Sync usage with man page.
[netbsd-mini2440.git] / sys / dev / ic / gem.c
blobaeefcf414c7fff073fb5ca47ab7f8088b7e6053b
1 /* $NetBSD: gem.c,v 1.89 2009/12/05 16:43:25 jdc Exp $ */
3 /*
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.89 2009/12/05 16:43:25 jdc Exp $");
42 #include "opt_inet.h"
43 #include "bpfilter.h"
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
57 #include <machine/endian.h>
59 #include <uvm/uvm_extern.h>
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
79 #include <sys/bus.h>
80 #include <sys/intr.h>
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
89 #define TRIES 10000
91 static void gem_inten(struct gem_softc *);
92 static void gem_start(struct ifnet *);
93 static void gem_stop(struct ifnet *, int);
94 int gem_ioctl(struct ifnet *, u_long, void *);
95 void gem_tick(void *);
96 void gem_watchdog(struct ifnet *);
97 void gem_pcs_start(struct gem_softc *sc);
98 void gem_pcs_stop(struct gem_softc *sc, int);
99 int gem_init(struct ifnet *);
100 void gem_init_regs(struct gem_softc *sc);
101 static int gem_ringsize(int sz);
102 static int gem_meminit(struct gem_softc *);
103 void gem_mifinit(struct gem_softc *);
104 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 u_int32_t, u_int32_t);
106 void gem_reset(struct gem_softc *);
107 int gem_reset_rx(struct gem_softc *sc);
108 static void gem_reset_rxdma(struct gem_softc *sc);
109 static void gem_rx_common(struct gem_softc *sc);
110 int gem_reset_tx(struct gem_softc *sc);
111 int gem_disable_rx(struct gem_softc *sc);
112 int gem_disable_tx(struct gem_softc *sc);
113 static void gem_rxdrain(struct gem_softc *sc);
114 int gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void gem_setladrf(struct gem_softc *);
117 /* MII methods & callbacks */
118 static int gem_mii_readreg(device_t, int, int);
119 static void gem_mii_writereg(device_t, int, int, int);
120 static void gem_mii_statchg(device_t);
122 static int gem_ifflags_cb(struct ethercom *);
124 void gem_statuschange(struct gem_softc *);
126 int gem_ser_mediachange(struct ifnet *);
127 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
129 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
131 struct mbuf *gem_get(struct gem_softc *, int, int);
132 int gem_put(struct gem_softc *, int, struct mbuf *);
133 void gem_read(struct gem_softc *, int, int);
134 int gem_pint(struct gem_softc *);
135 int gem_eint(struct gem_softc *, u_int);
136 int gem_rint(struct gem_softc *);
137 int gem_tint(struct gem_softc *);
138 void gem_power(int, void *);
140 #ifdef GEM_DEBUG
141 static void gem_txsoft_print(const struct gem_softc *, int, int);
142 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
143 printf x
144 #else
145 #define DPRINTF(sc, x) /* nothing */
146 #endif
148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
151 gem_detach(struct gem_softc *sc, int flags)
153 int i;
154 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
157 * Free any resources we've allocated during the attach.
158 * Do this in reverse order and fall through.
160 switch (sc->sc_att_stage) {
161 case GEM_ATT_BACKEND_2:
162 case GEM_ATT_BACKEND_1:
163 case GEM_ATT_FINISHED:
164 gem_stop(&sc->sc_ethercom.ec_if, 1);
166 #ifdef GEM_COUNTERS
167 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
168 evcnt_detach(&sc->sc_ev_rxhist[i]);
169 evcnt_detach(&sc->sc_ev_rxnobuf);
170 evcnt_detach(&sc->sc_ev_rxfull);
171 evcnt_detach(&sc->sc_ev_rxint);
172 evcnt_detach(&sc->sc_ev_txint);
173 #endif
174 evcnt_detach(&sc->sc_ev_intr);
176 #if NRND > 0
177 rnd_detach_source(&sc->rnd_source);
178 #endif
179 ether_ifdetach(ifp);
180 if_detach(ifp);
181 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
183 callout_destroy(&sc->sc_tick_ch);
185 /*FALLTHROUGH*/
186 case GEM_ATT_MII:
187 sc->sc_att_stage = GEM_ATT_MII;
188 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
189 /*FALLTHROUGH*/
190 case GEM_ATT_7:
191 for (i = 0; i < GEM_NRXDESC; i++) {
192 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
193 bus_dmamap_destroy(sc->sc_dmatag,
194 sc->sc_rxsoft[i].rxs_dmamap);
196 /*FALLTHROUGH*/
197 case GEM_ATT_6:
198 for (i = 0; i < GEM_TXQUEUELEN; i++) {
199 if (sc->sc_txsoft[i].txs_dmamap != NULL)
200 bus_dmamap_destroy(sc->sc_dmatag,
201 sc->sc_txsoft[i].txs_dmamap);
203 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
204 /*FALLTHROUGH*/
205 case GEM_ATT_5:
206 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
207 /*FALLTHROUGH*/
208 case GEM_ATT_4:
209 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 /*FALLTHROUGH*/
211 case GEM_ATT_3:
212 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
213 /*FALLTHROUGH*/
214 case GEM_ATT_2:
215 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
216 sizeof(struct gem_control_data));
217 /*FALLTHROUGH*/
218 case GEM_ATT_1:
219 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
220 /*FALLTHROUGH*/
221 case GEM_ATT_0:
222 sc->sc_att_stage = GEM_ATT_0;
223 /*FALLTHROUGH*/
224 case GEM_ATT_BACKEND_0:
225 break;
227 return 0;
230 static void
231 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
233 cfattach_t ca = device_cfattach(sc->sc_dev);
235 sc->sc_att_stage = stage;
236 (*ca->ca_detach)(sc->sc_dev, 0);
240 * gem_attach:
242 * Attach a Gem interface to the system.
244 void
245 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
247 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
248 struct mii_data *mii = &sc->sc_mii;
249 bus_space_tag_t t = sc->sc_bustag;
250 bus_space_handle_t h = sc->sc_h1;
251 struct ifmedia_entry *ifm;
252 int i, error, phyaddr;
253 u_int32_t v;
254 char *nullbuf;
256 /* Make sure the chip is stopped. */
257 ifp->if_softc = sc;
258 gem_reset(sc);
261 * Allocate the control data structures, and create and load the
262 * DMA map for it. gem_control_data is 9216 bytes, we have space for
263 * the padding buffer in the bus_dmamem_alloc()'d memory.
265 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
266 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
267 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
268 aprint_error_dev(sc->sc_dev,
269 "unable to allocate control data, error = %d\n",
270 error);
271 gem_partial_detach(sc, GEM_ATT_0);
272 return;
275 /* XXX should map this in with correct endianness */
276 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
277 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
278 BUS_DMA_COHERENT)) != 0) {
279 aprint_error_dev(sc->sc_dev,
280 "unable to map control data, error = %d\n", error);
281 gem_partial_detach(sc, GEM_ATT_1);
282 return;
285 nullbuf =
286 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
288 if ((error = bus_dmamap_create(sc->sc_dmatag,
289 sizeof(struct gem_control_data), 1,
290 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
291 aprint_error_dev(sc->sc_dev,
292 "unable to create control data DMA map, error = %d\n",
293 error);
294 gem_partial_detach(sc, GEM_ATT_2);
295 return;
298 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
299 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
300 0)) != 0) {
301 aprint_error_dev(sc->sc_dev,
302 "unable to load control data DMA map, error = %d\n",
303 error);
304 gem_partial_detach(sc, GEM_ATT_3);
305 return;
308 memset(nullbuf, 0, ETHER_MIN_TX);
309 if ((error = bus_dmamap_create(sc->sc_dmatag,
310 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
311 aprint_error_dev(sc->sc_dev,
312 "unable to create padding DMA map, error = %d\n", error);
313 gem_partial_detach(sc, GEM_ATT_4);
314 return;
317 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
318 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
319 aprint_error_dev(sc->sc_dev,
320 "unable to load padding DMA map, error = %d\n", error);
321 gem_partial_detach(sc, GEM_ATT_5);
322 return;
325 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
326 BUS_DMASYNC_PREWRITE);
329 * Initialize the transmit job descriptors.
331 SIMPLEQ_INIT(&sc->sc_txfreeq);
332 SIMPLEQ_INIT(&sc->sc_txdirtyq);
335 * Create the transmit buffer DMA maps.
337 for (i = 0; i < GEM_TXQUEUELEN; i++) {
338 struct gem_txsoft *txs;
340 txs = &sc->sc_txsoft[i];
341 txs->txs_mbuf = NULL;
342 if ((error = bus_dmamap_create(sc->sc_dmatag,
343 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
344 ETHER_MAX_LEN_JUMBO, 0, 0,
345 &txs->txs_dmamap)) != 0) {
346 aprint_error_dev(sc->sc_dev,
347 "unable to create tx DMA map %d, error = %d\n",
348 i, error);
349 gem_partial_detach(sc, GEM_ATT_6);
350 return;
352 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
356 * Create the receive buffer DMA maps.
358 for (i = 0; i < GEM_NRXDESC; i++) {
359 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
360 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
361 aprint_error_dev(sc->sc_dev,
362 "unable to create rx DMA map %d, error = %d\n",
363 i, error);
364 gem_partial_detach(sc, GEM_ATT_7);
365 return;
367 sc->sc_rxsoft[i].rxs_mbuf = NULL;
370 /* Initialize ifmedia structures and MII info */
371 mii->mii_ifp = ifp;
372 mii->mii_readreg = gem_mii_readreg;
373 mii->mii_writereg = gem_mii_writereg;
374 mii->mii_statchg = gem_mii_statchg;
376 sc->sc_ethercom.ec_mii = mii;
379 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
380 * Section 3.2.1 `Initialization Sequence'.
381 * However, we can't assume SERDES or Serialink if neither
382 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
383 * being set, as both are set on Sun X1141A (with SERDES). So,
384 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
385 * Also, for variants that report 2 PHY's, we prefer the external
386 * PHY over the internal PHY, so we look for that first.
388 gem_mifinit(sc);
390 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
391 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
392 ether_mediastatus);
393 /* Look for external PHY */
394 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
395 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
396 bus_space_write_4(t, h, GEM_MIF_CONFIG,
397 sc->sc_mif_config);
398 switch (sc->sc_variant) {
399 case GEM_SUN_ERI:
400 phyaddr = GEM_PHYAD_EXTERNAL;
401 break;
402 default:
403 phyaddr = MII_PHY_ANY;
404 break;
406 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
407 MII_OFFSET_ANY, MIIF_FORCEANEG);
409 #ifdef GEM_DEBUG
410 else
411 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
412 #endif
413 /* Look for internal PHY if no external PHY was found */
414 if (LIST_EMPTY(&mii->mii_phys) &&
415 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
416 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 sc->sc_mif_config);
419 switch (sc->sc_variant) {
420 case GEM_SUN_ERI:
421 case GEM_APPLE_K2_GMAC:
422 phyaddr = GEM_PHYAD_INTERNAL;
423 break;
424 case GEM_APPLE_GMAC:
425 phyaddr = GEM_PHYAD_EXTERNAL;
426 break;
427 default:
428 phyaddr = MII_PHY_ANY;
429 break;
431 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 if (!LIST_EMPTY(&mii->mii_phys))
435 aprint_debug_dev(sc->sc_dev,
436 "using internal PHY\n");
437 #endif
439 if (LIST_EMPTY(&mii->mii_phys)) {
440 /* No PHY attached */
441 aprint_error_dev(sc->sc_dev,
442 "PHY probe failed\n");
443 gem_partial_detach(sc, GEM_ATT_MII);
444 return;
445 } else {
446 struct mii_softc *child;
449 * Walk along the list of attached MII devices and
450 * establish an `MII instance' to `PHY number'
451 * mapping.
453 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
455 * Note: we support just one PHY: the internal
456 * or external MII is already selected for us
457 * by the GEM_MIF_CONFIG register.
459 if (child->mii_phy > 1 || child->mii_inst > 0) {
460 aprint_error_dev(sc->sc_dev,
461 "cannot accommodate MII device"
462 " %s at PHY %d, instance %d\n",
463 device_xname(child->mii_dev),
464 child->mii_phy, child->mii_inst);
465 continue;
467 sc->sc_phys[child->mii_inst] = child->mii_phy;
470 if (sc->sc_variant != GEM_SUN_ERI)
471 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 GEM_MII_DATAPATH_MII);
475 * XXX - we can really do the following ONLY if the
476 * PHY indeed has the auto negotiation capability!!
478 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
480 } else {
481 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 gem_ser_mediastatus);
483 /* SERDES or Serialink */
484 if (sc->sc_flags & GEM_SERDES) {
485 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 GEM_MII_DATAPATH_SERDES);
487 } else {
488 sc->sc_flags |= GEM_SERIAL;
489 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 GEM_MII_DATAPATH_SERIAL);
493 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
496 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
497 /* Check for FDX and HDX capabilities */
498 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 ifmedia_add(&sc->sc_mii.mii_media,
501 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
502 aprint_normal("1000baseSX-FDX, ");
504 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 ifmedia_add(&sc->sc_mii.mii_media,
506 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
507 aprint_normal("1000baseSX-HDX, ");
509 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
510 sc->sc_mii_media = IFM_AUTO;
511 aprint_normal("auto\n");
513 gem_pcs_stop(sc, 1);
517 * From this point forward, the attachment cannot fail. A failure
518 * before this point releases all resources that may have been
519 * allocated.
522 /* Announce ourselves. */
523 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 ether_sprintf(enaddr));
526 /* Get RX FIFO size */
527 sc->sc_rxfifosize = 64 *
528 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
531 /* Get TX FIFO size */
532 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 aprint_normal(", %uKB TX fifo\n", v / 16);
535 /* Initialize ifnet structure. */
536 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 ifp->if_softc = sc;
538 ifp->if_flags =
539 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
540 sc->sc_if_flags = ifp->if_flags;
541 #if 0
543 * The GEM hardware supports basic TCP checksum offloading only.
544 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
545 * have bugs in the receive checksum, so don't enable it for now.
547 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
548 (GEM_IS_APPLE(sc) &&
549 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
551 #endif
552 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
553 ifp->if_start = gem_start;
554 ifp->if_ioctl = gem_ioctl;
555 ifp->if_watchdog = gem_watchdog;
556 ifp->if_stop = gem_stop;
557 ifp->if_init = gem_init;
558 IFQ_SET_READY(&ifp->if_snd);
561 * If we support GigE media, we support jumbo frames too.
562 * Unless we are Apple.
564 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
565 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
567 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
568 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
569 if (!GEM_IS_APPLE(sc))
570 sc->sc_ethercom.ec_capabilities
571 |= ETHERCAP_JUMBO_MTU;
572 sc->sc_flags |= GEM_GIGABIT;
573 break;
577 /* claim 802.1q capability */
578 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
580 /* Attach the interface. */
581 if_attach(ifp);
582 ether_ifattach(ifp, enaddr);
583 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
585 #if NRND > 0
586 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
587 RND_TYPE_NET, 0);
588 #endif
590 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
591 NULL, device_xname(sc->sc_dev), "interrupts");
592 #ifdef GEM_COUNTERS
593 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
596 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
597 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
599 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619 #endif
621 callout_init(&sc->sc_tick_ch, 0);
623 sc->sc_att_stage = GEM_ATT_FINISHED;
625 return;
628 void
629 gem_tick(void *arg)
631 struct gem_softc *sc = arg;
632 int s;
634 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
636 * We have to reset everything if we failed to get a
637 * PCS interrupt. Restarting the callout is handled
638 * in gem_pcs_start().
640 gem_init(&sc->sc_ethercom.ec_if);
641 } else {
642 s = splnet();
643 mii_tick(&sc->sc_mii);
644 splx(s);
645 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
649 static int
650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
652 int i;
653 u_int32_t reg;
655 for (i = TRIES; i--; DELAY(100)) {
656 reg = bus_space_read_4(sc->sc_bustag, h, r);
657 if ((reg & clr) == 0 && (reg & set) == set)
658 return (1);
660 return (0);
663 void
664 gem_reset(struct gem_softc *sc)
666 bus_space_tag_t t = sc->sc_bustag;
667 bus_space_handle_t h = sc->sc_h2;
668 int s;
670 s = splnet();
671 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
672 gem_reset_rx(sc);
673 gem_reset_tx(sc);
675 /* Do a full reset */
676 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
677 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
678 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
679 splx(s);
684 * gem_rxdrain:
686 * Drain the receive queue.
688 static void
689 gem_rxdrain(struct gem_softc *sc)
691 struct gem_rxsoft *rxs;
692 int i;
694 for (i = 0; i < GEM_NRXDESC; i++) {
695 rxs = &sc->sc_rxsoft[i];
696 if (rxs->rxs_mbuf != NULL) {
697 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
698 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
699 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
700 m_freem(rxs->rxs_mbuf);
701 rxs->rxs_mbuf = NULL;
707 * Reset the whole thing.
709 static void
710 gem_stop(struct ifnet *ifp, int disable)
712 struct gem_softc *sc = ifp->if_softc;
713 struct gem_txsoft *txs;
715 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
717 callout_stop(&sc->sc_tick_ch);
718 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
719 gem_pcs_stop(sc, disable);
720 else
721 mii_down(&sc->sc_mii);
723 /* XXX - Should we reset these instead? */
724 gem_disable_tx(sc);
725 gem_disable_rx(sc);
728 * Release any queued transmit buffers.
730 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
731 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
732 if (txs->txs_mbuf != NULL) {
733 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
734 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
735 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
736 m_freem(txs->txs_mbuf);
737 txs->txs_mbuf = NULL;
739 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
743 * Mark the interface down and cancel the watchdog timer.
745 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
746 sc->sc_if_flags = ifp->if_flags;
747 ifp->if_timer = 0;
749 if (disable)
750 gem_rxdrain(sc);
755 * Reset the receiver
758 gem_reset_rx(struct gem_softc *sc)
760 bus_space_tag_t t = sc->sc_bustag;
761 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
764 * Resetting while DMA is in progress can cause a bus hang, so we
765 * disable DMA first.
767 gem_disable_rx(sc);
768 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
769 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
770 /* Wait till it finishes */
771 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
772 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
774 /* Finally, reset the ERX */
775 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
776 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
777 /* Wait till it finishes */
778 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
779 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
780 return (1);
782 return (0);
787 * Reset the receiver DMA engine.
789 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
790 * etc in order to reset the receiver DMA engine only and not do a full
791 * reset which amongst others also downs the link and clears the FIFOs.
793 static void
794 gem_reset_rxdma(struct gem_softc *sc)
796 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
797 bus_space_tag_t t = sc->sc_bustag;
798 bus_space_handle_t h = sc->sc_h1;
799 int i;
801 if (gem_reset_rx(sc) != 0) {
802 gem_init(ifp);
803 return;
805 for (i = 0; i < GEM_NRXDESC; i++)
806 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
807 GEM_UPDATE_RXDESC(sc, i);
808 sc->sc_rxptr = 0;
809 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
810 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
812 /* Reprogram Descriptor Ring Base Addresses */
813 /* NOTE: we use only 32-bit DMA addresses here. */
814 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
815 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
817 /* Redo ERX Configuration */
818 gem_rx_common(sc);
820 /* Give the reciever a swift kick */
821 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
825 * Common RX configuration for gem_init() and gem_reset_rxdma().
827 static void
828 gem_rx_common(struct gem_softc *sc)
830 bus_space_tag_t t = sc->sc_bustag;
831 bus_space_handle_t h = sc->sc_h1;
832 u_int32_t v;
834 /* Encode Receive Descriptor ring size: four possible values */
835 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
837 /* Set receive h/w checksum offset */
838 #ifdef INET
839 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
840 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
841 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
842 #endif
844 /* Enable RX DMA */
845 bus_space_write_4(t, h, GEM_RX_CONFIG,
846 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
847 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
850 * The following value is for an OFF Threshold of about 3/4 full
851 * and an ON Threshold of 1/4 full.
853 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
854 (3 * sc->sc_rxfifosize / 256) |
855 ((sc->sc_rxfifosize / 256) << 12));
856 bus_space_write_4(t, h, GEM_RX_BLANKING,
857 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
861 * Reset the transmitter
864 gem_reset_tx(struct gem_softc *sc)
866 bus_space_tag_t t = sc->sc_bustag;
867 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
870 * Resetting while DMA is in progress can cause a bus hang, so we
871 * disable DMA first.
873 gem_disable_tx(sc);
874 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
875 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
876 /* Wait till it finishes */
877 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
878 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
879 /* Wait 5ms extra. */
880 delay(5000);
882 /* Finally, reset the ETX */
883 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
884 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
885 /* Wait till it finishes */
886 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
887 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
888 return (1);
890 return (0);
894 * disable receiver.
897 gem_disable_rx(struct gem_softc *sc)
899 bus_space_tag_t t = sc->sc_bustag;
900 bus_space_handle_t h = sc->sc_h1;
901 u_int32_t cfg;
903 /* Flip the enable bit */
904 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
905 cfg &= ~GEM_MAC_RX_ENABLE;
906 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
907 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
908 /* Wait for it to finish */
909 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
913 * disable transmitter.
916 gem_disable_tx(struct gem_softc *sc)
918 bus_space_tag_t t = sc->sc_bustag;
919 bus_space_handle_t h = sc->sc_h1;
920 u_int32_t cfg;
922 /* Flip the enable bit */
923 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
924 cfg &= ~GEM_MAC_TX_ENABLE;
925 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
926 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
927 /* Wait for it to finish */
928 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
932 * Initialize interface.
935 gem_meminit(struct gem_softc *sc)
937 struct gem_rxsoft *rxs;
938 int i, error;
941 * Initialize the transmit descriptor ring.
943 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
944 for (i = 0; i < GEM_NTXDESC; i++) {
945 sc->sc_txdescs[i].gd_flags = 0;
946 sc->sc_txdescs[i].gd_addr = 0;
948 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
949 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
950 sc->sc_txfree = GEM_NTXDESC-1;
951 sc->sc_txnext = 0;
952 sc->sc_txwin = 0;
955 * Initialize the receive descriptor and receive job
956 * descriptor rings.
958 for (i = 0; i < GEM_NRXDESC; i++) {
959 rxs = &sc->sc_rxsoft[i];
960 if (rxs->rxs_mbuf == NULL) {
961 if ((error = gem_add_rxbuf(sc, i)) != 0) {
962 aprint_error_dev(sc->sc_dev,
963 "unable to allocate or map rx "
964 "buffer %d, error = %d\n",
965 i, error);
967 * XXX Should attempt to run with fewer receive
968 * XXX buffers instead of just failing.
970 gem_rxdrain(sc);
971 return (1);
973 } else
974 GEM_INIT_RXDESC(sc, i);
976 sc->sc_rxptr = 0;
977 sc->sc_meminited = 1;
978 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
979 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
981 return (0);
984 static int
985 gem_ringsize(int sz)
987 switch (sz) {
988 case 32:
989 return GEM_RING_SZ_32;
990 case 64:
991 return GEM_RING_SZ_64;
992 case 128:
993 return GEM_RING_SZ_128;
994 case 256:
995 return GEM_RING_SZ_256;
996 case 512:
997 return GEM_RING_SZ_512;
998 case 1024:
999 return GEM_RING_SZ_1024;
1000 case 2048:
1001 return GEM_RING_SZ_2048;
1002 case 4096:
1003 return GEM_RING_SZ_4096;
1004 case 8192:
1005 return GEM_RING_SZ_8192;
1006 default:
1007 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1008 return GEM_RING_SZ_32;
1014 * Start PCS
1016 void
1017 gem_pcs_start(struct gem_softc *sc)
1019 bus_space_tag_t t = sc->sc_bustag;
1020 bus_space_handle_t h = sc->sc_h1;
1021 uint32_t v;
1023 #ifdef GEM_DEBUG
1024 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1025 #endif
1028 * Set up. We must disable the MII before modifying the
1029 * GEM_MII_ANAR register
1031 if (sc->sc_flags & GEM_SERDES) {
1032 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1033 GEM_MII_DATAPATH_SERDES);
1034 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1035 GEM_MII_SLINK_LOOPBACK);
1036 } else {
1037 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1038 GEM_MII_DATAPATH_SERIAL);
1039 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1041 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1042 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1043 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1044 if (sc->sc_mii_media == IFM_AUTO)
1045 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1046 else if (sc->sc_mii_media == IFM_FDX) {
1047 v |= GEM_MII_ANEG_FUL_DUPLX;
1048 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1049 } else if (sc->sc_mii_media == IFM_HDX) {
1050 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1051 v |= GEM_MII_ANEG_HLF_DUPLX;
1054 /* Configure link. */
1055 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1056 bus_space_write_4(t, h, GEM_MII_CONTROL,
1057 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1058 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1059 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1061 /* Start the 10 second timer */
1062 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1066 * Stop PCS
1068 void
1069 gem_pcs_stop(struct gem_softc *sc, int disable)
1071 bus_space_tag_t t = sc->sc_bustag;
1072 bus_space_handle_t h = sc->sc_h1;
1074 #ifdef GEM_DEBUG
1075 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1076 #endif
1078 /* Tell link partner that we're going away */
1079 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1082 * Disable PCS MII. The documentation suggests that setting
1083 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1084 * negotiation will shut down the link. However, it appears
1085 * that we also need to unset the datapath mode.
1087 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1088 bus_space_write_4(t, h, GEM_MII_CONTROL,
1089 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1090 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1091 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1093 if (disable) {
1094 if (sc->sc_flags & GEM_SERDES)
1095 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1096 GEM_MII_SLINK_POWER_OFF);
1097 else
1098 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1102 sc->sc_flags &= ~GEM_LINK;
1103 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1104 sc->sc_mii.mii_media_status = IFM_AVALID;
1109 * Initialization of interface; set up initialization block
1110 * and transmit/receive descriptor rings.
1113 gem_init(struct ifnet *ifp)
1115 struct gem_softc *sc = ifp->if_softc;
1116 bus_space_tag_t t = sc->sc_bustag;
1117 bus_space_handle_t h = sc->sc_h1;
1118 int rc = 0, s;
1119 u_int max_frame_size;
1120 u_int32_t v;
1122 s = splnet();
1124 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1126 * Initialization sequence. The numbered steps below correspond
1127 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1128 * Channel Engine manual (part of the PCIO manual).
1129 * See also the STP2002-STQ document from Sun Microsystems.
1132 /* step 1 & 2. Reset the Ethernet Channel */
1133 gem_stop(ifp, 0);
1134 gem_reset(sc);
1135 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1137 /* Re-initialize the MIF */
1138 gem_mifinit(sc);
1140 /* Set up correct datapath for non-SERDES/Serialink */
1141 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1142 sc->sc_variant != GEM_SUN_ERI)
1143 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1144 GEM_MII_DATAPATH_MII);
1146 /* Call MI reset function if any */
1147 if (sc->sc_hwreset)
1148 (*sc->sc_hwreset)(sc);
1150 /* step 3. Setup data structures in host memory */
1151 if (gem_meminit(sc) != 0)
1152 return 1;
1154 /* step 4. TX MAC registers & counters */
1155 gem_init_regs(sc);
1156 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1157 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1158 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1159 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1160 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1161 max_frame_size|/* burst size */(0x2000<<16));
1163 /* step 5. RX MAC registers & counters */
1164 gem_setladrf(sc);
1166 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1167 /* NOTE: we use only 32-bit DMA addresses here. */
1168 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1169 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1171 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1172 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1174 /* step 8. Global Configuration & Interrupt Mask */
1175 gem_inten(sc);
1176 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1177 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1178 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1179 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1180 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1182 /* step 9. ETX Configuration: use mostly default values */
1184 /* Enable TX DMA */
1185 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1186 bus_space_write_4(t, h, GEM_TX_CONFIG,
1187 v | GEM_TX_CONFIG_TXDMA_EN |
1188 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1189 GEM_TX_CONFIG_TXFIFO_TH));
1190 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1192 /* step 10. ERX Configuration */
1193 gem_rx_common(sc);
1195 /* step 11. Configure Media */
1196 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1197 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1198 goto out;
1200 /* step 12. RX_MAC Configuration Register */
1201 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1202 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1203 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1205 /* step 14. Issue Transmit Pending command */
1207 /* Call MI initialization function if any */
1208 if (sc->sc_hwinit)
1209 (*sc->sc_hwinit)(sc);
1212 /* step 15. Give the reciever a swift kick */
1213 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1215 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1216 /* Configure PCS */
1217 gem_pcs_start(sc);
1218 else
1219 /* Start the one second timer. */
1220 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1222 sc->sc_flags &= ~GEM_LINK;
1223 ifp->if_flags |= IFF_RUNNING;
1224 ifp->if_flags &= ~IFF_OACTIVE;
1225 ifp->if_timer = 0;
1226 sc->sc_if_flags = ifp->if_flags;
1227 out:
1228 splx(s);
1230 return (0);
1233 void
1234 gem_init_regs(struct gem_softc *sc)
1236 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 bus_space_tag_t t = sc->sc_bustag;
1238 bus_space_handle_t h = sc->sc_h1;
1239 const u_char *laddr = CLLADDR(ifp->if_sadl);
1240 u_int32_t v;
1242 /* These regs are not cleared on reset */
1243 if (!sc->sc_inited) {
1245 /* Load recommended values */
1246 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1247 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1248 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1250 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1251 /* Max frame and max burst size */
1252 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1253 ETHER_MAX_LEN | (0x2000<<16));
1255 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1256 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1257 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1258 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1259 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1260 ((laddr[5]<<8)|laddr[4])&0x3ff);
1262 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1263 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1264 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1265 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1267 /* MAC control addr set to 01:80:c2:00:00:01 */
1268 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1269 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1270 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1272 /* MAC filter addr set to 0:0:0:0:0:0 */
1273 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1274 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1275 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1277 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1278 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1280 sc->sc_inited = 1;
1283 /* Counters need to be zeroed */
1284 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1285 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1286 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1287 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1288 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1289 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1290 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1291 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1292 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1293 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1296 /* Set XOFF PAUSE time. */
1297 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1300 * Set the internal arbitration to "infinite" bursts of the
1301 * maximum length of 31 * 64 bytes so DMA transfers aren't
1302 * split up in cache line size chunks. This greatly improves
1303 * especially RX performance.
1304 * Enable silicon bug workarounds for the Apple variants.
1306 bus_space_write_4(t, h, GEM_CONFIG,
1307 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1308 ((sc->sc_flags & GEM_PCI) ?
1309 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1310 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1313 * Set the station address.
1315 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1316 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1317 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1320 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1322 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1323 v = GEM_MAC_XIF_TX_MII_ENA;
1324 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1325 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1326 v |= GEM_MAC_XIF_FDPLX_LED;
1327 if (sc->sc_flags & GEM_GIGABIT)
1328 v |= GEM_MAC_XIF_GMII_MODE;
1330 } else {
1331 v |= GEM_MAC_XIF_GMII_MODE;
1333 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1336 #ifdef GEM_DEBUG
1337 static void
1338 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1340 int i;
1342 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1343 printf("descriptor %d:\t", i);
1344 printf("gd_flags: 0x%016" PRIx64 "\t",
1345 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1346 printf("gd_addr: 0x%016" PRIx64 "\n",
1347 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1348 if (i == lastdesc)
1349 break;
1352 #endif
1354 static void
1355 gem_start(struct ifnet *ifp)
1357 struct gem_softc *sc = ifp->if_softc;
1358 struct mbuf *m0, *m;
1359 struct gem_txsoft *txs;
1360 bus_dmamap_t dmamap;
1361 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1362 uint64_t flags = 0;
1364 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1365 return;
1368 * Remember the previous number of free descriptors and
1369 * the first descriptor we'll use.
1371 ofree = sc->sc_txfree;
1372 firsttx = sc->sc_txnext;
1374 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1375 device_xname(sc->sc_dev), ofree, firsttx));
1378 * Loop through the send queue, setting up transmit descriptors
1379 * until we drain the queue, or use up all available transmit
1380 * descriptors.
1382 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1383 sc->sc_txfree != 0) {
1385 * Grab a packet off the queue.
1387 IFQ_POLL(&ifp->if_snd, m0);
1388 if (m0 == NULL)
1389 break;
1390 m = NULL;
1392 dmamap = txs->txs_dmamap;
1395 * Load the DMA map. If this fails, the packet either
1396 * didn't fit in the alloted number of segments, or we were
1397 * short on resources. In this case, we'll copy and try
1398 * again.
1400 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1401 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1402 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1403 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1404 if (m0->m_pkthdr.len > MCLBYTES) {
1405 aprint_error_dev(sc->sc_dev,
1406 "unable to allocate jumbo Tx cluster\n");
1407 IFQ_DEQUEUE(&ifp->if_snd, m0);
1408 m_freem(m0);
1409 continue;
1411 MGETHDR(m, M_DONTWAIT, MT_DATA);
1412 if (m == NULL) {
1413 aprint_error_dev(sc->sc_dev,
1414 "unable to allocate Tx mbuf\n");
1415 break;
1417 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1418 if (m0->m_pkthdr.len > MHLEN) {
1419 MCLGET(m, M_DONTWAIT);
1420 if ((m->m_flags & M_EXT) == 0) {
1421 aprint_error_dev(sc->sc_dev,
1422 "unable to allocate Tx cluster\n");
1423 m_freem(m);
1424 break;
1427 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1428 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1429 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1430 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1431 if (error) {
1432 aprint_error_dev(sc->sc_dev,
1433 "unable to load Tx buffer, error = %d\n",
1434 error);
1435 break;
1440 * Ensure we have enough descriptors free to describe
1441 * the packet.
1443 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1444 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1446 * Not enough free descriptors to transmit this
1447 * packet. We haven't committed to anything yet,
1448 * so just unload the DMA map, put the packet
1449 * back on the queue, and punt. Notify the upper
1450 * layer that there are no more slots left.
1452 * XXX We could allocate an mbuf and copy, but
1453 * XXX it is worth it?
1455 ifp->if_flags |= IFF_OACTIVE;
1456 sc->sc_if_flags = ifp->if_flags;
1457 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1458 if (m != NULL)
1459 m_freem(m);
1460 break;
1463 IFQ_DEQUEUE(&ifp->if_snd, m0);
1464 if (m != NULL) {
1465 m_freem(m0);
1466 m0 = m;
1470 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1473 /* Sync the DMA map. */
1474 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1475 BUS_DMASYNC_PREWRITE);
1478 * Initialize the transmit descriptors.
1480 for (nexttx = sc->sc_txnext, seg = 0;
1481 seg < dmamap->dm_nsegs;
1482 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1485 * If this is the first descriptor we're
1486 * enqueueing, set the start of packet flag,
1487 * and the checksum stuff if we want the hardware
1488 * to do it.
1490 sc->sc_txdescs[nexttx].gd_addr =
1491 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1492 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1493 if (nexttx == firsttx) {
1494 flags |= GEM_TD_START_OF_PACKET;
1495 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1496 sc->sc_txwin = 0;
1497 flags |= GEM_TD_INTERRUPT_ME;
1500 #ifdef INET
1501 /* h/w checksum */
1502 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1503 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 struct ether_header *eh;
1505 uint16_t offset, start;
1507 eh = mtod(m0, struct ether_header *);
1508 switch (ntohs(eh->ether_type)) {
1509 case ETHERTYPE_IP:
1510 start = ETHER_HDR_LEN;
1511 break;
1512 case ETHERTYPE_VLAN:
1513 start = ETHER_HDR_LEN +
1514 ETHER_VLAN_ENCAP_LEN;
1515 break;
1516 default:
1517 /* unsupported, drop it */
1518 m_free(m0);
1519 continue;
1521 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1522 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1523 flags |= (start <<
1524 GEM_TD_CXSUM_STARTSHFT) |
1525 (offset <<
1526 GEM_TD_CXSUM_STUFFSHFT) |
1527 GEM_TD_CXSUM_ENABLE;
1529 #endif
1531 if (seg == dmamap->dm_nsegs - 1) {
1532 flags |= GEM_TD_END_OF_PACKET;
1533 } else {
1534 /* last flag set outside of loop */
1535 sc->sc_txdescs[nexttx].gd_flags =
1536 GEM_DMA_WRITE(sc, flags);
1538 lasttx = nexttx;
1540 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1541 /* add padding buffer at end of chain */
1542 flags &= ~GEM_TD_END_OF_PACKET;
1543 sc->sc_txdescs[lasttx].gd_flags =
1544 GEM_DMA_WRITE(sc, flags);
1546 sc->sc_txdescs[nexttx].gd_addr =
1547 GEM_DMA_WRITE(sc,
1548 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1549 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1550 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1551 lasttx = nexttx;
1552 nexttx = GEM_NEXTTX(nexttx);
1553 seg++;
1555 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1557 KASSERT(lasttx != -1);
1560 * Store a pointer to the packet so we can free it later,
1561 * and remember what txdirty will be once the packet is
1562 * done.
1564 txs->txs_mbuf = m0;
1565 txs->txs_firstdesc = sc->sc_txnext;
1566 txs->txs_lastdesc = lasttx;
1567 txs->txs_ndescs = seg;
1569 #ifdef GEM_DEBUG
1570 if (ifp->if_flags & IFF_DEBUG) {
1571 printf(" gem_start %p transmit chain:\n", txs);
1572 gem_txsoft_print(sc, txs->txs_firstdesc,
1573 txs->txs_lastdesc);
1575 #endif
1577 /* Sync the descriptors we're using. */
1578 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1579 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1581 /* Advance the tx pointer. */
1582 sc->sc_txfree -= txs->txs_ndescs;
1583 sc->sc_txnext = nexttx;
1585 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1586 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1588 #if NBPFILTER > 0
1590 * Pass the packet to any BPF listeners.
1592 if (ifp->if_bpf)
1593 bpf_mtap(ifp->if_bpf, m0);
1594 #endif /* NBPFILTER > 0 */
1597 if (txs == NULL || sc->sc_txfree == 0) {
1598 /* No more slots left; notify upper layer. */
1599 ifp->if_flags |= IFF_OACTIVE;
1600 sc->sc_if_flags = ifp->if_flags;
1603 if (sc->sc_txfree != ofree) {
1604 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1605 device_xname(sc->sc_dev), lasttx, firsttx));
1607 * The entire packet chain is set up.
1608 * Kick the transmitter.
1610 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1611 device_xname(sc->sc_dev), nexttx));
1612 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1613 sc->sc_txnext);
1615 /* Set a watchdog timer in case the chip flakes out. */
1616 ifp->if_timer = 5;
1617 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1618 device_xname(sc->sc_dev), ifp->if_timer));
1623 * Transmit interrupt.
1626 gem_tint(struct gem_softc *sc)
1628 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1629 bus_space_tag_t t = sc->sc_bustag;
1630 bus_space_handle_t mac = sc->sc_h1;
1631 struct gem_txsoft *txs;
1632 int txlast;
1633 int progress = 0;
1634 u_int32_t v;
1636 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1638 /* Unload collision counters ... */
1639 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1640 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1641 ifp->if_collisions += v +
1642 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1643 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1644 ifp->if_oerrors += v;
1646 /* ... then clear the hardware counters. */
1647 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1648 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1649 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1650 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1653 * Go through our Tx list and free mbufs for those
1654 * frames that have been transmitted.
1656 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1658 * In theory, we could harvest some descriptors before
1659 * the ring is empty, but that's a bit complicated.
1661 * GEM_TX_COMPLETION points to the last descriptor
1662 * processed +1.
1664 * Let's assume that the NIC writes back to the Tx
1665 * descriptors before it updates the completion
1666 * register. If the NIC has posted writes to the
1667 * Tx descriptors, PCI ordering requires that the
1668 * posted writes flush to RAM before the register-read
1669 * finishes. So let's read the completion register,
1670 * before syncing the descriptors, so that we
1671 * examine Tx descriptors that are at least as
1672 * current as the completion register.
1674 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1675 DPRINTF(sc,
1676 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1677 txs->txs_lastdesc, txlast));
1678 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1679 if (txlast >= txs->txs_firstdesc &&
1680 txlast <= txs->txs_lastdesc)
1681 break;
1682 } else if (txlast >= txs->txs_firstdesc ||
1683 txlast <= txs->txs_lastdesc)
1684 break;
1686 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1687 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1689 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1690 if (ifp->if_flags & IFF_DEBUG) {
1691 printf(" txsoft %p transmit chain:\n", txs);
1692 gem_txsoft_print(sc, txs->txs_firstdesc,
1693 txs->txs_lastdesc);
1695 #endif
1698 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1699 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1701 sc->sc_txfree += txs->txs_ndescs;
1703 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1704 0, txs->txs_dmamap->dm_mapsize,
1705 BUS_DMASYNC_POSTWRITE);
1706 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1707 if (txs->txs_mbuf != NULL) {
1708 m_freem(txs->txs_mbuf);
1709 txs->txs_mbuf = NULL;
1712 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1714 ifp->if_opackets++;
1715 progress = 1;
1718 #if 0
1719 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1720 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1721 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1722 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1723 GEM_TX_DATA_PTR_HI) << 32) |
1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1725 GEM_TX_DATA_PTR_LO),
1726 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1727 #endif
1729 if (progress) {
1730 if (sc->sc_txfree == GEM_NTXDESC - 1)
1731 sc->sc_txwin = 0;
1733 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1734 ifp->if_flags &= ~IFF_OACTIVE;
1735 sc->sc_if_flags = ifp->if_flags;
1736 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 gem_start(ifp);
1739 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 device_xname(sc->sc_dev), ifp->if_timer));
1742 return (1);
1746 * Receive interrupt.
1749 gem_rint(struct gem_softc *sc)
1751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 bus_space_tag_t t = sc->sc_bustag;
1753 bus_space_handle_t h = sc->sc_h1;
1754 struct gem_rxsoft *rxs;
1755 struct mbuf *m;
1756 u_int64_t rxstat;
1757 u_int32_t rxcomp;
1758 int i, len, progress = 0;
1760 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1763 * Ignore spurious interrupt that sometimes occurs before
1764 * we are set up when we network boot.
1766 if (!sc->sc_meminited)
1767 return 1;
1770 * Read the completion register once. This limits
1771 * how long the following loop can execute.
1773 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1776 * XXX Read the lastrx only once at the top for speed.
1778 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 sc->sc_rxptr, rxcomp));
1782 * Go into the loop at least once.
1784 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 i = GEM_NEXTRX(i)) {
1786 rxs = &sc->sc_rxsoft[i];
1788 GEM_CDRXSYNC(sc, i,
1789 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1791 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1793 if (rxstat & GEM_RD_OWN) {
1794 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1796 * We have processed all of the receive buffers.
1798 break;
1801 progress++;
1802 ifp->if_ipackets++;
1804 if (rxstat & GEM_RD_BAD_CRC) {
1805 ifp->if_ierrors++;
1806 aprint_error_dev(sc->sc_dev,
1807 "receive error: CRC error\n");
1808 GEM_INIT_RXDESC(sc, i);
1809 continue;
1812 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1813 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1814 #ifdef GEM_DEBUG
1815 if (ifp->if_flags & IFF_DEBUG) {
1816 printf(" rxsoft %p descriptor %d: ", rxs, i);
1817 printf("gd_flags: 0x%016llx\t", (long long)
1818 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1819 printf("gd_addr: 0x%016llx\n", (long long)
1820 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1822 #endif
1824 /* No errors; receive the packet. */
1825 len = GEM_RD_BUFLEN(rxstat);
1828 * Allocate a new mbuf cluster. If that fails, we are
1829 * out of memory, and must drop the packet and recycle
1830 * the buffer that's already attached to this descriptor.
1832 m = rxs->rxs_mbuf;
1833 if (gem_add_rxbuf(sc, i) != 0) {
1834 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1835 ifp->if_ierrors++;
1836 GEM_INIT_RXDESC(sc, i);
1837 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1838 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1839 continue;
1841 m->m_data += 2; /* We're already off by two */
1843 m->m_pkthdr.rcvif = ifp;
1844 m->m_pkthdr.len = m->m_len = len;
1846 #if NBPFILTER > 0
1848 * Pass this up to any BPF listeners, but only
1849 * pass it up the stack if it's for us.
1851 if (ifp->if_bpf)
1852 bpf_mtap(ifp->if_bpf, m);
1853 #endif /* NBPFILTER > 0 */
1855 #ifdef INET
1856 /* hardware checksum */
1857 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1858 struct ether_header *eh;
1859 struct ip *ip;
1860 int32_t hlen, pktlen;
1862 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1863 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1864 ETHER_VLAN_ENCAP_LEN;
1865 eh = (struct ether_header *) (mtod(m, char *) +
1866 ETHER_VLAN_ENCAP_LEN);
1867 } else {
1868 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1869 eh = mtod(m, struct ether_header *);
1871 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1872 goto swcsum;
1873 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1875 /* IPv4 only */
1876 if (ip->ip_v != IPVERSION)
1877 goto swcsum;
1879 hlen = ip->ip_hl << 2;
1880 if (hlen < sizeof(struct ip))
1881 goto swcsum;
1884 * bail if too short, has random trailing garbage,
1885 * truncated, fragment, or has ethernet pad.
1887 if ((ntohs(ip->ip_len) < hlen) ||
1888 (ntohs(ip->ip_len) != pktlen) ||
1889 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1890 goto swcsum;
1892 switch (ip->ip_p) {
1893 case IPPROTO_TCP:
1894 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1895 goto swcsum;
1896 if (pktlen < (hlen + sizeof(struct tcphdr)))
1897 goto swcsum;
1898 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1899 break;
1900 case IPPROTO_UDP:
1901 /* FALLTHROUGH */
1902 default:
1903 goto swcsum;
1906 /* the uncomplemented sum is expected */
1907 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1909 /* if the pkt had ip options, we have to deduct them */
1910 if (hlen > sizeof(struct ip)) {
1911 uint16_t *opts;
1912 uint32_t optsum, temp;
1914 optsum = 0;
1915 temp = hlen - sizeof(struct ip);
1916 opts = (uint16_t *) ((char *) ip +
1917 sizeof(struct ip));
1919 while (temp > 1) {
1920 optsum += ntohs(*opts++);
1921 temp -= 2;
1923 while (optsum >> 16)
1924 optsum = (optsum >> 16) +
1925 (optsum & 0xffff);
1927 /* Deduct ip opts sum from hwsum. */
1928 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1930 while (m->m_pkthdr.csum_data >> 16)
1931 m->m_pkthdr.csum_data =
1932 (m->m_pkthdr.csum_data >> 16) +
1933 (m->m_pkthdr.csum_data &
1934 0xffff);
1937 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1938 M_CSUM_NO_PSEUDOHDR;
1939 } else
1940 swcsum:
1941 m->m_pkthdr.csum_flags = 0;
1942 #endif
1943 /* Pass it on. */
1944 (*ifp->if_input)(ifp, m);
1947 if (progress) {
1948 /* Update the receive pointer. */
1949 if (i == sc->sc_rxptr) {
1950 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1951 #ifdef GEM_DEBUG
1952 if (ifp->if_flags & IFF_DEBUG)
1953 printf("%s: rint: ring wrap\n",
1954 device_xname(sc->sc_dev));
1955 #endif
1957 sc->sc_rxptr = i;
1958 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1960 #ifdef GEM_COUNTERS
1961 if (progress <= 4) {
1962 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1963 } else if (progress < 32) {
1964 if (progress < 16)
1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1966 else
1967 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1969 } else {
1970 if (progress < 64)
1971 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1972 else
1973 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1975 #endif
1977 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1978 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1980 /* Read error counters ... */
1981 ifp->if_ierrors +=
1982 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1983 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1984 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1985 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1987 /* ... then clear the hardware counters. */
1988 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1989 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1990 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1991 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1993 return (1);
1998 * gem_add_rxbuf:
2000 * Add a receive buffer to the indicated descriptor.
2003 gem_add_rxbuf(struct gem_softc *sc, int idx)
2005 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2006 struct mbuf *m;
2007 int error;
2009 MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 if (m == NULL)
2011 return (ENOBUFS);
2013 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2014 MCLGET(m, M_DONTWAIT);
2015 if ((m->m_flags & M_EXT) == 0) {
2016 m_freem(m);
2017 return (ENOBUFS);
2020 #ifdef GEM_DEBUG
2021 /* bzero the packet to check DMA */
2022 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2023 #endif
2025 if (rxs->rxs_mbuf != NULL)
2026 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2028 rxs->rxs_mbuf = m;
2030 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2031 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2032 BUS_DMA_READ|BUS_DMA_NOWAIT);
2033 if (error) {
2034 aprint_error_dev(sc->sc_dev,
2035 "can't load rx DMA map %d, error = %d\n", idx, error);
2036 panic("gem_add_rxbuf"); /* XXX */
2039 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2040 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2042 GEM_INIT_RXDESC(sc, idx);
2044 return (0);
2049 gem_eint(struct gem_softc *sc, u_int status)
2051 char bits[128];
2052 u_int32_t r, v;
2054 if ((status & GEM_INTR_MIF) != 0) {
2055 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2056 return (1);
2059 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2060 gem_reset_rxdma(sc);
2061 return (1);
2064 if (status & GEM_INTR_BERR) {
2065 if (sc->sc_flags & GEM_PCI)
2066 r = GEM_ERROR_STATUS;
2067 else
2068 r = GEM_SBUS_ERROR_STATUS;
2069 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2071 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2073 return (1);
2075 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2076 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2078 return (1);
2083 * PCS interrupts.
2084 * We should receive these when the link status changes, but sometimes
2085 * we don't receive them for link up. We compensate for this in the
2086 * gem_tick() callout.
2089 gem_pint(struct gem_softc *sc)
2091 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2092 bus_space_tag_t t = sc->sc_bustag;
2093 bus_space_handle_t h = sc->sc_h1;
2094 u_int32_t v, v2;
2097 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2098 * latched, so we have to read it twice. There is only one bit in
2099 * use, so the value is meaningless.
2101 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2104 if ((ifp->if_flags & IFF_UP) == 0)
2105 return 1;
2107 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2108 return 1;
2110 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 /* If we see remote fault, our link partner is probably going away */
2112 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2113 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2114 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115 /* Otherwise, we may need to wait after auto-negotiation completes */
2116 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2117 GEM_MII_STATUS_ANEG_CPT) {
2118 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2119 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2121 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2122 if (sc->sc_flags & GEM_LINK) {
2123 return 1;
2125 callout_stop(&sc->sc_tick_ch);
2126 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2127 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2128 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2129 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2130 v &= v2;
2131 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2132 sc->sc_mii.mii_media_active |= IFM_FDX;
2133 #ifdef GEM_DEBUG
2134 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2135 #endif
2136 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2137 sc->sc_mii.mii_media_active |= IFM_HDX;
2138 #ifdef GEM_DEBUG
2139 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2140 #endif
2141 } else {
2142 #ifdef GEM_DEBUG
2143 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2144 #endif
2146 gem_statuschange(sc);
2147 } else {
2148 if ((sc->sc_flags & GEM_LINK) == 0) {
2149 return 1;
2151 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2152 sc->sc_mii.mii_media_status = IFM_AVALID;
2153 #ifdef GEM_DEBUG
2154 aprint_debug_dev(sc->sc_dev, "link down\n");
2155 #endif
2156 gem_statuschange(sc);
2158 /* Start the 10 second timer */
2159 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2161 return 1;
2167 gem_intr(void *v)
2169 struct gem_softc *sc = v;
2170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2171 bus_space_tag_t t = sc->sc_bustag;
2172 bus_space_handle_t h = sc->sc_h1;
2173 u_int32_t status;
2174 int r = 0;
2175 #ifdef GEM_DEBUG
2176 char bits[128];
2177 #endif
2179 /* XXX We should probably mask out interrupts until we're done */
2181 sc->sc_ev_intr.ev_count++;
2183 status = bus_space_read_4(t, h, GEM_STATUS);
2184 #ifdef GEM_DEBUG
2185 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2186 #endif
2187 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2188 device_xname(sc->sc_dev), (status >> 19), bits));
2191 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2192 r |= gem_eint(sc, status);
2194 /* We don't bother with GEM_INTR_TX_DONE */
2195 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2196 GEM_COUNTER_INCR(sc, sc_ev_txint);
2197 r |= gem_tint(sc);
2200 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2201 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2202 r |= gem_rint(sc);
2205 /* We should eventually do more than just print out error stats. */
2206 if (status & GEM_INTR_TX_MAC) {
2207 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2208 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2209 printf("%s: MAC tx fault, status %x\n",
2210 device_xname(sc->sc_dev), txstat);
2211 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2212 gem_init(ifp);
2214 if (status & GEM_INTR_RX_MAC) {
2215 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2217 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2218 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2219 * silicon bug so handle them silently. Moreover, it's
2220 * likely that the receiver has hung so we reset it.
2222 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2223 ifp->if_ierrors++;
2224 gem_reset_rxdma(sc);
2225 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2226 printf("%s: MAC rx fault, status 0x%02x\n",
2227 device_xname(sc->sc_dev), rxstat);
2229 if (status & GEM_INTR_PCS) {
2230 r |= gem_pint(sc);
2233 /* Do we need to do anything with these?
2234 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2235 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2236 if ((status2 & GEM_MAC_PAUSED) != 0)
2237 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2238 GEM_MAC_PAUSE_TIME(status2));
2239 if ((status2 & GEM_MAC_PAUSE) != 0)
2240 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2241 if ((status2 & GEM_MAC_RESUME) != 0)
2242 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2244 if ((status & GEM_INTR_MIF) != 0)
2245 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2247 #if NRND > 0
2248 rnd_add_uint32(&sc->rnd_source, status);
2249 #endif
2250 return (r);
2254 void
2255 gem_watchdog(struct ifnet *ifp)
2257 struct gem_softc *sc = ifp->if_softc;
2259 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2260 "GEM_MAC_RX_CONFIG %x\n",
2261 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2262 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2263 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2265 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2266 ++ifp->if_oerrors;
2268 /* Try to get more packets going. */
2269 gem_start(ifp);
2273 * Initialize the MII Management Interface
2275 void
2276 gem_mifinit(struct gem_softc *sc)
2278 bus_space_tag_t t = sc->sc_bustag;
2279 bus_space_handle_t mif = sc->sc_h1;
2281 /* Configure the MIF in frame mode */
2282 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2283 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2284 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2288 * MII interface
2290 * The GEM MII interface supports at least three different operating modes:
2292 * Bitbang mode is implemented using data, clock and output enable registers.
2294 * Frame mode is implemented by loading a complete frame into the frame
2295 * register and polling the valid bit for completion.
2297 * Polling mode uses the frame register but completion is indicated by
2298 * an interrupt.
2301 static int
2302 gem_mii_readreg(device_t self, int phy, int reg)
2304 struct gem_softc *sc = device_private(self);
2305 bus_space_tag_t t = sc->sc_bustag;
2306 bus_space_handle_t mif = sc->sc_h1;
2307 int n;
2308 u_int32_t v;
2310 #ifdef GEM_DEBUG1
2311 if (sc->sc_debug)
2312 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2313 #endif
2315 /* Construct the frame command */
2316 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2317 GEM_MIF_FRAME_READ;
2319 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2320 for (n = 0; n < 100; n++) {
2321 DELAY(1);
2322 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2323 if (v & GEM_MIF_FRAME_TA0)
2324 return (v & GEM_MIF_FRAME_DATA);
2327 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2328 return (0);
2331 static void
2332 gem_mii_writereg(device_t self, int phy, int reg, int val)
2334 struct gem_softc *sc = device_private(self);
2335 bus_space_tag_t t = sc->sc_bustag;
2336 bus_space_handle_t mif = sc->sc_h1;
2337 int n;
2338 u_int32_t v;
2340 #ifdef GEM_DEBUG1
2341 if (sc->sc_debug)
2342 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2343 phy, reg, val);
2344 #endif
2346 /* Construct the frame command */
2347 v = GEM_MIF_FRAME_WRITE |
2348 (phy << GEM_MIF_PHY_SHIFT) |
2349 (reg << GEM_MIF_REG_SHIFT) |
2350 (val & GEM_MIF_FRAME_DATA);
2352 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2353 for (n = 0; n < 100; n++) {
2354 DELAY(1);
2355 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2356 if (v & GEM_MIF_FRAME_TA0)
2357 return;
2360 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2363 static void
2364 gem_mii_statchg(device_t self)
2366 struct gem_softc *sc = device_private(self);
2367 #ifdef GEM_DEBUG
2368 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2369 #endif
2371 #ifdef GEM_DEBUG
2372 if (sc->sc_debug)
2373 printf("gem_mii_statchg: status change: phy = %d\n",
2374 sc->sc_phys[instance]);
2375 #endif
2376 gem_statuschange(sc);
2380 * Common status change for gem_mii_statchg() and gem_pint()
2382 void
2383 gem_statuschange(struct gem_softc* sc)
2385 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2386 bus_space_tag_t t = sc->sc_bustag;
2387 bus_space_handle_t mac = sc->sc_h1;
2388 int gigabit;
2389 u_int32_t rxcfg, txcfg, v;
2391 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2392 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2393 sc->sc_flags |= GEM_LINK;
2394 else
2395 sc->sc_flags &= ~GEM_LINK;
2397 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2398 gigabit = 1;
2399 else
2400 gigabit = 0;
2403 * The configuration done here corresponds to the steps F) and
2404 * G) and as far as enabling of RX and TX MAC goes also step H)
2405 * of the initialization sequence outlined in section 3.2.1 of
2406 * the GEM Gigabit Ethernet ASIC Specification.
2409 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2410 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2411 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2412 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2413 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2414 else if (gigabit) {
2415 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2416 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2418 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2419 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2420 BUS_SPACE_BARRIER_WRITE);
2421 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2422 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2423 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2424 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2425 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2426 BUS_SPACE_BARRIER_WRITE);
2427 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2428 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2429 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2431 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2432 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2433 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2435 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2436 gigabit != 0)
2437 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2438 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2439 else
2440 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2441 GEM_MAC_SLOT_TIME_NORMAL);
2443 /* XIF Configuration */
2444 if (sc->sc_flags & GEM_LINK)
2445 v = GEM_MAC_XIF_LINK_LED;
2446 else
2447 v = 0;
2448 v |= GEM_MAC_XIF_TX_MII_ENA;
2450 /* If an external transceiver is connected, enable its MII drivers */
2451 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2452 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2453 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2454 /* External MII needs echo disable if half duplex. */
2455 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2456 IFM_FDX) != 0)
2457 /* turn on full duplex LED */
2458 v |= GEM_MAC_XIF_FDPLX_LED;
2459 else
2460 /* half duplex -- disable echo */
2461 v |= GEM_MAC_XIF_ECHO_DISABL;
2462 if (gigabit)
2463 v |= GEM_MAC_XIF_GMII_MODE;
2464 else
2465 v &= ~GEM_MAC_XIF_GMII_MODE;
2466 } else
2467 /* Internal MII needs buf enable */
2468 v |= GEM_MAC_XIF_MII_BUF_ENA;
2469 } else {
2470 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2471 v |= GEM_MAC_XIF_FDPLX_LED;
2472 v |= GEM_MAC_XIF_GMII_MODE;
2474 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2476 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2477 (sc->sc_flags & GEM_LINK) != 0) {
2478 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2479 txcfg | GEM_MAC_TX_ENABLE);
2480 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2481 rxcfg | GEM_MAC_RX_ENABLE);
2486 gem_ser_mediachange(struct ifnet *ifp)
2488 struct gem_softc *sc = ifp->if_softc;
2489 u_int s, t;
2491 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2492 return EINVAL;
2494 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2495 if (s == IFM_AUTO) {
2496 if (sc->sc_mii_media != s) {
2497 #ifdef GEM_DEBUG
2498 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2499 #endif
2500 sc->sc_mii_media = s;
2501 if (ifp->if_flags & IFF_UP) {
2502 gem_pcs_stop(sc, 0);
2503 gem_pcs_start(sc);
2506 return 0;
2508 if (s == IFM_1000_SX) {
2509 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2510 if (t == IFM_FDX || t == IFM_HDX) {
2511 if (sc->sc_mii_media != t) {
2512 sc->sc_mii_media = t;
2513 #ifdef GEM_DEBUG
2514 aprint_debug_dev(sc->sc_dev,
2515 "setting media to 1000baseSX-%s\n",
2516 t == IFM_FDX ? "FDX" : "HDX");
2517 #endif
2518 if (ifp->if_flags & IFF_UP) {
2519 gem_pcs_stop(sc, 0);
2520 gem_pcs_start(sc);
2523 return 0;
2526 return EINVAL;
2529 void
2530 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2532 struct gem_softc *sc = ifp->if_softc;
2534 if ((ifp->if_flags & IFF_UP) == 0)
2535 return;
2536 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2537 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2540 static int
2541 gem_ifflags_cb(struct ethercom *ec)
2543 struct ifnet *ifp = &ec->ec_if;
2544 struct gem_softc *sc = ifp->if_softc;
2545 int change = ifp->if_flags ^ sc->sc_if_flags;
2547 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2548 return ENETRESET;
2549 else if ((change & IFF_PROMISC) != 0)
2550 gem_setladrf(sc);
2551 return 0;
2555 * Process an ioctl request.
2558 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2560 struct gem_softc *sc = ifp->if_softc;
2561 int s, error = 0;
2563 s = splnet();
2565 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2566 error = 0;
2567 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2569 else if (ifp->if_flags & IFF_RUNNING) {
2571 * Multicast list has changed; set the hardware filter
2572 * accordingly.
2574 gem_setladrf(sc);
2578 /* Try to get things going again */
2579 if (ifp->if_flags & IFF_UP)
2580 gem_start(ifp);
2581 splx(s);
2582 return (error);
2585 static void
2586 gem_inten(struct gem_softc *sc)
2588 bus_space_tag_t t = sc->sc_bustag;
2589 bus_space_handle_t h = sc->sc_h1;
2590 uint32_t v;
2592 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2593 v = GEM_INTR_PCS;
2594 else
2595 v = GEM_INTR_MIF;
2596 bus_space_write_4(t, h, GEM_INTMASK,
2597 ~(GEM_INTR_TX_INTME |
2598 GEM_INTR_TX_EMPTY |
2599 GEM_INTR_TX_MAC |
2600 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2601 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2602 GEM_INTR_BERR | v));
2605 bool
2606 gem_resume(device_t self, pmf_qual_t qual)
2608 struct gem_softc *sc = device_private(self);
2610 gem_inten(sc);
2612 return true;
2615 bool
2616 gem_suspend(device_t self, pmf_qual_t qual)
2618 struct gem_softc *sc = device_private(self);
2619 bus_space_tag_t t = sc->sc_bustag;
2620 bus_space_handle_t h = sc->sc_h1;
2622 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2624 return true;
2627 bool
2628 gem_shutdown(device_t self, int howto)
2630 struct gem_softc *sc = device_private(self);
2631 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2633 gem_stop(ifp, 1);
2635 return true;
2639 * Set up the logical address filter.
2641 void
2642 gem_setladrf(struct gem_softc *sc)
2644 struct ethercom *ec = &sc->sc_ethercom;
2645 struct ifnet *ifp = &ec->ec_if;
2646 struct ether_multi *enm;
2647 struct ether_multistep step;
2648 bus_space_tag_t t = sc->sc_bustag;
2649 bus_space_handle_t h = sc->sc_h1;
2650 u_int32_t crc;
2651 u_int32_t hash[16];
2652 u_int32_t v;
2653 int i;
2655 /* Get current RX configuration */
2656 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2659 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2660 * and hash filter. Depending on the case, the right bit will be
2661 * enabled.
2663 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2664 GEM_MAC_RX_PROMISC_GRP);
2666 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2667 /* Turn on promiscuous mode */
2668 v |= GEM_MAC_RX_PROMISCUOUS;
2669 ifp->if_flags |= IFF_ALLMULTI;
2670 goto chipit;
2674 * Set up multicast address filter by passing all multicast addresses
2675 * through a crc generator, and then using the high order 8 bits as an
2676 * index into the 256 bit logical address filter. The high order 4
2677 * bits selects the word, while the other 4 bits select the bit within
2678 * the word (where bit 0 is the MSB).
2681 /* Clear hash table */
2682 memset(hash, 0, sizeof(hash));
2684 ETHER_FIRST_MULTI(step, ec, enm);
2685 while (enm != NULL) {
2686 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2688 * We must listen to a range of multicast addresses.
2689 * For now, just accept all multicasts, rather than
2690 * trying to set only those filter bits needed to match
2691 * the range. (At this time, the only use of address
2692 * ranges is for IP multicast routing, for which the
2693 * range is big enough to require all bits set.)
2694 * XXX should use the address filters for this
2696 ifp->if_flags |= IFF_ALLMULTI;
2697 v |= GEM_MAC_RX_PROMISC_GRP;
2698 goto chipit;
2701 /* Get the LE CRC32 of the address */
2702 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2704 /* Just want the 8 most significant bits. */
2705 crc >>= 24;
2707 /* Set the corresponding bit in the filter. */
2708 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2710 ETHER_NEXT_MULTI(step, enm);
2713 v |= GEM_MAC_RX_HASH_FILTER;
2714 ifp->if_flags &= ~IFF_ALLMULTI;
2716 /* Now load the hash table into the chip (if we are using it) */
2717 for (i = 0; i < 16; i++) {
2718 bus_space_write_4(t, h,
2719 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2720 hash[i]);
2723 chipit:
2724 sc->sc_if_flags = ifp->if_flags;
2725 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);