Sync usage with man page.
[netbsd-mini2440.git] / sys / arch / sandpoint / stand / netboot / vge.c
blob7e57c2097f939027274abfc53809978cc555a656
1 /* $NetBSD: vge.c,v 1.16 2008/05/30 14:54:16 nisimura Exp $ */
3 /*-
4 * Copyright (c) 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Tohru Nishimura.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 #include <sys/param.h>
34 #include <netinet/in.h>
35 #include <netinet/in_systm.h>
37 #include <lib/libsa/stand.h>
38 #include <lib/libsa/net.h>
40 #include "globals.h"
43 * - reverse endian access every CSR.
44 * - no vtophys() translation, vaddr_t == paddr_t.
45 * - PIPT writeback cache aware.
47 #define CSR_WRITE_1(l, r, v) *(volatile uint8_t *)((l)->csr+(r)) = (v)
48 #define CSR_READ_1(l, r) *(volatile uint8_t *)((l)->csr+(r))
49 #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v))
50 #define CSR_READ_2(l, r) in16rb((l)->csr+(r))
51 #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v))
52 #define CSR_READ_4(l, r) in32rb((l)->csr+(r))
53 #define VTOPHYS(va) (uint32_t)(va)
54 #define DEVTOV(pa) (uint32_t)(pa)
55 #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
56 #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
57 #define DELAY(n) delay(n)
58 #define ALLOC(T,A) (T *)((unsigned)alloc(sizeof(T) + (A)) &~ ((A) - 1))
60 struct tdesc {
61 uint32_t t0, t1;
62 struct {
63 uint32_t lo;
64 uint32_t hi;
65 } tf[7];
67 struct rdesc {
68 uint32_t r0, r1, r2, r3;
70 #define T0_OWN (1U << 31) /* 1: loaded for HW to send */
71 #define T0_TERR (1U << 15) /* Tx error summary */
72 #define T0_UDF (1U << 12) /* found link down when Tx */
73 #define T0_SHDN (1U << 10) /* transfer was shutdowned */
74 #define T0_CRS (1U << 9) /* found carrier sense lost */
75 #define T0_CDH (1U << 8) /* heartbeat check failure */
76 #define T0_ABT (1U << 7) /* excessive collision Tx abort */
77 #define T0_OWT (1U << 6) /* jumbo Tx frame was aborted */
78 #define T0_OWC (1U << 5) /* found out of window collision */
79 #define T0_COLS (1U << 4) /* collision detected */
80 #define T0_NCRMASK 0xf /* number of collision retries */
81 #define T1_EOF (1U << 25) /* TCP large last segment */
82 #define T1_SOF (1U << 24) /* TCP large first segment */
83 #define T1_TIC (1U << 13) /* post Tx done interrupt */
84 #define T1_PIC (1U << 22) /* post priority interrupt */
85 #define T1_VTAG (1U << 21) /* insert VLAG tag */
86 #define T1_IPCK (1U << 20) /* generate IPv4 csum */
87 #define T1_UDPCK (1U << 19) /* generate UDPv4 csum */
88 #define T1_TCPCK (1U << 18) /* generate TCPv4 csum */
89 #define T1_JUMBO (1U << 17) /* jumbo frame */
90 #define T1_CRC (1U << 16) /* _disable_ CRC generation */
91 #define T1_PRIO 0x0000e000 /* VLAN priority value */
92 #define T1_CFI (1U << 12) /* VLAN CFI */
93 #define T1_VID 0x00000fff /* VLAN ID 11:0 */
94 #define T_FLMASK 0x00003fff /* Tx frame/segment length */
95 #define TF0_Q (1U << 31) /* "Q" bit of tf[0].hi */
97 #define R0_OWN (1U << 31) /* 1: empty for HW to load anew */
98 #define R0_FLMASK 0x3fff0000 /* frame length */
99 #define R0_RXOK (1U << 15)
100 #define R0_MAR (1U << 13) /* multicast frame */
101 #define R0_BAR (1U << 12) /* broadcast frame */
102 #define R0_PHY (1U << 11) /* unicast frame */
103 #define R0_VTAG (1U << 10) /* VTAG indicator */
104 #define R0_STP (1U << 9) /* first frame segment */
105 #define R0_EDP (1U << 8) /* last frame segment */
106 #define R0_DETAG (1U << 7) /* VTAG has removed */
107 #define R0_SNTAG (1U << 6) /* tagged SNAP frame */
108 #define R0_SYME (1U << 5) /* symbol error */
109 #define R0_LENE (1U << 4) /* frame length error */
110 #define R0_CSUME (1U << 3) /* TCP/IP bad csum */
111 #define R0_FAE (1U << 2) /* frame alignment error */
112 #define R0_CRCE (1U << 1) /* CRC error */
113 #define R0_VIDM (1U << 0) /* VTAG filter miss */
114 #define R1_IPOK (1U << 22) /* IP csum was fine */
115 #define R1_TUPOK (1U << 21) /* TCP/UDP csum was fine */
116 #define R1_FRAG (1U << 20) /* fragmented IP */
117 #define R1_CKSMZO (1U << 19) /* UDP csum field was zero */
118 #define R1_IPKT (1U << 18) /* frame was IPv4 */
119 #define R1_TPKT (1U << 17) /* frame was TCPv4 */
120 #define R1_UPKT (1U << 16) /* frame was UDPv4 */
121 #define R3_IC (1U << 31) /* post Rx interrupt */
122 #define R_FLMASK 0x00003ffd /* Rx segment buffer length */
124 #define VR_PAR0 0x00 /* SA [0] */
125 #define VR_PAR1 0x01 /* SA [1] */
126 #define VR_PAR2 0x02 /* SA [2] */
127 #define VR_PAR3 0x03 /* SA [3] */
128 #define VR_PAR4 0x04 /* SA [4] */
129 #define VR_PAR5 0x05 /* SA [5] */
130 #define VR_CAM0 0x10 /* 0..7 */
131 #define VR_RCR 0x06 /* Rx control */
132 #define RCR_AP (1U << 6) /* accept unicast frame */
133 #define RCR_AL (1U << 5) /* accept long VTAG frame */
134 #define RCR_PROM (1U << 4) /* accept any frame */
135 #define RCR_AB (1U << 3) /* accept broadcast frame */
136 #define RCR_AM (1U << 2) /* use multicast filter */
137 #define VR_TCR 0x07 /* Tx control */
138 #define VR_CTL0 0x08 /* control #0 */
139 #define CTL0_TXON (1U << 3) /* enable Tx DMA */
140 #define CTL0_RXON (1U << 2) /* enable Rx DMA */
141 #define CTL0_STOP (1U << 1) /* activate stop processing */
142 #define CTL0_START (1U << 0) /* start and activate */
143 #define VR_CTL1 0x09 /* control #1 */
144 #define CTL1_RESET (1U << 7)
145 #define CTL1_DPOLL (1U << 3) /* _disable_ TDES/RDES polling */
146 #define VR_CTL2 0x0a /* control #2 */
147 #define CTL2_3XFLC (1U << 7) /* 802.3x PAUSE flow control */
148 #define CTL2_TPAUSE (1U << 6) /* handle PAUSE on transmit side */
149 #define CTL2_RPAUSE (1U << 5) /* handle PAUSE on receive side */
150 #define CTL2_HDXFLC (1U << 4) /* HDX jabber flow control */
151 #define VR_CTL3 0x0b /* control #3 */
152 #define CTL3_GIEN (1U << 1) /* global interrupt enable */
153 #define VR_DESCHI 0x18 /* RDES/TDES base high 63:32 */
154 #define VR_DATAHI 0x1c /* frame data base high 63:48 */
155 #define VR_ISR 0x24 /* ISR0123 */
156 #define VR_IEN 0x28 /* IEN0123 */
157 #define VR_TDCSR 0x30
158 #define VR_RDCSR 0x32
159 #define VR_RDB 0x38 /* RDES base lo 31:0 */
160 #define VR_TDB0 0x40 /* #0 TDES base lo 31:0 */
161 #define VR_RDCSIZE 0x50 /* 0..255 */
162 #define VR_TDCSIZE 0x52 /* 0..4095 */
163 #define VR_RBRDU 0x5e /* 0..255 */
164 #define VR_CAMADR 0x68
165 #define CAM_EN (1U << 7) /* enable to manipulate */
166 #define SADR_CAM (0U << 6) /* station address table */
167 #define VTAG_CAM (1U << 6) /* VLAN tag table */
168 #define VR_CAMCTL 0x69
169 #define CAMCTL_MULT (00U << 6) /* multicast address hash */
170 #define CAMCTL_VBIT (01U << 6) /* valid bitmask */
171 #define CAMCTL_ADDR (02U << 6) /* address data */
172 #define CAMCTL_RD (1U << 3) /* CAM read op, auto cleared */
173 #define CAMCTL_WR (1U << 2) /* CAM write op, auto cleared */
174 #define VR_MIICFG 0x6c /* PHY number 4:0 */
175 #define VR_MIISR 0x6d /* MII status */
176 #define MIISR_MIDLE (1U << 7) /* not in auto polling */
177 #define VR_PHYSR0 0x6e /* PHY status 0 */
178 #define VR_MIICR 0x70 /* MII control */
179 #define MIICR_MAUTO (1U << 7) /* activate autopoll mode */
180 #define MIICR_RCMD (1U << 6) /* MII read operation */
181 #define MIICR_WCMD (1U << 5) /* MII write operation */
182 #define VR_MIIADR 0x71 /* MII indirect */
183 #define VR_MIIDATA 0x72 /* MII read/write */
185 #define FRAMESIZE 1536
186 #define NRXDESC 4 /* HW demands multiple of 4 */
188 struct local {
189 struct tdesc txd;
190 struct rdesc rxd[NRXDESC];
191 uint8_t rxstore[NRXDESC][FRAMESIZE];
192 unsigned csr, rx;
193 unsigned phy, bmsr, anlpar;
196 static void mii_autopoll(struct local *);
197 static void mii_stoppoll(struct local *);
198 static int mii_read(struct local *, int, int);
199 static void mii_write(struct local *, int, int, int);
200 static void mii_dealan(struct local *, unsigned);
203 vge_match(unsigned tag, void *data)
205 unsigned v;
207 v = pcicfgread(tag, PCI_ID_REG);
208 switch (v) {
209 case PCI_DEVICE(0x1106, 0x3119):
210 return 1;
212 return 0;
215 void *
216 vge_init(unsigned tag, void *data)
218 unsigned val, i, fdx, loop;
219 struct local *l;
220 struct tdesc *txd;
221 struct rdesc *rxd;
222 uint8_t *en;
225 l = ALLOC(struct local, 64); /* desc alignment */
226 memset(l, 0, sizeof(struct local));
227 l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */
229 val = CTL1_RESET;
230 CSR_WRITE_1(l, VR_CTL1, val);
231 do {
232 val = CSR_READ_1(l, VR_CTL1);
233 } while (val & CTL1_RESET);
235 l->phy = CSR_READ_1(l, VR_MIICFG) & 0x1f;
237 en = data;
238 en[0] = CSR_READ_1(l, VR_PAR0);
239 en[1] = CSR_READ_1(l, VR_PAR1);
240 en[2] = CSR_READ_1(l, VR_PAR2);
241 en[3] = CSR_READ_1(l, VR_PAR3);
242 en[4] = CSR_READ_1(l, VR_PAR4);
243 en[5] = CSR_READ_1(l, VR_PAR5);
245 printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
246 en[0], en[1], en[2], en[3], en[4], en[5]);
247 printf("PHY %d (%04x.%04x)\n", l->phy,
248 mii_read(l, l->phy, 2), mii_read(l, l->phy, 3));
250 mii_dealan(l, 5);
252 /* speed and duplexity can be seen in MII 28 */
253 val = mii_read(l, l->phy, 28);
254 fdx = (val >> 5) & 01;
255 switch ((val >> 3) & 03) {
256 case 0: printf("10baseT"); break;
257 case 1: printf("100baseTX"); break;
258 case 2: printf("1000baseT"); break;
260 if (fdx)
261 printf("-FDX");
262 printf("\n");
264 txd = &l->txd;
265 rxd = &l->rxd[0];
266 for (i = 0; i < NRXDESC; i++) {
267 rxd[i].r0 = htole32(R0_OWN);
268 rxd[i].r1 = 0;
269 rxd[i].r2 = htole32(VTOPHYS(l->rxstore[i]));
270 rxd[i].r3 = htole32(FRAMESIZE << 16);
272 wbinv(l, sizeof(struct local));
273 l->rx = 0;
275 /* set own station address into entry #0 */
276 CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR);
277 CSR_WRITE_1(l, VR_CAMADR, CAM_EN | SADR_CAM | 0);
278 for (i = 0; i < 6; i++)
279 CSR_WRITE_1(l, VR_CAM0 + i, en[i]);
280 CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_ADDR | CAMCTL_WR);
281 loop = 20;
282 while (--loop > 0 && (i = CSR_READ_1(l, VR_CAMCTL)) & CAMCTL_WR)
283 DELAY(1);
284 /* mark entry #0 valid, position 0 of 63:0 */
285 CSR_WRITE_1(l, VR_CAMCTL, CAMCTL_VBIT);
286 CSR_WRITE_1(l, VR_CAM0, 01);
287 for (i = 1; i < 8; i++)
288 CSR_WRITE_1(l, VR_CAM0 + i, 00);
289 CSR_WRITE_1(l, VR_CAMADR, 0);
290 CSR_WRITE_1(l, VR_CAMCTL, 0);
292 /* prepare descriptor lists */
293 CSR_WRITE_4(l, VR_RDB, VTOPHYS(rxd));
294 CSR_WRITE_2(l, VR_RDCSIZE, NRXDESC - 1);
295 CSR_WRITE_2(l, VR_RBRDU, NRXDESC - 1);
296 CSR_WRITE_4(l, VR_TDB0, VTOPHYS(txd));
297 CSR_WRITE_2(l, VR_TDCSIZE, 0);
299 /* enable transmitter and receiver */
300 CSR_WRITE_1(l, VR_RDCSR, 01);
301 CSR_WRITE_1(l, VR_RDCSR, 04);
302 CSR_WRITE_2(l, VR_TDCSR, 01);
303 CSR_WRITE_1(l, VR_RCR, RCR_AP);
304 CSR_WRITE_1(l, VR_TCR, 0);
305 CSR_WRITE_1(l, VR_CTL0 + 0x4, CTL0_STOP);
306 CSR_WRITE_1(l, VR_CTL0, CTL0_TXON | CTL0_RXON | CTL0_START);
307 CSR_WRITE_4(l, VR_ISR, ~0);
308 CSR_WRITE_4(l, VR_IEN, 0);
310 return l;
314 vge_send(void *dev, char *buf, unsigned len)
316 struct local *l = dev;
317 volatile struct tdesc *txd;
318 unsigned loop;
320 len = (len & T_FLMASK);
321 if (len < 60)
322 len = 60; /* needs to stretch to ETHER_MIN_LEN - 4 */
323 wbinv(buf, len);
324 txd = &l->txd;
325 txd->tf[0].lo = htole32(VTOPHYS(buf));
326 txd->tf[0].hi = htole32(len << 16);
327 txd->t1 = htole32(T1_SOF | T1_EOF | (2 << 28));
328 txd->t0 = htole32(T0_OWN | len << 16);
329 wbinv(txd, sizeof(struct tdesc));
330 CSR_WRITE_2(l, VR_TDCSR, 04);
331 loop = 100;
332 do {
333 if ((le32toh(txd->t0) & T0_OWN) == 0)
334 goto done;
335 DELAY(10);
336 inv(txd, sizeof(struct tdesc));
337 } while (--loop > 0);
338 printf("xmit failed\n");
339 return -1;
340 done:
341 return len;
345 vge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
347 struct local *l = dev;
348 volatile struct rdesc *rxd;
349 unsigned bound, rxstat, len;
350 uint8_t *ptr;
352 bound = 1000 * timo;
353 printf("recving with %u sec. timeout\n", timo);
354 again:
355 rxd = &l->rxd[l->rx];
356 do {
357 inv(rxd, sizeof(struct rdesc));
358 rxstat = le32toh(rxd->r0);
359 if ((rxstat & R0_OWN) == 0)
360 goto gotone;
361 DELAY(1000); /* 1 milli second */
362 } while (--bound > 0);
363 errno = 0;
364 return -1;
365 gotone:
366 if ((rxstat & R0_RXOK) == 0) {
367 rxd->r0 = htole32(R0_OWN);
368 rxd->r1 = 0;
369 wbinv(rxd, sizeof(struct rdesc));
370 l->rx ^= 1;
371 goto again;
373 len = ((rxstat & R0_FLMASK) >> 16) - 4 /* HASFCS */;
374 if (len > maxlen)
375 len = maxlen;
376 ptr = l->rxstore[l->rx];
377 inv(ptr, len);
378 memcpy(buf, ptr, len);
379 if ((l->rx & 03) == 3) {
380 /* needs to set R0_OWN to 4 descriptors at a time */
381 rxd[00].r0 = htole32(R0_OWN);
382 rxd[00].r1 = 0;
383 rxd[-1].r0 = htole32(R0_OWN);
384 rxd[-1].r1 = 0;
385 rxd[-2].r0 = htole32(R0_OWN);
386 rxd[-2].r1 = 0;
387 rxd[-3].r0 = htole32(R0_OWN);
388 rxd[-3].r1 = 0;
389 wbinv(rxd, NRXDESC * sizeof(struct rdesc));
391 l->rx = (l->rx + 1) & (NRXDESC - 1);
392 return len;
395 static void
396 mii_autopoll(struct local *l)
398 int v;
400 CSR_WRITE_1(l, VR_MIICR, 0);
401 CSR_WRITE_1(l, VR_MIIADR, 1U << 7);
402 do {
403 DELAY(1);
404 v = CSR_READ_1(l, VR_MIISR);
405 } while ((v & MIISR_MIDLE) == 0);
406 CSR_WRITE_1(l, VR_MIICR, MIICR_MAUTO);
407 do {
408 DELAY(1);
409 v = CSR_READ_1(l, VR_MIISR);
410 } while ((v & MIISR_MIDLE) != 0);
413 static void
414 mii_stoppoll(struct local *l)
416 int v;
418 CSR_WRITE_1(l, VR_MIICR, 0);
419 do {
420 DELAY(1);
421 v = CSR_READ_1(l, VR_MIISR);
422 } while ((v & MIISR_MIDLE) == 0);
425 static int
426 mii_read(struct local *l, int phy, int reg)
428 int v;
430 mii_stoppoll(l);
431 CSR_WRITE_1(l, VR_MIICFG, phy);
432 CSR_WRITE_1(l, VR_MIIADR, reg);
433 CSR_WRITE_1(l, VR_MIICR, MIICR_RCMD);
434 do {
435 v = CSR_READ_1(l, VR_MIICR);
436 } while (v & MIICR_RCMD);
437 v = CSR_READ_2(l, VR_MIIDATA);
438 mii_autopoll(l);
439 return v;
442 static void
443 mii_write(struct local *l, int phy, int reg, int data)
445 int v;
447 mii_stoppoll(l);
448 CSR_WRITE_2(l, VR_MIIDATA, data);
449 CSR_WRITE_1(l, VR_MIICFG, phy);
450 CSR_WRITE_1(l, VR_MIIADR, reg);
451 CSR_WRITE_1(l, VR_MIICR, MIICR_WCMD);
452 do {
453 v = CSR_READ_1(l, VR_MIICR);
454 } while (v & MIICR_WCMD);
455 mii_autopoll(l);
458 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
459 #define BMCR_RESET 0x8000 /* reset */
460 #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
461 #define BMCR_ISO 0x0400 /* isolate */
462 #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
463 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
464 #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
465 #define BMSR_LINK 0x0004 /* Link status */
466 #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
467 #define ANAR_FC 0x0400 /* local device supports PAUSE */
468 #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
469 #define ANAR_TX 0x0080 /* local device supports 100bTx */
470 #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
471 #define ANAR_10 0x0020 /* local device supports 10bT */
472 #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
473 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
474 #define MII_GTCR 0x09 /* 1000baseT control */
475 #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */
476 #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */
477 #define MII_GTSR 0x0a /* 1000baseT status */
478 #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */
479 #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */
480 #define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */
482 void
483 mii_dealan(struct local *l, unsigned timo)
485 unsigned anar, gtcr, bound;
487 anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
488 anar |= ANAR_FC;
489 gtcr = GANA_1000TFDX | GANA_1000THDX;
490 mii_write(l, l->phy, MII_ANAR, anar);
491 mii_write(l, l->phy, MII_GTCR, gtcr);
492 mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
493 l->anlpar = 0;
494 bound = getsecs() + timo;
495 do {
496 l->bmsr = mii_read(l, l->phy, MII_BMSR) |
497 mii_read(l, l->phy, MII_BMSR); /* read twice */
498 if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
499 l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
500 break;
502 DELAY(10 * 1000);
503 } while (getsecs() < bound);
504 return;