Sync usage with man page.
[netbsd-mini2440.git] / sys / arch / powerpc / oea / altivec.c
blob75eefea88a17b9f0bd4109075ed4664dda74bf25
1 /* $NetBSD: altivec.c,v 1.14 2008/04/08 02:33:03 garbled Exp $ */
3 /*
4 * Copyright (C) 1996 Wolfgang Solfrank.
5 * Copyright (C) 1996 TooLs GmbH.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by TooLs GmbH.
19 * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.14 2008/04/08 02:33:03 garbled Exp $");
37 #include "opt_multiprocessor.h"
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/pool.h>
45 #include <uvm/uvm_extern.h>
47 #include <powerpc/altivec.h>
48 #include <powerpc/spr.h>
49 #include <powerpc/psl.h>
51 #ifdef MULTIPROCESSOR
52 #include <arch/powerpc/pic/picvar.h>
53 #include <arch/powerpc/pic/ipivar.h>
54 static void mp_save_vec_lwp(struct lwp *);
55 #endif
57 void
58 enable_vec(void)
60 struct cpu_info *ci = curcpu();
61 struct lwp *l = curlwp;
62 struct pcb *pcb = lwp_getpcb(l);
63 struct trapframe *tf = trapframe(l);
64 struct vreg *vr = &pcb->pcb_vr;
65 register_t msr;
67 KASSERT(pcb->pcb_veccpu == NULL);
69 pcb->pcb_flags |= PCB_ALTIVEC;
72 * Enable AltiVec temporarily (and disable interrupts).
74 msr = mfmsr();
75 mtmsr((msr & ~PSL_EE) | PSL_VEC);
76 __asm volatile ("isync");
77 if (ci->ci_veclwp) {
78 save_vec_cpu();
80 KASSERT(curcpu()->ci_veclwp == NULL);
83 * Restore VSCR by first loading it into a vector and then into VSCR.
84 * (this needs to done before loading the user's vector registers
85 * since we need to use a scratch vector register)
87 __asm volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
88 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
91 * VRSAVE will be restored when trap frame returns
93 tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
95 #define LVX(n,vr) __asm /*volatile*/("lvx %2,%0,%1" \
96 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
99 * Load all 32 vector registers
101 LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
102 LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
103 LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
104 LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
106 LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
107 LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
108 LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
109 LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
110 __asm volatile ("isync");
113 * Enable AltiVec when we return to user-mode.
114 * Record the new ownership of the AltiVec unit.
116 curcpu()->ci_veclwp = l;
117 pcb->pcb_veccpu = curcpu();
118 pcb->pcb_flags |= PCB_OWNALTIVEC;
119 __asm volatile ("sync");
122 * Restore MSR (turn off AltiVec)
124 mtmsr(msr);
127 void
128 save_vec_cpu(void)
130 struct cpu_info *ci = curcpu();
131 struct lwp *l;
132 struct pcb *pcb;
133 struct vreg *vr;
134 struct trapframe *tf;
135 register_t msr;
138 * Turn on AltiVEC, turn off interrupts.
140 msr = mfmsr();
141 mtmsr((msr & ~PSL_EE) | PSL_VEC);
142 __asm volatile ("isync");
143 l = ci->ci_veclwp;
144 if (l == NULL)
145 goto out;
146 pcb = lwp_getpcb(l);
147 vr = &pcb->pcb_vr;
148 tf = trapframe(l);
150 #define STVX(n,vr) __asm /*volatile*/("stvx %2,%0,%1" \
151 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
154 * Save the vector registers.
156 STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
157 STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
158 STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
159 STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
161 STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
162 STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
163 STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
164 STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
167 * Save VSCR (this needs to be done after save the vector registers
168 * since we need to use one as scratch).
170 __asm volatile("mfvscr %2; stvewx %2,%0,%1" \
171 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
174 * Save VRSAVE
176 vr->vrsave = tf->tf_xtra[TF_VRSAVE];
179 * Note that we aren't using any CPU resources and stop any
180 * data streams.
182 pcb->pcb_veccpu = NULL;
183 ci->ci_veclwp = NULL;
184 __asm volatile ("dssall; sync");
186 out:
189 * Restore MSR (turn off AltiVec)
191 mtmsr(msr);
194 #ifdef MULTIPROCESSOR
196 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
197 * The process must either be curproc or traced by curproc (and stopped).
198 * (The point being that the process must not run on another CPU during
199 * this function).
201 static void
202 mp_save_vec_lwp(struct lwp *l)
204 struct pcb *pcb = lwp_getpcb(l);
205 struct cpu_info *veccpu;
206 int i;
209 * Send an IPI to the other CPU with the data and wait for that CPU
210 * to flush the data. Note that the other CPU might have switched
211 * to a different proc's AltiVEC state by the time it receives the IPI,
212 * but that will only result in an unnecessary reload.
215 veccpu = pcb->pcb_veccpu;
216 if (veccpu == NULL)
217 return;
219 ppc_send_ipi(veccpu->ci_index, PPC_IPI_FLUSH_VEC);
221 /* Wait for flush. */
222 for (i = 0; i < 0x3fffffff; i++)
223 if (pcb->pcb_veccpu == NULL)
224 return;
226 aprint_error("mp_save_vec_lwp{%d} pid = %d.%d, veccpu->ci_cpuid = %d\n",
227 cpu_number(), l->l_proc->p_pid, l->l_lid, veccpu->ci_cpuid);
228 panic("mp_save_vec_lwp: timed out");
230 #endif /*MULTIPROCESSOR*/
233 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
234 * The process must either be curproc or traced by curproc (and stopped).
235 * (The point being that the process must not run on another CPU during
236 * this function).
238 void
239 save_vec_lwp(struct lwp *l, int discard)
241 struct pcb * const pcb = lwp_getpcb(l);
242 struct cpu_info * const ci = curcpu();
245 * If it's already in the PCB, there's nothing to do.
247 if (pcb->pcb_veccpu == NULL)
248 return;
251 * If we simply need to discard the information, then don't
252 * to save anything.
254 if (discard) {
255 #ifndef MULTIPROCESSOR
256 KASSERT(ci == pcb->pcb_veccpu);
257 #endif
258 KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
259 pcb->pcb_veccpu->ci_veclwp = NULL;
260 pcb->pcb_veccpu = NULL;
261 pcb->pcb_flags &= ~PCB_OWNALTIVEC;
262 return;
266 * If the state is in the current CPU, just flush the current CPU's
267 * state.
269 if (l == ci->ci_veclwp) {
270 save_vec_cpu();
271 return;
275 #ifdef MULTIPROCESSOR
277 * It must be on another CPU, flush it from there.
280 mp_save_vec_lwp(l);
281 #endif
284 #define ZERO_VEC 19
286 void
287 vzeropage(paddr_t pa)
289 const paddr_t ea = pa + PAGE_SIZE;
290 uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
291 register_t omsr, msr;
293 __asm volatile("mfmsr %0" : "=r"(omsr) :);
296 * Turn on AltiVec, turn off interrupts.
298 msr = (omsr & ~PSL_EE) | PSL_VEC;
299 __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
302 * Save the VEC register we are going to use before we disable
303 * relocation.
305 __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
306 __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
309 * Zero the page using a single cache line.
311 __asm volatile(
312 " sync ;"
313 " mfmsr %[msr];"
314 " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
315 " mtmsr %[msr];" /* Turn off DMMU */
316 " isync;"
317 "1: stvx %[zv], %[pa], %[off0];"
318 " stvxl %[zv], %[pa], %[off16];"
319 " stvx %[zv], %[pa], %[off32];"
320 " stvxl %[zv], %[pa], %[off48];"
321 " addi %[pa], %[pa], 64;"
322 " cmplw %[pa], %[ea];"
323 " blt+ 1b;"
324 " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
325 " sync;"
326 " mtmsr %[msr];" /* Turn on DMMU */
327 " isync;"
328 :: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
329 [off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
330 [zv] "n"(ZERO_VEC));
333 * Restore VEC register (now that we can access the stack again).
335 __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
338 * Restore old MSR (AltiVec OFF).
340 __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
343 #define LO_VEC 16
344 #define HI_VEC 17
346 void
347 vcopypage(paddr_t dst, paddr_t src)
349 const paddr_t edst = dst + PAGE_SIZE;
350 uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
351 register_t omsr, msr;
353 __asm volatile("mfmsr %0" : "=r"(omsr) :);
356 * Turn on AltiVec, turn off interrupts.
358 msr = (omsr & ~PSL_EE) | PSL_VEC;
359 __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
362 * Save the VEC registers we will be using before we disable
363 * relocation.
365 __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
366 __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
369 * Copy the page using a single cache line, with DMMU
370 * disabled. On most PPCs, two vector registers occupy one
371 * cache line.
373 __asm volatile(
374 " sync ;"
375 " mfmsr %[msr];"
376 " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
377 " mtmsr %[msr];" /* Turn off DMMU */
378 " isync;"
379 "1: lvx %[lv], %[src], %[off0];"
380 " stvx %[lv], %[dst], %[off0];"
381 " lvxl %[hv], %[src], %[off16];"
382 " stvxl %[hv], %[dst], %[off16];"
383 " addi %[src], %[src], 32;"
384 " addi %[dst], %[dst], 32;"
385 " cmplw %[dst], %[edst];"
386 " blt+ 1b;"
387 " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
388 " sync;"
389 " mtmsr %[msr];" /* Turn on DMMU */
390 " isync;"
391 :: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
392 [edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
393 [lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
396 * Restore VEC registers (now that we can access the stack again).
398 __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
399 __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
402 * Restore old MSR (AltiVec OFF).
404 __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));