Sync usage with man page.
[netbsd-mini2440.git] / sys / dev / ic / iha.c
blob4c385deb7793ccbcb937af0bd49110c9f64eef90
1 /* $NetBSD: iha.c,v 1.39 2008/05/03 05:21:25 tsutsui Exp $ */
3 /*-
4 * Copyright (c) 2001, 2002 Izumi Tsutsui
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 /*-
28 * Device driver for the INI-9XXXU/UW or INIC-940/950 PCI SCSI Controller.
30 * Written for 386bsd and FreeBSD by
31 * Winston Hung <winstonh@initio.com>
33 * Copyright (c) 1997-1999 Initio Corp.
34 * Copyright (c) 2000, 2001 Ken Westerback
35 * All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer,
42 * without modification, immediately at the beginning of the file.
43 * 2. The name of the author may not be used to endorse or promote products
44 * derived from this software without specific prior written permission.
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
47 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
48 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
49 * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
50 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
51 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
52 * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
54 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
55 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
56 * THE POSSIBILITY OF SUCH DAMAGE.
60 * Ported to NetBSD by Izumi Tsutsui <tsutsui@NetBSD.org> from OpenBSD:
61 * $OpenBSD: iha.c,v 1.3 2001/02/20 00:47:33 krw Exp $
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: iha.c,v 1.39 2008/05/03 05:21:25 tsutsui Exp $");
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/buf.h>
71 #include <sys/device.h>
72 #include <sys/malloc.h>
74 #include <uvm/uvm_extern.h>
76 #include <sys/bus.h>
77 #include <sys/intr.h>
79 #include <dev/scsipi/scsi_spc.h>
80 #include <dev/scsipi/scsi_all.h>
81 #include <dev/scsipi/scsipi_all.h>
82 #include <dev/scsipi/scsiconf.h>
83 #include <dev/scsipi/scsi_message.h>
85 #include <dev/ic/ihareg.h>
86 #include <dev/ic/ihavar.h>
89 * SCSI Rate Table, indexed by FLAG_SCSI_RATE field of
90 * tcs flags.
92 static const uint8_t iha_rate_tbl[] = {
93 /* fast 20 */
94 /* nanosecond divide by 4 */
95 12, /* 50ns, 20M */
96 18, /* 75ns, 13.3M */
97 25, /* 100ns, 10M */
98 31, /* 125ns, 8M */
99 37, /* 150ns, 6.6M */
100 43, /* 175ns, 5.7M */
101 50, /* 200ns, 5M */
102 62 /* 250ns, 4M */
104 #define IHA_MAX_PERIOD 62
106 #ifdef notused
107 static uint16_t eeprom_default[EEPROM_SIZE] = {
108 /* -- Header ------------------------------------ */
109 /* signature */
110 EEP_SIGNATURE,
111 /* size, revision */
112 EEP_WORD(EEPROM_SIZE * 2, 0x01),
113 /* -- Host Adapter Structure -------------------- */
114 /* model */
115 0x0095,
116 /* model info, number of channel */
117 EEP_WORD(0x00, 1),
118 /* BIOS config */
119 EEP_BIOSCFG_DEFAULT,
120 /* host adapter config */
123 /* -- eeprom_adapter[0] ------------------------------- */
124 /* ID, adapter config 1 */
125 EEP_WORD(7, CFG_DEFAULT),
126 /* adapter config 2, number of targets */
127 EEP_WORD(0x00, 8),
128 /* target flags */
129 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
130 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
131 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
132 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
133 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
134 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
135 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
136 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
138 /* -- eeprom_adapter[1] ------------------------------- */
139 /* ID, adapter config 1 */
140 EEP_WORD(7, CFG_DEFAULT),
141 /* adapter config 2, number of targets */
142 EEP_WORD(0x00, 8),
143 /* target flags */
144 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
145 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
146 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
147 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
148 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
149 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
150 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
151 EEP_WORD(FLAG_DEFAULT, FLAG_DEFAULT),
152 /* reserved[5] */
153 0, 0, 0, 0, 0,
154 /* checksum */
157 #endif
159 static void iha_append_free_scb(struct iha_softc *, struct iha_scb *);
160 static void iha_append_done_scb(struct iha_softc *, struct iha_scb *, uint8_t);
161 static inline struct iha_scb *iha_pop_done_scb(struct iha_softc *);
163 static struct iha_scb *iha_find_pend_scb(struct iha_softc *);
164 static inline void iha_append_pend_scb(struct iha_softc *, struct iha_scb *);
165 static inline void iha_push_pend_scb(struct iha_softc *, struct iha_scb *);
166 static inline void iha_del_pend_scb(struct iha_softc *, struct iha_scb *);
167 static inline void iha_mark_busy_scb(struct iha_scb *);
169 static inline void iha_set_ssig(struct iha_softc *, uint8_t, uint8_t);
171 static int iha_alloc_sglist(struct iha_softc *);
173 static void iha_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t,
174 void *);
175 static void iha_update_xfer_mode(struct iha_softc *, int);
177 static void iha_reset_scsi_bus(struct iha_softc *);
178 static void iha_reset_chip(struct iha_softc *);
179 static void iha_reset_dma(struct iha_softc *);
180 static void iha_reset_tcs(struct tcs *, uint8_t);
182 static void iha_main(struct iha_softc *);
183 static void iha_scsi(struct iha_softc *);
184 static void iha_select(struct iha_softc *, struct iha_scb *, uint8_t);
185 static int iha_wait(struct iha_softc *, uint8_t);
187 static void iha_exec_scb(struct iha_softc *, struct iha_scb *);
188 static void iha_done_scb(struct iha_softc *, struct iha_scb *);
189 static int iha_push_sense_request(struct iha_softc *, struct iha_scb *);
191 static void iha_timeout(void *);
192 static void iha_abort_xs(struct iha_softc *, struct scsipi_xfer *, uint8_t);
193 static uint8_t iha_data_over_run(struct iha_scb *);
195 static int iha_next_state(struct iha_softc *);
196 static int iha_state_1(struct iha_softc *);
197 static int iha_state_2(struct iha_softc *);
198 static int iha_state_3(struct iha_softc *);
199 static int iha_state_4(struct iha_softc *);
200 static int iha_state_5(struct iha_softc *);
201 static int iha_state_6(struct iha_softc *);
202 static int iha_state_8(struct iha_softc *);
204 static int iha_xfer_data(struct iha_softc *, struct iha_scb *, int);
205 static int iha_xpad_in(struct iha_softc *);
206 static int iha_xpad_out(struct iha_softc *);
208 static int iha_status_msg(struct iha_softc *);
209 static void iha_busfree(struct iha_softc *);
210 static int iha_resel(struct iha_softc *);
212 static int iha_msgin(struct iha_softc *);
213 static int iha_msgin_extended(struct iha_softc *);
214 static int iha_msgin_sdtr(struct iha_softc *);
215 static int iha_msgin_ignore_wid_resid(struct iha_softc *);
217 static int iha_msgout(struct iha_softc *, uint8_t);
218 static void iha_msgout_abort(struct iha_softc *, uint8_t);
219 static int iha_msgout_reject(struct iha_softc *);
220 static int iha_msgout_extended(struct iha_softc *);
221 static int iha_msgout_wdtr(struct iha_softc *);
222 static int iha_msgout_sdtr(struct iha_softc *);
224 static void iha_wide_done(struct iha_softc *);
225 static void iha_sync_done(struct iha_softc *);
227 static void iha_bad_seq(struct iha_softc *);
229 static void iha_read_eeprom(struct iha_softc *, struct iha_eeprom *);
230 static int iha_se2_rd_all(struct iha_softc *, uint16_t *);
231 static void iha_se2_instr(struct iha_softc *, int);
232 static uint16_t iha_se2_rd(struct iha_softc *, int);
233 #ifdef notused
234 static void iha_se2_update_all(struct iha_softc *);
235 static void iha_se2_wr(struct iha_softc *, int, uint16_t);
236 #endif
239 * iha_append_free_scb - append the supplied SCB to the tail of the
240 * sc_freescb queue after clearing and resetting
241 * everything possible.
243 static void
244 iha_append_free_scb(struct iha_softc *sc, struct iha_scb *scb)
246 int s;
248 s = splbio();
250 if (scb == sc->sc_actscb)
251 sc->sc_actscb = NULL;
253 scb->status = STATUS_QUEUED;
254 scb->ha_stat = HOST_OK;
255 scb->ta_stat = SCSI_OK;
257 scb->nextstat = 0;
258 scb->scb_tagmsg = 0;
260 scb->xs = NULL;
261 scb->tcs = NULL;
264 * scb_tagid, sg_addr, sglist
265 * SCB_SensePtr are set at initialization
266 * and never change
269 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
271 splx(s);
274 static void
275 iha_append_done_scb(struct iha_softc *sc, struct iha_scb *scb, uint8_t hastat)
277 struct tcs *tcs;
278 int s;
280 s = splbio();
282 if (scb->xs != NULL)
283 callout_stop(&scb->xs->xs_callout);
285 if (scb == sc->sc_actscb)
286 sc->sc_actscb = NULL;
288 tcs = scb->tcs;
290 if (scb->scb_tagmsg != 0) {
291 if (tcs->tagcnt)
292 tcs->tagcnt--;
293 } else if (tcs->ntagscb == scb)
294 tcs->ntagscb = NULL;
296 scb->status = STATUS_QUEUED;
297 scb->ha_stat = hastat;
299 TAILQ_INSERT_TAIL(&sc->sc_donescb, scb, chain);
301 splx(s);
304 static inline struct iha_scb *
305 iha_pop_done_scb(struct iha_softc *sc)
307 struct iha_scb *scb;
308 int s;
310 s = splbio();
312 scb = TAILQ_FIRST(&sc->sc_donescb);
314 if (scb != NULL) {
315 scb->status = STATUS_RENT;
316 TAILQ_REMOVE(&sc->sc_donescb, scb, chain);
319 splx(s);
321 return (scb);
325 * iha_find_pend_scb - scan the pending queue for a SCB that can be
326 * processed immediately. Return NULL if none found
327 * and a pointer to the SCB if one is found. If there
328 * is an active SCB, return NULL!
330 static struct iha_scb *
331 iha_find_pend_scb(struct iha_softc *sc)
333 struct iha_scb *scb;
334 struct tcs *tcs;
335 int s;
337 s = splbio();
339 if (sc->sc_actscb != NULL)
340 scb = NULL;
342 else
343 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain) {
344 if ((scb->xs->xs_control & XS_CTL_RESET) != 0)
345 /* ALWAYS willing to reset a device */
346 break;
348 tcs = scb->tcs;
350 if ((scb->scb_tagmsg) != 0) {
352 * A Tagged I/O. OK to start If no
353 * non-tagged I/O is active on the same
354 * target
356 if (tcs->ntagscb == NULL)
357 break;
359 } else if (scb->cmd[0] == SCSI_REQUEST_SENSE) {
361 * OK to do a non-tagged request sense
362 * even if a non-tagged I/O has been
363 * started, 'cuz we don't allow any
364 * disconnect during a request sense op
366 break;
368 } else if (tcs->tagcnt == 0) {
370 * No tagged I/O active on this target,
371 * ok to start a non-tagged one if one
372 * is not already active
374 if (tcs->ntagscb == NULL)
375 break;
379 splx(s);
381 return (scb);
384 static inline void
385 iha_append_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
387 /* ASSUMPTION: only called within a splbio()/splx() pair */
389 if (scb == sc->sc_actscb)
390 sc->sc_actscb = NULL;
392 scb->status = STATUS_QUEUED;
394 TAILQ_INSERT_TAIL(&sc->sc_pendscb, scb, chain);
397 static inline void
398 iha_push_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
400 int s;
402 s = splbio();
404 if (scb == sc->sc_actscb)
405 sc->sc_actscb = NULL;
407 scb->status = STATUS_QUEUED;
409 TAILQ_INSERT_HEAD(&sc->sc_pendscb, scb, chain);
411 splx(s);
415 * iha_del_pend_scb - remove scb from sc_pendscb
417 static inline void
418 iha_del_pend_scb(struct iha_softc *sc, struct iha_scb *scb)
420 int s;
422 s = splbio();
424 TAILQ_REMOVE(&sc->sc_pendscb, scb, chain);
426 splx(s);
429 static inline void
430 iha_mark_busy_scb(struct iha_scb *scb)
432 int s;
434 s = splbio();
436 scb->status = STATUS_BUSY;
438 if (scb->scb_tagmsg == 0)
439 scb->tcs->ntagscb = scb;
440 else
441 scb->tcs->tagcnt++;
443 splx(s);
447 * iha_set_ssig - read the current scsi signal mask, then write a new
448 * one which turns off/on the specified signals.
450 static inline void
451 iha_set_ssig(struct iha_softc *sc, uint8_t offsigs, uint8_t onsigs)
453 bus_space_tag_t iot = sc->sc_iot;
454 bus_space_handle_t ioh = sc->sc_ioh;
455 uint8_t currsigs;
457 currsigs = bus_space_read_1(iot, ioh, TUL_SSIGI);
458 bus_space_write_1(iot, ioh, TUL_SSIGO, (currsigs & ~offsigs) | onsigs);
462 * iha_intr - the interrupt service routine for the iha driver
465 iha_intr(void *arg)
467 bus_space_tag_t iot;
468 bus_space_handle_t ioh;
469 struct iha_softc *sc;
470 int s;
472 sc = (struct iha_softc *)arg;
473 iot = sc->sc_iot;
474 ioh = sc->sc_ioh;
476 if ((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
477 return (0);
479 s = splbio(); /* XXX - Or are interrupts off when ISR's are called? */
481 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
482 /* XXX - need these inside a splbio()/splx()? */
483 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
484 sc->sc_semaph = SEMAPH_IN_MAIN;
486 iha_main(sc);
488 sc->sc_semaph = ~SEMAPH_IN_MAIN;
489 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
492 splx(s);
494 return (1);
497 void
498 iha_attach(struct iha_softc *sc)
500 bus_space_tag_t iot = sc->sc_iot;
501 bus_space_handle_t ioh = sc->sc_ioh;
502 struct iha_scb *scb;
503 struct iha_eeprom eeprom;
504 struct eeprom_adapter *conf;
505 int i, error, reg;
507 iha_read_eeprom(sc, &eeprom);
509 conf = &eeprom.adapter[0];
512 * fill in the rest of the iha_softc fields
514 sc->sc_id = CFG_ID(conf->config1);
515 sc->sc_semaph = ~SEMAPH_IN_MAIN;
516 sc->sc_status0 = 0;
517 sc->sc_actscb = NULL;
519 TAILQ_INIT(&sc->sc_freescb);
520 TAILQ_INIT(&sc->sc_pendscb);
521 TAILQ_INIT(&sc->sc_donescb);
522 error = iha_alloc_sglist(sc);
523 if (error != 0) {
524 aprint_error_dev(sc->sc_dev, "cannot allocate sglist\n");
525 return;
528 sc->sc_scb = malloc(sizeof(struct iha_scb) * IHA_MAX_SCB,
529 M_DEVBUF, M_NOWAIT|M_ZERO);
530 if (sc->sc_scb == NULL) {
531 aprint_error_dev(sc->sc_dev, "cannot allocate SCB\n");
532 return;
535 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++) {
536 scb->scb_tagid = i;
537 scb->sgoffset = IHA_SG_SIZE * i;
538 scb->sglist = sc->sc_sglist + IHA_MAX_SG_ENTRIES * i;
539 scb->sg_addr =
540 sc->sc_dmamap->dm_segs[0].ds_addr + scb->sgoffset;
542 error = bus_dmamap_create(sc->sc_dmat,
543 MAXPHYS, IHA_MAX_SG_ENTRIES, MAXPHYS, 0,
544 BUS_DMA_NOWAIT, &scb->dmap);
546 if (error != 0) {
547 aprint_error_dev(sc->sc_dev,
548 "couldn't create SCB DMA map, error = %d\n",
549 error);
550 return;
552 TAILQ_INSERT_TAIL(&sc->sc_freescb, scb, chain);
555 /* Mask all the interrupts */
556 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
558 /* Stop any I/O and reset the scsi module */
559 iha_reset_dma(sc);
560 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSMOD);
562 /* Program HBA's SCSI ID */
563 bus_space_write_1(iot, ioh, TUL_SID, sc->sc_id << 4);
566 * Configure the channel as requested by the NVRAM settings read
567 * by iha_read_eeprom() above.
570 sc->sc_sconf1 = SCONFIG0DEFAULT;
571 if ((conf->config1 & CFG_EN_PAR) != 0)
572 sc->sc_sconf1 |= SPCHK;
573 bus_space_write_1(iot, ioh, TUL_SCONFIG0, sc->sc_sconf1);
575 /* set selection time out 250 ms */
576 bus_space_write_1(iot, ioh, TUL_STIMO, STIMO_250MS);
578 /* Enable desired SCSI termination configuration read from eeprom */
579 reg = 0;
580 if (conf->config1 & CFG_ACT_TERM1)
581 reg |= ENTMW;
582 if (conf->config1 & CFG_ACT_TERM2)
583 reg |= ENTM;
584 bus_space_write_1(iot, ioh, TUL_DCTRL0, reg);
586 reg = bus_space_read_1(iot, ioh, TUL_GCTRL1) & ~ATDEN;
587 if (conf->config1 & CFG_AUTO_TERM)
588 reg |= ATDEN;
589 bus_space_write_1(iot, ioh, TUL_GCTRL1, reg);
591 for (i = 0; i < IHA_MAX_TARGETS / 2; i++) {
592 sc->sc_tcs[i * 2 ].flags = EEP_LBYTE(conf->tflags[i]);
593 sc->sc_tcs[i * 2 + 1].flags = EEP_HBYTE(conf->tflags[i]);
594 iha_reset_tcs(&sc->sc_tcs[i * 2 ], sc->sc_sconf1);
595 iha_reset_tcs(&sc->sc_tcs[i * 2 + 1], sc->sc_sconf1);
598 iha_reset_chip(sc);
599 bus_space_write_1(iot, ioh, TUL_SIEN, ALL_INTERRUPTS);
602 * fill in the adapter.
604 sc->sc_adapter.adapt_dev = sc->sc_dev;
605 sc->sc_adapter.adapt_nchannels = 1;
606 sc->sc_adapter.adapt_openings = IHA_MAX_SCB;
607 sc->sc_adapter.adapt_max_periph = IHA_MAX_SCB;
608 sc->sc_adapter.adapt_ioctl = NULL;
609 sc->sc_adapter.adapt_minphys = minphys;
610 sc->sc_adapter.adapt_request = iha_scsipi_request;
613 * fill in the channel.
615 sc->sc_channel.chan_adapter = &sc->sc_adapter;
616 sc->sc_channel.chan_bustype = &scsi_bustype;
617 sc->sc_channel.chan_channel = 0;
618 sc->sc_channel.chan_ntargets = CFG_TARGET(conf->config2);
619 sc->sc_channel.chan_nluns = 8;
620 sc->sc_channel.chan_id = sc->sc_id;
623 * Now try to attach all the sub devices.
625 config_found(sc->sc_dev, &sc->sc_channel, scsiprint);
629 * iha_alloc_sglist - allocate and map sglist for SCB's
631 static int
632 iha_alloc_sglist(struct iha_softc *sc)
634 bus_dma_segment_t seg;
635 int error, rseg;
638 * Allocate DMA-safe memory for the SCB's sglist
640 if ((error = bus_dmamem_alloc(sc->sc_dmat,
641 IHA_SG_SIZE * IHA_MAX_SCB,
642 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
643 printf(": unable to allocate sglist, error = %d\n", error);
644 return (error);
646 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
647 IHA_SG_SIZE * IHA_MAX_SCB, (void **)&sc->sc_sglist,
648 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
649 printf(": unable to map sglist, error = %d\n", error);
650 return (error);
654 * Create and load the DMA map used for the SCBs
656 if ((error = bus_dmamap_create(sc->sc_dmat,
657 IHA_SG_SIZE * IHA_MAX_SCB, 1, IHA_SG_SIZE * IHA_MAX_SCB,
658 0, BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
659 printf(": unable to create control DMA map, error = %d\n",
660 error);
661 return (error);
663 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
664 sc->sc_sglist, IHA_SG_SIZE * IHA_MAX_SCB,
665 NULL, BUS_DMA_NOWAIT)) != 0) {
666 printf(": unable to load control DMA map, error = %d\n", error);
667 return (error);
670 memset(sc->sc_sglist, 0, IHA_SG_SIZE * IHA_MAX_SCB);
672 return (0);
675 void
676 iha_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
677 void *arg)
679 struct scsipi_xfer *xs;
680 struct scsipi_periph *periph;
681 struct iha_scb *scb;
682 struct iha_softc *sc;
683 int error, s;
685 sc = device_private(chan->chan_adapter->adapt_dev);
687 switch (req) {
688 case ADAPTER_REQ_RUN_XFER:
689 xs = arg;
690 periph = xs->xs_periph;
692 /* XXX This size isn't actually a hardware restriction. */
693 if (xs->cmdlen > sizeof(scb->cmd) ||
694 periph->periph_target >= IHA_MAX_TARGETS) {
695 xs->error = XS_DRIVER_STUFFUP;
696 scsipi_done(xs);
697 return;
700 s = splbio();
701 scb = TAILQ_FIRST(&sc->sc_freescb);
702 if (scb != NULL) {
703 scb->status = STATUS_RENT;
704 TAILQ_REMOVE(&sc->sc_freescb, scb, chain);
706 else {
707 printf("unable to allocate scb\n");
708 #ifdef DIAGNOSTIC
709 scsipi_printaddr(periph);
710 panic("iha_scsipi_request");
711 #else
712 splx(s);
713 return;
714 #endif
716 splx(s);
718 scb->target = periph->periph_target;
719 scb->lun = periph->periph_lun;
720 scb->tcs = &sc->sc_tcs[scb->target];
721 scb->scb_id = MSG_IDENTIFY(periph->periph_lun,
722 (xs->xs_control & XS_CTL_REQSENSE) == 0);
724 scb->xs = xs;
725 scb->cmdlen = xs->cmdlen;
726 memcpy(&scb->cmd, xs->cmd, xs->cmdlen);
727 scb->buflen = xs->datalen;
728 scb->flags = 0;
729 if (xs->xs_control & XS_CTL_DATA_OUT)
730 scb->flags |= FLAG_DATAOUT;
731 if (xs->xs_control & XS_CTL_DATA_IN)
732 scb->flags |= FLAG_DATAIN;
734 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
735 error = bus_dmamap_load(sc->sc_dmat, scb->dmap,
736 xs->data, scb->buflen, NULL,
737 ((xs->xs_control & XS_CTL_NOSLEEP) ?
738 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
739 BUS_DMA_STREAMING |
740 ((scb->flags & FLAG_DATAIN) ?
741 BUS_DMA_READ : BUS_DMA_WRITE));
743 if (error) {
744 printf("%s: error %d loading DMA map\n",
745 device_xname(sc->sc_dev), error);
746 iha_append_free_scb(sc, scb);
747 xs->error = XS_DRIVER_STUFFUP;
748 scsipi_done(xs);
749 return;
751 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
752 0, scb->dmap->dm_mapsize,
753 (scb->flags & FLAG_DATAIN) ?
754 BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
757 iha_exec_scb(sc, scb);
758 return;
760 case ADAPTER_REQ_GROW_RESOURCES:
761 return; /* XXX */
763 case ADAPTER_REQ_SET_XFER_MODE:
765 struct tcs *tcs;
766 struct scsipi_xfer_mode *xm = arg;
768 tcs = &sc->sc_tcs[xm->xm_target];
770 if ((xm->xm_mode & PERIPH_CAP_WIDE16) != 0 &&
771 (tcs->flags & FLAG_NO_WIDE) == 0)
772 tcs->flags &= ~(FLAG_WIDE_DONE|FLAG_SYNC_DONE);
774 if ((xm->xm_mode & PERIPH_CAP_SYNC) != 0 &&
775 (tcs->flags & FLAG_NO_SYNC) == 0)
776 tcs->flags &= ~FLAG_SYNC_DONE;
779 * If we're not going to negotiate, send the
780 * notification now, since it won't happen later.
782 if ((tcs->flags & (FLAG_WIDE_DONE|FLAG_SYNC_DONE)) ==
783 (FLAG_WIDE_DONE|FLAG_SYNC_DONE))
784 iha_update_xfer_mode(sc, xm->xm_target);
786 return;
791 void
792 iha_update_xfer_mode(struct iha_softc *sc, int target)
794 struct tcs *tcs = &sc->sc_tcs[target];
795 struct scsipi_xfer_mode xm;
797 xm.xm_target = target;
798 xm.xm_mode = 0;
799 xm.xm_period = 0;
800 xm.xm_offset = 0;
802 if (tcs->syncm & PERIOD_WIDE_SCSI)
803 xm.xm_mode |= PERIPH_CAP_WIDE16;
805 if (tcs->period) {
806 xm.xm_mode |= PERIPH_CAP_SYNC;
807 xm.xm_period = tcs->period;
808 xm.xm_offset = tcs->offset;
811 scsipi_async_event(&sc->sc_channel, ASYNC_EVENT_XFER_MODE, &xm);
814 static void
815 iha_reset_scsi_bus(struct iha_softc *sc)
817 struct iha_scb *scb;
818 struct tcs *tcs;
819 int i, s;
821 s = splbio();
823 iha_reset_dma(sc);
825 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
826 switch (scb->status) {
827 case STATUS_BUSY:
828 iha_append_done_scb(sc, scb, HOST_SCSI_RST);
829 break;
831 case STATUS_SELECT:
832 iha_push_pend_scb(sc, scb);
833 break;
835 default:
836 break;
839 for (i = 0, tcs = sc->sc_tcs; i < IHA_MAX_TARGETS; i++, tcs++)
840 iha_reset_tcs(tcs, sc->sc_sconf1);
842 splx(s);
845 void
846 iha_reset_chip(struct iha_softc *sc)
848 bus_space_tag_t iot = sc->sc_iot;
849 bus_space_handle_t ioh = sc->sc_ioh;
851 /* reset tulip chip */
853 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSCSI);
855 do {
856 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
857 } while ((sc->sc_sistat & SRSTD) == 0);
859 iha_set_ssig(sc, 0, 0);
861 /* Clear any active interrupt*/
862 (void)bus_space_read_1(iot, ioh, TUL_SISTAT);
866 * iha_reset_dma - abort any active DMA xfer, reset tulip FIFO.
868 static void
869 iha_reset_dma(struct iha_softc *sc)
871 bus_space_tag_t iot = sc->sc_iot;
872 bus_space_handle_t ioh = sc->sc_ioh;
874 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
875 /* if DMA xfer is pending, abort DMA xfer */
876 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
877 /* wait Abort DMA xfer done */
878 while ((bus_space_read_1(iot, ioh, TUL_ISTUS0) & DABT) == 0)
882 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
886 * iha_reset_tcs - reset the target control structure pointed
887 * to by tcs to default values. tcs flags
888 * only has the negotiation done bits reset as
889 * the other bits are fixed at initialization.
891 static void
892 iha_reset_tcs(struct tcs *tcs, uint8_t config0)
895 tcs->flags &= ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
896 tcs->period = 0;
897 tcs->offset = 0;
898 tcs->tagcnt = 0;
899 tcs->ntagscb = NULL;
900 tcs->syncm = 0;
901 tcs->sconfig0 = config0;
905 * iha_main - process the active SCB, taking one off pending and making it
906 * active if necessary, and any done SCB's created as
907 * a result until there are no interrupts pending and no pending
908 * SCB's that can be started.
910 static void
911 iha_main(struct iha_softc *sc)
913 bus_space_tag_t iot = sc->sc_iot;
914 bus_space_handle_t ioh =sc->sc_ioh;
915 struct iha_scb *scb;
917 for (;;) {
918 iha_scsi(sc);
920 while ((scb = iha_pop_done_scb(sc)) != NULL)
921 iha_done_scb(sc, scb);
924 * If there are no interrupts pending, or we can't start
925 * a pending sc, break out of the for(;;). Otherwise
926 * continue the good work with another call to
927 * iha_scsi().
929 if (((bus_space_read_1(iot, ioh, TUL_STAT0) & INTPD) == 0)
930 && (iha_find_pend_scb(sc) == NULL))
931 break;
936 * iha_scsi - service any outstanding interrupts. If there are none, try to
937 * start another SCB currently in the pending queue.
939 static void
940 iha_scsi(struct iha_softc *sc)
942 bus_space_tag_t iot = sc->sc_iot;
943 bus_space_handle_t ioh = sc->sc_ioh;
944 struct iha_scb *scb;
945 struct tcs *tcs;
946 uint8_t stat;
948 /* service pending interrupts asap */
950 stat = bus_space_read_1(iot, ioh, TUL_STAT0);
951 if ((stat & INTPD) != 0) {
952 sc->sc_status0 = stat;
953 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
954 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
956 sc->sc_phase = sc->sc_status0 & PH_MASK;
958 if ((sc->sc_sistat & SRSTD) != 0) {
959 iha_reset_scsi_bus(sc);
960 return;
963 if ((sc->sc_sistat & RSELED) != 0) {
964 iha_resel(sc);
965 return;
968 if ((sc->sc_sistat & (STIMEO | DISCD)) != 0) {
969 iha_busfree(sc);
970 return;
973 if ((sc->sc_sistat & (SCMDN | SBSRV)) != 0) {
974 iha_next_state(sc);
975 return;
978 if ((sc->sc_sistat & SELED) != 0)
979 iha_set_ssig(sc, 0, 0);
983 * There were no interrupts pending which required action elsewhere, so
984 * see if it is possible to start the selection phase on a pending SCB
986 if ((scb = iha_find_pend_scb(sc)) == NULL)
987 return;
989 tcs = scb->tcs;
991 /* program HBA's SCSI ID & target SCSI ID */
992 bus_space_write_1(iot, ioh, TUL_SID, (sc->sc_id << 4) | scb->target);
994 if ((scb->xs->xs_control & XS_CTL_RESET) == 0) {
995 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
997 if ((tcs->flags & FLAG_NO_NEG_SYNC) == 0 ||
998 (tcs->flags & FLAG_NO_NEG_WIDE) == 0)
999 iha_select(sc, scb, SELATNSTOP);
1001 else if (scb->scb_tagmsg != 0)
1002 iha_select(sc, scb, SEL_ATN3);
1004 else
1005 iha_select(sc, scb, SEL_ATN);
1007 } else {
1008 iha_select(sc, scb, SELATNSTOP);
1009 scb->nextstat = 8;
1012 if ((scb->xs->xs_control & XS_CTL_POLL) != 0) {
1013 int timeout;
1014 for (timeout = scb->xs->timeout; timeout > 0; timeout--) {
1015 if (iha_wait(sc, NO_OP) == -1)
1016 break;
1017 if (iha_next_state(sc) == -1)
1018 break;
1019 delay(1000); /* Only happens in boot, so it's ok */
1023 * Since done queue processing not done until AFTER this
1024 * function returns, scb is on the done queue, not
1025 * the free queue at this point and still has valid data
1027 * Conversely, xs->error has not been set yet
1029 if (timeout == 0)
1030 iha_timeout(scb);
1034 static void
1035 iha_select(struct iha_softc *sc, struct iha_scb *scb, uint8_t select_type)
1037 bus_space_tag_t iot = sc->sc_iot;
1038 bus_space_handle_t ioh = sc->sc_ioh;
1040 switch (select_type) {
1041 case SEL_ATN:
1042 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1043 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1044 scb->cmd, scb->cmdlen);
1046 scb->nextstat = 2;
1047 break;
1049 case SELATNSTOP:
1050 scb->nextstat = 1;
1051 break;
1053 case SEL_ATN3:
1054 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1055 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagmsg);
1056 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_tagid);
1058 bus_space_write_multi_1(iot, ioh, TUL_SFIFO, scb->cmd,
1059 scb->cmdlen);
1061 scb->nextstat = 2;
1062 break;
1064 default:
1065 printf("[debug] iha_select() - unknown select type = 0x%02x\n",
1066 select_type);
1067 return;
1070 iha_del_pend_scb(sc, scb);
1071 scb->status = STATUS_SELECT;
1073 sc->sc_actscb = scb;
1075 bus_space_write_1(iot, ioh, TUL_SCMD, select_type);
1079 * iha_wait - wait for an interrupt to service or a SCSI bus phase change
1080 * after writing the supplied command to the tulip chip. If
1081 * the command is NO_OP, skip the command writing.
1083 static int
1084 iha_wait(struct iha_softc *sc, uint8_t cmd)
1086 bus_space_tag_t iot = sc->sc_iot;
1087 bus_space_handle_t ioh = sc->sc_ioh;
1089 if (cmd != NO_OP)
1090 bus_space_write_1(iot, ioh, TUL_SCMD, cmd);
1093 * Have to do this here, in addition to in iha_isr, because
1094 * interrupts might be turned off when we get here.
1096 do {
1097 sc->sc_status0 = bus_space_read_1(iot, ioh, TUL_STAT0);
1098 } while ((sc->sc_status0 & INTPD) == 0);
1100 sc->sc_status1 = bus_space_read_1(iot, ioh, TUL_STAT1);
1101 sc->sc_sistat = bus_space_read_1(iot, ioh, TUL_SISTAT);
1103 sc->sc_phase = sc->sc_status0 & PH_MASK;
1105 if ((sc->sc_sistat & SRSTD) != 0) {
1106 /* SCSI bus reset interrupt */
1107 iha_reset_scsi_bus(sc);
1108 return (-1);
1111 if ((sc->sc_sistat & RSELED) != 0)
1112 /* Reselection interrupt */
1113 return (iha_resel(sc));
1115 if ((sc->sc_sistat & STIMEO) != 0) {
1116 /* selected/reselected timeout interrupt */
1117 iha_busfree(sc);
1118 return (-1);
1121 if ((sc->sc_sistat & DISCD) != 0) {
1122 /* BUS disconnection interrupt */
1123 if ((sc->sc_flags & FLAG_EXPECT_DONE_DISC) != 0) {
1124 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1125 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1126 SCONFIG0DEFAULT);
1127 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1128 iha_append_done_scb(sc, sc->sc_actscb, HOST_OK);
1129 sc->sc_flags &= ~FLAG_EXPECT_DONE_DISC;
1131 } else if ((sc->sc_flags & FLAG_EXPECT_DISC) != 0) {
1132 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1133 bus_space_write_1(iot, ioh, TUL_SCONFIG0,
1134 SCONFIG0DEFAULT);
1135 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
1136 sc->sc_actscb = NULL;
1137 sc->sc_flags &= ~FLAG_EXPECT_DISC;
1139 } else
1140 iha_busfree(sc);
1142 return (-1);
1145 return (sc->sc_phase);
1148 static void
1149 iha_exec_scb(struct iha_softc *sc, struct iha_scb *scb)
1151 bus_space_tag_t iot;
1152 bus_space_handle_t ioh;
1153 bus_dmamap_t dm;
1154 struct scsipi_xfer *xs = scb->xs;
1155 int nseg, s;
1157 dm = scb->dmap;
1158 nseg = dm->dm_nsegs;
1160 if (nseg > 1) {
1161 struct iha_sg_element *sg = scb->sglist;
1162 int i;
1164 for (i = 0; i < nseg; i++) {
1165 sg[i].sg_len = htole32(dm->dm_segs[i].ds_len);
1166 sg[i].sg_addr = htole32(dm->dm_segs[i].ds_addr);
1168 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1169 scb->sgoffset, IHA_SG_SIZE,
1170 BUS_DMASYNC_PREWRITE);
1172 scb->flags |= FLAG_SG;
1173 scb->sg_size = scb->sg_max = nseg;
1174 scb->sg_index = 0;
1176 scb->bufaddr = scb->sg_addr;
1177 } else
1178 scb->bufaddr = dm->dm_segs[0].ds_addr;
1180 if ((xs->xs_control & XS_CTL_POLL) == 0) {
1181 int timeout = mstohz(xs->timeout);
1182 if (timeout == 0)
1183 timeout = 1;
1184 callout_reset(&xs->xs_callout, timeout, iha_timeout, scb);
1187 s = splbio();
1189 if (((scb->xs->xs_control & XS_RESET) != 0) ||
1190 (scb->cmd[0] == SCSI_REQUEST_SENSE))
1191 iha_push_pend_scb(sc, scb); /* Insert SCB at head of Pend */
1192 else
1193 iha_append_pend_scb(sc, scb); /* Append SCB to tail of Pend */
1196 * Run through iha_main() to ensure something is active, if
1197 * only this new SCB.
1199 if (sc->sc_semaph != SEMAPH_IN_MAIN) {
1200 iot = sc->sc_iot;
1201 ioh = sc->sc_ioh;
1203 bus_space_write_1(iot, ioh, TUL_IMSK, MASK_ALL);
1204 sc->sc_semaph = SEMAPH_IN_MAIN;
1206 splx(s);
1207 iha_main(sc);
1208 s = splbio();
1210 sc->sc_semaph = ~SEMAPH_IN_MAIN;
1211 bus_space_write_1(iot, ioh, TUL_IMSK, (MASK_ALL & ~MSCMP));
1214 splx(s);
1218 * iha_done_scb - We have a scb which has been processed by the
1219 * adaptor, now we look to see how the operation went.
1221 static void
1222 iha_done_scb(struct iha_softc *sc, struct iha_scb *scb)
1224 struct scsipi_xfer *xs = scb->xs;
1226 if (xs != NULL) {
1227 /* Cancel the timeout. */
1228 callout_stop(&xs->xs_callout);
1230 if (scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) {
1231 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1232 0, scb->dmap->dm_mapsize,
1233 (scb->flags & FLAG_DATAIN) ?
1234 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
1235 bus_dmamap_unload(sc->sc_dmat, scb->dmap);
1238 xs->status = scb->ta_stat;
1240 switch (scb->ha_stat) {
1241 case HOST_OK:
1242 switch (scb->ta_stat) {
1243 case SCSI_OK:
1244 case SCSI_CONDITION_MET:
1245 case SCSI_INTERM:
1246 case SCSI_INTERM_COND_MET:
1247 xs->resid = scb->buflen;
1248 xs->error = XS_NOERROR;
1249 if ((scb->flags & FLAG_RSENS) != 0)
1250 xs->error = XS_SENSE;
1251 break;
1253 case SCSI_RESV_CONFLICT:
1254 case SCSI_BUSY:
1255 case SCSI_QUEUE_FULL:
1256 xs->error = XS_BUSY;
1257 break;
1259 case SCSI_TERMINATED:
1260 case SCSI_ACA_ACTIVE:
1261 case SCSI_CHECK:
1262 scb->tcs->flags &=
1263 ~(FLAG_SYNC_DONE | FLAG_WIDE_DONE);
1265 if ((scb->flags & FLAG_RSENS) != 0 ||
1266 iha_push_sense_request(sc, scb) != 0) {
1267 scb->flags &= ~FLAG_RSENS;
1268 printf("%s: request sense failed\n",
1269 device_xname(sc->sc_dev));
1270 xs->error = XS_DRIVER_STUFFUP;
1271 break;
1274 xs->error = XS_SENSE;
1275 return;
1277 default:
1278 xs->error = XS_DRIVER_STUFFUP;
1279 break;
1281 break;
1283 case HOST_SEL_TOUT:
1284 xs->error = XS_SELTIMEOUT;
1285 break;
1287 case HOST_SCSI_RST:
1288 case HOST_DEV_RST:
1289 xs->error = XS_RESET;
1290 break;
1292 case HOST_SPERR:
1293 printf("%s: SCSI Parity error detected\n",
1294 device_xname(sc->sc_dev));
1295 xs->error = XS_DRIVER_STUFFUP;
1296 break;
1298 case HOST_TIMED_OUT:
1299 xs->error = XS_TIMEOUT;
1300 break;
1302 case HOST_DO_DU:
1303 case HOST_BAD_PHAS:
1304 default:
1305 xs->error = XS_DRIVER_STUFFUP;
1306 break;
1309 scsipi_done(xs);
1312 iha_append_free_scb(sc, scb);
1316 * iha_push_sense_request - obtain auto sense data by pushing the
1317 * SCB needing it back onto the pending
1318 * queue with a REQUEST_SENSE CDB.
1320 static int
1321 iha_push_sense_request(struct iha_softc *sc, struct iha_scb *scb)
1323 struct scsipi_xfer *xs = scb->xs;
1324 struct scsipi_periph *periph = xs->xs_periph;
1325 struct scsi_request_sense *ss = (struct scsi_request_sense *)scb->cmd;
1326 int lun = periph->periph_lun;
1327 int err;
1329 memset(ss, 0, sizeof(*ss));
1330 ss->opcode = SCSI_REQUEST_SENSE;
1331 ss->byte2 = lun << SCSI_CMD_LUN_SHIFT;
1332 ss->length = sizeof(struct scsi_sense_data);
1334 scb->flags = FLAG_RSENS | FLAG_DATAIN;
1336 scb->scb_id &= ~MSG_IDENTIFY_DISCFLAG;
1338 scb->scb_tagmsg = 0;
1339 scb->ta_stat = SCSI_OK;
1341 scb->cmdlen = sizeof(struct scsi_request_sense);
1342 scb->buflen = ss->length;
1344 err = bus_dmamap_load(sc->sc_dmat, scb->dmap,
1345 &xs->sense.scsi_sense, scb->buflen, NULL,
1346 BUS_DMA_READ|BUS_DMA_NOWAIT);
1347 if (err != 0) {
1348 printf("iha_push_sense_request: cannot bus_dmamap_load()\n");
1349 xs->error = XS_DRIVER_STUFFUP;
1350 return 1;
1352 bus_dmamap_sync(sc->sc_dmat, scb->dmap,
1353 0, scb->buflen, BUS_DMASYNC_PREREAD);
1355 /* XXX What about queued command? */
1356 iha_exec_scb(sc, scb);
1358 return 0;
1361 static void
1362 iha_timeout(void *arg)
1364 struct iha_scb *scb = (struct iha_scb *)arg;
1365 struct scsipi_xfer *xs = scb->xs;
1366 struct scsipi_periph *periph;
1367 struct iha_softc *sc;
1369 if (xs == NULL) {
1370 printf("[debug] iha_timeout called with xs == NULL\n");
1371 return;
1374 periph = xs->xs_periph;
1376 sc = device_private(periph->periph_channel->chan_adapter->adapt_dev);
1378 scsipi_printaddr(periph);
1379 printf("SCSI OpCode 0x%02x timed out\n", xs->cmd->opcode);
1380 iha_abort_xs(sc, xs, HOST_TIMED_OUT);
1384 * iha_abort_xs - find the SCB associated with the supplied xs and
1385 * stop all processing on it, moving it to the done
1386 * queue with the supplied host status value.
1388 static void
1389 iha_abort_xs(struct iha_softc *sc, struct scsipi_xfer *xs, uint8_t hastat)
1391 struct iha_scb *scb;
1392 int i, s;
1394 s = splbio();
1396 /* Check the pending queue for the SCB pointing to xs */
1398 TAILQ_FOREACH(scb, &sc->sc_pendscb, chain)
1399 if (scb->xs == xs) {
1400 iha_del_pend_scb(sc, scb);
1401 iha_append_done_scb(sc, scb, hastat);
1402 splx(s);
1403 return;
1407 * If that didn't work, check all BUSY/SELECTING SCB's for one
1408 * pointing to xs
1411 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1412 switch (scb->status) {
1413 case STATUS_BUSY:
1414 case STATUS_SELECT:
1415 if (scb->xs == xs) {
1416 iha_append_done_scb(sc, scb, hastat);
1417 splx(s);
1418 return;
1420 break;
1421 default:
1422 break;
1425 splx(s);
1429 * iha_data_over_run - return HOST_OK for all SCSI opcodes where BufLen
1430 * is an 'Allocation Length'. All other SCSI opcodes
1431 * get HOST_DO_DU as they SHOULD have xferred all the
1432 * data requested.
1434 * The list of opcodes using 'Allocation Length' was
1435 * found by scanning all the SCSI-3 T10 drafts. See
1436 * www.t10.org for the curious with a .pdf reader.
1438 static uint8_t
1439 iha_data_over_run(struct iha_scb *scb)
1441 switch (scb->cmd[0]) {
1442 case 0x03: /* Request Sense SPC-2 */
1443 case 0x12: /* Inquiry SPC-2 */
1444 case 0x1a: /* Mode Sense (6 byte version) SPC-2 */
1445 case 0x1c: /* Receive Diagnostic Results SPC-2 */
1446 case 0x23: /* Read Format Capacities MMC-2 */
1447 case 0x29: /* Read Generation SBC */
1448 case 0x34: /* Read Position SSC-2 */
1449 case 0x37: /* Read Defect Data SBC */
1450 case 0x3c: /* Read Buffer SPC-2 */
1451 case 0x42: /* Read Sub Channel MMC-2 */
1452 case 0x43: /* Read TOC/PMA/ATIP MMC */
1454 /* XXX - 2 with same opcode of 0x44? */
1455 case 0x44: /* Read Header/Read Density Suprt MMC/SSC*/
1457 case 0x46: /* Get Configuration MMC-2 */
1458 case 0x4a: /* Get Event/Status Notification MMC-2 */
1459 case 0x4d: /* Log Sense SPC-2 */
1460 case 0x51: /* Read Disc Information MMC */
1461 case 0x52: /* Read Track Information MMC */
1462 case 0x59: /* Read Master CUE MMC */
1463 case 0x5a: /* Mode Sense (10 byte version) SPC-2 */
1464 case 0x5c: /* Read Buffer Capacity MMC */
1465 case 0x5e: /* Persistent Reserve In SPC-2 */
1466 case 0x84: /* Receive Copy Results SPC-2 */
1467 case 0xa0: /* Report LUNs SPC-2 */
1468 case 0xa3: /* Various Report requests SBC-2/SCC-2*/
1469 case 0xa4: /* Report Key MMC-2 */
1470 case 0xad: /* Read DVD Structure MMC-2 */
1471 case 0xb4: /* Read Element Status (Attached) SMC */
1472 case 0xb5: /* Request Volume Element Address SMC */
1473 case 0xb7: /* Read Defect Data (12 byte ver.) SBC */
1474 case 0xb8: /* Read Element Status (Independ.) SMC */
1475 case 0xba: /* Report Redundancy SCC-2 */
1476 case 0xbd: /* Mechanism Status MMC */
1477 case 0xbe: /* Report Basic Redundancy SCC-2 */
1479 return (HOST_OK);
1481 default:
1482 return (HOST_DO_DU);
1487 * iha_next_state - process the current SCB as requested in its
1488 * nextstat member.
1490 static int
1491 iha_next_state(struct iha_softc *sc)
1494 if (sc->sc_actscb == NULL)
1495 return (-1);
1497 switch (sc->sc_actscb->nextstat) {
1498 case 1:
1499 if (iha_state_1(sc) == 3)
1500 goto state_3;
1501 break;
1503 case 2:
1504 switch (iha_state_2(sc)) {
1505 case 3:
1506 goto state_3;
1507 case 4:
1508 goto state_4;
1509 default:
1510 break;
1512 break;
1514 case 3:
1515 state_3:
1516 if (iha_state_3(sc) == 4)
1517 goto state_4;
1518 break;
1520 case 4:
1521 state_4:
1522 switch (iha_state_4(sc)) {
1523 case 0:
1524 return (0);
1525 case 6:
1526 goto state_6;
1527 default:
1528 break;
1530 break;
1532 case 5:
1533 switch (iha_state_5(sc)) {
1534 case 4:
1535 goto state_4;
1536 case 6:
1537 goto state_6;
1538 default:
1539 break;
1541 break;
1543 case 6:
1544 state_6:
1545 iha_state_6(sc);
1546 break;
1548 case 8:
1549 iha_state_8(sc);
1550 break;
1552 default:
1553 #ifdef IHA_DEBUG_STATE
1554 printf("[debug] -unknown state: %i-\n",
1555 sc->sc_actscb->nextstat);
1556 #endif
1557 iha_bad_seq(sc);
1558 break;
1561 return (-1);
1565 * iha_state_1 - selection is complete after a SELATNSTOP. If the target
1566 * has put the bus into MSG_OUT phase start wide/sync
1567 * negotiation. Otherwise clear the FIFO and go to state 3,
1568 * which will send the SCSI CDB to the target.
1570 static int
1571 iha_state_1(struct iha_softc *sc)
1573 bus_space_tag_t iot = sc->sc_iot;
1574 bus_space_handle_t ioh = sc->sc_ioh;
1575 struct iha_scb *scb = sc->sc_actscb;
1576 struct tcs *tcs;
1577 int flags;
1579 iha_mark_busy_scb(scb);
1581 tcs = scb->tcs;
1583 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
1586 * If we are in PHASE_MSG_OUT, send
1587 * a) IDENT message (with tags if appropriate)
1588 * b) WDTR if the target is configured to negotiate wide xfers
1589 * ** OR **
1590 * c) SDTR if the target is configured to negotiate sync xfers
1591 * but not wide ones
1593 * If we are NOT, then the target is not asking for anything but
1594 * the data/command, so go straight to state 3.
1596 if (sc->sc_phase == PHASE_MSG_OUT) {
1597 bus_space_write_1(iot, ioh, TUL_SCTRL1, (ESBUSIN | EHRSL));
1598 bus_space_write_1(iot, ioh, TUL_SFIFO, scb->scb_id);
1600 if (scb->scb_tagmsg != 0) {
1601 bus_space_write_1(iot, ioh, TUL_SFIFO,
1602 scb->scb_tagmsg);
1603 bus_space_write_1(iot, ioh, TUL_SFIFO,
1604 scb->scb_tagid);
1607 flags = tcs->flags;
1608 if ((flags & FLAG_NO_NEG_WIDE) == 0) {
1609 if (iha_msgout_wdtr(sc) == -1)
1610 return (-1);
1611 } else if ((flags & FLAG_NO_NEG_SYNC) == 0) {
1612 if (iha_msgout_sdtr(sc) == -1)
1613 return (-1);
1616 } else {
1617 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1618 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1621 return (3);
1625 * iha_state_2 - selection is complete after a SEL_ATN or SEL_ATN3. If the SCSI
1626 * CDB has already been send, go to state 4 to start the data
1627 * xfer. Otherwise reset the FIFO and go to state 3, sending
1628 * the SCSI CDB.
1630 static int
1631 iha_state_2(struct iha_softc *sc)
1633 bus_space_tag_t iot = sc->sc_iot;
1634 bus_space_handle_t ioh = sc->sc_ioh;
1635 struct iha_scb *scb = sc->sc_actscb;
1637 iha_mark_busy_scb(scb);
1639 bus_space_write_1(iot, ioh, TUL_SCONFIG0, scb->tcs->sconfig0);
1641 if ((sc->sc_status1 & CPDNE) != 0)
1642 return (4);
1644 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1646 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
1648 return (3);
1652 * iha_state_3 - send the SCSI CDB to the target, processing any status
1653 * or other messages received until that is done or
1654 * abandoned.
1656 static int
1657 iha_state_3(struct iha_softc *sc)
1659 bus_space_tag_t iot = sc->sc_iot;
1660 bus_space_handle_t ioh = sc->sc_ioh;
1661 struct iha_scb *scb = sc->sc_actscb;
1662 int flags;
1664 for (;;) {
1665 switch (sc->sc_phase) {
1666 case PHASE_CMD_OUT:
1667 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
1668 scb->cmd, scb->cmdlen);
1669 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1670 return (-1);
1671 else if (sc->sc_phase == PHASE_CMD_OUT) {
1672 iha_bad_seq(sc);
1673 return (-1);
1674 } else
1675 return (4);
1677 case PHASE_MSG_IN:
1678 scb->nextstat = 3;
1679 if (iha_msgin(sc) == -1)
1680 return (-1);
1681 break;
1683 case PHASE_STATUS_IN:
1684 if (iha_status_msg(sc) == -1)
1685 return (-1);
1686 break;
1688 case PHASE_MSG_OUT:
1689 flags = scb->tcs->flags;
1690 if ((flags & FLAG_NO_NEG_SYNC) != 0) {
1691 if (iha_msgout(sc, MSG_NOOP) == -1)
1692 return (-1);
1693 } else if (iha_msgout_sdtr(sc) == -1)
1694 return (-1);
1695 break;
1697 default:
1698 printf("[debug] -s3- bad phase = %d\n", sc->sc_phase);
1699 iha_bad_seq(sc);
1700 return (-1);
1706 * iha_state_4 - start a data xfer. Handle any bus state
1707 * transitions until PHASE_DATA_IN/_OUT
1708 * or the attempt is abandoned. If there is
1709 * no data to xfer, go to state 6 and finish
1710 * processing the current SCB.
1712 static int
1713 iha_state_4(struct iha_softc *sc)
1715 struct iha_scb *scb = sc->sc_actscb;
1717 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) ==
1718 (FLAG_DATAIN | FLAG_DATAOUT))
1719 return (6); /* Both dir flags set => NO xfer was requested */
1721 for (;;) {
1722 if (scb->buflen == 0)
1723 return (6);
1725 switch (sc->sc_phase) {
1726 case PHASE_STATUS_IN:
1727 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
1728 scb->ha_stat = iha_data_over_run(scb);
1729 if ((iha_status_msg(sc)) == -1)
1730 return (-1);
1731 break;
1733 case PHASE_MSG_IN:
1734 scb->nextstat = 4;
1735 if (iha_msgin(sc) == -1)
1736 return (-1);
1737 break;
1739 case PHASE_MSG_OUT:
1740 if ((sc->sc_status0 & SPERR) != 0) {
1741 scb->buflen = 0;
1742 scb->ha_stat = HOST_SPERR;
1743 if (iha_msgout(sc, MSG_INITIATOR_DET_ERR) == -1)
1744 return (-1);
1745 else
1746 return (6);
1747 } else {
1748 if (iha_msgout(sc, MSG_NOOP) == -1)
1749 return (-1);
1751 break;
1753 case PHASE_DATA_IN:
1754 return (iha_xfer_data(sc, scb, FLAG_DATAIN));
1756 case PHASE_DATA_OUT:
1757 return (iha_xfer_data(sc, scb, FLAG_DATAOUT));
1759 default:
1760 iha_bad_seq(sc);
1761 return (-1);
1767 * iha_state_5 - handle the partial or final completion of the current
1768 * data xfer. If DMA is still active stop it. If there is
1769 * more data to xfer, go to state 4 and start the xfer.
1770 * If not go to state 6 and finish the SCB.
1772 static int
1773 iha_state_5(struct iha_softc *sc)
1775 bus_space_tag_t iot = sc->sc_iot;
1776 bus_space_handle_t ioh = sc->sc_ioh;
1777 struct iha_scb *scb = sc->sc_actscb;
1778 struct iha_sg_element *sg;
1779 uint32_t cnt;
1780 uint8_t period, stat;
1781 long xcnt; /* cannot use unsigned!! see code: if (xcnt < 0) */
1782 int i;
1784 cnt = bus_space_read_4(iot, ioh, TUL_STCNT0) & TCNT;
1787 * Stop any pending DMA activity and check for parity error.
1790 if ((bus_space_read_1(iot, ioh, TUL_DCMD) & XDIR) != 0) {
1791 /* Input Operation */
1792 if ((sc->sc_status0 & SPERR) != 0)
1793 scb->ha_stat = HOST_SPERR;
1795 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1796 bus_space_write_1(iot, ioh, TUL_DCTRL0,
1797 bus_space_read_1(iot, ioh, TUL_DCTRL0) | SXSTP);
1798 while (bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND)
1802 } else {
1803 /* Output Operation */
1804 if ((sc->sc_status1 & SXCMP) == 0) {
1805 period = scb->tcs->syncm;
1806 if ((period & PERIOD_WIDE_SCSI) != 0)
1807 cnt += (bus_space_read_1(iot, ioh,
1808 TUL_SFIFOCNT) & FIFOC) * 2;
1809 else
1810 cnt += bus_space_read_1(iot, ioh,
1811 TUL_SFIFOCNT) & FIFOC;
1814 if ((bus_space_read_1(iot, ioh, TUL_ISTUS1) & XPEND) != 0) {
1815 bus_space_write_1(iot, ioh, TUL_DCMD, ABTXFR);
1817 stat = bus_space_read_1(iot, ioh, TUL_ISTUS0);
1818 while ((stat & DABT) == 0);
1821 if ((cnt == 1) && (sc->sc_phase == PHASE_DATA_OUT)) {
1822 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1823 return (-1);
1824 cnt = 0;
1826 } else if ((sc->sc_status1 & SXCMP) == 0)
1827 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
1830 if (cnt == 0) {
1831 scb->buflen = 0;
1832 return (6);
1835 /* Update active data pointer and restart the I/O at the new point */
1837 xcnt = scb->buflen - cnt; /* xcnt == bytes xferred */
1838 scb->buflen = cnt; /* cnt == bytes left */
1840 if ((scb->flags & FLAG_SG) != 0) {
1841 sg = &scb->sglist[scb->sg_index];
1842 for (i = scb->sg_index; i < scb->sg_max; sg++, i++) {
1843 xcnt -= le32toh(sg->sg_len);
1844 if (xcnt < 0) {
1845 xcnt += le32toh(sg->sg_len);
1847 sg->sg_addr =
1848 htole32(le32toh(sg->sg_addr) + xcnt);
1849 sg->sg_len =
1850 htole32(le32toh(sg->sg_len) - xcnt);
1851 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
1852 scb->sgoffset, IHA_SG_SIZE,
1853 BUS_DMASYNC_PREWRITE);
1855 scb->bufaddr += (i - scb->sg_index) *
1856 sizeof(struct iha_sg_element);
1857 scb->sg_size = scb->sg_max - i;
1858 scb->sg_index = i;
1860 return (4);
1863 return (6);
1865 } else
1866 scb->bufaddr += xcnt;
1868 return (4);
1872 * iha_state_6 - finish off the active scb (may require several
1873 * iterations if PHASE_MSG_IN) and return -1 to indicate
1874 * the bus is free.
1876 static int
1877 iha_state_6(struct iha_softc *sc)
1880 for (;;) {
1881 switch (sc->sc_phase) {
1882 case PHASE_STATUS_IN:
1883 if (iha_status_msg(sc) == -1)
1884 return (-1);
1885 break;
1887 case PHASE_MSG_IN:
1888 sc->sc_actscb->nextstat = 6;
1889 if ((iha_msgin(sc)) == -1)
1890 return (-1);
1891 break;
1893 case PHASE_MSG_OUT:
1894 if ((iha_msgout(sc, MSG_NOOP)) == -1)
1895 return (-1);
1896 break;
1898 case PHASE_DATA_IN:
1899 if (iha_xpad_in(sc) == -1)
1900 return (-1);
1901 break;
1903 case PHASE_DATA_OUT:
1904 if (iha_xpad_out(sc) == -1)
1905 return (-1);
1906 break;
1908 default:
1909 iha_bad_seq(sc);
1910 return (-1);
1916 * iha_state_8 - reset the active device and all busy SCBs using it
1918 static int
1919 iha_state_8(struct iha_softc *sc)
1921 bus_space_tag_t iot = sc->sc_iot;
1922 bus_space_handle_t ioh = sc->sc_ioh;
1923 struct iha_scb *scb;
1924 int i;
1925 uint8_t tar;
1927 if (sc->sc_phase == PHASE_MSG_OUT) {
1928 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_BUS_DEV_RESET);
1930 scb = sc->sc_actscb;
1932 /* This SCB finished correctly -- resetting the device */
1933 iha_append_done_scb(sc, scb, HOST_OK);
1935 iha_reset_tcs(scb->tcs, sc->sc_sconf1);
1937 tar = scb->target;
1938 for (i = 0, scb = sc->sc_scb; i < IHA_MAX_SCB; i++, scb++)
1939 if (scb->target == tar)
1940 switch (scb->status) {
1941 case STATUS_BUSY:
1942 iha_append_done_scb(sc,
1943 scb, HOST_DEV_RST);
1944 break;
1946 case STATUS_SELECT:
1947 iha_push_pend_scb(sc, scb);
1948 break;
1950 default:
1951 break;
1954 sc->sc_flags |= FLAG_EXPECT_DISC;
1956 if (iha_wait(sc, XF_FIFO_OUT) == -1)
1957 return (-1);
1960 iha_bad_seq(sc);
1961 return (-1);
1965 * iha_xfer_data - initiate the DMA xfer of the data
1967 static int
1968 iha_xfer_data(struct iha_softc *sc, struct iha_scb *scb, int direction)
1970 bus_space_tag_t iot = sc->sc_iot;
1971 bus_space_handle_t ioh = sc->sc_ioh;
1972 uint32_t xferlen;
1973 uint8_t xfercmd;
1975 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != direction)
1976 return (6); /* wrong direction, abandon I/O */
1978 bus_space_write_4(iot, ioh, TUL_STCNT0, scb->buflen);
1980 xfercmd = STRXFR;
1981 if (direction == FLAG_DATAIN)
1982 xfercmd |= XDIR;
1984 if (scb->flags & FLAG_SG) {
1985 xferlen = scb->sg_size * sizeof(struct iha_sg_element);
1986 xfercmd |= SGXFR;
1987 } else
1988 xferlen = scb->buflen;
1990 bus_space_write_4(iot, ioh, TUL_DXC, xferlen);
1991 bus_space_write_4(iot, ioh, TUL_DXPA, scb->bufaddr);
1992 bus_space_write_1(iot, ioh, TUL_DCMD, xfercmd);
1994 bus_space_write_1(iot, ioh, TUL_SCMD,
1995 (direction == FLAG_DATAIN) ? XF_DMA_IN : XF_DMA_OUT);
1997 scb->nextstat = 5;
1999 return (0);
2002 static int
2003 iha_xpad_in(struct iha_softc *sc)
2005 bus_space_tag_t iot = sc->sc_iot;
2006 bus_space_handle_t ioh = sc->sc_ioh;
2007 struct iha_scb *scb = sc->sc_actscb;
2009 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2010 scb->ha_stat = HOST_DO_DU;
2012 for (;;) {
2013 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2014 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2015 else
2016 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2018 switch (iha_wait(sc, XF_FIFO_IN)) {
2019 case -1:
2020 return (-1);
2022 case PHASE_DATA_IN:
2023 (void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2024 break;
2026 default:
2027 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2028 return (6);
2033 static int
2034 iha_xpad_out(struct iha_softc *sc)
2036 bus_space_tag_t iot = sc->sc_iot;
2037 bus_space_handle_t ioh = sc->sc_ioh;
2038 struct iha_scb *scb = sc->sc_actscb;
2040 if ((scb->flags & (FLAG_DATAIN | FLAG_DATAOUT)) != 0)
2041 scb->ha_stat = HOST_DO_DU;
2043 for (;;) {
2044 if ((scb->tcs->syncm & PERIOD_WIDE_SCSI) != 0)
2045 bus_space_write_4(iot, ioh, TUL_STCNT0, 2);
2046 else
2047 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2049 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2051 switch (iha_wait(sc, XF_FIFO_OUT)) {
2052 case -1:
2053 return (-1);
2055 case PHASE_DATA_OUT:
2056 break;
2058 default:
2059 /* Disable wide CPU to allow read 16 bits */
2060 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2061 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2062 return (6);
2067 static int
2068 iha_status_msg(struct iha_softc *sc)
2070 bus_space_tag_t iot = sc->sc_iot;
2071 bus_space_handle_t ioh = sc->sc_ioh;
2072 struct iha_scb *scb;
2073 uint8_t msg;
2074 int phase;
2076 if ((phase = iha_wait(sc, CMD_COMP)) == -1)
2077 return (-1);
2079 scb = sc->sc_actscb;
2081 scb->ta_stat = bus_space_read_1(iot, ioh, TUL_SFIFO);
2083 if (phase == PHASE_MSG_OUT) {
2084 if ((sc->sc_status0 & SPERR) == 0)
2085 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_NOOP);
2086 else
2087 bus_space_write_1(iot, ioh, TUL_SFIFO,
2088 MSG_PARITY_ERROR);
2090 return (iha_wait(sc, XF_FIFO_OUT));
2092 } else if (phase == PHASE_MSG_IN) {
2093 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2095 if ((sc->sc_status0 & SPERR) != 0)
2096 switch (iha_wait(sc, MSG_ACCEPT)) {
2097 case -1:
2098 return (-1);
2099 case PHASE_MSG_OUT:
2100 bus_space_write_1(iot, ioh, TUL_SFIFO,
2101 MSG_PARITY_ERROR);
2102 return (iha_wait(sc, XF_FIFO_OUT));
2103 default:
2104 iha_bad_seq(sc);
2105 return (-1);
2108 if (msg == MSG_CMDCOMPLETE) {
2109 if ((scb->ta_stat &
2110 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM) {
2111 iha_bad_seq(sc);
2112 return (-1);
2114 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2115 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2116 return (iha_wait(sc, MSG_ACCEPT));
2119 if ((msg == MSG_LINK_CMD_COMPLETE)
2120 || (msg == MSG_LINK_CMD_COMPLETEF)) {
2121 if ((scb->ta_stat &
2122 (SCSI_INTERM | SCSI_BUSY)) == SCSI_INTERM)
2123 return (iha_wait(sc, MSG_ACCEPT));
2127 iha_bad_seq(sc);
2128 return (-1);
2132 * iha_busfree - SCSI bus free detected as a result of a TIMEOUT or
2133 * DISCONNECT interrupt. Reset the tulip FIFO and
2134 * SCONFIG0 and enable hardware reselect. Move any active
2135 * SCB to sc_donescb list. Return an appropriate host status
2136 * if an I/O was active.
2138 static void
2139 iha_busfree(struct iha_softc *sc)
2141 bus_space_tag_t iot = sc->sc_iot;
2142 bus_space_handle_t ioh = sc->sc_ioh;
2143 struct iha_scb *scb;
2145 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2146 bus_space_write_1(iot, ioh, TUL_SCONFIG0, SCONFIG0DEFAULT);
2147 bus_space_write_1(iot, ioh, TUL_SCTRL1, EHRSL);
2149 scb = sc->sc_actscb;
2151 if (scb != NULL) {
2152 if (scb->status == STATUS_SELECT)
2153 /* selection timeout */
2154 iha_append_done_scb(sc, scb, HOST_SEL_TOUT);
2155 else
2156 /* Unexpected bus free */
2157 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2162 * iha_resel - handle a detected SCSI bus reselection request.
2164 static int
2165 iha_resel(struct iha_softc *sc)
2167 bus_space_tag_t iot = sc->sc_iot;
2168 bus_space_handle_t ioh = sc->sc_ioh;
2169 struct iha_scb *scb;
2170 struct tcs *tcs;
2171 uint8_t tag, target, lun, msg, abortmsg;
2173 if (sc->sc_actscb != NULL) {
2174 if ((sc->sc_actscb->status == STATUS_SELECT))
2175 iha_push_pend_scb(sc, sc->sc_actscb);
2176 sc->sc_actscb = NULL;
2179 target = bus_space_read_1(iot, ioh, TUL_SBID);
2180 lun = bus_space_read_1(iot, ioh, TUL_SALVC) & IHA_MSG_IDENTIFY_LUNMASK;
2182 tcs = &sc->sc_tcs[target];
2184 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2185 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2187 abortmsg = MSG_ABORT; /* until a valid tag has been obtained */
2189 if (tcs->ntagscb != NULL)
2190 /* There is a non-tagged I/O active on the target */
2191 scb = tcs->ntagscb;
2193 else {
2195 * Since there is no active non-tagged operation
2196 * read the tag type, the tag itself, and find
2197 * the appropriate scb by indexing sc_scb with
2198 * the tag.
2201 switch (iha_wait(sc, MSG_ACCEPT)) {
2202 case -1:
2203 return (-1);
2204 case PHASE_MSG_IN:
2205 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2206 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2207 return (-1);
2208 break;
2209 default:
2210 goto abort;
2213 msg = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag Msg */
2215 if ((msg < MSG_SIMPLE_Q_TAG) || (msg > MSG_ORDERED_Q_TAG))
2216 goto abort;
2218 switch (iha_wait(sc, MSG_ACCEPT)) {
2219 case -1:
2220 return (-1);
2221 case PHASE_MSG_IN:
2222 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2223 if ((iha_wait(sc, XF_FIFO_IN)) == -1)
2224 return (-1);
2225 break;
2226 default:
2227 goto abort;
2230 tag = bus_space_read_1(iot, ioh, TUL_SFIFO); /* Read Tag ID */
2231 scb = &sc->sc_scb[tag];
2233 abortmsg = MSG_ABORT_TAG; /* Now that we have valdid tag! */
2236 if ((scb->target != target)
2237 || (scb->lun != lun)
2238 || (scb->status != STATUS_BUSY)) {
2239 abort:
2240 iha_msgout_abort(sc, abortmsg);
2241 return (-1);
2244 sc->sc_actscb = scb;
2246 if (iha_wait(sc, MSG_ACCEPT) == -1)
2247 return (-1);
2249 return (iha_next_state(sc));
2252 static int
2253 iha_msgin(struct iha_softc *sc)
2255 bus_space_tag_t iot = sc->sc_iot;
2256 bus_space_handle_t ioh = sc->sc_ioh;
2257 int flags;
2258 int phase;
2259 uint8_t msg;
2261 for (;;) {
2262 if ((bus_space_read_1(iot, ioh, TUL_SFIFOCNT) & FIFOC) > 0)
2263 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2265 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2267 phase = iha_wait(sc, XF_FIFO_IN);
2268 msg = bus_space_read_1(iot, ioh, TUL_SFIFO);
2270 switch (msg) {
2271 case MSG_DISCONNECT:
2272 sc->sc_flags |= FLAG_EXPECT_DISC;
2273 if (iha_wait(sc, MSG_ACCEPT) != -1)
2274 iha_bad_seq(sc);
2275 phase = -1;
2276 break;
2277 case MSG_SAVEDATAPOINTER:
2278 case MSG_RESTOREPOINTERS:
2279 case MSG_NOOP:
2280 phase = iha_wait(sc, MSG_ACCEPT);
2281 break;
2282 case MSG_MESSAGE_REJECT:
2283 /* XXX - need to clear FIFO like other 'Clear ATN'?*/
2284 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2285 flags = sc->sc_actscb->tcs->flags;
2286 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2287 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2288 phase = iha_wait(sc, MSG_ACCEPT);
2289 break;
2290 case MSG_EXTENDED:
2291 phase = iha_msgin_extended(sc);
2292 break;
2293 case MSG_IGN_WIDE_RESIDUE:
2294 phase = iha_msgin_ignore_wid_resid(sc);
2295 break;
2296 case MSG_CMDCOMPLETE:
2297 sc->sc_flags |= FLAG_EXPECT_DONE_DISC;
2298 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2299 phase = iha_wait(sc, MSG_ACCEPT);
2300 if (phase != -1) {
2301 iha_bad_seq(sc);
2302 return (-1);
2304 break;
2305 default:
2306 printf("[debug] iha_msgin: bad msg type: %d\n", msg);
2307 phase = iha_msgout_reject(sc);
2308 break;
2311 if (phase != PHASE_MSG_IN)
2312 return (phase);
2314 /* NOTREACHED */
2317 static int
2318 iha_msgin_extended(struct iha_softc *sc)
2320 bus_space_tag_t iot = sc->sc_iot;
2321 bus_space_handle_t ioh = sc->sc_ioh;
2322 int flags, i, phase, msglen, msgcode;
2325 * XXX - can we just stop reading and reject, or do we have to
2326 * read all input, discarding the excess, and then reject
2328 for (i = 0; i < IHA_MAX_EXTENDED_MSG; i++) {
2329 phase = iha_wait(sc, MSG_ACCEPT);
2331 if (phase != PHASE_MSG_IN)
2332 return (phase);
2334 bus_space_write_4(iot, ioh, TUL_STCNT0, 1);
2336 if (iha_wait(sc, XF_FIFO_IN) == -1)
2337 return (-1);
2339 sc->sc_msg[i] = bus_space_read_1(iot, ioh, TUL_SFIFO);
2341 if (sc->sc_msg[0] == i)
2342 break;
2345 msglen = sc->sc_msg[0];
2346 msgcode = sc->sc_msg[1];
2348 if ((msglen == MSG_EXT_SDTR_LEN) && (msgcode == MSG_EXT_SDTR)) {
2349 if (iha_msgin_sdtr(sc) == 0) {
2350 iha_sync_done(sc);
2351 return (iha_wait(sc, MSG_ACCEPT));
2354 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2356 phase = iha_wait(sc, MSG_ACCEPT);
2357 if (phase != PHASE_MSG_OUT)
2358 return (phase);
2360 /* Clear FIFO for important message - final SYNC offer */
2361 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2363 iha_sync_done(sc); /* This is our final offer */
2365 } else if ((msglen == MSG_EXT_WDTR_LEN) && (msgcode == MSG_EXT_WDTR)) {
2367 flags = sc->sc_actscb->tcs->flags;
2369 if ((flags & FLAG_NO_WIDE) != 0)
2370 /* Offer 8bit xfers only */
2371 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_8_BIT;
2373 else if (sc->sc_msg[2] > MSG_EXT_WDTR_BUS_32_BIT)
2374 /* BAD MSG */
2375 return (iha_msgout_reject(sc));
2377 else if (sc->sc_msg[2] == MSG_EXT_WDTR_BUS_32_BIT)
2378 /* Offer 16bit instead */
2379 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2381 else {
2382 iha_wide_done(sc);
2383 if ((flags & FLAG_NO_NEG_SYNC) == 0)
2384 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2385 return (iha_wait(sc, MSG_ACCEPT));
2388 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2390 phase = iha_wait(sc, MSG_ACCEPT);
2391 if (phase != PHASE_MSG_OUT)
2392 return (phase);
2393 } else
2394 return (iha_msgout_reject(sc));
2396 return (iha_msgout_extended(sc));
2400 * iha_msgin_sdtr - check SDTR msg in sc_msg. If the offer is
2401 * acceptable leave sc_msg as is and return 0.
2402 * If the negotiation must continue, modify sc_msg
2403 * as needed and return 1. Else return 0.
2405 static int
2406 iha_msgin_sdtr(struct iha_softc *sc)
2408 int flags;
2409 int newoffer;
2410 uint8_t default_period;
2412 flags = sc->sc_actscb->tcs->flags;
2414 default_period = iha_rate_tbl[flags & FLAG_SCSI_RATE];
2416 if (sc->sc_msg[3] == 0)
2417 /* target offered async only. Accept it. */
2418 return (0);
2420 newoffer = 0;
2422 if ((flags & FLAG_NO_SYNC) != 0) {
2423 sc->sc_msg[3] = 0;
2424 newoffer = 1;
2427 if (sc->sc_msg[3] > IHA_MAX_OFFSET) {
2428 sc->sc_msg[3] = IHA_MAX_OFFSET;
2429 newoffer = 1;
2432 if (sc->sc_msg[2] < default_period) {
2433 sc->sc_msg[2] = default_period;
2434 newoffer = 1;
2437 if (sc->sc_msg[2] > IHA_MAX_PERIOD) {
2438 /* Use async */
2439 sc->sc_msg[3] = 0;
2440 newoffer = 1;
2443 return (newoffer);
2446 static int
2447 iha_msgin_ignore_wid_resid(struct iha_softc *sc)
2449 bus_space_tag_t iot = sc->sc_iot;
2450 bus_space_handle_t ioh = sc->sc_ioh;
2451 int phase;
2453 phase = iha_wait(sc, MSG_ACCEPT);
2455 if (phase == PHASE_MSG_IN) {
2456 phase = iha_wait(sc, XF_FIFO_IN);
2458 if (phase != -1) {
2459 bus_space_write_1(iot, ioh, TUL_SFIFO, 0);
2460 (void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2461 (void)bus_space_read_1(iot, ioh, TUL_SFIFO);
2463 phase = iha_wait(sc, MSG_ACCEPT);
2467 return (phase);
2470 static int
2471 iha_msgout(struct iha_softc *sc, uint8_t msg)
2474 bus_space_write_1(sc->sc_iot, sc->sc_ioh, TUL_SFIFO, msg);
2476 return (iha_wait(sc, XF_FIFO_OUT));
2479 static void
2480 iha_msgout_abort(struct iha_softc *sc, uint8_t aborttype)
2483 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2485 switch (iha_wait(sc, MSG_ACCEPT)) {
2486 case -1:
2487 break;
2489 case PHASE_MSG_OUT:
2490 sc->sc_flags |= FLAG_EXPECT_DISC;
2491 if (iha_msgout(sc, aborttype) != -1)
2492 iha_bad_seq(sc);
2493 break;
2495 default:
2496 iha_bad_seq(sc);
2497 break;
2501 static int
2502 iha_msgout_reject(struct iha_softc *sc)
2505 iha_set_ssig(sc, REQ | BSY | SEL, ATN);
2507 if (iha_wait(sc, MSG_ACCEPT) == PHASE_MSG_OUT)
2508 return (iha_msgout(sc, MSG_MESSAGE_REJECT));
2510 return (-1);
2513 static int
2514 iha_msgout_extended(struct iha_softc *sc)
2516 bus_space_tag_t iot = sc->sc_iot;
2517 bus_space_handle_t ioh = sc->sc_ioh;
2518 int phase;
2520 bus_space_write_1(iot, ioh, TUL_SFIFO, MSG_EXTENDED);
2522 bus_space_write_multi_1(iot, ioh, TUL_SFIFO,
2523 sc->sc_msg, sc->sc_msg[0] + 1);
2525 phase = iha_wait(sc, XF_FIFO_OUT);
2527 bus_space_write_1(iot, ioh, TUL_SCTRL0, RSFIFO);
2528 iha_set_ssig(sc, REQ | BSY | SEL | ATN, 0);
2530 return (phase);
2533 static int
2534 iha_msgout_wdtr(struct iha_softc *sc)
2537 sc->sc_actscb->tcs->flags |= FLAG_WIDE_DONE;
2539 sc->sc_msg[0] = MSG_EXT_WDTR_LEN;
2540 sc->sc_msg[1] = MSG_EXT_WDTR;
2541 sc->sc_msg[2] = MSG_EXT_WDTR_BUS_16_BIT;
2543 return (iha_msgout_extended(sc));
2546 static int
2547 iha_msgout_sdtr(struct iha_softc *sc)
2549 struct tcs *tcs = sc->sc_actscb->tcs;
2551 tcs->flags |= FLAG_SYNC_DONE;
2553 sc->sc_msg[0] = MSG_EXT_SDTR_LEN;
2554 sc->sc_msg[1] = MSG_EXT_SDTR;
2555 sc->sc_msg[2] = iha_rate_tbl[tcs->flags & FLAG_SCSI_RATE];
2556 sc->sc_msg[3] = IHA_MAX_OFFSET; /* REQ/ACK */
2558 return (iha_msgout_extended(sc));
2561 static void
2562 iha_wide_done(struct iha_softc *sc)
2564 bus_space_tag_t iot = sc->sc_iot;
2565 bus_space_handle_t ioh = sc->sc_ioh;
2566 struct tcs *tcs = sc->sc_actscb->tcs;
2568 tcs->syncm = 0;
2569 tcs->period = 0;
2570 tcs->offset = 0;
2572 if (sc->sc_msg[2] != 0)
2573 tcs->syncm |= PERIOD_WIDE_SCSI;
2575 tcs->sconfig0 &= ~ALTPD;
2576 tcs->flags &= ~FLAG_SYNC_DONE;
2577 tcs->flags |= FLAG_WIDE_DONE;
2579 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2581 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2582 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2585 static void
2586 iha_sync_done(struct iha_softc *sc)
2588 bus_space_tag_t iot = sc->sc_iot;
2589 bus_space_handle_t ioh = sc->sc_ioh;
2590 struct tcs *tcs = sc->sc_actscb->tcs;
2591 int i;
2593 tcs->period = sc->sc_msg[2];
2594 tcs->offset = sc->sc_msg[3];
2595 if (tcs->offset != 0) {
2596 tcs->syncm |= tcs->offset;
2598 /* pick the highest possible rate */
2599 for (i = 0; i < sizeof(iha_rate_tbl); i++)
2600 if (iha_rate_tbl[i] >= tcs->period)
2601 break;
2603 tcs->syncm |= (i << 4);
2604 tcs->sconfig0 |= ALTPD;
2607 tcs->flags |= FLAG_SYNC_DONE;
2609 iha_update_xfer_mode(sc, sc->sc_actscb->target);
2611 bus_space_write_1(iot, ioh, TUL_SCONFIG0, tcs->sconfig0);
2612 bus_space_write_1(iot, ioh, TUL_SYNCM, tcs->syncm);
2616 * iha_bad_seq - a SCSI bus phase was encountered out of the
2617 * correct/expected sequence. Reset the SCSI bus.
2619 static void
2620 iha_bad_seq(struct iha_softc *sc)
2622 struct iha_scb *scb = sc->sc_actscb;
2624 if (scb != NULL)
2625 iha_append_done_scb(sc, scb, HOST_BAD_PHAS);
2627 iha_reset_scsi_bus(sc);
2628 iha_reset_chip(sc);
2632 * iha_read_eeprom - read Serial EEPROM value & set to defaults
2633 * if required. XXX - Writing does NOT work!
2635 static void
2636 iha_read_eeprom(struct iha_softc *sc, struct iha_eeprom *eeprom)
2638 bus_space_tag_t iot = sc->sc_iot;
2639 bus_space_handle_t ioh = sc->sc_ioh;
2640 uint16_t *tbuf = (uint16_t *)eeprom;
2641 uint8_t gctrl;
2643 /* Enable EEProm programming */
2644 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) | EEPRG;
2645 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2647 /* Read EEProm */
2648 if (iha_se2_rd_all(sc, tbuf) == 0)
2649 panic("%s: cannot read EEPROM", device_xname(sc->sc_dev));
2651 /* Disable EEProm programming */
2652 gctrl = bus_space_read_1(iot, ioh, TUL_GCTRL0) & ~EEPRG;
2653 bus_space_write_1(iot, ioh, TUL_GCTRL0, gctrl);
2656 #ifdef notused
2658 * iha_se2_update_all - Update SCSI H/A configuration parameters from
2659 * serial EEPROM Setup default pattern. Only
2660 * change those values different from the values
2661 * in iha_eeprom.
2663 static void
2664 iha_se2_update_all(struct iha_softc *sc)
2666 bus_space_tag_t iot = sc->sc_iot;
2667 bus_space_handle_t ioh = sc->sc_ioh;
2668 uint16_t *np;
2669 uint32_t chksum;
2670 int i;
2672 /* Enable erase/write state of EEPROM */
2673 iha_se2_instr(sc, ENABLE_ERASE);
2674 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2675 EEP_WAIT();
2677 np = (uint16_t *)&eeprom_default;
2679 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2680 iha_se2_wr(sc, i, *np);
2681 chksum += *np++;
2684 chksum &= 0x0000ffff;
2685 iha_se2_wr(sc, 31, chksum);
2687 /* Disable erase/write state of EEPROM */
2688 iha_se2_instr(sc, 0);
2689 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2690 EEP_WAIT();
2694 * iha_se2_wr - write the given 16 bit value into the Serial EEPROM
2695 * at the specified offset
2697 static void
2698 iha_se2_wr(struct iha_softc *sc, int addr, uint16_t writeword)
2700 bus_space_tag_t iot = sc->sc_iot;
2701 bus_space_handle_t ioh = sc->sc_ioh;
2702 int i, bit;
2704 /* send 'WRITE' Instruction == address | WRITE bit */
2705 iha_se2_instr(sc, addr | WRITE);
2707 for (i = 16; i > 0; i--) {
2708 if (writeword & (1 << (i - 1)))
2709 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRDO);
2710 else
2711 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2712 EEP_WAIT();
2713 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2714 EEP_WAIT();
2717 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2718 EEP_WAIT();
2719 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2720 EEP_WAIT();
2721 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2722 EEP_WAIT();
2724 for (;;) {
2725 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2726 EEP_WAIT();
2727 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2728 EEP_WAIT();
2729 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI;
2730 EEP_WAIT();
2731 if (bit != 0)
2732 break; /* write complete */
2735 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2737 #endif
2740 * iha_se2_rd - read & return the 16 bit value at the specified
2741 * offset in the Serial E2PROM
2744 static uint16_t
2745 iha_se2_rd(struct iha_softc *sc, int addr)
2747 bus_space_tag_t iot = sc->sc_iot;
2748 bus_space_handle_t ioh = sc->sc_ioh;
2749 int i, bit;
2750 uint16_t readword;
2752 /* Send 'READ' instruction == address | READ bit */
2753 iha_se2_instr(sc, addr | READ);
2755 readword = 0;
2756 for (i = 16; i > 0; i--) {
2757 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS | NVRCK);
2758 EEP_WAIT();
2759 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);
2760 EEP_WAIT();
2761 /* sample data after the following edge of clock */
2762 bit = bus_space_read_1(iot, ioh, TUL_NVRAM) & NVRDI ? 1 : 0;
2763 EEP_WAIT();
2765 readword |= bit << (i - 1);
2768 bus_space_write_1(iot, ioh, TUL_NVRAM, 0);
2770 return (readword);
2774 * iha_se2_rd_all - Read SCSI H/A config parameters from serial EEPROM
2776 static int
2777 iha_se2_rd_all(struct iha_softc *sc, uint16_t *tbuf)
2779 struct iha_eeprom *eeprom = (struct iha_eeprom *)tbuf;
2780 uint32_t chksum;
2781 int i;
2783 for (i = 0, chksum = 0; i < EEPROM_SIZE - 1; i++) {
2784 *tbuf = iha_se2_rd(sc, i);
2785 chksum += *tbuf++;
2787 *tbuf = iha_se2_rd(sc, 31); /* read checksum from EEPROM */
2789 chksum &= 0x0000ffff; /* lower 16 bits */
2791 return (eeprom->signature == EEP_SIGNATURE) &&
2792 (eeprom->checksum == chksum);
2796 * iha_se2_instr - write an octet to serial E2PROM one bit at a time
2798 static void
2799 iha_se2_instr(struct iha_softc *sc, int instr)
2801 bus_space_tag_t iot = sc->sc_iot;
2802 bus_space_handle_t ioh = sc->sc_ioh;
2803 int b, i;
2805 b = NVRCS | NVRDO; /* Write the start bit (== 1) */
2807 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2808 EEP_WAIT();
2809 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2810 EEP_WAIT();
2812 for (i = 8; i > 0; i--) {
2813 if (instr & (1 << (i - 1)))
2814 b = NVRCS | NVRDO; /* Write a 1 bit */
2815 else
2816 b = NVRCS; /* Write a 0 bit */
2818 bus_space_write_1(iot, ioh, TUL_NVRAM, b);
2819 EEP_WAIT();
2820 bus_space_write_1(iot, ioh, TUL_NVRAM, b | NVRCK);
2821 EEP_WAIT();
2824 bus_space_write_1(iot, ioh, TUL_NVRAM, NVRCS);