Sync usage with man page.
[netbsd-mini2440.git] / sys / dev / ic / i82596.c
blob2bac8ea12eb05c78e5d6945cef71d0f5890f5bfa
1 /* $NetBSD: i82596.c,v 1.26 2009/05/10 04:36:58 tsutsui Exp $ */
3 /*
4 * Copyright (c) 2003 Jochen Kunz.
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Jochen Kunz may not be used to endorse or promote
16 * products derived from this software without specific prior
17 * written permission.
19 * THIS SOFTWARE IS PROVIDED BY JOCHEN KUNZ
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JOCHEN KUNZ
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Driver for the Intel i82596CA and i82596DX/SX 10MBit/s Ethernet chips.
35 * It operates the i82596 in 32-Bit Linear Mode, opposed to the old i82586
36 * ie(4) driver (src/sys/dev/ic/i82586.c), that degrades the i82596 to
37 * i82586 compatibility mode.
39 * Documentation about these chips can be found at
41 * http://developer.intel.com/design/network/datashts/290218.htm
42 * http://developer.intel.com/design/network/datashts/290219.htm
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: i82596.c,v 1.26 2009/05/10 04:36:58 tsutsui Exp $");
48 /* autoconfig and device stuff */
49 #include <sys/param.h>
50 #include <sys/device.h>
51 #include <sys/conf.h>
52 #include "locators.h"
53 #include "ioconf.h"
55 /* bus_space / bus_dma etc. */
56 #include <sys/bus.h>
57 #include <sys/intr.h>
59 /* general system data and functions */
60 #include <sys/systm.h>
61 #include <sys/ioctl.h>
63 /* tsleep / sleep / wakeup */
64 #include <sys/proc.h>
65 /* hz for above */
66 #include <sys/kernel.h>
68 /* network stuff */
69 #include <net/if.h>
70 #include <net/if_dl.h>
71 #include <net/if_media.h>
72 #include <net/if_ether.h>
73 #include <sys/socket.h>
74 #include <sys/mbuf.h>
76 #include "bpfilter.h"
77 #if NBPFILTER > 0
78 #include <net/bpf.h>
79 #endif
81 #include <dev/ic/i82596reg.h>
82 #include <dev/ic/i82596var.h>
84 /* Supported chip variants */
85 const char *i82596_typenames[] = { "unknown", "DX/SX", "CA" };
87 /* media change and status callback */
88 static int iee_mediachange(struct ifnet *);
89 static void iee_mediastatus(struct ifnet *, struct ifmediareq *);
91 /* interface routines to upper protocols */
92 static void iee_start(struct ifnet *); /* initiate output */
93 static int iee_ioctl(struct ifnet *, u_long, void *); /* ioctl routine */
94 static int iee_init(struct ifnet *); /* init routine */
95 static void iee_stop(struct ifnet *, int); /* stop routine */
96 static void iee_watchdog(struct ifnet *); /* timer routine */
98 /* internal helper functions */
99 static void iee_cb_setup(struct iee_softc *, uint32_t);
102 * Things a MD frontend has to provide:
104 * The functions via function pointers in the softc:
105 * int (*sc_iee_cmd)(struct iee_softc *sc, uint32_t cmd);
106 * int (*sc_iee_reset)(struct iee_softc *sc);
107 * void (*sc_mediastatus)(struct ifnet *, struct ifmediareq *);
108 * int (*sc_mediachange)(struct ifnet *);
110 * sc_iee_cmd(): send a command to the i82596 by writing the cmd parameter
111 * to the SCP cmd word and issuing a Channel Attention.
112 * sc_iee_reset(): initiate a reset, supply the address of the SCP to the
113 * chip, wait for the chip to initialize and ACK interrupts that
114 * this may have caused by calling (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
115 * This functions must carefully bus_dmamap_sync() all data they have touched!
117 * sc_mediastatus() and sc_mediachange() are just MD hooks to the according
118 * MI functions. The MD frontend may set this pointers to NULL when they
119 * are not needed.
121 * sc->sc_type has to be set to I82596_UNKNOWN or I82596_DX or I82596_CA.
122 * This is for printing out the correct chip type at attach time only. The
123 * MI backend doesn't distinguish different chip types when programming
124 * the chip.
126 * IEE_NEED_SWAP in sc->sc_flags has to be cleared on little endian hardware
127 * and set on big endian hardware, when endianess conversion is not done
128 * by the bus attachment but done by i82596 chip itself.
129 * Usually you need to set IEE_NEED_SWAP on big endian machines
130 * where the hardware (the LE/~BE pin) is configured as BE mode.
132 * If the chip is configured as BE mode, all 8 bit (byte) and 16 bit (word)
133 * entities can be written in big endian. But Rev A chip doesn't support
134 * 32 bit (dword) entities with big endian byte ordering, so we have to
135 * treat all 32 bit (dword) entities as two 16 bit big endian entities.
136 * Rev B and C chips support big endian byte ordering for 32 bit entities,
137 * and this new feature is enabled by IEE_SYSBUS_BE in the sysbus byte.
139 * With the IEE_SYSBUS_BE feature, all 32 bit address ponters are
140 * treated as true 32 bit entities but the SCB absolute address and
141 * statistical counters are still treated as two 16 bit big endian entities,
142 * so we have to always swap high and low words for these entities.
143 * IEE_SWAP32() should be used for the SCB address and statistical counters,
144 * and IEE_SWAPA32() should be used for other 32 bit pointers in the shmem.
146 * IEE_REV_A flag must be set in sc->sc_flags if the IEE_SYSBUS_BE feature
147 * is disabled even on big endian machines for the old Rev A chip in backend.
149 * sc->sc_cl_align must be set to 1 or to the cache line size. When set to
150 * 1 no special alignment of DMA descriptors is done. If sc->sc_cl_align != 1
151 * it forces alignment of the data structures in the shared memory to a multiple
152 * of sc->sc_cl_align. This is needed on archs like hp700 that have non DMA
153 * I/O coherent caches and are unable to map the shared memory uncachable.
154 * (At least pre PA7100LC CPUs are unable to map memory uncachable.)
156 * The MD frontend also has to set sc->sc_cl_align and sc->sc_sysbus
157 * to allocate and setup shared DMA memory in MI iee_attach().
158 * All communication with the chip is done via this shared memory.
159 * This memory is mapped with BUS_DMA_COHERENT so it will be uncached
160 * if possible for archs with non DMA I/O coherent caches.
161 * The base of the memory needs to be aligned to an even address
162 * if sc->sc_cl_align == 1 and aligned to a cache line if sc->sc_cl_align != 1.
163 * Each descriptor offsets are calculated in iee_attach() to handle this.
165 * An interrupt with iee_intr() as handler must be established.
167 * Call void iee_attach(struct iee_softc *sc, uint8_t *ether_address,
168 * int *media, int nmedia, int defmedia); when everything is set up. First
169 * parameter is a pointer to the MI softc, ether_address is an array that
170 * contains the ethernet address. media is an array of the media types
171 * provided by the hardware. The members of this array are supplied to
172 * ifmedia_add() in sequence. nmedia is the count of elements in media.
173 * defmedia is the default media that is set via ifmedia_set().
174 * nmedia and defmedia are ignored when media == NULL.
176 * The MD backend may call iee_detach() to detach the device.
178 * See sys/arch/hp700/gsc/if_iee_gsc.c for an example.
183 * How frame reception is done:
184 * Each Receive Frame Descriptor has one associated Receive Buffer Descriptor.
185 * Each RBD points to the data area of an mbuf cluster. The RFDs are linked
186 * together in a circular list. sc->sc_rx_done is the count of RFDs in the
187 * list already processed / the number of the RFD that has to be checked for
188 * a new frame first at the next RX interrupt. Upon successful reception of
189 * a frame the mbuf cluster is handled to upper protocol layers, a new mbuf
190 * cluster is allocated and the RFD / RBD are reinitialized accordingly.
192 * When a RFD list overrun occurred the whole RFD and RBD lists are
193 * reinitialized and frame reception is started again.
196 iee_intr(void *intarg)
198 struct iee_softc *sc = intarg;
199 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
200 struct iee_rfd *rfd;
201 struct iee_rbd *rbd;
202 bus_dmamap_t rx_map;
203 struct mbuf *rx_mbuf;
204 struct mbuf *new_mbuf;
205 int scb_status;
206 int scb_cmd;
207 int n, col;
208 uint16_t status, count, cmd;
210 if ((ifp->if_flags & IFF_RUNNING) == 0) {
211 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
212 return 1;
214 IEE_SCBSYNC(sc, BUS_DMASYNC_POSTREAD);
215 scb_status = SC_SCB(sc)->scb_status;
216 scb_cmd = SC_SCB(sc)->scb_cmd;
217 for (;;) {
218 rfd = SC_RFD(sc, sc->sc_rx_done);
219 IEE_RFDSYNC(sc, sc->sc_rx_done,
220 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
221 status = rfd->rfd_status;
222 if ((status & IEE_RFD_C) == 0) {
223 IEE_RFDSYNC(sc, sc->sc_rx_done, BUS_DMASYNC_PREREAD);
224 break;
226 rfd->rfd_status = 0;
227 IEE_RFDSYNC(sc, sc->sc_rx_done,
228 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
230 /* At least one packet was received. */
231 rx_map = sc->sc_rx_map[sc->sc_rx_done];
232 rx_mbuf = sc->sc_rx_mbuf[sc->sc_rx_done];
233 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
234 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
235 SC_RBD(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD)->rbd_size
236 &= ~IEE_RBD_EL;
237 IEE_RBDSYNC(sc, (sc->sc_rx_done + IEE_NRFD - 1) % IEE_NRFD,
238 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
239 rbd = SC_RBD(sc, sc->sc_rx_done);
240 IEE_RBDSYNC(sc, sc->sc_rx_done,
241 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
242 count = rbd->rbd_count;
243 if ((status & IEE_RFD_OK) == 0
244 || (count & IEE_RBD_EOF) == 0
245 || (count & IEE_RBD_F) == 0){
246 /* Receive error, skip frame and reuse buffer. */
247 rbd->rbd_count = 0;
248 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
249 IEE_RBDSYNC(sc, sc->sc_rx_done,
250 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
251 printf("%s: iee_intr: receive error %d, rfd_status="
252 "0x%.4x, rfd_count=0x%.4x\n",
253 device_xname(sc->sc_dev),
254 ++sc->sc_rx_err, status, count);
255 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
256 continue;
258 bus_dmamap_sync(sc->sc_dmat, rx_map, 0, rx_map->dm_mapsize,
259 BUS_DMASYNC_POSTREAD);
260 rx_mbuf->m_pkthdr.len = rx_mbuf->m_len =
261 count & IEE_RBD_COUNT;
262 rx_mbuf->m_pkthdr.rcvif = ifp;
263 MGETHDR(new_mbuf, M_DONTWAIT, MT_DATA);
264 if (new_mbuf == NULL) {
265 printf("%s: iee_intr: can't allocate mbuf\n",
266 device_xname(sc->sc_dev));
267 break;
269 MCLAIM(new_mbuf, &sc->sc_ethercom.ec_rx_mowner);
270 MCLGET(new_mbuf, M_DONTWAIT);
271 if ((new_mbuf->m_flags & M_EXT) == 0) {
272 printf("%s: iee_intr: can't alloc mbuf cluster\n",
273 device_xname(sc->sc_dev));
274 m_freem(new_mbuf);
275 break;
277 bus_dmamap_unload(sc->sc_dmat, rx_map);
278 new_mbuf->m_len = new_mbuf->m_pkthdr.len = MCLBYTES - 2;
279 new_mbuf->m_data += 2;
280 if (bus_dmamap_load_mbuf(sc->sc_dmat, rx_map,
281 new_mbuf, BUS_DMA_READ | BUS_DMA_NOWAIT) != 0)
282 panic("%s: iee_intr: can't load RX DMA map\n",
283 device_xname(sc->sc_dev));
284 bus_dmamap_sync(sc->sc_dmat, rx_map, 0,
285 rx_map->dm_mapsize, BUS_DMASYNC_PREREAD);
286 #if NBPFILTER > 0
287 if (ifp->if_bpf != 0)
288 bpf_mtap(ifp->if_bpf, rx_mbuf);
289 #endif /* NBPFILTER > 0 */
290 (*ifp->if_input)(ifp, rx_mbuf);
291 ifp->if_ipackets++;
292 sc->sc_rx_mbuf[sc->sc_rx_done] = new_mbuf;
293 rbd->rbd_count = 0;
294 rbd->rbd_size = IEE_RBD_EL | rx_map->dm_segs[0].ds_len;
295 rbd->rbd_rb_addr = IEE_SWAPA32(rx_map->dm_segs[0].ds_addr);
296 IEE_RBDSYNC(sc, sc->sc_rx_done,
297 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
298 sc->sc_rx_done = (sc->sc_rx_done + 1) % IEE_NRFD;
300 if ((scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR1
301 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR2
302 || (scb_status & IEE_SCB_RUS) == IEE_SCB_RUS_NR3) {
303 /* Receive Overrun, reinit receive ring buffer. */
304 for (n = 0 ; n < IEE_NRFD ; n++) {
305 rfd = SC_RFD(sc, n);
306 rbd = SC_RBD(sc, n);
307 rfd->rfd_cmd = IEE_RFD_SF;
308 rfd->rfd_link_addr =
309 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
310 + sc->sc_rfd_sz * ((n + 1) % IEE_NRFD)));
311 rbd->rbd_next_rbd =
312 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
313 + sc->sc_rbd_sz * ((n + 1) % IEE_NRFD)));
314 rbd->rbd_size = IEE_RBD_EL |
315 sc->sc_rx_map[n]->dm_segs[0].ds_len;
316 rbd->rbd_rb_addr =
317 IEE_SWAPA32(sc->sc_rx_map[n]->dm_segs[0].ds_addr);
319 SC_RFD(sc, 0)->rfd_rbd_addr =
320 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
321 sc->sc_rx_done = 0;
322 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, sc->sc_rfd_off,
323 sc->sc_rfd_sz * IEE_NRFD + sc->sc_rbd_sz * IEE_NRFD,
324 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
325 (sc->sc_iee_cmd)(sc, IEE_SCB_RUC_ST);
326 printf("%s: iee_intr: receive ring buffer overrun\n",
327 device_xname(sc->sc_dev));
330 if (sc->sc_next_cb != 0) {
331 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
332 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
333 status = SC_CB(sc, sc->sc_next_cb - 1)->cb_status;
334 IEE_CBSYNC(sc, sc->sc_next_cb - 1,
335 BUS_DMASYNC_PREREAD);
336 if ((status & IEE_CB_C) != 0) {
337 /* CMD list finished */
338 ifp->if_timer = 0;
339 if (sc->sc_next_tbd != 0) {
340 /* A TX CMD list finished, cleanup */
341 for (n = 0 ; n < sc->sc_next_cb ; n++) {
342 m_freem(sc->sc_tx_mbuf[n]);
343 sc->sc_tx_mbuf[n] = NULL;
344 bus_dmamap_unload(sc->sc_dmat,
345 sc->sc_tx_map[n]);
346 IEE_CBSYNC(sc, n,
347 BUS_DMASYNC_POSTREAD|
348 BUS_DMASYNC_POSTWRITE);
349 status = SC_CB(sc, n)->cb_status;
350 IEE_CBSYNC(sc, n,
351 BUS_DMASYNC_PREREAD);
352 if ((status & IEE_CB_COL) != 0 &&
353 (status & IEE_CB_MAXCOL) == 0)
354 col = 16;
355 else
356 col = status
357 & IEE_CB_MAXCOL;
358 sc->sc_tx_col += col;
359 if ((status & IEE_CB_OK) != 0) {
360 ifp->if_opackets++;
361 ifp->if_collisions += col;
364 sc->sc_next_tbd = 0;
365 ifp->if_flags &= ~IFF_OACTIVE;
367 for (n = 0 ; n < sc->sc_next_cb; n++) {
369 * Check if a CMD failed, but ignore TX errors.
371 IEE_CBSYNC(sc, n,
372 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
373 cmd = SC_CB(sc, n)->cb_cmd;
374 status = SC_CB(sc, n)->cb_status;
375 IEE_CBSYNC(sc, n, BUS_DMASYNC_PREREAD);
376 if ((cmd & IEE_CB_CMD) != IEE_CB_CMD_TR &&
377 (status & IEE_CB_OK) == 0)
378 printf("%s: iee_intr: scb_status=0x%x "
379 "scb_cmd=0x%x failed command %d: "
380 "cb_status[%d]=0x%.4x "
381 "cb_cmd[%d]=0x%.4x\n",
382 device_xname(sc->sc_dev),
383 scb_status, scb_cmd,
384 ++sc->sc_cmd_err,
385 n, status, n, cmd);
387 sc->sc_next_cb = 0;
388 if ((sc->sc_flags & IEE_WANT_MCAST) != 0) {
389 iee_cb_setup(sc, IEE_CB_CMD_MCS |
390 IEE_CB_S | IEE_CB_EL | IEE_CB_I);
391 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
392 } else
393 /* Try to get deferred packets going. */
394 iee_start(ifp);
397 if (IEE_SWAP32(SC_SCB(sc)->scb_crc_err) != sc->sc_crc_err) {
398 sc->sc_crc_err = IEE_SWAP32(SC_SCB(sc)->scb_crc_err);
399 printf("%s: iee_intr: crc_err=%d\n", device_xname(sc->sc_dev),
400 sc->sc_crc_err);
402 if (IEE_SWAP32(SC_SCB(sc)->scb_align_err) != sc->sc_align_err) {
403 sc->sc_align_err = IEE_SWAP32(SC_SCB(sc)->scb_align_err);
404 printf("%s: iee_intr: align_err=%d\n", device_xname(sc->sc_dev),
405 sc->sc_align_err);
407 if (IEE_SWAP32(SC_SCB(sc)->scb_resource_err) != sc->sc_resource_err) {
408 sc->sc_resource_err = IEE_SWAP32(SC_SCB(sc)->scb_resource_err);
409 printf("%s: iee_intr: resource_err=%d\n",
410 device_xname(sc->sc_dev), sc->sc_resource_err);
412 if (IEE_SWAP32(SC_SCB(sc)->scb_overrun_err) != sc->sc_overrun_err) {
413 sc->sc_overrun_err = IEE_SWAP32(SC_SCB(sc)->scb_overrun_err);
414 printf("%s: iee_intr: overrun_err=%d\n",
415 device_xname(sc->sc_dev), sc->sc_overrun_err);
417 if (IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err) != sc->sc_rcvcdt_err) {
418 sc->sc_rcvcdt_err = IEE_SWAP32(SC_SCB(sc)->scb_rcvcdt_err);
419 printf("%s: iee_intr: rcvcdt_err=%d\n",
420 device_xname(sc->sc_dev), sc->sc_rcvcdt_err);
422 if (IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err) != sc->sc_short_fr_err) {
423 sc->sc_short_fr_err = IEE_SWAP32(SC_SCB(sc)->scb_short_fr_err);
424 printf("%s: iee_intr: short_fr_err=%d\n",
425 device_xname(sc->sc_dev), sc->sc_short_fr_err);
427 IEE_SCBSYNC(sc, BUS_DMASYNC_PREREAD);
428 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
429 return 1;
435 * How Command Block List Processing is done.
437 * A running CBL is never manipulated. If there is a CBL already running,
438 * further CMDs are deferred until the current list is done. A new list is
439 * setup when the old one has finished.
440 * This eases programming. To manipulate a running CBL it is necessary to
441 * suspend the Command Unit to avoid race conditions. After a suspend
442 * is sent we have to wait for an interrupt that ACKs the suspend. Then
443 * we can manipulate the CBL and resume operation. I am not sure that this
444 * is more effective then the current, much simpler approach. => KISS
445 * See i82596CA data sheet page 26.
447 * A CBL is running or on the way to be set up when (sc->sc_next_cb != 0).
449 * A CBL may consist of TX CMDs, and _only_ TX CMDs.
450 * A TX CBL is running or on the way to be set up when
451 * ((sc->sc_next_cb != 0) && (sc->sc_next_tbd != 0)).
453 * A CBL may consist of other non-TX CMDs like IAS or CONF, and _only_
454 * non-TX CMDs.
456 * This comes mostly through the way how an Ethernet driver works and
457 * because running CBLs are not manipulated when they are on the way. If
458 * if_start() is called there will be TX CMDs enqueued so we have a running
459 * CBL and other CMDs from e.g. if_ioctl() will be deferred and vice versa.
461 * The Multicast Setup Command is special. A MCS needs more space than
462 * a single CB has. Actual space requirement depends on the length of the
463 * multicast list. So we always defer MCS until other CBLs are finished,
464 * then we setup a CONF CMD in the first CB. The CONF CMD is needed to
465 * turn ALLMULTI on the hardware on or off. The MCS is the 2nd CB and may
466 * use all the remaining space in the CBL and the Transmit Buffer Descriptor
467 * List. (Therefore CBL and TBDL must be continuous in physical and virtual
468 * memory. This is guaranteed through the definitions of the list offsets
469 * in i82596reg.h and because it is only a single DMA segment used for all
470 * lists.) When ALLMULTI is enabled via the CONF CMD, the MCS is run with
471 * a multicast list length of 0, thus disabling the multicast filter.
472 * A deferred MCS is signaled via ((sc->sc_flags & IEE_WANT_MCAST) != 0)
474 void
475 iee_cb_setup(struct iee_softc *sc, uint32_t cmd)
477 struct iee_cb *cb = SC_CB(sc, sc->sc_next_cb);
478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
479 struct ether_multistep step;
480 struct ether_multi *enm;
482 memset(cb, 0, sc->sc_cb_sz);
483 cb->cb_cmd = cmd;
484 switch (cmd & IEE_CB_CMD) {
485 case IEE_CB_CMD_NOP: /* NOP CMD */
486 break;
487 case IEE_CB_CMD_IAS: /* Individual Address Setup */
488 memcpy(__UNVOLATILE(cb->cb_ind_addr), CLLADDR(ifp->if_sadl),
489 ETHER_ADDR_LEN);
490 break;
491 case IEE_CB_CMD_CONF: /* Configure */
492 memcpy(__UNVOLATILE(cb->cb_cf), sc->sc_cf, sc->sc_cf[0]
493 & IEE_CF_0_CNT_M);
494 break;
495 case IEE_CB_CMD_MCS: /* Multicast Setup */
496 if (sc->sc_next_cb != 0) {
497 sc->sc_flags |= IEE_WANT_MCAST;
498 return;
500 sc->sc_flags &= ~IEE_WANT_MCAST;
501 if ((sc->sc_cf[8] & IEE_CF_8_PRM) != 0) {
502 /* Need no multicast filter in promisc mode. */
503 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL
504 | IEE_CB_I);
505 return;
507 /* Leave room for a CONF CMD to en/dis-able ALLMULTI mode */
508 cb = SC_CB(sc, sc->sc_next_cb + 1);
509 cb->cb_cmd = cmd;
510 cb->cb_mcast.mc_size = 0;
511 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
512 while (enm != NULL) {
513 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
514 ETHER_ADDR_LEN) != 0 || cb->cb_mcast.mc_size
515 * ETHER_ADDR_LEN + 2 * sc->sc_cb_sz >
516 sc->sc_cb_sz * IEE_NCB +
517 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB) {
518 cb->cb_mcast.mc_size = 0;
519 break;
521 memcpy(__UNVOLATILE(&cb->cb_mcast.mc_addrs[
522 cb->cb_mcast.mc_size * ETHER_ADDR_LEN]),
523 enm->enm_addrlo, ETHER_ADDR_LEN);
524 ETHER_NEXT_MULTI(step, enm);
525 cb->cb_mcast.mc_size++;
527 if (cb->cb_mcast.mc_size == 0) {
528 /* Can't do exact mcast filtering, do ALLMULTI mode. */
529 ifp->if_flags |= IFF_ALLMULTI;
530 sc->sc_cf[11] &= ~IEE_CF_11_MCALL;
531 } else {
532 /* disable ALLMULTI and load mcast list */
533 ifp->if_flags &= ~IFF_ALLMULTI;
534 sc->sc_cf[11] |= IEE_CF_11_MCALL;
535 /* Mcast setup may need more then sc->sc_cb_sz bytes. */
536 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
537 sc->sc_cb_off,
538 sc->sc_cb_sz * IEE_NCB +
539 sc->sc_tbd_sz * IEE_NTBD * IEE_NCB,
540 BUS_DMASYNC_PREWRITE);
542 iee_cb_setup(sc, IEE_CB_CMD_CONF);
543 break;
544 case IEE_CB_CMD_TR: /* Transmit */
545 cb->cb_transmit.tx_tbd_addr =
546 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off
547 + sc->sc_tbd_sz * sc->sc_next_tbd));
548 cb->cb_cmd |= IEE_CB_SF; /* Always use Flexible Mode. */
549 break;
550 case IEE_CB_CMD_TDR: /* Time Domain Reflectometry */
551 break;
552 case IEE_CB_CMD_DUMP: /* Dump */
553 break;
554 case IEE_CB_CMD_DIAG: /* Diagnose */
555 break;
556 default:
557 /* can't happen */
558 break;
560 cb->cb_link_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off +
561 sc->sc_cb_sz * (sc->sc_next_cb + 1)));
562 IEE_CBSYNC(sc, sc->sc_next_cb,
563 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
564 sc->sc_next_cb++;
565 ifp->if_timer = 5;
570 void
571 iee_attach(struct iee_softc *sc, uint8_t *eth_addr, int *media, int nmedia,
572 int defmedia)
574 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
575 int n;
577 KASSERT(sc->sc_cl_align > 0 && powerof2(sc->sc_cl_align));
580 * Calculate DMA descriptor offsets and sizes in shmem
581 * which should be cache line aligned.
583 sc->sc_scp_off = 0;
584 sc->sc_scp_sz = roundup2(sizeof(struct iee_scp), sc->sc_cl_align);
585 sc->sc_iscp_off = sc->sc_scp_sz;
586 sc->sc_iscp_sz = roundup2(sizeof(struct iee_iscp), sc->sc_cl_align);
587 sc->sc_scb_off = sc->sc_iscp_off + sc->sc_iscp_sz;
588 sc->sc_scb_sz = roundup2(sizeof(struct iee_scb), sc->sc_cl_align);
589 sc->sc_rfd_off = sc->sc_scb_off + sc->sc_scb_sz;
590 sc->sc_rfd_sz = roundup2(sizeof(struct iee_rfd), sc->sc_cl_align);
591 sc->sc_rbd_off = sc->sc_rfd_off + sc->sc_rfd_sz * IEE_NRFD;
592 sc->sc_rbd_sz = roundup2(sizeof(struct iee_rbd), sc->sc_cl_align);
593 sc->sc_cb_off = sc->sc_rbd_off + sc->sc_rbd_sz * IEE_NRFD;
594 sc->sc_cb_sz = roundup2(sizeof(struct iee_cb), sc->sc_cl_align);
595 sc->sc_tbd_off = sc->sc_cb_off + sc->sc_cb_sz * IEE_NCB;
596 sc->sc_tbd_sz = roundup2(sizeof(struct iee_tbd), sc->sc_cl_align);
597 sc->sc_shmem_sz = sc->sc_tbd_off + sc->sc_tbd_sz * IEE_NTBD * IEE_NCB;
599 /* allocate memory for shared DMA descriptors */
600 if (bus_dmamem_alloc(sc->sc_dmat, sc->sc_shmem_sz, PAGE_SIZE, 0,
601 &sc->sc_dma_segs, 1, &sc->sc_dma_rsegs, BUS_DMA_NOWAIT) != 0) {
602 aprint_error(": can't allocate %d bytes of DMA memory\n",
603 sc->sc_shmem_sz);
604 return;
606 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs,
607 sc->sc_shmem_sz, (void **)&sc->sc_shmem_addr,
608 BUS_DMA_COHERENT | BUS_DMA_NOWAIT) != 0) {
609 aprint_error(": can't map DMA memory\n");
610 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
611 sc->sc_dma_rsegs);
612 return;
614 if (bus_dmamap_create(sc->sc_dmat, sc->sc_shmem_sz, sc->sc_dma_rsegs,
615 sc->sc_shmem_sz, 0, BUS_DMA_NOWAIT, &sc->sc_shmem_map) != 0) {
616 aprint_error(": can't create DMA map\n");
617 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
618 sc->sc_shmem_sz);
619 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
620 sc->sc_dma_rsegs);
621 return;
623 if (bus_dmamap_load(sc->sc_dmat, sc->sc_shmem_map, sc->sc_shmem_addr,
624 sc->sc_shmem_sz, NULL, BUS_DMA_NOWAIT) != 0) {
625 aprint_error(": can't load DMA map\n");
626 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
627 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr,
628 sc->sc_shmem_sz);
629 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs,
630 sc->sc_dma_rsegs);
631 return;
633 memset(sc->sc_shmem_addr, 0, sc->sc_shmem_sz);
635 /* Set pointer to Intermediate System Configuration Pointer. */
636 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
637 SC_SCP(sc)->scp_iscp_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_iscp_off));
638 SC_SCP(sc)->scp_sysbus = sc->sc_sysbus;
639 /* Set pointer to System Control Block. */
640 /* Phys. addr. in big endian order. (Big endian as defined by Intel.) */
641 SC_ISCP(sc)->iscp_scb_addr = IEE_SWAP32(IEE_PHYS_SHMEM(sc->sc_scb_off));
642 /* Set pointer to Receive Frame Area. (physical address) */
643 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
644 /* Set pointer to Command Block. (physical address) */
645 SC_SCB(sc)->scb_cmd_blk_addr =
646 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_cb_off));
648 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
649 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
651 ifmedia_init(&sc->sc_ifmedia, 0, iee_mediachange, iee_mediastatus);
652 if (media != NULL) {
653 for (n = 0 ; n < nmedia ; n++)
654 ifmedia_add(&sc->sc_ifmedia, media[n], 0, NULL);
655 ifmedia_set(&sc->sc_ifmedia, defmedia);
656 } else {
657 ifmedia_add(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE, 0, NULL);
658 ifmedia_set(&sc->sc_ifmedia, IFM_ETHER | IFM_NONE);
661 ifp->if_softc = sc;
662 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
663 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
664 ifp->if_start = iee_start; /* initiate output routine */
665 ifp->if_ioctl = iee_ioctl; /* ioctl routine */
666 ifp->if_init = iee_init; /* init routine */
667 ifp->if_stop = iee_stop; /* stop routine */
668 ifp->if_watchdog = iee_watchdog; /* timer routine */
669 IFQ_SET_READY(&ifp->if_snd);
670 /* iee supports IEEE 802.1Q Virtual LANs, see vlan(4). */
671 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
673 if_attach(ifp);
674 ether_ifattach(ifp, eth_addr);
676 aprint_normal(": Intel 82596%s address %s\n",
677 i82596_typenames[sc->sc_type], ether_sprintf(eth_addr));
679 for (n = 0 ; n < IEE_NCB ; n++)
680 sc->sc_tx_map[n] = NULL;
681 for (n = 0 ; n < IEE_NRFD ; n++) {
682 sc->sc_rx_mbuf[n] = NULL;
683 sc->sc_rx_map[n] = NULL;
685 sc->sc_tx_timeout = 0;
686 sc->sc_setup_timeout = 0;
687 (sc->sc_iee_reset)(sc);
692 void
693 iee_detach(struct iee_softc *sc, int flags)
695 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
697 if ((ifp->if_flags & IFF_RUNNING) != 0)
698 iee_stop(ifp, 1);
699 ether_ifdetach(ifp);
700 if_detach(ifp);
701 bus_dmamap_unload(sc->sc_dmat, sc->sc_shmem_map);
702 bus_dmamap_destroy(sc->sc_dmat, sc->sc_shmem_map);
703 bus_dmamem_unmap(sc->sc_dmat, sc->sc_shmem_addr, sc->sc_shmem_sz);
704 bus_dmamem_free(sc->sc_dmat, &sc->sc_dma_segs, sc->sc_dma_rsegs);
709 /* media change and status callback */
711 iee_mediachange(struct ifnet *ifp)
713 struct iee_softc *sc = ifp->if_softc;
715 if (sc->sc_mediachange != NULL)
716 return (sc->sc_mediachange)(ifp);
717 return 0;
722 void
723 iee_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmreq)
725 struct iee_softc *sc = ifp->if_softc;
727 if (sc->sc_mediastatus != NULL)
728 (sc->sc_mediastatus)(ifp, ifmreq);
733 /* initiate output routine */
734 void
735 iee_start(struct ifnet *ifp)
737 struct iee_softc *sc = ifp->if_softc;
738 struct mbuf *m = NULL;
739 struct iee_tbd *tbd;
740 int t;
741 int n;
743 if (sc->sc_next_cb != 0)
744 /* There is already a CMD running. Defer packet enqueuing. */
745 return;
746 for (t = 0 ; t < IEE_NCB ; t++) {
747 IFQ_DEQUEUE(&ifp->if_snd, sc->sc_tx_mbuf[t]);
748 if (sc->sc_tx_mbuf[t] == NULL)
749 break;
750 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
751 sc->sc_tx_mbuf[t], BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
753 * The packet needs more TBD then we support.
754 * Copy the packet into a mbuf cluster to get it out.
756 printf("%s: iee_start: failed to load DMA map\n",
757 device_xname(sc->sc_dev));
758 MGETHDR(m, M_DONTWAIT, MT_DATA);
759 if (m == NULL) {
760 printf("%s: iee_start: can't allocate mbuf\n",
761 device_xname(sc->sc_dev));
762 m_freem(sc->sc_tx_mbuf[t]);
763 t--;
764 continue;
766 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
767 MCLGET(m, M_DONTWAIT);
768 if ((m->m_flags & M_EXT) == 0) {
769 printf("%s: iee_start: can't allocate mbuf "
770 "cluster\n", device_xname(sc->sc_dev));
771 m_freem(sc->sc_tx_mbuf[t]);
772 m_freem(m);
773 t--;
774 continue;
776 m_copydata(sc->sc_tx_mbuf[t], 0,
777 sc->sc_tx_mbuf[t]->m_pkthdr.len, mtod(m, void *));
778 m->m_pkthdr.len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
779 m->m_len = sc->sc_tx_mbuf[t]->m_pkthdr.len;
780 m_freem(sc->sc_tx_mbuf[t]);
781 sc->sc_tx_mbuf[t] = m;
782 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_tx_map[t],
783 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
784 printf("%s: iee_start: can't load TX DMA map\n",
785 device_xname(sc->sc_dev));
786 m_freem(sc->sc_tx_mbuf[t]);
787 t--;
788 continue;
791 for (n = 0 ; n < sc->sc_tx_map[t]->dm_nsegs ; n++) {
792 tbd = SC_TBD(sc, sc->sc_next_tbd + n);
793 tbd->tbd_tb_addr =
794 IEE_SWAPA32(sc->sc_tx_map[t]->dm_segs[n].ds_addr);
795 tbd->tbd_size =
796 sc->sc_tx_map[t]->dm_segs[n].ds_len;
797 tbd->tbd_link_addr =
798 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_tbd_off +
799 sc->sc_tbd_sz * (sc->sc_next_tbd + n + 1)));
801 SC_TBD(sc, sc->sc_next_tbd + n - 1)->tbd_size |= IEE_CB_EL;
802 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map,
803 sc->sc_tbd_off + sc->sc_next_tbd * sc->sc_tbd_sz,
804 sc->sc_tbd_sz * sc->sc_tx_map[t]->dm_nsegs,
805 BUS_DMASYNC_PREWRITE);
806 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx_map[t], 0,
807 sc->sc_tx_map[t]->dm_mapsize, BUS_DMASYNC_PREWRITE);
808 IFQ_POLL(&ifp->if_snd, m);
809 if (m == NULL)
810 iee_cb_setup(sc, IEE_CB_CMD_TR | IEE_CB_S | IEE_CB_EL
811 | IEE_CB_I);
812 else
813 iee_cb_setup(sc, IEE_CB_CMD_TR);
814 sc->sc_next_tbd += n;
815 #if NBPFILTER > 0
816 /* Pass packet to bpf if someone listens. */
817 if (ifp->if_bpf)
818 bpf_mtap(ifp->if_bpf, sc->sc_tx_mbuf[t]);
819 #endif
821 if (t == 0)
822 /* No packets got set up for TX. */
823 return;
824 if (t == IEE_NCB)
825 ifp->if_flags |= IFF_OACTIVE;
826 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
831 /* ioctl routine */
833 iee_ioctl(struct ifnet *ifp, u_long cmd, void *data)
835 struct iee_softc *sc = ifp->if_softc;
836 int s;
837 int err;
839 s = splnet();
840 switch (cmd) {
841 case SIOCSIFMEDIA:
842 case SIOCGIFMEDIA:
843 err = ifmedia_ioctl(ifp, (struct ifreq *) data,
844 &sc->sc_ifmedia, cmd);
845 break;
847 default:
848 err = ether_ioctl(ifp, cmd, data);
849 if (err == ENETRESET) {
851 * Multicast list as changed; set the hardware filter
852 * accordingly.
854 if (ifp->if_flags & IFF_RUNNING) {
855 iee_cb_setup(sc, IEE_CB_CMD_MCS | IEE_CB_S |
856 IEE_CB_EL | IEE_CB_I);
857 if ((sc->sc_flags & IEE_WANT_MCAST) == 0)
858 (*sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE);
860 err = 0;
862 break;
864 splx(s);
865 return err;
870 /* init routine */
872 iee_init(struct ifnet *ifp)
874 struct iee_softc *sc = ifp->if_softc;
875 int r;
876 int t;
877 int n;
878 int err;
880 sc->sc_next_cb = 0;
881 sc->sc_next_tbd = 0;
882 sc->sc_flags &= ~IEE_WANT_MCAST;
883 sc->sc_rx_done = 0;
884 SC_SCB(sc)->scb_crc_err = 0;
885 SC_SCB(sc)->scb_align_err = 0;
886 SC_SCB(sc)->scb_resource_err = 0;
887 SC_SCB(sc)->scb_overrun_err = 0;
888 SC_SCB(sc)->scb_rcvcdt_err = 0;
889 SC_SCB(sc)->scb_short_fr_err = 0;
890 sc->sc_crc_err = 0;
891 sc->sc_align_err = 0;
892 sc->sc_resource_err = 0;
893 sc->sc_overrun_err = 0;
894 sc->sc_rcvcdt_err = 0;
895 sc->sc_short_fr_err = 0;
896 sc->sc_tx_col = 0;
897 sc->sc_rx_err = 0;
898 sc->sc_cmd_err = 0;
899 /* Create Transmit DMA maps. */
900 for (t = 0 ; t < IEE_NCB ; t++) {
901 if (sc->sc_tx_map[t] == NULL && bus_dmamap_create(sc->sc_dmat,
902 MCLBYTES, IEE_NTBD, MCLBYTES, 0, BUS_DMA_NOWAIT,
903 &sc->sc_tx_map[t]) != 0) {
904 printf("%s: iee_init: can't create TX DMA map\n",
905 device_xname(sc->sc_dev));
906 for (n = 0 ; n < t ; n++)
907 bus_dmamap_destroy(sc->sc_dmat,
908 sc->sc_tx_map[n]);
909 return ENOBUFS;
912 /* Initialize Receive Frame and Receive Buffer Descriptors */
913 err = 0;
914 memset(SC_RFD(sc, 0), 0, sc->sc_rfd_sz * IEE_NRFD);
915 memset(SC_RBD(sc, 0), 0, sc->sc_rbd_sz * IEE_NRFD);
916 for (r = 0 ; r < IEE_NRFD ; r++) {
917 SC_RFD(sc, r)->rfd_cmd = IEE_RFD_SF;
918 SC_RFD(sc, r)->rfd_link_addr =
919 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off
920 + sc->sc_rfd_sz * ((r + 1) % IEE_NRFD)));
922 SC_RBD(sc, r)->rbd_next_rbd =
923 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off
924 + sc->sc_rbd_sz * ((r + 1) % IEE_NRFD)));
925 if (sc->sc_rx_mbuf[r] == NULL) {
926 MGETHDR(sc->sc_rx_mbuf[r], M_DONTWAIT, MT_DATA);
927 if (sc->sc_rx_mbuf[r] == NULL) {
928 printf("%s: iee_init: can't allocate mbuf\n",
929 device_xname(sc->sc_dev));
930 err = 1;
931 break;
933 MCLAIM(sc->sc_rx_mbuf[r],&sc->sc_ethercom.ec_rx_mowner);
934 MCLGET(sc->sc_rx_mbuf[r], M_DONTWAIT);
935 if ((sc->sc_rx_mbuf[r]->m_flags & M_EXT) == 0) {
936 printf("%s: iee_init: can't allocate mbuf"
937 " cluster\n", device_xname(sc->sc_dev));
938 m_freem(sc->sc_rx_mbuf[r]);
939 err = 1;
940 break;
942 sc->sc_rx_mbuf[r]->m_len =
943 sc->sc_rx_mbuf[r]->m_pkthdr.len = MCLBYTES - 2;
944 sc->sc_rx_mbuf[r]->m_data += 2;
946 if (sc->sc_rx_map[r] == NULL && bus_dmamap_create(sc->sc_dmat,
947 MCLBYTES, 1, MCLBYTES , 0, BUS_DMA_NOWAIT,
948 &sc->sc_rx_map[r]) != 0) {
949 printf("%s: iee_init: can't create RX "
950 "DMA map\n", device_xname(sc->sc_dev));
951 m_freem(sc->sc_rx_mbuf[r]);
952 err = 1;
953 break;
955 if (bus_dmamap_load_mbuf(sc->sc_dmat, sc->sc_rx_map[r],
956 sc->sc_rx_mbuf[r], BUS_DMA_READ | BUS_DMA_NOWAIT) != 0) {
957 printf("%s: iee_init: can't load RX DMA map\n",
958 device_xname(sc->sc_dev));
959 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[r]);
960 m_freem(sc->sc_rx_mbuf[r]);
961 err = 1;
962 break;
964 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx_map[r], 0,
965 sc->sc_rx_map[r]->dm_mapsize, BUS_DMASYNC_PREREAD);
966 SC_RBD(sc, r)->rbd_size = sc->sc_rx_map[r]->dm_segs[0].ds_len;
967 SC_RBD(sc, r)->rbd_rb_addr =
968 IEE_SWAPA32(sc->sc_rx_map[r]->dm_segs[0].ds_addr);
970 SC_RFD(sc, 0)->rfd_rbd_addr =
971 IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rbd_off));
972 if (err != 0) {
973 for (n = 0 ; n < r; n++) {
974 m_freem(sc->sc_rx_mbuf[n]);
975 sc->sc_rx_mbuf[n] = NULL;
976 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
977 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
978 sc->sc_rx_map[n] = NULL;
980 for (n = 0 ; n < t ; n++) {
981 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
982 sc->sc_tx_map[n] = NULL;
984 return ENOBUFS;
987 (sc->sc_iee_reset)(sc);
988 iee_cb_setup(sc, IEE_CB_CMD_IAS);
989 sc->sc_cf[0] = IEE_CF_0_DEF | IEE_CF_0_PREF;
990 sc->sc_cf[1] = IEE_CF_1_DEF;
991 sc->sc_cf[2] = IEE_CF_2_DEF;
992 sc->sc_cf[3] = IEE_CF_3_ADDRLEN_DEF | IEE_CF_3_NSAI
993 | IEE_CF_3_PREAMLEN_DEF;
994 sc->sc_cf[4] = IEE_CF_4_DEF;
995 sc->sc_cf[5] = IEE_CF_5_DEF;
996 sc->sc_cf[6] = IEE_CF_6_DEF;
997 sc->sc_cf[7] = IEE_CF_7_DEF;
998 sc->sc_cf[8] = IEE_CF_8_DEF;
999 sc->sc_cf[9] = IEE_CF_9_DEF;
1000 sc->sc_cf[10] = IEE_CF_10_DEF;
1001 sc->sc_cf[11] = IEE_CF_11_DEF & ~IEE_CF_11_LNGFLD;
1002 sc->sc_cf[12] = IEE_CF_12_DEF;
1003 sc->sc_cf[13] = IEE_CF_13_DEF;
1004 iee_cb_setup(sc, IEE_CB_CMD_CONF | IEE_CB_S | IEE_CB_EL);
1005 SC_SCB(sc)->scb_rfa_addr = IEE_SWAPA32(IEE_PHYS_SHMEM(sc->sc_rfd_off));
1006 bus_dmamap_sync(sc->sc_dmat, sc->sc_shmem_map, 0, sc->sc_shmem_sz,
1007 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1008 (sc->sc_iee_cmd)(sc, IEE_SCB_CUC_EXE | IEE_SCB_RUC_ST);
1009 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1010 (sc->sc_iee_cmd)(sc, IEE_SCB_ACK);
1012 /* Mark the interface as running and ready to RX/TX packets. */
1013 ifp->if_flags |= IFF_RUNNING;
1014 ifp->if_flags &= ~IFF_OACTIVE;
1015 return 0;
1020 /* stop routine */
1021 void
1022 iee_stop(struct ifnet *ifp, int disable)
1024 struct iee_softc *sc = ifp->if_softc;
1025 int n;
1027 ifp->if_flags &= ~IFF_RUNNING;
1028 ifp->if_flags |= IFF_OACTIVE;
1029 ifp->if_timer = 0;
1030 /* Reset the chip to get it quiet. */
1031 (sc->sc_iee_reset)(ifp->if_softc);
1032 /* Issue a Channel Attention to ACK interrupts we may have caused. */
1033 (sc->sc_iee_cmd)(ifp->if_softc, IEE_SCB_ACK);
1034 /* Release any dynamically allocated resources. */
1035 for (n = 0 ; n < IEE_NCB ; n++) {
1036 if (sc->sc_tx_map[n] != NULL)
1037 bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_map[n]);
1038 sc->sc_tx_map[n] = NULL;
1040 for (n = 0 ; n < IEE_NRFD ; n++) {
1041 if (sc->sc_rx_mbuf[n] != NULL)
1042 m_freem(sc->sc_rx_mbuf[n]);
1043 sc->sc_rx_mbuf[n] = NULL;
1044 if (sc->sc_rx_map[n] != NULL) {
1045 bus_dmamap_unload(sc->sc_dmat, sc->sc_rx_map[n]);
1046 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_map[n]);
1048 sc->sc_rx_map[n] = NULL;
1054 /* timer routine */
1055 void
1056 iee_watchdog(struct ifnet *ifp)
1058 struct iee_softc *sc = ifp->if_softc;
1060 (sc->sc_iee_reset)(sc);
1061 if (sc->sc_next_tbd != 0)
1062 printf("%s: iee_watchdog: transmit timeout %d\n",
1063 device_xname(sc->sc_dev), ++sc->sc_tx_timeout);
1064 else
1065 printf("%s: iee_watchdog: setup timeout %d\n",
1066 device_xname(sc->sc_dev), ++sc->sc_setup_timeout);
1067 iee_init(ifp);