA_DSCRB_PKT_SIZE(length
);
782 * fill in the context
785 d
->sbdma_ctxtable
[dsc
] = m_new
;
788 * point at next packet
790 d
->sbdma_add_index
= nextdsc
;
794 * Give the buffer to the DMA engine.
797 SBMAC_WRITECSR(d
->sbdma_dscrcnt
, num_mbufs
);
799 return 0; /* we did it */
805 * Free all allocated mbufs on the specified DMA channel;
815 sbdma_emptyring(sbmacdma_t
*d
)
820 for (idx
= 0; idx
< d
->sbdma_maxdescr
; idx
++) {
821 m
= d
->sbdma_ctxtable
[idx
];
824 d
->sbdma_ctxtable
[idx
] = NULL
;
832 * Fill the specified DMA channel (must be receive channel)
843 sbdma_fillring(sbmacdma_t
*d
)
847 for (idx
= 0; idx
< SBMAC_MAX_RXDESCR
-1; idx
++)
848 if (sbdma_add_rcvbuffer(d
, NULL
) != 0)
853 * SBDMA_RX_PROCESS(sc, d)
855 * Process "completed" receive buffers on the specified DMA channel.
856 * Note that this isn't really ideal for priority channels, since
857 * it processes all of the packets on a given channel before
861 * sc - softc structure
862 * d - DMA channel context
869 sbdma_rx_process(struct sbmac_softc
*sc
, sbmacdma_t
*d
)
877 struct ifnet
*ifp
= &(sc
->sc_ethercom
.ec_if
);
881 * figure out where we are (as an index) and where
882 * the hardware is (also as an index)
884 * This could be done faster if (for example) the
885 * descriptor table was page-aligned and contiguous in
886 * both virtual and physical memory -- you could then
887 * just compare the low-order bits of the virtual address
888 * (sbdma_rem_index) and the physical address
889 * (sbdma_curdscr CSR).
892 curidx
= d
->sbdma_rem_index
;
894 (((SBMAC_READCSR(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
895 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
898 * If they're the same, that means we've processed all
899 * of the descriptors up to (but not including) the one that
900 * the hardware is working on right now.
907 * Otherwise, get the packet's mbuf ptr back
910 dscp
= &(d
->sbdma_dscrtable
[curidx
]);
911 m
= d
->sbdma_ctxtable
[curidx
];
912 d
->sbdma_ctxtable
[curidx
] = NULL
;
914 len
= (int)G_DMA_DSCRB_PKT_SIZE(dscp
->dscr_b
) - 4;
917 * Check packet status. If good, process it.
918 * If not, silently drop it and put it back on the
922 if (! (dscp
->dscr_a
& M_DMA_ETHRX_BAD
)) {
925 * Set length into the packet
926 * XXX do we remove the CRC here?
928 m
->m_pkthdr
.len
= m
->m_len
= len
;
931 m
->m_pkthdr
.rcvif
= ifp
;
935 * Add a new buffer to replace the old one.
937 sbdma_add_rcvbuffer(d
, NULL
);
941 * Handle BPF listeners. Let the BPF user see the
942 * packet, but don't pass it up to the ether_input()
943 * layer unless it's a broadcast packet, multicast
944 * packet, matches our ethernet address or the
945 * interface is in promiscuous mode.
949 bpf_mtap(ifp
->if_bpf
, m
);
952 * Pass the buffer to the kernel
954 (*ifp
->if_input
)(ifp
, m
);
957 * Packet was mangled somehow. Just drop it and
958 * put it back on the receive ring.
960 sbdma_add_rcvbuffer(d
, m
);
964 * .. and advance to the next buffer.
967 d
->sbdma_rem_index
= SBDMA_NEXTBUF(d
, d
->sbdma_rem_index
);
972 * SBDMA_TX_PROCESS(sc, d)
974 * Process "completed" transmit buffers on the specified DMA channel.
975 * This is normally called within the interrupt service routine.
976 * Note that this isn't really ideal for priority channels, since
977 * it processes all of the packets on a given channel before
981 * sc - softc structure
982 * d - DMA channel context
989 sbdma_tx_process(struct sbmac_softc
*sc
, sbmacdma_t
*d
)
995 struct ifnet
*ifp
= &(sc
->sc_ethercom
.ec_if
);
999 * figure out where we are (as an index) and where
1000 * the hardware is (also as an index)
1002 * This could be done faster if (for example) the
1003 * descriptor table was page-aligned and contiguous in
1004 * both virtual and physical memory -- you could then
1005 * just compare the low-order bits of the virtual address
1006 * (sbdma_rem_index) and the physical address
1007 * (sbdma_curdscr CSR).
1010 curidx
= d
->sbdma_rem_index
;
1012 (((SBMAC_READCSR(d
->sbdma_curdscr
) & M_DMA_CURDSCR_ADDR
) -
1013 d
->sbdma_dscrtable_phys
) / sizeof(sbdmadscr_t
));
1016 * If they're the same, that means we've processed all
1017 * of the descriptors up to (but not including) the one that
1018 * the hardware is working on right now.
1021 if (curidx
== hwidx
)
1025 * Otherwise, get the packet's mbuf ptr back
1028 m
= d
->sbdma_ctxtable
[curidx
];
1029 d
->sbdma_ctxtable
[curidx
] = NULL
;
1032 * for transmits we just free buffers and count packets.
1038 * .. and advance to the next buffer.
1041 d
->sbdma_rem_index
= SBDMA_NEXTBUF(d
, d
->sbdma_rem_index
);
1045 * Decide what to set the IFF_OACTIVE bit in the interface to.
1046 * It's supposed to reflect if the interface is actively
1047 * transmitting, but that's really hard to do quickly.
1050 ifp
->if_flags
&= ~IFF_OACTIVE
;
1056 * Initialize an Ethernet context structure - this is called
1057 * once per MAC on the 1250. Memory is allocated here, so don't
1058 * call it again from inside the ioctl routines that bring the
1062 * s - sbmac context structure
1069 sbmac_initctx(struct sbmac_softc
*s
)
1074 * figure out the addresses of some ports
1077 s
->sbm_macenable
= PKSEG1(s
->sbm_base
+ R_MAC_ENABLE
);
1078 s
->sbm_maccfg
= PKSEG1(s
->sbm_base
+ R_MAC_CFG
);
1079 s
->sbm_fifocfg
= PKSEG1(s
->sbm_base
+ R_MAC_THRSH_CFG
);
1080 s
->sbm_framecfg
= PKSEG1(s
->sbm_base
+ R_MAC_FRAMECFG
);
1081 s
->sbm_rxfilter
= PKSEG1(s
->sbm_base
+ R_MAC_ADFILTER_CFG
);
1082 s
->sbm_isr
= PKSEG1(s
->sbm_base
+ R_MAC_STATUS
);
1083 s
->sbm_imr
= PKSEG1(s
->sbm_base
+ R_MAC_INT_MASK
);
1086 * Initialize the DMA channels. Right now, only one per MAC is used
1087 * Note: Only do this _once_, as it allocates memory from the kernel!
1090 sbdma_initctx(&(s
->sbm_txdma
), s
, 0, DMA_TX
, SBMAC_MAX_TXDESCR
);
1091 sbdma_initctx(&(s
->sbm_rxdma
), s
, 0, DMA_RX
, SBMAC_MAX_RXDESCR
);
1094 * initial state is OFF
1097 s
->sbm_state
= sbmac_state_off
;
1100 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1103 s
->sbm_speed
= sbmac_speed_10
;
1104 s
->sbm_duplex
= sbmac_duplex_half
;
1105 s
->sbm_fc
= sbmac_fc_disabled
;
1108 * Determine SOC type. 112x has Pass3 SOC features.
1110 sysrev
= SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION
) );
1111 s
->sbm_pass3_dma
= (SYS_SOC_TYPE(sysrev
) == K_SYS_SOC_TYPE_BCM1120
||
1112 SYS_SOC_TYPE(sysrev
) == K_SYS_SOC_TYPE_BCM1125
||
1113 SYS_SOC_TYPE(sysrev
) == K_SYS_SOC_TYPE_BCM1125H
||
1114 (SYS_SOC_TYPE(sysrev
) == K_SYS_SOC_TYPE_BCM1250
&&
1115 G_SYS_REVISION(sysrev
) >= K_SYS_REVISION_BCM1250_PASS3
));
1116 #ifdef SBMAC_EVENT_COUNTERS
1117 evcnt_attach_dynamic(&s
->sbm_ev_rxintr
, EVCNT_TYPE_INTR
,
1118 NULL
, s
->sc_dev
.dv_xname
, "rxintr");
1119 evcnt_attach_dynamic(&s
->sbm_ev_txintr
, EVCNT_TYPE_INTR
,
1120 NULL
, s
->sc_dev
.dv_xname
, "txintr");
1121 evcnt_attach_dynamic(&s
->sbm_ev_txdrop
, EVCNT_TYPE_MISC
,
1122 NULL
, s
->sc_dev
.dv_xname
, "txdrop");
1123 evcnt_attach_dynamic(&s
->sbm_ev_txstall
, EVCNT_TYPE_MISC
,
1124 NULL
, s
->sc_dev
.dv_xname
, "txstall");
1125 if (s
->sbm_pass3_dma
) {
1126 evcnt_attach_dynamic(&s
->sbm_ev_txsplit
, EVCNT_TYPE_MISC
,
1127 NULL
, s
->sc_dev
.dv_xname
, "pass3tx-split");
1128 evcnt_attach_dynamic(&s
->sbm_ev_txkeep
, EVCNT_TYPE_MISC
,
1129 NULL
, s
->sc_dev
.dv_xname
, "pass3tx-keep");
1135 * SBMAC_CHANNEL_START(s)
1137 * Start packet processing on this MAC.
1140 * s - sbmac structure
1147 sbmac_channel_start(struct sbmac_softc
*s
)
1151 uint64_t cfg
, fifo
, framecfg
;
1153 uint64_t dma_cfg0
, fifo_cfg
;
1157 * Don't do this if running
1160 if (s
->sbm_state
== sbmac_state_on
)
1164 * Bring the controller out of reset, but leave it off.
1167 SBMAC_WRITECSR(s
->sbm_macenable
, 0);
1170 * Ignore all received packets
1173 SBMAC_WRITECSR(s
->sbm_rxfilter
, 0);
1176 * Calculate values for various control registers.
1179 cfg
= M_MAC_RETRY_EN
|
1180 M_MAC_TX_HOLD_SOP_EN
|
1181 V_MAC_TX_PAUSE_CNT_16K
|
1186 fifo
= V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1187 V_MAC_TX_RD_THRSH(4) |
1188 V_MAC_TX_RL_THRSH(4) |
1189 V_MAC_RX_PL_THRSH(4) |
1190 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1191 V_MAC_RX_PL_THRSH(4) |
1192 V_MAC_RX_RL_THRSH(8) |
1195 framecfg
= V_MAC_MIN_FRAMESZ_DEFAULT
|
1196 V_MAC_MAX_FRAMESZ_DEFAULT
|
1197 V_MAC_BACKOFF_SEL(1);
1200 * Clear out the hash address map
1203 port
= PKSEG1(s
->sbm_base
+ R_MAC_HASH_BASE
);
1204 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1205 SBMAC_WRITECSR(port
, 0);
1206 port
+= sizeof(uint64_t);
1210 * Clear out the exact-match table
1213 port
= PKSEG1(s
->sbm_base
+ R_MAC_ADDR_BASE
);
1214 for (idx
= 0; idx
< MAC_ADDR_COUNT
; idx
++) {
1215 SBMAC_WRITECSR(port
, 0);
1216 port
+= sizeof(uint64_t);
1220 * Clear out the DMA Channel mapping table registers
1223 port
= PKSEG1(s
->sbm_base
+ R_MAC_CHUP0_BASE
);
1224 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1225 SBMAC_WRITECSR(port
, 0);
1226 port
+= sizeof(uint64_t);
1229 port
= PKSEG1(s
->sbm_base
+ R_MAC_CHLO0_BASE
);
1230 for (idx
= 0; idx
< MAC_CHMAP_COUNT
; idx
++) {
1231 SBMAC_WRITECSR(port
, 0);
1232 port
+= sizeof(uint64_t);
1236 * Program the hardware address. It goes into the hardware-address
1237 * register as well as the first filter register.
1240 reg
= sbmac_addr2reg(s
->sbm_hwaddr
);
1242 port
= PKSEG1(s
->sbm_base
+ R_MAC_ADDR_BASE
);
1243 SBMAC_WRITECSR(port
, reg
);
1244 port
= PKSEG1(s
->sbm_base
+ R_MAC_ETHERNET_ADDR
);
1245 SBMAC_WRITECSR(port
, 0); // pass1 workaround
1248 * Set the receive filter for no packets, and write values
1249 * to the various config registers
1252 SBMAC_WRITECSR(s
->sbm_rxfilter
, 0);
1253 SBMAC_WRITECSR(s
->sbm_imr
, 0);
1254 SBMAC_WRITECSR(s
->sbm_framecfg
, framecfg
);
1255 SBMAC_WRITECSR(s
->sbm_fifocfg
, fifo
);
1256 SBMAC_WRITECSR(s
->sbm_maccfg
, cfg
);
1259 * Initialize DMA channels (rings should be ok now)
1262 sbdma_channel_start(&(s
->sbm_rxdma
));
1263 sbdma_channel_start(&(s
->sbm_txdma
));
1266 * Configure the speed, duplex, and flow control
1269 sbmac_set_speed(s
, s
->sbm_speed
);
1270 sbmac_set_duplex(s
, s
->sbm_duplex
, s
->sbm_fc
);
1273 * Fill the receive ring
1276 sbdma_fillring(&(s
->sbm_rxdma
));
1279 * Turn on the rest of the bits in the enable register
1282 SBMAC_WRITECSR(s
->sbm_macenable
, M_MAC_RXDMA_EN0
| M_MAC_TXDMA_EN0
|
1283 M_MAC_RX_ENABLE
| M_MAC_TX_ENABLE
);
1287 * Accept any kind of interrupt on TX and RX DMA channel 0
1289 SBMAC_WRITECSR(s
->sbm_imr
,
1290 (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
) |
1291 (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
));
1294 * Enable receiving unicasts and broadcasts
1297 SBMAC_WRITECSR(s
->sbm_rxfilter
, M_MAC_UCAST_EN
| M_MAC_BCAST_EN
);
1300 * On chips which support unaligned DMA features, set the descriptor
1301 * ring for transmit channels to use the unaligned buffer format.
1303 txdma
= &(s
->sbm_txdma
);
1305 if (s
->sbm_pass3_dma
) {
1306 dma_cfg0
= SBMAC_READCSR(txdma
->sbdma_config0
);
1307 dma_cfg0
|= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW
) |
1308 M_DMA_TBX_EN
| M_DMA_TDX_EN
;
1309 SBMAC_WRITECSR(txdma
->sbdma_config0
,dma_cfg0
);
1311 fifo_cfg
= SBMAC_READCSR(s
->sbm_fifocfg
);
1312 fifo_cfg
|= V_MAC_TX_WR_THRSH(8) |
1313 V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1314 SBMAC_WRITECSR(s
->sbm_fifocfg
,fifo_cfg
);
1318 * we're running now.
1321 s
->sbm_state
= sbmac_state_on
;
1322 s
->sc_ethercom
.ec_if
.if_flags
|= IFF_RUNNING
;
1325 * Program multicast addresses
1331 * If channel was in promiscuous mode before, turn that on
1334 if (s
->sc_ethercom
.ec_if
.if_flags
& IFF_PROMISC
)
1335 sbmac_promiscuous_mode(s
, 1);
1338 * Turn on the once-per-second timer
1341 callout_reset(&(s
->sc_tick_ch
), hz
, sbmac_tick
, s
);
1345 * SBMAC_CHANNEL_STOP(s)
1347 * Stop packet processing on this MAC.
1350 * s - sbmac structure
1357 sbmac_channel_stop(struct sbmac_softc
*s
)
1361 /* don't do this if already stopped */
1363 if (s
->sbm_state
== sbmac_state_off
)
1366 /* don't accept any packets, disable all interrupts */
1368 SBMAC_WRITECSR(s
->sbm_rxfilter
, 0);
1369 SBMAC_WRITECSR(s
->sbm_imr
, 0);
1371 /* Turn off ticker */
1373 callout_stop(&(s
->sc_tick_ch
));
1375 /* turn off receiver and transmitter */
1377 ctl
= SBMAC_READCSR(s
->sbm_macenable
);
1378 ctl
&= ~(M_MAC_RXDMA_EN0
| M_MAC_TXDMA_EN0
);
1379 SBMAC_WRITECSR(s
->sbm_macenable
, ctl
);
1381 /* We're stopped now. */
1383 s
->sbm_state
= sbmac_state_off
;
1384 s
->sc_ethercom
.ec_if
.if_flags
&= ~IFF_RUNNING
;
1386 /* Empty the receive and transmit rings */
1388 sbdma_emptyring(&(s
->sbm_rxdma
));
1389 sbdma_emptyring(&(s
->sbm_txdma
));
1393 * SBMAC_SET_CHANNEL_STATE(state)
1395 * Set the channel's state ON or OFF
1404 static sbmac_state_t
1405 sbmac_set_channel_state(struct sbmac_softc
*sc
, sbmac_state_t state
)
1407 sbmac_state_t oldstate
= sc
->sbm_state
;
1410 * If same as previous state, return
1413 if (state
== oldstate
)
1417 * If new state is ON, turn channel on
1420 if (state
== sbmac_state_on
)
1421 sbmac_channel_start(sc
);
1423 sbmac_channel_stop(sc
);
1426 * Return previous state
1433 * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1435 * Turn on or off promiscuous mode
1439 * onoff - 1 to turn on, 0 to turn off
1446 sbmac_promiscuous_mode(struct sbmac_softc
*sc
, int onoff
)
1450 if (sc
->sbm_state
!= sbmac_state_on
)
1454 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1455 reg
|= M_MAC_ALLPKT_EN
;
1456 SBMAC_WRITECSR(sc
->sbm_rxfilter
, reg
);
1458 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1459 reg
&= ~M_MAC_ALLPKT_EN
;
1460 SBMAC_WRITECSR(sc
->sbm_rxfilter
, reg
);
1465 * SBMAC_INIT_AND_START(sc)
1467 * Stop the channel and restart it. This is generally used
1468 * when we have to do something to the channel that requires
1476 sbmac_init_and_start(struct sbmac_softc
*sc
)
1482 mii_pollstat(&sc
->sc_mii
); /* poll phy for current speed */
1483 sbmac_mii_statchg((struct device
*) sc
); /* set state to new speed */
1484 sbmac_set_channel_state(sc
, sbmac_state_on
);
1490 * SBMAC_ADDR2REG(ptr)
1492 * Convert six bytes into the 64-bit register value that
1493 * we typically write into the SBMAC's address/mcast registers
1496 * ptr - pointer to 6 bytes
1503 sbmac_addr2reg(u_char
*ptr
)
1509 reg
|= (uint64_t) *(--ptr
);
1511 reg
|= (uint64_t) *(--ptr
);
1513 reg
|= (uint64_t) *(--ptr
);
1515 reg
|= (uint64_t) *(--ptr
);
1517 reg
|= (uint64_t) *(--ptr
);
1519 reg
|= (uint64_t) *(--ptr
);
1525 * SBMAC_SET_SPEED(s, speed)
1527 * Configure LAN speed for the specified MAC.
1528 * Warning: must be called when MAC is off!
1531 * s - sbmac structure
1532 * speed - speed to set MAC to (see sbmac_speed_t enum)
1536 * 0 indicates invalid parameters
1540 sbmac_set_speed(struct sbmac_softc
*s
, sbmac_speed_t speed
)
1546 * Save new current values
1549 s
->sbm_speed
= speed
;
1551 if (s
->sbm_state
!= sbmac_state_off
)
1552 panic("sbmac_set_speed while MAC not off");
1555 * Read current register values
1558 cfg
= SBMAC_READCSR(s
->sbm_maccfg
);
1559 framecfg
= SBMAC_READCSR(s
->sbm_framecfg
);
1562 * Mask out the stuff we want to change
1565 cfg
&= ~(M_MAC_BURST_EN
| M_MAC_SPEED_SEL
);
1566 framecfg
&= ~(M_MAC_IFG_RX
| M_MAC_IFG_TX
| M_MAC_IFG_THRSH
|
1570 * Now add in the new bits
1574 case sbmac_speed_10
:
1575 framecfg
|= V_MAC_IFG_RX_10
|
1577 K_MAC_IFG_THRSH_10
|
1579 cfg
|= V_MAC_SPEED_SEL_10MBPS
;
1582 case sbmac_speed_100
:
1583 framecfg
|= V_MAC_IFG_RX_100
|
1585 V_MAC_IFG_THRSH_100
|
1586 V_MAC_SLOT_SIZE_100
;
1587 cfg
|= V_MAC_SPEED_SEL_100MBPS
;
1590 case sbmac_speed_1000
:
1591 framecfg
|= V_MAC_IFG_RX_1000
|
1593 V_MAC_IFG_THRSH_1000
|
1594 V_MAC_SLOT_SIZE_1000
;
1595 cfg
|= V_MAC_SPEED_SEL_1000MBPS
| M_MAC_BURST_EN
;
1598 case sbmac_speed_auto
: /* XXX not implemented */
1605 * Send the bits back to the hardware
1608 SBMAC_WRITECSR(s
->sbm_framecfg
, framecfg
);
1609 SBMAC_WRITECSR(s
->sbm_maccfg
, cfg
);
1615 * SBMAC_SET_DUPLEX(s, duplex, fc)
1617 * Set Ethernet duplex and flow control options for this MAC
1618 * Warning: must be called when MAC is off!
1621 * s - sbmac structure
1622 * duplex - duplex setting (see sbmac_duplex_t)
1623 * fc - flow control setting (see sbmac_fc_t)
1627 * 0 if an invalid parameter combination was specified
1631 sbmac_set_duplex(struct sbmac_softc
*s
, sbmac_duplex_t duplex
, sbmac_fc_t fc
)
1636 * Save new current values
1639 s
->sbm_duplex
= duplex
;
1642 if (s
->sbm_state
!= sbmac_state_off
)
1643 panic("sbmac_set_duplex while MAC not off");
1646 * Read current register values
1649 cfg
= SBMAC_READCSR(s
->sbm_maccfg
);
1652 * Mask off the stuff we're about to change
1655 cfg
&= ~(M_MAC_FC_SEL
| M_MAC_FC_CMD
| M_MAC_HDX_EN
);
1658 case sbmac_duplex_half
:
1660 case sbmac_fc_disabled
:
1661 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_DISABLED
;
1664 case sbmac_fc_collision
:
1665 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENABLED
;
1668 case sbmac_fc_carrier
:
1669 cfg
|= M_MAC_HDX_EN
| V_MAC_FC_CMD_ENAB_FALSECARR
;
1672 case sbmac_fc_auto
: /* XXX not implemented */
1674 case sbmac_fc_frame
: /* not valid in half duplex */
1675 default: /* invalid selection */
1676 panic("%s: invalid half duplex fc selection %d",
1677 s
->sc_dev
.dv_xname
, fc
);
1682 case sbmac_duplex_full
:
1684 case sbmac_fc_disabled
:
1685 cfg
|= V_MAC_FC_CMD_DISABLED
;
1688 case sbmac_fc_frame
:
1689 cfg
|= V_MAC_FC_CMD_ENABLED
;
1692 case sbmac_fc_collision
: /* not valid in full duplex */
1693 case sbmac_fc_carrier
: /* not valid in full duplex */
1694 case sbmac_fc_auto
: /* XXX not implemented */
1697 panic("%s: invalid full duplex fc selection %d",
1698 s
->sc_dev
.dv_xname
, fc
);
1705 case sbmac_duplex_auto
:
1706 panic("%s: bad duplex %d", s
->sc_dev
.dv_xname
, duplex
);
1707 /* XXX not implemented */
1712 * Send the bits back to the hardware
1715 SBMAC_WRITECSR(s
->sbm_maccfg
, cfg
);
1723 * Interrupt handler for MAC interrupts
1734 sbmac_intr(void *xsc
, uint32_t status
, vaddr_t pc
)
1736 struct sbmac_softc
*sc
= (struct sbmac_softc
*) xsc
;
1737 struct ifnet
*ifp
= &sc
->sc_ethercom
.ec_if
;
1743 * Read the ISR (this clears the bits in the real register)
1746 isr
= SBMAC_READCSR(sc
->sbm_isr
);
1752 * Transmits on channel 0
1755 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_TX_CH0
)) {
1756 sbdma_tx_process(sc
, &(sc
->sbm_txdma
));
1757 SBMAC_EVCNT_INCR(sc
->sbm_ev_txintr
);
1761 * Receives on channel 0
1764 if (isr
& (M_MAC_INT_CHANNEL
<< S_MAC_RX_CH0
)) {
1765 sbdma_rx_process(sc
, &(sc
->sbm_rxdma
));
1766 SBMAC_EVCNT_INCR(sc
->sbm_ev_rxintr
);
1770 /* try to get more packets going */
1778 * Start output on the specified interface. Basically, we
1779 * queue as many buffers as we can until the ring fills up, or
1780 * we run off the end of the queue, whichever comes first.
1790 sbmac_start(struct ifnet
*ifp
)
1792 struct sbmac_softc
*sc
;
1793 struct mbuf
*m_head
= NULL
;
1796 if ((ifp
->if_flags
& (IFF_RUNNING
|IFF_OACTIVE
)) != IFF_RUNNING
)
1803 IF_DEQUEUE(&ifp
->if_snd
, m_head
);
1808 * Put the buffer on the transmit ring. If we
1809 * don't have room, set the OACTIVE flag and wait
1810 * for the NIC to drain the ring.
1813 rv
= sbdma_add_txbuffer(&(sc
->sbm_txdma
), m_head
);
1817 * If there's a BPF listener, bounce a copy of this
1822 bpf_mtap(ifp
->if_bpf
, m_head
);
1824 if (!sc
->sbm_pass3_dma
) {
1826 * Don't free mbuf if we're not copying to new
1827 * mbuf in sbdma_add_txbuffer. It will be
1828 * freed in sbdma_tx_process.
1833 IF_PREPEND(&ifp
->if_snd
, m_head
);
1834 ifp
->if_flags
|= IFF_OACTIVE
;
1841 * SBMAC_SETMULTI(sc)
1843 * Reprogram the multicast table into the hardware, given
1844 * the list of multicasts associated with the interface
1855 sbmac_setmulti(struct sbmac_softc
*sc
)
1861 struct ether_multi
*enm
;
1862 struct ether_multistep step
;
1864 ifp
= &sc
->sc_ethercom
.ec_if
;
1867 * Clear out entire multicast table. We do this by nuking
1868 * the entire hash table and all the direct matches except
1869 * the first one, which is used for our station address
1872 for (idx
= 1; idx
< MAC_ADDR_COUNT
; idx
++) {
1873 port
= PKSEG1(sc
->sbm_base
+
1874 R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t)));
1875 SBMAC_WRITECSR(port
, 0);
1878 for (idx
= 0; idx
< MAC_HASH_COUNT
; idx
++) {
1879 port
= PKSEG1(sc
->sbm_base
+
1880 R_MAC_HASH_BASE
+(idx
*sizeof(uint64_t)));
1881 SBMAC_WRITECSR(port
, 0);
1885 * Clear the filter to say we don't want any multicasts.
1888 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1889 reg
&= ~(M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
1890 SBMAC_WRITECSR(sc
->sbm_rxfilter
, reg
);
1892 if (ifp
->if_flags
& IFF_ALLMULTI
) {
1894 * Enable ALL multicasts. Do this by inverting the
1895 * multicast enable bit.
1897 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1898 reg
|= (M_MAC_MCAST_INV
| M_MAC_MCAST_EN
);
1899 SBMAC_WRITECSR(sc
->sbm_rxfilter
, reg
);
1904 * Progam new multicast entries. For now, only use the
1905 * perfect filter. In the future we'll need to use the
1906 * hash filter if the perfect filter overflows
1910 * XXX only using perfect filter for now, need to use hash
1911 * XXX if the table overflows
1914 idx
= 1; /* skip station address */
1915 ETHER_FIRST_MULTI(step
, &sc
->sc_ethercom
, enm
);
1916 while ((enm
!= NULL
) && (idx
< MAC_ADDR_COUNT
)) {
1917 reg
= sbmac_addr2reg(enm
->enm_addrlo
);
1918 port
= PKSEG1(sc
->sbm_base
+
1919 R_MAC_ADDR_BASE
+(idx
*sizeof(uint64_t)));
1920 SBMAC_WRITECSR(port
, reg
);
1922 ETHER_NEXT_MULTI(step
, enm
);
1926 * Enable the "accept multicast bits" if we programmed at least one
1931 reg
= SBMAC_READCSR(sc
->sbm_rxfilter
);
1932 reg
|= M_MAC_MCAST_EN
;
1933 SBMAC_WRITECSR(sc
->sbm_rxfilter
, reg
);
1938 * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1940 * Generic IOCTL requests for this interface. The basic
1941 * stuff is handled here for bringing the interface up,
1942 * handling multicasts, etc.
1945 * ifp - interface structure
1946 * cmd - command code
1947 * data - pointer to data
1950 * return value (0 is success)
1954 sbmac_ether_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
1956 struct ifaddr
*ifa
= (struct ifaddr
*) data
;
1957 struct sbmac_softc
*sc
= ifp
->if_softc
;
1960 case SIOCINITIFADDR
:
1961 ifp
->if_flags
|= IFF_UP
;
1963 switch (ifa
->ifa_addr
->sa_family
) {
1966 sbmac_init_and_start(sc
);
1967 arp_ifinit(ifp
, ifa
);
1973 struct ns_addr
*ina
= &IA_SNS(ifa
)->sns_addr
;
1975 if (ns_nullhost(*ina
))
1977 *(union ns_host
*)LLADDR(ifp
->if_sadl
);
1979 memcpy(LLADDR(ifp
->if_sadl
), ina
->x_host
.c_host
,
1981 /* Set new address. */
1982 sbmac_init_and_start(sc
);
1987 sbmac_init_and_start(sc
);
2000 * SBMAC_IOCTL(ifp, cmd, data)
2002 * Main IOCTL handler - dispatches to other IOCTLs for various
2003 * types of requests.
2006 * ifp - interface pointer
2007 * cmd - command code
2008 * data - pointer to argument data
2016 sbmac_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
2018 struct sbmac_softc
*sc
= ifp
->if_softc
;
2019 struct ifreq
*ifr
= (struct ifreq
*) data
;
2025 case SIOCINITIFADDR
:
2026 error
= sbmac_ether_ioctl(ifp
, cmd
, data
);
2029 if (ifr
->ifr_mtu
< ETHERMIN
|| ifr
->ifr_mtu
> ETHERMTU
)
2031 else if ((error
= ifioctl_common(ifp
, cmd
, data
)) == ENETRESET
)
2032 /* XXX Program new MTU here */
2036 if ((error
= ifioctl_common(ifp
, cmd
, data
)) != 0)
2038 if (ifp
->if_flags
& IFF_UP
) {
2040 * If only the state of the PROMISC flag changed,
2041 * just tweak the hardware registers.
2043 if ((ifp
->if_flags
& IFF_RUNNING
) &&
2044 (ifp
->if_flags
& IFF_PROMISC
)) {
2045 /* turn on promiscuous mode */
2046 sbmac_promiscuous_mode(sc
, 1);
2047 } else if (ifp
->if_flags
& IFF_RUNNING
&&
2048 !(ifp
->if_flags
& IFF_PROMISC
)) {
2049 /* turn off promiscuous mode */
2050 sbmac_promiscuous_mode(sc
, 0);
2052 sbmac_set_channel_state(sc
, sbmac_state_on
);
2054 if (ifp
->if_flags
& IFF_RUNNING
)
2055 sbmac_set_channel_state(sc
, sbmac_state_off
);
2058 sc
->sbm_if_flags
= ifp
->if_flags
;
2066 if ((error
= ether_ioctl(ifp
, cmd
, data
)) == ENETRESET
) {
2068 if (ifp
->if_flags
& IFF_RUNNING
)
2073 error
= ether_ioctl(ifp
, cmd
, data
);
2083 * SBMAC_IFMEDIA_UPD(ifp)
2085 * Configure an appropriate media type for this interface,
2086 * given the data in the interface structure
2097 * SBMAC_IFMEDIA_STS(ifp, ifmr)
2099 * Report current media status (used by ifconfig, for example)
2102 * ifp - interface structure
2103 * ifmr - media request structure
2110 * SBMAC_WATCHDOG(ifp)
2112 * Called periodically to make sure we're still happy.
2115 * ifp - interface structure
2122 sbmac_watchdog(struct ifnet
*ifp
)
2125 /* XXX do something */
2129 * One second timer, used to tick MII.
2132 sbmac_tick(void *arg
)
2134 struct sbmac_softc
*sc
= arg
;
2138 mii_tick(&sc
->sc_mii
);
2141 callout_reset(&sc
->sc_tick_ch
, hz
, sbmac_tick
, sc
);
2146 * SBMAC_MATCH(parent, match, aux)
2148 * Part of the config process - see if this device matches the
2149 * info about what we expect to find on the bus.
2152 * parent - parent bus structure
2154 * aux - bus-specific args
2158 * 0 if we don't match
2162 sbmac_match(struct device
*parent
, struct cfdata
*match
, void *aux
)
2164 struct sbobio_attach_args
*sap
= aux
;
2167 * Make sure it's a MAC
2170 if (sap
->sa_locs
.sa_type
!= SBOBIO_DEVTYPE_MAC
)
2181 * SBMAC_PARSE_XDIGIT(str)
2183 * Parse a hex digit, returning its value
2189 * hex value, or -1 if invalid
2193 sbmac_parse_xdigit(char str
)
2197 if ((str
>= '0') && (str
<= '9'))
2199 else if ((str
>= 'a') && (str
<= 'f'))
2200 digit
= str
- 'a' + 10;
2201 else if ((str
>= 'A') && (str
<= 'F'))
2202 digit
= str
- 'A' + 10;
2210 * SBMAC_PARSE_HWADDR(str, hwaddr)
2212 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2217 * hwaddr - pointer to hardware address
2224 sbmac_parse_hwaddr(const char *str
, u_char
*hwaddr
)
2229 while (*str
&& (idx
> 0)) {
2230 digit1
= sbmac_parse_xdigit(*str
);
2237 if ((*str
== ':') || (*str
== '-')) {
2241 digit2
= sbmac_parse_xdigit(*str
);
2247 *hwaddr
++ = (digit1
<< 4) | digit2
;
2259 * SBMAC_ATTACH(parent, self, aux)
2261 * Attach routine - init hardware and hook ourselves into NetBSD.
2264 * parent - parent bus device
2273 sbmac_attach(struct device
*parent
, struct device
*self
, void *aux
)
2276 struct sbmac_softc
*sc
;
2277 struct sbobio_attach_args
*sap
= aux
;
2279 static int unit
= 0; /* XXX */
2283 sc
= (struct sbmac_softc
*)self
;
2285 /* Determine controller base address */
2287 sc
->sbm_base
= sap
->sa_locs
.sa_addr
;
2289 eaddr
= sc
->sbm_hwaddr
;
2292 * Initialize context (get pointers to registers and stuff), then
2293 * allocate the memory for the descriptor tables.
2298 callout_init(&(sc
->sc_tick_ch
), 0);
2301 * Read the ethernet address. The firwmare left this programmed
2302 * for us in the ethernet address register for each mac.
2305 ea_reg
= SBMAC_READCSR(PKSEG1(sc
->sbm_base
+ R_MAC_ETHERNET_ADDR
));
2306 for (idx
= 0; idx
< 6; idx
++) {
2307 eaddr
[idx
] = (uint8_t) (ea_reg
& 0xFF);
2311 #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2312 if (eaddr
[0] == 0 && eaddr
[1] == 0 && eaddr
[2] == 0 &&
2313 eaddr
[3] == 0 && eaddr
[4] == 0 && eaddr
[5] == 0) {
2314 sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR
, eaddr
);
2318 #ifdef SBMAC_ETH0_HWADDR
2320 sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR
, eaddr
);
2322 #ifdef SBMAC_ETH1_HWADDR
2324 sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR
, eaddr
);
2326 #ifdef SBMAC_ETH2_HWADDR
2328 sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR
, eaddr
);
2333 * Display Ethernet address (this is called during the config process
2334 * so we need to finish off the config message that was being displayed)
2336 printf(": Ethernet%s\n",
2337 sc
->sbm_pass3_dma
? ", using unaligned tx DMA" : "");
2338 printf("%s: Ethernet address: %s\n", self
->dv_xname
,
2339 ether_sprintf(eaddr
));
2343 * Set up ifnet structure
2346 ifp
= &sc
->sc_ethercom
.ec_if
;
2348 memcpy(ifp
->if_xname
, sc
->sc_dev
.dv_xname
, IFNAMSIZ
);
2349 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
|
2351 ifp
->if_ioctl
= sbmac_ioctl
;
2352 ifp
->if_start
= sbmac_start
;
2353 ifp
->if_watchdog
= sbmac_watchdog
;
2354 ifp
->if_snd
.ifq_maxlen
= SBMAC_MAX_TXDESCR
- 1;
2357 * Set up ifmedia support.
2361 * Initialize MII/media info.
2363 sc
->sc_mii
.mii_ifp
= ifp
;
2364 sc
->sc_mii
.mii_readreg
= sbmac_mii_readreg
;
2365 sc
->sc_mii
.mii_writereg
= sbmac_mii_writereg
;
2366 sc
->sc_mii
.mii_statchg
= sbmac_mii_statchg
;
2367 sc
->sc_ethercom
.ec_mii
= &sc
->sc_mii
;
2368 ifmedia_init(&sc
->sc_mii
.mii_media
, 0, ether_mediachange
,
2370 mii_attach(&sc
->sc_dev
, &sc
->sc_mii
, 0xffffffff, MII_PHY_ANY
,
2373 if (LIST_FIRST(&sc
->sc_mii
.mii_phys
) == NULL
) {
2374 ifmedia_add(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
, 0, NULL
);
2375 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_NONE
);
2377 ifmedia_set(&sc
->sc_mii
.mii_media
, IFM_ETHER
|IFM_AUTO
);
2382 * map/route interrupt
2385 sc
->sbm_intrhand
= cpu_intr_establish(sap
->sa_locs
.sa_intr
[0], IPL_NET
,
2389 * Call MI attach routines.
2392 ether_ifattach(ifp
, eaddr
);