1 /* $NetBSD: rt2560.c,v 1.20 2008/11/07 00:20:02 dyoung Exp $ */
2 /* $OpenBSD: rt2560.c,v 1.15 2006/04/20 20:31:12 miod Exp $ */
3 /* $FreeBSD: rt2560.c,v 1.3 2006/03/21 21:15:43 damien Exp $*/
6 * Copyright (c) 2005, 2006
7 * Damien Bergamini <damien.bergamini@free.fr>
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * Ralink Technology RT2560 chipset driver
24 * http://www.ralinktech.com/
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: rt2560.c,v 1.20 2008/11/07 00:20:02 dyoung Exp $");
31 #include <sys/param.h>
32 #include <sys/sockio.h>
34 #include <sys/kernel.h>
35 #include <sys/socket.h>
36 #include <sys/systm.h>
37 #include <sys/malloc.h>
38 #include <sys/callout.h>
40 #include <sys/device.h>
43 #include <machine/endian.h>
50 #include <net/if_arp.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_types.h>
54 #include <net/if_ether.h>
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
61 #include <net80211/ieee80211_var.h>
62 #include <net80211/ieee80211_rssadapt.h>
63 #include <net80211/ieee80211_radiotap.h>
65 #include <dev/ic/rt2560reg.h>
66 #include <dev/ic/rt2560var.h>
68 #include <dev/pci/pcireg.h>
69 #include <dev/pci/pcivar.h>
70 #include <dev/pci/pcidevs.h>
73 #define DPRINTF(x) do { if (rt2560_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x) do { if (rt2560_debug >= (n)) printf x; } while (0)
78 #define DPRINTFN(n, x)
81 static int rt2560_alloc_tx_ring(struct rt2560_softc
*,
82 struct rt2560_tx_ring
*, int);
83 static void rt2560_reset_tx_ring(struct rt2560_softc
*,
84 struct rt2560_tx_ring
*);
85 static void rt2560_free_tx_ring(struct rt2560_softc
*,
86 struct rt2560_tx_ring
*);
87 static int rt2560_alloc_rx_ring(struct rt2560_softc
*,
88 struct rt2560_rx_ring
*, int);
89 static void rt2560_reset_rx_ring(struct rt2560_softc
*,
90 struct rt2560_rx_ring
*);
91 static void rt2560_free_rx_ring(struct rt2560_softc
*,
92 struct rt2560_rx_ring
*);
93 static struct ieee80211_node
*
94 rt2560_node_alloc(struct ieee80211_node_table
*);
95 static int rt2560_media_change(struct ifnet
*);
96 static void rt2560_next_scan(void *);
97 static void rt2560_iter_func(void *, struct ieee80211_node
*);
98 static void rt2560_update_rssadapt(void *);
99 static int rt2560_newstate(struct ieee80211com
*, enum ieee80211_state
,
101 static uint16_t rt2560_eeprom_read(struct rt2560_softc
*, uint8_t);
102 static void rt2560_encryption_intr(struct rt2560_softc
*);
103 static void rt2560_tx_intr(struct rt2560_softc
*);
104 static void rt2560_prio_intr(struct rt2560_softc
*);
105 static void rt2560_decryption_intr(struct rt2560_softc
*);
106 static void rt2560_rx_intr(struct rt2560_softc
*);
107 static void rt2560_beacon_expire(struct rt2560_softc
*);
108 static void rt2560_wakeup_expire(struct rt2560_softc
*);
110 static uint8_t rt2560_rxrate(struct rt2560_rx_desc
*);
112 static int rt2560_ack_rate(struct ieee80211com
*, int);
113 static uint16_t rt2560_txtime(int, int, uint32_t);
114 static uint8_t rt2560_plcp_signal(int);
115 static void rt2560_setup_tx_desc(struct rt2560_softc
*,
116 struct rt2560_tx_desc
*, uint32_t, int, int, int,
118 static int rt2560_tx_bcn(struct rt2560_softc
*, struct mbuf
*,
119 struct ieee80211_node
*);
120 static int rt2560_tx_mgt(struct rt2560_softc
*, struct mbuf
*,
121 struct ieee80211_node
*);
122 static struct mbuf
*rt2560_get_rts(struct rt2560_softc
*,
123 struct ieee80211_frame
*, uint16_t);
124 static int rt2560_tx_data(struct rt2560_softc
*, struct mbuf
*,
125 struct ieee80211_node
*);
126 static void rt2560_start(struct ifnet
*);
127 static void rt2560_watchdog(struct ifnet
*);
128 static int rt2560_reset(struct ifnet
*);
129 static int rt2560_ioctl(struct ifnet
*, u_long
, void *);
130 static void rt2560_bbp_write(struct rt2560_softc
*, uint8_t, uint8_t);
131 static uint8_t rt2560_bbp_read(struct rt2560_softc
*, uint8_t);
132 static void rt2560_rf_write(struct rt2560_softc
*, uint8_t, uint32_t);
133 static void rt2560_set_chan(struct rt2560_softc
*,
134 struct ieee80211_channel
*);
135 static void rt2560_disable_rf_tune(struct rt2560_softc
*);
136 static void rt2560_enable_tsf_sync(struct rt2560_softc
*);
137 static void rt2560_update_plcp(struct rt2560_softc
*);
138 static void rt2560_update_slot(struct ifnet
*);
139 static void rt2560_set_basicrates(struct rt2560_softc
*);
140 static void rt2560_update_led(struct rt2560_softc
*, int, int);
141 static void rt2560_set_bssid(struct rt2560_softc
*, uint8_t *);
142 static void rt2560_set_macaddr(struct rt2560_softc
*, uint8_t *);
143 static void rt2560_get_macaddr(struct rt2560_softc
*, uint8_t *);
144 static void rt2560_update_promisc(struct rt2560_softc
*);
145 static void rt2560_set_txantenna(struct rt2560_softc
*, int);
146 static void rt2560_set_rxantenna(struct rt2560_softc
*, int);
147 static const char *rt2560_get_rf(int);
148 static void rt2560_read_eeprom(struct rt2560_softc
*);
149 static int rt2560_bbp_init(struct rt2560_softc
*);
150 static int rt2560_init(struct ifnet
*);
151 static void rt2560_stop(struct ifnet
*, int);
154 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
156 static const struct ieee80211_rateset rt2560_rateset_11a
=
157 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
159 static const struct ieee80211_rateset rt2560_rateset_11b
=
160 { 4, { 2, 4, 11, 22 } };
162 static const struct ieee80211_rateset rt2560_rateset_11g
=
163 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
166 * Default values for MAC registers; values taken from the reference driver.
168 static const struct {
171 } rt2560_def_mac
[] = {
172 { RT2560_PSCSR0
, 0x00020002 },
173 { RT2560_PSCSR1
, 0x00000002 },
174 { RT2560_PSCSR2
, 0x00020002 },
175 { RT2560_PSCSR3
, 0x00000002 },
176 { RT2560_TIMECSR
, 0x00003f21 },
177 { RT2560_CSR9
, 0x00000780 },
178 { RT2560_CSR11
, 0x07041483 },
179 { RT2560_CNT3
, 0x00000000 },
180 { RT2560_TXCSR1
, 0x07614562 },
181 { RT2560_ARSP_PLCP_0
, 0x8c8d8b8a },
182 { RT2560_ACKPCTCSR
, 0x7038140a },
183 { RT2560_ARTCSR1
, 0x1d21252d },
184 { RT2560_ARTCSR2
, 0x1919191d },
185 { RT2560_RXCSR0
, 0xffffffff },
186 { RT2560_RXCSR3
, 0xb3aab3af },
187 { RT2560_PCICSR
, 0x000003b8 },
188 { RT2560_PWRCSR0
, 0x3f3b3100 },
189 { RT2560_GPIOCSR
, 0x0000ff00 },
190 { RT2560_TESTCSR
, 0x000000f0 },
191 { RT2560_PWRCSR1
, 0x000001ff },
192 { RT2560_MACCSR0
, 0x00213223 },
193 { RT2560_MACCSR1
, 0x00235518 },
194 { RT2560_RLPWCSR
, 0x00000040 },
195 { RT2560_RALINKCSR
, 0x9a009a11 },
196 { RT2560_CSR7
, 0xffffffff },
197 { RT2560_BBPCSR1
, 0x82188200 },
198 { RT2560_TXACKCSR0
, 0x00000020 },
199 { RT2560_SECCSR3
, 0x0000e78f }
203 * Default values for BBP registers; values taken from the reference driver.
205 static const struct {
208 } rt2560_def_bbp
[] = {
244 * Default values for RF register R2 indexed by channel numbers; values taken
245 * from the reference driver.
247 static const uint32_t rt2560_rf2522_r2
[] = {
248 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
249 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
252 static const uint32_t rt2560_rf2523_r2
[] = {
253 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
254 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
257 static const uint32_t rt2560_rf2524_r2
[] = {
258 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 static const uint32_t rt2560_rf2525_r2
[] = {
263 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
264 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
267 static const uint32_t rt2560_rf2525_hi_r2
[] = {
268 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
269 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
272 static const uint32_t rt2560_rf2525e_r2
[] = {
273 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
274 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
277 static const uint32_t rt2560_rf2526_hi_r2
[] = {
278 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
279 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
282 static const uint32_t rt2560_rf2526_r2
[] = {
283 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
284 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
288 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
289 * values taken from the reference driver.
291 static const struct {
296 } rt2560_rf5222
[] = {
297 { 1, 0x08808, 0x0044d, 0x00282 },
298 { 2, 0x08808, 0x0044e, 0x00282 },
299 { 3, 0x08808, 0x0044f, 0x00282 },
300 { 4, 0x08808, 0x00460, 0x00282 },
301 { 5, 0x08808, 0x00461, 0x00282 },
302 { 6, 0x08808, 0x00462, 0x00282 },
303 { 7, 0x08808, 0x00463, 0x00282 },
304 { 8, 0x08808, 0x00464, 0x00282 },
305 { 9, 0x08808, 0x00465, 0x00282 },
306 { 10, 0x08808, 0x00466, 0x00282 },
307 { 11, 0x08808, 0x00467, 0x00282 },
308 { 12, 0x08808, 0x00468, 0x00282 },
309 { 13, 0x08808, 0x00469, 0x00282 },
310 { 14, 0x08808, 0x0046b, 0x00286 },
312 { 36, 0x08804, 0x06225, 0x00287 },
313 { 40, 0x08804, 0x06226, 0x00287 },
314 { 44, 0x08804, 0x06227, 0x00287 },
315 { 48, 0x08804, 0x06228, 0x00287 },
316 { 52, 0x08804, 0x06229, 0x00287 },
317 { 56, 0x08804, 0x0622a, 0x00287 },
318 { 60, 0x08804, 0x0622b, 0x00287 },
319 { 64, 0x08804, 0x0622c, 0x00287 },
321 { 100, 0x08804, 0x02200, 0x00283 },
322 { 104, 0x08804, 0x02201, 0x00283 },
323 { 108, 0x08804, 0x02202, 0x00283 },
324 { 112, 0x08804, 0x02203, 0x00283 },
325 { 116, 0x08804, 0x02204, 0x00283 },
326 { 120, 0x08804, 0x02205, 0x00283 },
327 { 124, 0x08804, 0x02206, 0x00283 },
328 { 128, 0x08804, 0x02207, 0x00283 },
329 { 132, 0x08804, 0x02208, 0x00283 },
330 { 136, 0x08804, 0x02209, 0x00283 },
331 { 140, 0x08804, 0x0220a, 0x00283 },
333 { 149, 0x08808, 0x02429, 0x00281 },
334 { 153, 0x08808, 0x0242b, 0x00281 },
335 { 157, 0x08808, 0x0242d, 0x00281 },
336 { 161, 0x08808, 0x0242f, 0x00281 }
340 rt2560_attach(void *xsc
, int id
)
342 struct rt2560_softc
*sc
= xsc
;
343 struct ieee80211com
*ic
= &sc
->sc_ic
;
344 struct ifnet
*ifp
= &sc
->sc_if
;
347 callout_init(&sc
->scan_ch
, 0);
348 callout_init(&sc
->rssadapt_ch
, 0);
350 /* retrieve RT2560 rev. no */
351 sc
->asic_rev
= RAL_READ(sc
, RT2560_CSR0
);
353 /* retrieve MAC address */
354 rt2560_get_macaddr(sc
, ic
->ic_myaddr
);
356 aprint_normal_dev(&sc
->sc_dev
, "802.11 address %s\n",
357 ether_sprintf(ic
->ic_myaddr
));
359 /* retrieve RF rev. no and various other things from EEPROM */
360 rt2560_read_eeprom(sc
);
362 aprint_normal_dev(&sc
->sc_dev
, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
363 sc
->asic_rev
, rt2560_get_rf(sc
->rf_rev
));
366 * Allocate Tx and Rx rings.
368 error
= rt2560_alloc_tx_ring(sc
, &sc
->txq
, RT2560_TX_RING_COUNT
);
370 aprint_error_dev(&sc
->sc_dev
, "could not allocate Tx ring\n)");
374 error
= rt2560_alloc_tx_ring(sc
, &sc
->atimq
, RT2560_ATIM_RING_COUNT
);
376 aprint_error_dev(&sc
->sc_dev
, "could not allocate ATIM ring\n");
380 error
= rt2560_alloc_tx_ring(sc
, &sc
->prioq
, RT2560_PRIO_RING_COUNT
);
382 aprint_error_dev(&sc
->sc_dev
, "could not allocate Prio ring\n");
386 error
= rt2560_alloc_tx_ring(sc
, &sc
->bcnq
, RT2560_BEACON_RING_COUNT
);
388 aprint_error_dev(&sc
->sc_dev
, "could not allocate Beacon ring\n");
392 error
= rt2560_alloc_rx_ring(sc
, &sc
->rxq
, RT2560_RX_RING_COUNT
);
394 aprint_error_dev(&sc
->sc_dev
, "could not allocate Rx ring\n");
399 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
400 ifp
->if_init
= rt2560_init
;
401 ifp
->if_stop
= rt2560_stop
;
402 ifp
->if_ioctl
= rt2560_ioctl
;
403 ifp
->if_start
= rt2560_start
;
404 ifp
->if_watchdog
= rt2560_watchdog
;
405 IFQ_SET_READY(&ifp
->if_snd
);
406 memcpy(ifp
->if_xname
, device_xname(&sc
->sc_dev
), IFNAMSIZ
);
409 ic
->ic_phytype
= IEEE80211_T_OFDM
; /* not only, but not used */
410 ic
->ic_opmode
= IEEE80211_M_STA
; /* default to BSS mode */
411 ic
->ic_state
= IEEE80211_S_INIT
;
413 /* set device capabilities */
415 IEEE80211_C_IBSS
| /* IBSS mode supported */
416 IEEE80211_C_MONITOR
| /* monitor mode supported */
417 IEEE80211_C_HOSTAP
| /* HostAp mode supported */
418 IEEE80211_C_TXPMGT
| /* tx power management */
419 IEEE80211_C_SHPREAMBLE
| /* short preamble supported */
420 IEEE80211_C_SHSLOT
| /* short slot time supported */
421 IEEE80211_C_WPA
; /* 802.11i */
423 if (sc
->rf_rev
== RT2560_RF_5222
) {
424 /* set supported .11a rates */
425 ic
->ic_sup_rates
[IEEE80211_MODE_11A
] = rt2560_rateset_11a
;
427 /* set supported .11a channels */
428 for (i
= 36; i
<= 64; i
+= 4) {
429 ic
->ic_channels
[i
].ic_freq
=
430 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
431 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
433 for (i
= 100; i
<= 140; i
+= 4) {
434 ic
->ic_channels
[i
].ic_freq
=
435 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
436 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
438 for (i
= 149; i
<= 161; i
+= 4) {
439 ic
->ic_channels
[i
].ic_freq
=
440 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
441 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
445 /* set supported .11b and .11g rates */
446 ic
->ic_sup_rates
[IEEE80211_MODE_11B
] = rt2560_rateset_11b
;
447 ic
->ic_sup_rates
[IEEE80211_MODE_11G
] = rt2560_rateset_11g
;
449 /* set supported .11b and .11g channels (1 through 14) */
450 for (i
= 1; i
<= 14; i
++) {
451 ic
->ic_channels
[i
].ic_freq
=
452 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_2GHZ
);
453 ic
->ic_channels
[i
].ic_flags
=
454 IEEE80211_CHAN_CCK
| IEEE80211_CHAN_OFDM
|
455 IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
459 ieee80211_ifattach(ic
);
460 ic
->ic_node_alloc
= rt2560_node_alloc
;
461 ic
->ic_updateslot
= rt2560_update_slot
;
462 ic
->ic_reset
= rt2560_reset
;
464 /* override state transition machine */
465 sc
->sc_newstate
= ic
->ic_newstate
;
466 ic
->ic_newstate
= rt2560_newstate
;
467 ieee80211_media_init(ic
, rt2560_media_change
, ieee80211_media_status
);
470 bpfattach2(ifp
, DLT_IEEE802_11_RADIO
,
471 sizeof (struct ieee80211_frame
) + 64, &sc
->sc_drvbpf
);
474 sc
->sc_rxtap_len
= sizeof sc
->sc_rxtapu
;
475 sc
->sc_rxtap
.wr_ihdr
.it_len
= htole16(sc
->sc_rxtap_len
);
476 sc
->sc_rxtap
.wr_ihdr
.it_present
= htole32(RT2560_RX_RADIOTAP_PRESENT
);
478 sc
->sc_txtap_len
= sizeof sc
->sc_txtapu
;
479 sc
->sc_txtap
.wt_ihdr
.it_len
= htole16(sc
->sc_txtap_len
);
480 sc
->sc_txtap
.wt_ihdr
.it_present
= htole32(RT2560_TX_RADIOTAP_PRESENT
);
485 ieee80211_announce(ic
);
487 if (pmf_device_register(&sc
->sc_dev
, NULL
, NULL
))
488 pmf_class_network_register(&sc
->sc_dev
, ifp
);
490 aprint_error_dev(&sc
->sc_dev
,
491 "couldn't establish power handler\n");
495 fail5
: rt2560_free_tx_ring(sc
, &sc
->bcnq
);
496 fail4
: rt2560_free_tx_ring(sc
, &sc
->prioq
);
497 fail3
: rt2560_free_tx_ring(sc
, &sc
->atimq
);
498 fail2
: rt2560_free_tx_ring(sc
, &sc
->txq
);
505 rt2560_detach(void *xsc
)
507 struct rt2560_softc
*sc
= xsc
;
508 struct ifnet
*ifp
= &sc
->sc_if
;
510 callout_stop(&sc
->scan_ch
);
511 callout_stop(&sc
->rssadapt_ch
);
513 pmf_device_deregister(&sc
->sc_dev
);
517 ieee80211_ifdetach(&sc
->sc_ic
); /* free all nodes */
520 rt2560_free_tx_ring(sc
, &sc
->txq
);
521 rt2560_free_tx_ring(sc
, &sc
->atimq
);
522 rt2560_free_tx_ring(sc
, &sc
->prioq
);
523 rt2560_free_tx_ring(sc
, &sc
->bcnq
);
524 rt2560_free_rx_ring(sc
, &sc
->rxq
);
530 rt2560_alloc_tx_ring(struct rt2560_softc
*sc
, struct rt2560_tx_ring
*ring
,
537 ring
->cur
= ring
->next
= 0;
538 ring
->cur_encrypt
= ring
->next_encrypt
= 0;
540 error
= bus_dmamap_create(sc
->sc_dmat
, count
* RT2560_TX_DESC_SIZE
, 1,
541 count
* RT2560_TX_DESC_SIZE
, 0, BUS_DMA_NOWAIT
, &ring
->map
);
543 aprint_error_dev(&sc
->sc_dev
, "could not create desc DMA map\n");
547 error
= bus_dmamem_alloc(sc
->sc_dmat
, count
* RT2560_TX_DESC_SIZE
,
548 PAGE_SIZE
, 0, &ring
->seg
, 1, &nsegs
, BUS_DMA_NOWAIT
);
550 aprint_error_dev(&sc
->sc_dev
, "could not allocate DMA memory\n");
554 error
= bus_dmamem_map(sc
->sc_dmat
, &ring
->seg
, nsegs
,
555 count
* RT2560_TX_DESC_SIZE
, (void **)&ring
->desc
,
558 aprint_error_dev(&sc
->sc_dev
, "could not map desc DMA memory\n");
562 error
= bus_dmamap_load(sc
->sc_dmat
, ring
->map
, ring
->desc
,
563 count
* RT2560_TX_DESC_SIZE
, NULL
, BUS_DMA_NOWAIT
);
565 aprint_error_dev(&sc
->sc_dev
, "could not load desc DMA map\n");
569 memset(ring
->desc
, 0, count
* RT2560_TX_DESC_SIZE
);
570 ring
->physaddr
= ring
->map
->dm_segs
->ds_addr
;
572 ring
->data
= malloc(count
* sizeof (struct rt2560_tx_data
), M_DEVBUF
,
574 if (ring
->data
== NULL
) {
575 aprint_error_dev(&sc
->sc_dev
, "could not allocate soft data\n");
580 memset(ring
->data
, 0, count
* sizeof (struct rt2560_tx_data
));
581 for (i
= 0; i
< count
; i
++) {
582 error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
,
583 RT2560_MAX_SCATTER
, MCLBYTES
, 0, BUS_DMA_NOWAIT
,
586 aprint_error_dev(&sc
->sc_dev
, "could not create DMA map\n");
593 fail
: rt2560_free_tx_ring(sc
, ring
);
598 rt2560_reset_tx_ring(struct rt2560_softc
*sc
, struct rt2560_tx_ring
*ring
)
600 struct rt2560_tx_desc
*desc
;
601 struct rt2560_tx_data
*data
;
604 for (i
= 0; i
< ring
->count
; i
++) {
605 desc
= &ring
->desc
[i
];
606 data
= &ring
->data
[i
];
608 if (data
->m
!= NULL
) {
609 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
610 data
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
611 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
616 if (data
->ni
!= NULL
) {
617 ieee80211_free_node(data
->ni
);
624 bus_dmamap_sync(sc
->sc_dmat
, ring
->map
, 0, ring
->map
->dm_mapsize
,
625 BUS_DMASYNC_PREWRITE
);
628 ring
->cur
= ring
->next
= 0;
629 ring
->cur_encrypt
= ring
->next_encrypt
= 0;
633 rt2560_free_tx_ring(struct rt2560_softc
*sc
, struct rt2560_tx_ring
*ring
)
635 struct rt2560_tx_data
*data
;
638 if (ring
->desc
!= NULL
) {
639 bus_dmamap_sync(sc
->sc_dmat
, ring
->map
, 0,
640 ring
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
641 bus_dmamap_unload(sc
->sc_dmat
, ring
->map
);
642 bus_dmamem_unmap(sc
->sc_dmat
, (void *)ring
->desc
,
643 ring
->count
* RT2560_TX_DESC_SIZE
);
644 bus_dmamem_free(sc
->sc_dmat
, &ring
->seg
, 1);
647 if (ring
->data
!= NULL
) {
648 for (i
= 0; i
< ring
->count
; i
++) {
649 data
= &ring
->data
[i
];
651 if (data
->m
!= NULL
) {
652 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
653 data
->map
->dm_mapsize
,
654 BUS_DMASYNC_POSTWRITE
);
655 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
659 if (data
->ni
!= NULL
)
660 ieee80211_free_node(data
->ni
);
663 if (data
->map
!= NULL
)
664 bus_dmamap_destroy(sc
->sc_dmat
, data
->map
);
666 free(ring
->data
, M_DEVBUF
);
671 rt2560_alloc_rx_ring(struct rt2560_softc
*sc
, struct rt2560_rx_ring
*ring
,
674 struct rt2560_rx_desc
*desc
;
675 struct rt2560_rx_data
*data
;
679 ring
->cur
= ring
->next
= 0;
680 ring
->cur_decrypt
= 0;
682 error
= bus_dmamap_create(sc
->sc_dmat
, count
* RT2560_RX_DESC_SIZE
, 1,
683 count
* RT2560_RX_DESC_SIZE
, 0, BUS_DMA_NOWAIT
, &ring
->map
);
685 aprint_error_dev(&sc
->sc_dev
, "could not create desc DMA map\n");
689 error
= bus_dmamem_alloc(sc
->sc_dmat
, count
* RT2560_RX_DESC_SIZE
,
690 PAGE_SIZE
, 0, &ring
->seg
, 1, &nsegs
, BUS_DMA_NOWAIT
);
692 aprint_error_dev(&sc
->sc_dev
, "could not allocate DMA memory\n");
696 error
= bus_dmamem_map(sc
->sc_dmat
, &ring
->seg
, nsegs
,
697 count
* RT2560_RX_DESC_SIZE
, (void **)&ring
->desc
,
700 aprint_error_dev(&sc
->sc_dev
, "could not map desc DMA memory\n");
704 error
= bus_dmamap_load(sc
->sc_dmat
, ring
->map
, ring
->desc
,
705 count
* RT2560_RX_DESC_SIZE
, NULL
, BUS_DMA_NOWAIT
);
707 aprint_error_dev(&sc
->sc_dev
, "could not load desc DMA map\n");
711 memset(ring
->desc
, 0, count
* RT2560_RX_DESC_SIZE
);
712 ring
->physaddr
= ring
->map
->dm_segs
->ds_addr
;
714 ring
->data
= malloc(count
* sizeof (struct rt2560_rx_data
), M_DEVBUF
,
716 if (ring
->data
== NULL
) {
717 aprint_error_dev(&sc
->sc_dev
, "could not allocate soft data\n");
723 * Pre-allocate Rx buffers and populate Rx ring.
725 memset(ring
->data
, 0, count
* sizeof (struct rt2560_rx_data
));
726 for (i
= 0; i
< count
; i
++) {
727 desc
= &sc
->rxq
.desc
[i
];
728 data
= &sc
->rxq
.data
[i
];
730 error
= bus_dmamap_create(sc
->sc_dmat
, MCLBYTES
, 1, MCLBYTES
,
731 0, BUS_DMA_NOWAIT
, &data
->map
);
733 aprint_error_dev(&sc
->sc_dev
, "could not create DMA map\n");
737 MGETHDR(data
->m
, M_DONTWAIT
, MT_DATA
);
738 if (data
->m
== NULL
) {
739 aprint_error_dev(&sc
->sc_dev
, "could not allocate rx mbuf\n");
744 MCLGET(data
->m
, M_DONTWAIT
);
745 if (!(data
->m
->m_flags
& M_EXT
)) {
746 aprint_error_dev(&sc
->sc_dev
, "could not allocate rx mbuf cluster\n");
751 error
= bus_dmamap_load(sc
->sc_dmat
, data
->map
,
752 mtod(data
->m
, void *), MCLBYTES
, NULL
, BUS_DMA_NOWAIT
);
754 aprint_error_dev(&sc
->sc_dev
, "could not load rx buf DMA map");
758 desc
->flags
= htole32(RT2560_RX_BUSY
);
759 desc
->physaddr
= htole32(data
->map
->dm_segs
->ds_addr
);
762 bus_dmamap_sync(sc
->sc_dmat
, ring
->map
, 0, ring
->map
->dm_mapsize
,
763 BUS_DMASYNC_PREWRITE
);
767 fail
: rt2560_free_rx_ring(sc
, ring
);
772 rt2560_reset_rx_ring(struct rt2560_softc
*sc
, struct rt2560_rx_ring
*ring
)
776 for (i
= 0; i
< ring
->count
; i
++) {
777 ring
->desc
[i
].flags
= htole32(RT2560_RX_BUSY
);
778 ring
->data
[i
].drop
= 0;
781 bus_dmamap_sync(sc
->sc_dmat
, ring
->map
, 0, ring
->map
->dm_mapsize
,
782 BUS_DMASYNC_PREWRITE
);
784 ring
->cur
= ring
->next
= 0;
785 ring
->cur_decrypt
= 0;
789 rt2560_free_rx_ring(struct rt2560_softc
*sc
, struct rt2560_rx_ring
*ring
)
791 struct rt2560_rx_data
*data
;
794 if (ring
->desc
!= NULL
) {
795 bus_dmamap_sync(sc
->sc_dmat
, ring
->map
, 0,
796 ring
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
797 bus_dmamap_unload(sc
->sc_dmat
, ring
->map
);
798 bus_dmamem_unmap(sc
->sc_dmat
, (void *)ring
->desc
,
799 ring
->count
* RT2560_RX_DESC_SIZE
);
800 bus_dmamem_free(sc
->sc_dmat
, &ring
->seg
, 1);
803 if (ring
->data
!= NULL
) {
804 for (i
= 0; i
< ring
->count
; i
++) {
805 data
= &ring
->data
[i
];
807 if (data
->m
!= NULL
) {
808 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
809 data
->map
->dm_mapsize
,
810 BUS_DMASYNC_POSTREAD
);
811 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
815 if (data
->map
!= NULL
)
816 bus_dmamap_destroy(sc
->sc_dmat
, data
->map
);
818 free(ring
->data
, M_DEVBUF
);
822 struct ieee80211_node
*
823 rt2560_node_alloc(struct ieee80211_node_table
*nt
)
825 struct rt2560_node
*rn
;
827 rn
= malloc(sizeof (struct rt2560_node
), M_80211_NODE
,
830 return (rn
!= NULL
) ? &rn
->ni
: NULL
;
834 rt2560_media_change(struct ifnet
*ifp
)
838 error
= ieee80211_media_change(ifp
);
839 if (error
!= ENETRESET
)
842 if ((ifp
->if_flags
& (IFF_UP
| IFF_RUNNING
)) == (IFF_UP
| IFF_RUNNING
))
849 * This function is called periodically (every 200ms) during scanning to
850 * switch from one channel to another.
853 rt2560_next_scan(void *arg
)
855 struct rt2560_softc
*sc
= arg
;
856 struct ieee80211com
*ic
= &sc
->sc_ic
;
858 if (ic
->ic_state
== IEEE80211_S_SCAN
)
859 ieee80211_next_scan(ic
);
863 * This function is called for each neighbor node.
866 rt2560_iter_func(void *arg
, struct ieee80211_node
*ni
)
868 struct rt2560_node
*rn
= (struct rt2560_node
*)ni
;
870 ieee80211_rssadapt_updatestats(&rn
->rssadapt
);
874 * This function is called periodically (every 100ms) in RUN state to update
875 * the rate adaptation statistics.
878 rt2560_update_rssadapt(void *arg
)
880 struct rt2560_softc
*sc
= arg
;
881 struct ieee80211com
*ic
= &sc
->sc_ic
;
883 ieee80211_iterate_nodes(&ic
->ic_sta
, rt2560_iter_func
, arg
);
885 callout_reset(&sc
->rssadapt_ch
, hz
/ 10, rt2560_update_rssadapt
, sc
);
889 rt2560_newstate(struct ieee80211com
*ic
, enum ieee80211_state nstate
, int arg
)
891 struct rt2560_softc
*sc
= ic
->ic_ifp
->if_softc
;
892 enum ieee80211_state ostate
;
893 struct ieee80211_node
*ni
;
897 ostate
= ic
->ic_state
;
898 callout_stop(&sc
->scan_ch
);
901 case IEEE80211_S_INIT
:
902 callout_stop(&sc
->rssadapt_ch
);
904 if (ostate
== IEEE80211_S_RUN
) {
905 /* abort TSF synchronization */
906 RAL_WRITE(sc
, RT2560_CSR14
, 0);
908 /* turn association led off */
909 rt2560_update_led(sc
, 0, 0);
913 case IEEE80211_S_SCAN
:
914 rt2560_set_chan(sc
, ic
->ic_curchan
);
915 callout_reset(&sc
->scan_ch
, (sc
->dwelltime
* hz
) / 1000,
916 rt2560_next_scan
, sc
);
919 case IEEE80211_S_AUTH
:
920 rt2560_set_chan(sc
, ic
->ic_curchan
);
923 case IEEE80211_S_ASSOC
:
924 rt2560_set_chan(sc
, ic
->ic_curchan
);
927 case IEEE80211_S_RUN
:
928 rt2560_set_chan(sc
, ic
->ic_curchan
);
932 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
933 rt2560_update_plcp(sc
);
934 rt2560_set_basicrates(sc
);
935 rt2560_set_bssid(sc
, ni
->ni_bssid
);
938 if (ic
->ic_opmode
== IEEE80211_M_HOSTAP
||
939 ic
->ic_opmode
== IEEE80211_M_IBSS
) {
940 m
= ieee80211_beacon_alloc(ic
, ni
, &sc
->sc_bo
);
942 aprint_error_dev(&sc
->sc_dev
, "could not allocate beacon\n");
947 ieee80211_ref_node(ni
);
948 error
= rt2560_tx_bcn(sc
, m
, ni
);
953 /* turn assocation led on */
954 rt2560_update_led(sc
, 1, 0);
956 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
957 callout_reset(&sc
->rssadapt_ch
, hz
/ 10,
958 rt2560_update_rssadapt
, sc
);
959 rt2560_enable_tsf_sync(sc
);
964 return (error
!= 0) ? error
: sc
->sc_newstate(ic
, nstate
, arg
);
968 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
972 rt2560_eeprom_read(struct rt2560_softc
*sc
, uint8_t addr
)
978 /* clock C once before the first command */
979 RT2560_EEPROM_CTL(sc
, 0);
981 RT2560_EEPROM_CTL(sc
, RT2560_S
);
982 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_C
);
983 RT2560_EEPROM_CTL(sc
, RT2560_S
);
985 /* write start bit (1) */
986 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_D
);
987 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_D
| RT2560_C
);
989 /* write READ opcode (10) */
990 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_D
);
991 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_D
| RT2560_C
);
992 RT2560_EEPROM_CTL(sc
, RT2560_S
);
993 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_C
);
995 /* write address (A5-A0 or A7-A0) */
996 n
= (RAL_READ(sc
, RT2560_CSR21
) & RT2560_93C46
) ? 5 : 7;
997 for (; n
>= 0; n
--) {
998 RT2560_EEPROM_CTL(sc
, RT2560_S
|
999 (((addr
>> n
) & 1) << RT2560_SHIFT_D
));
1000 RT2560_EEPROM_CTL(sc
, RT2560_S
|
1001 (((addr
>> n
) & 1) << RT2560_SHIFT_D
) | RT2560_C
);
1004 RT2560_EEPROM_CTL(sc
, RT2560_S
);
1006 /* read data Q15-Q0 */
1008 for (n
= 15; n
>= 0; n
--) {
1009 RT2560_EEPROM_CTL(sc
, RT2560_S
| RT2560_C
);
1010 tmp
= RAL_READ(sc
, RT2560_CSR21
);
1011 val
|= ((tmp
& RT2560_Q
) >> RT2560_SHIFT_Q
) << n
;
1012 RT2560_EEPROM_CTL(sc
, RT2560_S
);
1015 RT2560_EEPROM_CTL(sc
, 0);
1017 /* clear Chip Select and clock C */
1018 RT2560_EEPROM_CTL(sc
, RT2560_S
);
1019 RT2560_EEPROM_CTL(sc
, 0);
1020 RT2560_EEPROM_CTL(sc
, RT2560_C
);
1026 * Some frames were processed by the hardware cipher engine and are ready for
1030 rt2560_encryption_intr(struct rt2560_softc
*sc
)
1032 struct rt2560_tx_desc
*desc
;
1035 /* retrieve last descriptor index processed by cipher engine */
1036 hw
= (RAL_READ(sc
, RT2560_SECCSR1
) - sc
->txq
.physaddr
) /
1037 RT2560_TX_DESC_SIZE
;
1039 for (; sc
->txq
.next_encrypt
!= hw
;) {
1040 desc
= &sc
->txq
.desc
[sc
->txq
.next_encrypt
];
1042 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
1043 sc
->txq
.next_encrypt
* RT2560_TX_DESC_SIZE
,
1044 RT2560_TX_DESC_SIZE
, BUS_DMASYNC_POSTREAD
);
1046 if (le32toh(desc
->flags
) &
1047 (RT2560_TX_BUSY
| RT2560_TX_CIPHER_BUSY
))
1050 /* for TKIP, swap eiv field to fix a bug in ASIC */
1051 if ((le32toh(desc
->flags
) & RT2560_TX_CIPHER_MASK
) ==
1052 RT2560_TX_CIPHER_TKIP
)
1053 desc
->eiv
= bswap32(desc
->eiv
);
1055 /* mark the frame ready for transmission */
1056 desc
->flags
|= htole32(RT2560_TX_BUSY
| RT2560_TX_VALID
);
1058 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
1059 sc
->txq
.next_encrypt
* RT2560_TX_DESC_SIZE
,
1060 RT2560_TX_DESC_SIZE
, BUS_DMASYNC_PREWRITE
);
1062 DPRINTFN(15, ("encryption done idx=%u\n",
1063 sc
->txq
.next_encrypt
));
1065 sc
->txq
.next_encrypt
=
1066 (sc
->txq
.next_encrypt
+ 1) % RT2560_TX_RING_COUNT
;
1070 RAL_WRITE(sc
, RT2560_TXCSR0
, RT2560_KICK_TX
);
1074 rt2560_tx_intr(struct rt2560_softc
*sc
)
1076 struct ieee80211com
*ic
= &sc
->sc_ic
;
1077 struct ifnet
*ifp
= ic
->ic_ifp
;
1078 struct rt2560_tx_desc
*desc
;
1079 struct rt2560_tx_data
*data
;
1080 struct rt2560_node
*rn
;
1083 desc
= &sc
->txq
.desc
[sc
->txq
.next
];
1084 data
= &sc
->txq
.data
[sc
->txq
.next
];
1086 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
1087 sc
->txq
.next
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1088 BUS_DMASYNC_POSTREAD
);
1090 if ((le32toh(desc
->flags
) & RT2560_TX_BUSY
) ||
1091 (le32toh(desc
->flags
) & RT2560_TX_CIPHER_BUSY
) ||
1092 !(le32toh(desc
->flags
) & RT2560_TX_VALID
))
1095 rn
= (struct rt2560_node
*)data
->ni
;
1097 switch (le32toh(desc
->flags
) & RT2560_TX_RESULT_MASK
) {
1098 case RT2560_TX_SUCCESS
:
1099 DPRINTFN(10, ("data frame sent successfully\n"));
1100 if (data
->id
.id_node
!= NULL
) {
1101 ieee80211_rssadapt_raise_rate(ic
,
1102 &rn
->rssadapt
, &data
->id
);
1107 case RT2560_TX_SUCCESS_RETRY
:
1108 DPRINTFN(9, ("data frame sent after %u retries\n",
1109 (le32toh(desc
->flags
) >> 5) & 0x7));
1113 case RT2560_TX_FAIL_RETRY
:
1114 DPRINTFN(9, ("sending data frame failed (too much "
1116 if (data
->id
.id_node
!= NULL
) {
1117 ieee80211_rssadapt_lower_rate(ic
, data
->ni
,
1118 &rn
->rssadapt
, &data
->id
);
1123 case RT2560_TX_FAIL_INVALID
:
1124 case RT2560_TX_FAIL_OTHER
:
1126 aprint_error_dev(&sc
->sc_dev
, "sending data frame failed 0x%08x\n",
1127 le32toh(desc
->flags
));
1131 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
1132 data
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1133 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
1136 ieee80211_free_node(data
->ni
);
1139 /* descriptor is no longer valid */
1140 desc
->flags
&= ~htole32(RT2560_TX_VALID
);
1142 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
1143 sc
->txq
.next
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1144 BUS_DMASYNC_PREWRITE
);
1146 DPRINTFN(15, ("tx done idx=%u\n", sc
->txq
.next
));
1149 sc
->txq
.next
= (sc
->txq
.next
+ 1) % RT2560_TX_RING_COUNT
;
1152 sc
->sc_tx_timer
= 0;
1153 ifp
->if_flags
&= ~IFF_OACTIVE
;
1158 rt2560_prio_intr(struct rt2560_softc
*sc
)
1160 struct ieee80211com
*ic
= &sc
->sc_ic
;
1161 struct ifnet
*ifp
= ic
->ic_ifp
;
1162 struct rt2560_tx_desc
*desc
;
1163 struct rt2560_tx_data
*data
;
1166 desc
= &sc
->prioq
.desc
[sc
->prioq
.next
];
1167 data
= &sc
->prioq
.data
[sc
->prioq
.next
];
1169 bus_dmamap_sync(sc
->sc_dmat
, sc
->prioq
.map
,
1170 sc
->prioq
.next
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1171 BUS_DMASYNC_POSTREAD
);
1173 if ((le32toh(desc
->flags
) & RT2560_TX_BUSY
) ||
1174 !(le32toh(desc
->flags
) & RT2560_TX_VALID
))
1177 switch (le32toh(desc
->flags
) & RT2560_TX_RESULT_MASK
) {
1178 case RT2560_TX_SUCCESS
:
1179 DPRINTFN(10, ("mgt frame sent successfully\n"));
1182 case RT2560_TX_SUCCESS_RETRY
:
1183 DPRINTFN(9, ("mgt frame sent after %u retries\n",
1184 (le32toh(desc
->flags
) >> 5) & 0x7));
1187 case RT2560_TX_FAIL_RETRY
:
1188 DPRINTFN(9, ("sending mgt frame failed (too much "
1192 case RT2560_TX_FAIL_INVALID
:
1193 case RT2560_TX_FAIL_OTHER
:
1195 aprint_error_dev(&sc
->sc_dev
, "sending mgt frame failed 0x%08x\n",
1196 le32toh(desc
->flags
));
1199 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
1200 data
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1201 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
1204 ieee80211_free_node(data
->ni
);
1207 /* descriptor is no longer valid */
1208 desc
->flags
&= ~htole32(RT2560_TX_VALID
);
1210 bus_dmamap_sync(sc
->sc_dmat
, sc
->prioq
.map
,
1211 sc
->prioq
.next
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1212 BUS_DMASYNC_PREWRITE
);
1214 DPRINTFN(15, ("prio done idx=%u\n", sc
->prioq
.next
));
1217 sc
->prioq
.next
= (sc
->prioq
.next
+ 1) % RT2560_PRIO_RING_COUNT
;
1220 sc
->sc_tx_timer
= 0;
1221 ifp
->if_flags
&= ~IFF_OACTIVE
;
1226 * Some frames were processed by the hardware cipher engine and are ready for
1227 * transmission to the IEEE802.11 layer.
1230 rt2560_decryption_intr(struct rt2560_softc
*sc
)
1232 struct ieee80211com
*ic
= &sc
->sc_ic
;
1233 struct ifnet
*ifp
= ic
->ic_ifp
;
1234 struct rt2560_rx_desc
*desc
;
1235 struct rt2560_rx_data
*data
;
1236 struct rt2560_node
*rn
;
1237 struct ieee80211_frame
*wh
;
1238 struct ieee80211_node
*ni
;
1239 struct mbuf
*mnew
, *m
;
1242 /* retrieve last decriptor index processed by cipher engine */
1243 hw
= (RAL_READ(sc
, RT2560_SECCSR0
) - sc
->rxq
.physaddr
) /
1244 RT2560_RX_DESC_SIZE
;
1246 for (; sc
->rxq
.cur_decrypt
!= hw
;) {
1247 desc
= &sc
->rxq
.desc
[sc
->rxq
.cur_decrypt
];
1248 data
= &sc
->rxq
.data
[sc
->rxq
.cur_decrypt
];
1250 bus_dmamap_sync(sc
->sc_dmat
, sc
->rxq
.map
,
1251 sc
->rxq
.cur_decrypt
* RT2560_TX_DESC_SIZE
,
1252 RT2560_TX_DESC_SIZE
, BUS_DMASYNC_POSTREAD
);
1254 if (le32toh(desc
->flags
) &
1255 (RT2560_RX_BUSY
| RT2560_RX_CIPHER_BUSY
))
1263 if ((le32toh(desc
->flags
) & RT2560_RX_CIPHER_MASK
) != 0 &&
1264 (le32toh(desc
->flags
) & RT2560_RX_ICV_ERROR
)) {
1270 * Try to allocate a new mbuf for this ring element and load it
1271 * before processing the current mbuf. If the ring element
1272 * cannot be loaded, drop the received packet and reuse the old
1273 * mbuf. In the unlikely case that the old mbuf can't be
1274 * reloaded either, explicitly panic.
1276 MGETHDR(mnew
, M_DONTWAIT
, MT_DATA
);
1282 MCLGET(mnew
, M_DONTWAIT
);
1283 if (!(mnew
->m_flags
& M_EXT
)) {
1289 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
1290 data
->map
->dm_mapsize
, BUS_DMASYNC_POSTREAD
);
1291 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
1293 error
= bus_dmamap_load(sc
->sc_dmat
, data
->map
,
1294 mtod(mnew
, void *), MCLBYTES
, NULL
, BUS_DMA_NOWAIT
);
1298 /* try to reload the old mbuf */
1299 error
= bus_dmamap_load(sc
->sc_dmat
, data
->map
,
1300 mtod(data
->m
, void *), MCLBYTES
, NULL
,
1303 /* very unlikely that it will fail... */
1304 panic("%s: could not load old rx mbuf",
1305 device_xname(&sc
->sc_dev
));
1307 /* physical address may have changed */
1308 desc
->physaddr
= htole32(data
->map
->dm_segs
->ds_addr
);
1314 * New mbuf successfully loaded, update Rx ring and continue
1319 desc
->physaddr
= htole32(data
->map
->dm_segs
->ds_addr
);
1322 m
->m_pkthdr
.rcvif
= ifp
;
1323 m
->m_pkthdr
.len
= m
->m_len
=
1324 (le32toh(desc
->flags
) >> 16) & 0xfff;
1327 if (sc
->sc_drvbpf
!= NULL
) {
1328 struct rt2560_rx_radiotap_header
*tap
= &sc
->sc_rxtap
;
1329 uint32_t tsf_lo
, tsf_hi
;
1331 /* get timestamp (low and high 32 bits) */
1332 tsf_hi
= RAL_READ(sc
, RT2560_CSR17
);
1333 tsf_lo
= RAL_READ(sc
, RT2560_CSR16
);
1336 htole64(((uint64_t)tsf_hi
<< 32) | tsf_lo
);
1338 tap
->wr_rate
= rt2560_rxrate(desc
);
1339 tap
->wr_chan_freq
= htole16(ic
->ic_ibss_chan
->ic_freq
);
1340 tap
->wr_chan_flags
=
1341 htole16(ic
->ic_ibss_chan
->ic_flags
);
1342 tap
->wr_antenna
= sc
->rx_ant
;
1343 tap
->wr_antsignal
= desc
->rssi
;
1345 bpf_mtap2(sc
->sc_drvbpf
, tap
, sc
->sc_txtap_len
, m
);
1349 wh
= mtod(m
, struct ieee80211_frame
*);
1350 ni
= ieee80211_find_rxnode(ic
,
1351 (struct ieee80211_frame_min
*)wh
);
1353 /* send the frame to the 802.11 layer */
1354 ieee80211_input(ic
, m
, ni
, desc
->rssi
, 0);
1356 /* give rssi to the rate adatation algorithm */
1357 rn
= (struct rt2560_node
*)ni
;
1358 ieee80211_rssadapt_input(ic
, ni
, &rn
->rssadapt
, desc
->rssi
);
1360 /* node is no longer needed */
1361 ieee80211_free_node(ni
);
1363 skip
: desc
->flags
= htole32(RT2560_RX_BUSY
);
1365 bus_dmamap_sync(sc
->sc_dmat
, sc
->rxq
.map
,
1366 sc
->rxq
.cur_decrypt
* RT2560_TX_DESC_SIZE
,
1367 RT2560_TX_DESC_SIZE
, BUS_DMASYNC_PREWRITE
);
1369 DPRINTFN(15, ("decryption done idx=%u\n", sc
->rxq
.cur_decrypt
));
1371 sc
->rxq
.cur_decrypt
=
1372 (sc
->rxq
.cur_decrypt
+ 1) % RT2560_RX_RING_COUNT
;
1376 * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
1377 * without calling if_start().
1379 if (!IFQ_IS_EMPTY(&ifp
->if_snd
) && !(ifp
->if_flags
& IFF_OACTIVE
))
1384 * Some frames were received. Pass them to the hardware cipher engine before
1385 * sending them to the 802.11 layer.
1388 rt2560_rx_intr(struct rt2560_softc
*sc
)
1390 struct rt2560_rx_desc
*desc
;
1391 struct rt2560_rx_data
*data
;
1394 desc
= &sc
->rxq
.desc
[sc
->rxq
.cur
];
1395 data
= &sc
->rxq
.data
[sc
->rxq
.cur
];
1397 bus_dmamap_sync(sc
->sc_dmat
, sc
->rxq
.map
,
1398 sc
->rxq
.cur
* RT2560_RX_DESC_SIZE
, RT2560_RX_DESC_SIZE
,
1399 BUS_DMASYNC_POSTREAD
);
1401 if (le32toh(desc
->flags
) &
1402 (RT2560_RX_BUSY
| RT2560_RX_CIPHER_BUSY
))
1407 if (le32toh(desc
->flags
) &
1408 (RT2560_RX_PHY_ERROR
| RT2560_RX_CRC_ERROR
)) {
1410 * This should not happen since we did not request
1411 * to receive those frames when we filled RXCSR0.
1413 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1414 le32toh(desc
->flags
)));
1418 if (((le32toh(desc
->flags
) >> 16) & 0xfff) > MCLBYTES
) {
1419 DPRINTFN(5, ("bad length\n"));
1423 /* mark the frame for decryption */
1424 desc
->flags
|= htole32(RT2560_RX_CIPHER_BUSY
);
1426 bus_dmamap_sync(sc
->sc_dmat
, sc
->rxq
.map
,
1427 sc
->rxq
.cur
* RT2560_RX_DESC_SIZE
, RT2560_RX_DESC_SIZE
,
1428 BUS_DMASYNC_PREWRITE
);
1430 DPRINTFN(15, ("rx done idx=%u\n", sc
->rxq
.cur
));
1432 sc
->rxq
.cur
= (sc
->rxq
.cur
+ 1) % RT2560_RX_RING_COUNT
;
1436 RAL_WRITE(sc
, RT2560_SECCSR0
, RT2560_KICK_DECRYPT
);
1440 * This function is called periodically in IBSS mode when a new beacon must be
1444 rt2560_beacon_expire(struct rt2560_softc
*sc
)
1446 struct ieee80211com
*ic
= &sc
->sc_ic
;
1447 struct rt2560_tx_data
*data
;
1449 if (ic
->ic_opmode
!= IEEE80211_M_IBSS
&&
1450 ic
->ic_opmode
!= IEEE80211_M_HOSTAP
)
1453 data
= &sc
->bcnq
.data
[sc
->bcnq
.next
];
1455 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
1456 data
->map
->dm_mapsize
, BUS_DMASYNC_POSTWRITE
);
1457 bus_dmamap_unload(sc
->sc_dmat
, data
->map
);
1459 ieee80211_beacon_update(ic
, data
->ni
, &sc
->sc_bo
, data
->m
, 1);
1462 if (ic
->ic_rawbpf
!= NULL
)
1463 bpf_mtap(ic
->ic_rawbpf
, data
->m
);
1465 rt2560_tx_bcn(sc
, data
->m
, data
->ni
);
1467 DPRINTFN(15, ("beacon expired\n"));
1469 sc
->bcnq
.next
= (sc
->bcnq
.next
+ 1) % RT2560_BEACON_RING_COUNT
;
1473 rt2560_wakeup_expire(struct rt2560_softc
*sc
)
1475 DPRINTFN(15, ("wakeup expired\n"));
1479 rt2560_intr(void *arg
)
1481 struct rt2560_softc
*sc
= arg
;
1482 struct ifnet
*ifp
= &sc
->sc_if
;
1485 if (!device_is_active(&sc
->sc_dev
))
1488 if ((r
= RAL_READ(sc
, RT2560_CSR7
)) == 0)
1489 return 0; /* not for us */
1491 /* disable interrupts */
1492 RAL_WRITE(sc
, RT2560_CSR8
, 0xffffffff);
1494 /* acknowledge interrupts */
1495 RAL_WRITE(sc
, RT2560_CSR7
, r
);
1497 /* don't re-enable interrupts if we're shutting down */
1498 if (!(ifp
->if_flags
& IFF_RUNNING
))
1501 if (r
& RT2560_BEACON_EXPIRE
)
1502 rt2560_beacon_expire(sc
);
1504 if (r
& RT2560_WAKEUP_EXPIRE
)
1505 rt2560_wakeup_expire(sc
);
1507 if (r
& RT2560_ENCRYPTION_DONE
)
1508 rt2560_encryption_intr(sc
);
1510 if (r
& RT2560_TX_DONE
)
1513 if (r
& RT2560_PRIO_DONE
)
1514 rt2560_prio_intr(sc
);
1516 if (r
& RT2560_DECRYPTION_DONE
)
1517 rt2560_decryption_intr(sc
);
1519 if (r
& RT2560_RX_DONE
)
1522 /* re-enable interrupts */
1523 RAL_WRITE(sc
, RT2560_CSR8
, RT2560_INTR_MASK
);
1528 /* quickly determine if a given rate is CCK or OFDM */
1529 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1531 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
1532 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
1534 #define RAL_SIFS 10 /* us */
1536 #define RT2560_RXTX_TURNAROUND 10 /* us */
1539 * This function is only used by the Rx radiotap code. It returns the rate at
1540 * which a given frame was received.
1544 rt2560_rxrate(struct rt2560_rx_desc
*desc
)
1546 if (le32toh(desc
->flags
) & RT2560_RX_OFDM
) {
1547 /* reverse function of rt2560_plcp_signal */
1548 switch (desc
->rate
) {
1549 case 0xb: return 12;
1550 case 0xf: return 18;
1551 case 0xa: return 24;
1552 case 0xe: return 36;
1553 case 0x9: return 48;
1554 case 0xd: return 72;
1555 case 0x8: return 96;
1556 case 0xc: return 108;
1559 if (desc
->rate
== 10)
1561 if (desc
->rate
== 20)
1563 if (desc
->rate
== 55)
1565 if (desc
->rate
== 110)
1568 return 2; /* should not get there */
1573 * Return the expected ack rate for a frame transmitted at rate `rate'.
1574 * XXX: this should depend on the destination node basic rate set.
1577 rt2560_ack_rate(struct ieee80211com
*ic
, int rate
)
1586 return (ic
->ic_curmode
== IEEE80211_MODE_11B
) ? 4 : rate
;
1602 /* default to 1Mbps */
1607 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1608 * The function automatically determines the operating mode depending on the
1609 * given rate. `flags' indicates whether short preamble is in use or not.
1612 rt2560_txtime(int len
, int rate
, uint32_t flags
)
1616 if (RAL_RATE_IS_OFDM(rate
)) {
1617 /* IEEE Std 802.11a-1999, pp. 37 */
1618 txtime
= (8 + 4 * len
+ 3 + rate
- 1) / rate
;
1619 txtime
= 16 + 4 + 4 * txtime
+ 6;
1621 /* IEEE Std 802.11b-1999, pp. 28 */
1622 txtime
= (16 * len
+ rate
- 1) / rate
;
1623 if (rate
!= 2 && (flags
& IEEE80211_F_SHPREAMBLE
))
1632 rt2560_plcp_signal(int rate
)
1635 /* CCK rates (returned values are device-dependent) */
1638 case 11: return 0x2;
1639 case 22: return 0x3;
1641 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1642 case 12: return 0xb;
1643 case 18: return 0xf;
1644 case 24: return 0xa;
1645 case 36: return 0xe;
1646 case 48: return 0x9;
1647 case 72: return 0xd;
1648 case 96: return 0x8;
1649 case 108: return 0xc;
1651 /* unsupported rates (should not get there) */
1652 default: return 0xff;
1657 rt2560_setup_tx_desc(struct rt2560_softc
*sc
, struct rt2560_tx_desc
*desc
,
1658 uint32_t flags
, int len
, int rate
, int encrypt
, bus_addr_t physaddr
)
1660 struct ieee80211com
*ic
= &sc
->sc_ic
;
1661 uint16_t plcp_length
;
1664 desc
->flags
= htole32(flags
);
1665 desc
->flags
|= htole32(len
<< 16);
1666 desc
->flags
|= encrypt
? htole32(RT2560_TX_CIPHER_BUSY
) :
1667 htole32(RT2560_TX_BUSY
| RT2560_TX_VALID
);
1669 desc
->physaddr
= htole32(physaddr
);
1670 desc
->wme
= htole16(
1672 RT2560_LOGCWMIN(3) |
1673 RT2560_LOGCWMAX(8));
1675 /* setup PLCP fields */
1676 desc
->plcp_signal
= rt2560_plcp_signal(rate
);
1677 desc
->plcp_service
= 4;
1679 len
+= IEEE80211_CRC_LEN
;
1680 if (RAL_RATE_IS_OFDM(rate
)) {
1681 desc
->flags
|= htole32(RT2560_TX_OFDM
);
1683 plcp_length
= len
& 0xfff;
1684 desc
->plcp_length_hi
= plcp_length
>> 6;
1685 desc
->plcp_length_lo
= plcp_length
& 0x3f;
1687 plcp_length
= (16 * len
+ rate
- 1) / rate
;
1689 remainder
= (16 * len
) % 22;
1690 if (remainder
!= 0 && remainder
< 7)
1691 desc
->plcp_service
|= RT2560_PLCP_LENGEXT
;
1693 desc
->plcp_length_hi
= plcp_length
>> 8;
1694 desc
->plcp_length_lo
= plcp_length
& 0xff;
1696 if (rate
!= 2 && (ic
->ic_flags
& IEEE80211_F_SHPREAMBLE
))
1697 desc
->plcp_signal
|= 0x08;
1702 rt2560_tx_bcn(struct rt2560_softc
*sc
, struct mbuf
*m0
,
1703 struct ieee80211_node
*ni
)
1705 struct rt2560_tx_desc
*desc
;
1706 struct rt2560_tx_data
*data
;
1709 desc
= &sc
->bcnq
.desc
[sc
->bcnq
.cur
];
1710 data
= &sc
->bcnq
.data
[sc
->bcnq
.cur
];
1712 rate
= IEEE80211_IS_CHAN_5GHZ(ni
->ni_chan
) ? 12 : 2;
1714 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, data
->map
, m0
,
1717 aprint_error_dev(&sc
->sc_dev
, "could not map mbuf (error %d)\n",
1726 rt2560_setup_tx_desc(sc
, desc
, RT2560_TX_IFS_NEWBACKOFF
|
1727 RT2560_TX_TIMESTAMP
, m0
->m_pkthdr
.len
, rate
, 0,
1728 data
->map
->dm_segs
->ds_addr
);
1730 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0, data
->map
->dm_mapsize
,
1731 BUS_DMASYNC_PREWRITE
);
1732 bus_dmamap_sync(sc
->sc_dmat
, sc
->bcnq
.map
,
1733 sc
->bcnq
.cur
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1734 BUS_DMASYNC_PREWRITE
);
1740 rt2560_tx_mgt(struct rt2560_softc
*sc
, struct mbuf
*m0
,
1741 struct ieee80211_node
*ni
)
1743 struct ieee80211com
*ic
= &sc
->sc_ic
;
1744 struct rt2560_tx_desc
*desc
;
1745 struct rt2560_tx_data
*data
;
1746 struct ieee80211_frame
*wh
;
1747 struct ieee80211_key
*k
;
1752 desc
= &sc
->prioq
.desc
[sc
->prioq
.cur
];
1753 data
= &sc
->prioq
.data
[sc
->prioq
.cur
];
1755 rate
= IEEE80211_IS_CHAN_5GHZ(ni
->ni_chan
) ? 12 : 2;
1757 wh
= mtod(m0
, struct ieee80211_frame
*);
1759 if (wh
->i_fc
[1] & IEEE80211_FC1_WEP
) {
1760 k
= ieee80211_crypto_encap(ic
, ni
, m0
);
1766 /* packet header may have moved, reset our local pointer */
1767 wh
= mtod(m0
, struct ieee80211_frame
*);
1770 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, data
->map
, m0
,
1773 aprint_error_dev(&sc
->sc_dev
, "could not map mbuf (error %d)\n",
1780 if (sc
->sc_drvbpf
!= NULL
) {
1781 struct rt2560_tx_radiotap_header
*tap
= &sc
->sc_txtap
;
1784 tap
->wt_rate
= rate
;
1785 tap
->wt_chan_freq
= htole16(ic
->ic_ibss_chan
->ic_freq
);
1786 tap
->wt_chan_flags
= htole16(ic
->ic_ibss_chan
->ic_flags
);
1787 tap
->wt_antenna
= sc
->tx_ant
;
1789 bpf_mtap2(sc
->sc_drvbpf
, tap
, sc
->sc_txtap_len
, m0
);
1796 wh
= mtod(m0
, struct ieee80211_frame
*);
1798 if (!IEEE80211_IS_MULTICAST(wh
->i_addr1
)) {
1799 flags
|= RT2560_TX_ACK
;
1801 dur
= rt2560_txtime(RAL_ACK_SIZE
, rate
, ic
->ic_flags
) +
1803 *(uint16_t *)wh
->i_dur
= htole16(dur
);
1805 /* tell hardware to add timestamp for probe responses */
1807 (IEEE80211_FC0_TYPE_MASK
| IEEE80211_FC0_SUBTYPE_MASK
)) ==
1808 (IEEE80211_FC0_TYPE_MGT
| IEEE80211_FC0_SUBTYPE_PROBE_RESP
))
1809 flags
|= RT2560_TX_TIMESTAMP
;
1812 rt2560_setup_tx_desc(sc
, desc
, flags
, m0
->m_pkthdr
.len
, rate
, 0,
1813 data
->map
->dm_segs
->ds_addr
);
1815 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0, data
->map
->dm_mapsize
,
1816 BUS_DMASYNC_PREWRITE
);
1817 bus_dmamap_sync(sc
->sc_dmat
, sc
->prioq
.map
,
1818 sc
->prioq
.cur
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
1819 BUS_DMASYNC_PREWRITE
);
1821 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1822 m0
->m_pkthdr
.len
, sc
->prioq
.cur
, rate
));
1826 sc
->prioq
.cur
= (sc
->prioq
.cur
+ 1) % RT2560_PRIO_RING_COUNT
;
1827 RAL_WRITE(sc
, RT2560_TXCSR0
, RT2560_KICK_PRIO
);
1833 * Build a RTS control frame.
1835 static struct mbuf
*
1836 rt2560_get_rts(struct rt2560_softc
*sc
, struct ieee80211_frame
*wh
,
1839 struct ieee80211_frame_rts
*rts
;
1842 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1844 sc
->sc_ic
.ic_stats
.is_tx_nobuf
++;
1845 aprint_error_dev(&sc
->sc_dev
, "could not allocate RTS frame\n");
1849 rts
= mtod(m
, struct ieee80211_frame_rts
*);
1851 rts
->i_fc
[0] = IEEE80211_FC0_VERSION_0
| IEEE80211_FC0_TYPE_CTL
|
1852 IEEE80211_FC0_SUBTYPE_RTS
;
1853 rts
->i_fc
[1] = IEEE80211_FC1_DIR_NODS
;
1854 *(uint16_t *)rts
->i_dur
= htole16(dur
);
1855 IEEE80211_ADDR_COPY(rts
->i_ra
, wh
->i_addr1
);
1856 IEEE80211_ADDR_COPY(rts
->i_ta
, wh
->i_addr2
);
1858 m
->m_pkthdr
.len
= m
->m_len
= sizeof (struct ieee80211_frame_rts
);
1864 rt2560_tx_data(struct rt2560_softc
*sc
, struct mbuf
*m0
,
1865 struct ieee80211_node
*ni
)
1867 struct ieee80211com
*ic
= &sc
->sc_ic
;
1868 struct rt2560_tx_desc
*desc
;
1869 struct rt2560_tx_data
*data
;
1870 struct rt2560_node
*rn
;
1871 struct ieee80211_rateset
*rs
;
1872 struct ieee80211_frame
*wh
;
1873 struct ieee80211_key
*k
;
1879 wh
= mtod(m0
, struct ieee80211_frame
*);
1881 if (ic
->ic_fixed_rate
!= IEEE80211_FIXED_RATE_NONE
) {
1882 rs
= &ic
->ic_sup_rates
[ic
->ic_curmode
];
1883 rate
= rs
->rs_rates
[ic
->ic_fixed_rate
];
1886 rn
= (struct rt2560_node
*)ni
;
1887 ni
->ni_txrate
= ieee80211_rssadapt_choose(&rn
->rssadapt
, rs
,
1888 wh
, m0
->m_pkthdr
.len
, -1, NULL
, 0);
1889 rate
= rs
->rs_rates
[ni
->ni_txrate
];
1891 rate
&= IEEE80211_RATE_VAL
;
1893 if (wh
->i_fc
[1] & IEEE80211_FC1_WEP
) {
1894 k
= ieee80211_crypto_encap(ic
, ni
, m0
);
1900 /* packet header may have moved, reset our local pointer */
1901 wh
= mtod(m0
, struct ieee80211_frame
*);
1905 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1906 * for directed frames only when the length of the MPDU is greater
1907 * than the length threshold indicated by [...]" ic_rtsthreshold.
1909 if (!IEEE80211_IS_MULTICAST(wh
->i_addr1
) &&
1910 m0
->m_pkthdr
.len
> ic
->ic_rtsthreshold
) {
1912 int rtsrate
, ackrate
;
1914 rtsrate
= IEEE80211_IS_CHAN_5GHZ(ni
->ni_chan
) ? 12 : 2;
1915 ackrate
= rt2560_ack_rate(ic
, rate
);
1917 dur
= rt2560_txtime(m0
->m_pkthdr
.len
+ 4, rate
, ic
->ic_flags
) +
1918 rt2560_txtime(RAL_CTS_SIZE
, rtsrate
, ic
->ic_flags
) +
1919 rt2560_txtime(RAL_ACK_SIZE
, ackrate
, ic
->ic_flags
) +
1922 m
= rt2560_get_rts(sc
, wh
, dur
);
1924 desc
= &sc
->txq
.desc
[sc
->txq
.cur_encrypt
];
1925 data
= &sc
->txq
.data
[sc
->txq
.cur_encrypt
];
1927 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, data
->map
, m
,
1930 aprint_error_dev(&sc
->sc_dev
, "could not map mbuf (error %d)\n",
1937 /* avoid multiple free() of the same node for each fragment */
1938 ieee80211_ref_node(ni
);
1943 /* RTS frames are not taken into account for rssadapt */
1944 data
->id
.id_node
= NULL
;
1946 rt2560_setup_tx_desc(sc
, desc
, RT2560_TX_ACK
|
1947 RT2560_TX_MORE_FRAG
, m
->m_pkthdr
.len
, rtsrate
, 1,
1948 data
->map
->dm_segs
->ds_addr
);
1950 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0,
1951 data
->map
->dm_mapsize
, BUS_DMASYNC_PREWRITE
);
1952 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
1953 sc
->txq
.cur_encrypt
* RT2560_TX_DESC_SIZE
,
1954 RT2560_TX_DESC_SIZE
, BUS_DMASYNC_PREWRITE
);
1957 sc
->txq
.cur_encrypt
=
1958 (sc
->txq
.cur_encrypt
+ 1) % RT2560_TX_RING_COUNT
;
1961 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1962 * asynchronous data frame shall be transmitted after the CTS
1963 * frame and a SIFS period.
1965 flags
|= RT2560_TX_LONG_RETRY
| RT2560_TX_IFS_SIFS
;
1968 data
= &sc
->txq
.data
[sc
->txq
.cur_encrypt
];
1969 desc
= &sc
->txq
.desc
[sc
->txq
.cur_encrypt
];
1971 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, data
->map
, m0
,
1973 if (error
!= 0 && error
!= EFBIG
) {
1974 aprint_error_dev(&sc
->sc_dev
, "could not map mbuf (error %d)\n",
1980 /* too many fragments, linearize */
1982 MGETHDR(mnew
, M_DONTWAIT
, MT_DATA
);
1988 M_COPY_PKTHDR(mnew
, m0
);
1989 if (m0
->m_pkthdr
.len
> MHLEN
) {
1990 MCLGET(mnew
, M_DONTWAIT
);
1991 if (!(mnew
->m_flags
& M_EXT
)) {
1998 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, mtod(mnew
, void *));
2000 mnew
->m_len
= mnew
->m_pkthdr
.len
;
2003 error
= bus_dmamap_load_mbuf(sc
->sc_dmat
, data
->map
, m0
,
2006 aprint_error_dev(&sc
->sc_dev
, "could not map mbuf (error %d)\n",
2012 /* packet header have moved, reset our local pointer */
2013 wh
= mtod(m0
, struct ieee80211_frame
*);
2017 if (sc
->sc_drvbpf
!= NULL
) {
2018 struct rt2560_tx_radiotap_header
*tap
= &sc
->sc_txtap
;
2021 tap
->wt_rate
= rate
;
2022 tap
->wt_chan_freq
= htole16(ic
->ic_ibss_chan
->ic_freq
);
2023 tap
->wt_chan_flags
= htole16(ic
->ic_ibss_chan
->ic_flags
);
2024 tap
->wt_antenna
= sc
->tx_ant
;
2026 bpf_mtap2(sc
->sc_drvbpf
, tap
, sc
->sc_txtap_len
, m0
);
2033 /* remember link conditions for rate adaptation algorithm */
2034 if (ic
->ic_fixed_rate
== IEEE80211_FIXED_RATE_NONE
) {
2035 data
->id
.id_len
= m0
->m_pkthdr
.len
;
2036 data
->id
.id_rateidx
= ni
->ni_txrate
;
2037 data
->id
.id_node
= ni
;
2038 data
->id
.id_rssi
= ni
->ni_rssi
;
2040 data
->id
.id_node
= NULL
;
2042 if (!IEEE80211_IS_MULTICAST(wh
->i_addr1
)) {
2043 flags
|= RT2560_TX_ACK
;
2045 dur
= rt2560_txtime(RAL_ACK_SIZE
, rt2560_ack_rate(ic
, rate
),
2046 ic
->ic_flags
) + RAL_SIFS
;
2047 *(uint16_t *)wh
->i_dur
= htole16(dur
);
2050 rt2560_setup_tx_desc(sc
, desc
, flags
, m0
->m_pkthdr
.len
, rate
, 1,
2051 data
->map
->dm_segs
->ds_addr
);
2053 bus_dmamap_sync(sc
->sc_dmat
, data
->map
, 0, data
->map
->dm_mapsize
,
2054 BUS_DMASYNC_PREWRITE
);
2055 bus_dmamap_sync(sc
->sc_dmat
, sc
->txq
.map
,
2056 sc
->txq
.cur_encrypt
* RT2560_TX_DESC_SIZE
, RT2560_TX_DESC_SIZE
,
2057 BUS_DMASYNC_PREWRITE
);
2059 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
2060 m0
->m_pkthdr
.len
, sc
->txq
.cur_encrypt
, rate
));
2064 sc
->txq
.cur_encrypt
= (sc
->txq
.cur_encrypt
+ 1) % RT2560_TX_RING_COUNT
;
2065 RAL_WRITE(sc
, RT2560_SECCSR1
, RT2560_KICK_ENCRYPT
);
2071 rt2560_start(struct ifnet
*ifp
)
2073 struct rt2560_softc
*sc
= ifp
->if_softc
;
2074 struct ieee80211com
*ic
= &sc
->sc_ic
;
2076 struct ieee80211_node
*ni
;
2077 struct ether_header
*eh
;
2080 * net80211 may still try to send management frames even if the
2081 * IFF_RUNNING flag is not set...
2083 if ((ifp
->if_flags
& (IFF_RUNNING
| IFF_OACTIVE
)) != IFF_RUNNING
)
2087 IF_POLL(&ic
->ic_mgtq
, m0
);
2089 if (sc
->prioq
.queued
>= RT2560_PRIO_RING_COUNT
) {
2090 ifp
->if_flags
|= IFF_OACTIVE
;
2093 IF_DEQUEUE(&ic
->ic_mgtq
, m0
);
2097 ni
= (struct ieee80211_node
*)m0
->m_pkthdr
.rcvif
;
2098 m0
->m_pkthdr
.rcvif
= NULL
;
2100 if (ic
->ic_rawbpf
!= NULL
)
2101 bpf_mtap(ic
->ic_rawbpf
, m0
);
2103 if (rt2560_tx_mgt(sc
, m0
, ni
) != 0)
2107 if (ic
->ic_state
!= IEEE80211_S_RUN
)
2109 IFQ_DEQUEUE(&ifp
->if_snd
, m0
);
2112 if (sc
->txq
.queued
>= RT2560_TX_RING_COUNT
- 1) {
2113 ifp
->if_flags
|= IFF_OACTIVE
;
2117 if (m0
->m_len
< sizeof (struct ether_header
) &&
2118 !(m0
= m_pullup(m0
, sizeof (struct ether_header
))))
2121 eh
= mtod(m0
, struct ether_header
*);
2122 ni
= ieee80211_find_txnode(ic
, eh
->ether_dhost
);
2128 if (ifp
->if_bpf
!= NULL
)
2129 bpf_mtap(ifp
->if_bpf
, m0
);
2132 m0
= ieee80211_encap(ic
, m0
, ni
);
2134 ieee80211_free_node(ni
);
2139 if (ic
->ic_rawbpf
!= NULL
)
2140 bpf_mtap(ic
->ic_rawbpf
, m0
);
2143 if (rt2560_tx_data(sc
, m0
, ni
) != 0) {
2144 ieee80211_free_node(ni
);
2150 sc
->sc_tx_timer
= 5;
2156 rt2560_watchdog(struct ifnet
*ifp
)
2158 struct rt2560_softc
*sc
= ifp
->if_softc
;
2162 if (sc
->sc_tx_timer
> 0) {
2163 if (--sc
->sc_tx_timer
== 0) {
2164 aprint_error_dev(&sc
->sc_dev
, "device timeout\n");
2172 ieee80211_watchdog(&sc
->sc_ic
);
2176 * This function allows for fast channel switching in monitor mode (used by
2177 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2178 * generate a new beacon frame.
2181 rt2560_reset(struct ifnet
*ifp
)
2183 struct rt2560_softc
*sc
= ifp
->if_softc
;
2184 struct ieee80211com
*ic
= &sc
->sc_ic
;
2186 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
)
2189 rt2560_set_chan(sc
, ic
->ic_curchan
);
2195 rt2560_ioctl(struct ifnet
*ifp
, u_long cmd
, void *data
)
2197 struct rt2560_softc
*sc
= ifp
->if_softc
;
2198 struct ieee80211com
*ic
= &sc
->sc_ic
;
2205 if ((error
= ifioctl_common(ifp
, cmd
, data
)) != 0)
2207 if (ifp
->if_flags
& IFF_UP
) {
2208 if (ifp
->if_flags
& IFF_RUNNING
)
2209 rt2560_update_promisc(sc
);
2213 if (ifp
->if_flags
& IFF_RUNNING
)
2214 rt2560_stop(ifp
, 1);
2220 /* XXX no h/w multicast filter? --dyoung */
2221 if ((error
= ether_ioctl(ifp
, cmd
, data
)) == ENETRESET
)
2225 case SIOCS80211CHANNEL
:
2227 * This allows for fast channel switching in monitor mode
2228 * (used by kismet). In IBSS mode, we must explicitly reset
2229 * the interface to generate a new beacon frame.
2231 error
= ieee80211_ioctl(ic
, cmd
, data
);
2232 if (error
== ENETRESET
&&
2233 ic
->ic_opmode
== IEEE80211_M_MONITOR
) {
2234 rt2560_set_chan(sc
, ic
->ic_ibss_chan
);
2240 error
= ieee80211_ioctl(ic
, cmd
, data
);
2243 if (error
== ENETRESET
) {
2244 if ((ifp
->if_flags
& (IFF_UP
| IFF_RUNNING
)) ==
2245 (IFF_UP
| IFF_RUNNING
))
2256 rt2560_bbp_write(struct rt2560_softc
*sc
, uint8_t reg
, uint8_t val
)
2261 for (ntries
= 0; ntries
< 100; ntries
++) {
2262 if (!(RAL_READ(sc
, RT2560_BBPCSR
) & RT2560_BBP_BUSY
))
2266 if (ntries
== 100) {
2267 aprint_error_dev(&sc
->sc_dev
, "could not write to BBP\n");
2271 tmp
= RT2560_BBP_WRITE
| RT2560_BBP_BUSY
| reg
<< 8 | val
;
2272 RAL_WRITE(sc
, RT2560_BBPCSR
, tmp
);
2274 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg
, val
));
2278 rt2560_bbp_read(struct rt2560_softc
*sc
, uint8_t reg
)
2283 val
= RT2560_BBP_BUSY
| reg
<< 8;
2284 RAL_WRITE(sc
, RT2560_BBPCSR
, val
);
2286 for (ntries
= 0; ntries
< 100; ntries
++) {
2287 val
= RAL_READ(sc
, RT2560_BBPCSR
);
2288 if (!(val
& RT2560_BBP_BUSY
))
2293 aprint_error_dev(&sc
->sc_dev
, "could not read from BBP\n");
2298 rt2560_rf_write(struct rt2560_softc
*sc
, uint8_t reg
, uint32_t val
)
2303 for (ntries
= 0; ntries
< 100; ntries
++) {
2304 if (!(RAL_READ(sc
, RT2560_RFCSR
) & RT2560_RF_BUSY
))
2308 if (ntries
== 100) {
2309 aprint_error_dev(&sc
->sc_dev
, "could not write to RF\n");
2313 tmp
= RT2560_RF_BUSY
| RT2560_RF_20BIT
| (val
& 0xfffff) << 2 |
2315 RAL_WRITE(sc
, RT2560_RFCSR
, tmp
);
2317 /* remember last written value in sc */
2318 sc
->rf_regs
[reg
] = val
;
2320 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg
& 0x3, val
& 0xfffff));
2324 rt2560_set_chan(struct rt2560_softc
*sc
, struct ieee80211_channel
*c
)
2326 struct ieee80211com
*ic
= &sc
->sc_ic
;
2330 chan
= ieee80211_chan2ieee(ic
, c
);
2331 if (chan
== 0 || chan
== IEEE80211_CHAN_ANY
)
2334 if (IEEE80211_IS_CHAN_2GHZ(c
))
2335 power
= min(sc
->txpow
[chan
- 1], 31);
2339 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan
, power
));
2341 switch (sc
->rf_rev
) {
2342 case RT2560_RF_2522
:
2343 rt2560_rf_write(sc
, RT2560_RF1
, 0x00814);
2344 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2522_r2
[chan
- 1]);
2345 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x00040);
2348 case RT2560_RF_2523
:
2349 rt2560_rf_write(sc
, RT2560_RF1
, 0x08804);
2350 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2523_r2
[chan
- 1]);
2351 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x38044);
2352 rt2560_rf_write(sc
, RT2560_RF4
,
2353 (chan
== 14) ? 0x00280 : 0x00286);
2356 case RT2560_RF_2524
:
2357 rt2560_rf_write(sc
, RT2560_RF1
, 0x0c808);
2358 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2524_r2
[chan
- 1]);
2359 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x00040);
2360 rt2560_rf_write(sc
, RT2560_RF4
,
2361 (chan
== 14) ? 0x00280 : 0x00286);
2364 case RT2560_RF_2525
:
2365 rt2560_rf_write(sc
, RT2560_RF1
, 0x08808);
2366 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2525_hi_r2
[chan
- 1]);
2367 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x18044);
2368 rt2560_rf_write(sc
, RT2560_RF4
,
2369 (chan
== 14) ? 0x00280 : 0x00286);
2371 rt2560_rf_write(sc
, RT2560_RF1
, 0x08808);
2372 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2525_r2
[chan
- 1]);
2373 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x18044);
2374 rt2560_rf_write(sc
, RT2560_RF4
,
2375 (chan
== 14) ? 0x00280 : 0x00286);
2378 case RT2560_RF_2525E
:
2379 rt2560_rf_write(sc
, RT2560_RF1
, 0x08808);
2380 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2525e_r2
[chan
- 1]);
2381 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x18044);
2382 rt2560_rf_write(sc
, RT2560_RF4
,
2383 (chan
== 14) ? 0x00286 : 0x00282);
2386 case RT2560_RF_2526
:
2387 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2526_hi_r2
[chan
- 1]);
2388 rt2560_rf_write(sc
, RT2560_RF4
,
2389 (chan
& 1) ? 0x00386 : 0x00381);
2390 rt2560_rf_write(sc
, RT2560_RF1
, 0x08804);
2392 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf2526_r2
[chan
- 1]);
2393 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x18044);
2394 rt2560_rf_write(sc
, RT2560_RF4
,
2395 (chan
& 1) ? 0x00386 : 0x00381);
2399 case RT2560_RF_5222
:
2400 for (i
= 0; rt2560_rf5222
[i
].chan
!= chan
; i
++);
2402 rt2560_rf_write(sc
, RT2560_RF1
, rt2560_rf5222
[i
].r1
);
2403 rt2560_rf_write(sc
, RT2560_RF2
, rt2560_rf5222
[i
].r2
);
2404 rt2560_rf_write(sc
, RT2560_RF3
, power
<< 7 | 0x00040);
2405 rt2560_rf_write(sc
, RT2560_RF4
, rt2560_rf5222
[i
].r4
);
2409 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
&&
2410 ic
->ic_state
!= IEEE80211_S_SCAN
) {
2411 /* set Japan filter bit for channel 14 */
2412 tmp
= rt2560_bbp_read(sc
, 70);
2414 tmp
&= ~RT2560_JAPAN_FILTER
;
2416 tmp
|= RT2560_JAPAN_FILTER
;
2418 rt2560_bbp_write(sc
, 70, tmp
);
2420 DELAY(1000); /* RF needs a 1ms delay here */
2421 rt2560_disable_rf_tune(sc
);
2423 /* clear CRC errors */
2424 RAL_READ(sc
, RT2560_CNT0
);
2429 * Disable RF auto-tuning.
2432 rt2560_disable_rf_tune(struct rt2560_softc
*sc
)
2436 if (sc
->rf_rev
!= RT2560_RF_2523
) {
2437 tmp
= sc
->rf_regs
[RT2560_RF1
] & ~RT2560_RF1_AUTOTUNE
;
2438 rt2560_rf_write(sc
, RT2560_RF1
, tmp
);
2441 tmp
= sc
->rf_regs
[RT2560_RF3
] & ~RT2560_RF3_AUTOTUNE
;
2442 rt2560_rf_write(sc
, RT2560_RF3
, tmp
);
2444 DPRINTFN(2, ("disabling RF autotune\n"));
2448 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2452 rt2560_enable_tsf_sync(struct rt2560_softc
*sc
)
2454 struct ieee80211com
*ic
= &sc
->sc_ic
;
2455 uint16_t logcwmin
, preload
;
2458 /* first, disable TSF synchronization */
2459 RAL_WRITE(sc
, RT2560_CSR14
, 0);
2461 tmp
= 16 * ic
->ic_bss
->ni_intval
;
2462 RAL_WRITE(sc
, RT2560_CSR12
, tmp
);
2464 RAL_WRITE(sc
, RT2560_CSR13
, 0);
2467 preload
= (ic
->ic_opmode
== IEEE80211_M_STA
) ? 384 : 1024;
2468 tmp
= logcwmin
<< 16 | preload
;
2469 RAL_WRITE(sc
, RT2560_BCNOCSR
, tmp
);
2471 /* finally, enable TSF synchronization */
2472 tmp
= RT2560_ENABLE_TSF
| RT2560_ENABLE_TBCN
;
2473 if (ic
->ic_opmode
== IEEE80211_M_STA
)
2474 tmp
|= RT2560_ENABLE_TSF_SYNC(1);
2476 tmp
|= RT2560_ENABLE_TSF_SYNC(2) |
2477 RT2560_ENABLE_BEACON_GENERATOR
;
2478 RAL_WRITE(sc
, RT2560_CSR14
, tmp
);
2480 DPRINTF(("enabling TSF synchronization\n"));
2484 rt2560_update_plcp(struct rt2560_softc
*sc
)
2486 struct ieee80211com
*ic
= &sc
->sc_ic
;
2488 /* no short preamble for 1Mbps */
2489 RAL_WRITE(sc
, RT2560_PLCP1MCSR
, 0x00700400);
2491 if (!(ic
->ic_flags
& IEEE80211_F_SHPREAMBLE
)) {
2492 /* values taken from the reference driver */
2493 RAL_WRITE(sc
, RT2560_PLCP2MCSR
, 0x00380401);
2494 RAL_WRITE(sc
, RT2560_PLCP5p5MCSR
, 0x00150402);
2495 RAL_WRITE(sc
, RT2560_PLCP11MCSR
, 0x000b8403);
2497 /* same values as above or'ed 0x8 */
2498 RAL_WRITE(sc
, RT2560_PLCP2MCSR
, 0x00380409);
2499 RAL_WRITE(sc
, RT2560_PLCP5p5MCSR
, 0x0015040a);
2500 RAL_WRITE(sc
, RT2560_PLCP11MCSR
, 0x000b840b);
2503 DPRINTF(("updating PLCP for %s preamble\n",
2504 (ic
->ic_flags
& IEEE80211_F_SHPREAMBLE
) ? "short" : "long"));
2508 * IEEE 802.11a uses short slot time. Refer to IEEE Std 802.11-1999 pp. 85 to
2509 * know how these values are computed.
2512 rt2560_update_slot(struct ifnet
*ifp
)
2514 struct rt2560_softc
*sc
= ifp
->if_softc
;
2515 struct ieee80211com
*ic
= &sc
->sc_ic
;
2517 uint16_t sifs
, pifs
, difs
, eifs
;
2520 slottime
= (ic
->ic_flags
& IEEE80211_F_SHSLOT
) ? 9 : 20;
2522 /* define the MAC slot boundaries */
2523 sifs
= RAL_SIFS
- RT2560_RXTX_TURNAROUND
;
2524 pifs
= sifs
+ slottime
;
2525 difs
= sifs
+ 2 * slottime
;
2526 eifs
= (ic
->ic_curmode
== IEEE80211_MODE_11B
) ? 364 : 60;
2528 tmp
= RAL_READ(sc
, RT2560_CSR11
);
2529 tmp
= (tmp
& ~0x1f00) | slottime
<< 8;
2530 RAL_WRITE(sc
, RT2560_CSR11
, tmp
);
2532 tmp
= pifs
<< 16 | sifs
;
2533 RAL_WRITE(sc
, RT2560_CSR18
, tmp
);
2535 tmp
= eifs
<< 16 | difs
;
2536 RAL_WRITE(sc
, RT2560_CSR19
, tmp
);
2538 DPRINTF(("setting slottime to %uus\n", slottime
));
2542 rt2560_set_basicrates(struct rt2560_softc
*sc
)
2544 struct ieee80211com
*ic
= &sc
->sc_ic
;
2546 /* update basic rate set */
2547 if (ic
->ic_curmode
== IEEE80211_MODE_11B
) {
2548 /* 11b basic rates: 1, 2Mbps */
2549 RAL_WRITE(sc
, RT2560_ARSP_PLCP_1
, 0x3);
2550 } else if (IEEE80211_IS_CHAN_5GHZ(ic
->ic_bss
->ni_chan
)) {
2551 /* 11a basic rates: 6, 12, 24Mbps */
2552 RAL_WRITE(sc
, RT2560_ARSP_PLCP_1
, 0x150);
2554 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2555 RAL_WRITE(sc
, RT2560_ARSP_PLCP_1
, 0x15f);
2560 rt2560_update_led(struct rt2560_softc
*sc
, int led1
, int led2
)
2564 /* set ON period to 70ms and OFF period to 30ms */
2565 tmp
= led1
<< 16 | led2
<< 17 | 70 << 8 | 30;
2566 RAL_WRITE(sc
, RT2560_LEDCSR
, tmp
);
2570 rt2560_set_bssid(struct rt2560_softc
*sc
, uint8_t *bssid
)
2574 tmp
= bssid
[0] | bssid
[1] << 8 | bssid
[2] << 16 | bssid
[3] << 24;
2575 RAL_WRITE(sc
, RT2560_CSR5
, tmp
);
2577 tmp
= bssid
[4] | bssid
[5] << 8;
2578 RAL_WRITE(sc
, RT2560_CSR6
, tmp
);
2580 DPRINTF(("setting BSSID to %s\n", ether_sprintf(bssid
)));
2584 rt2560_set_macaddr(struct rt2560_softc
*sc
, uint8_t *addr
)
2588 tmp
= addr
[0] | addr
[1] << 8 | addr
[2] << 16 | addr
[3] << 24;
2589 RAL_WRITE(sc
, RT2560_CSR3
, tmp
);
2591 tmp
= addr
[4] | addr
[5] << 8;
2592 RAL_WRITE(sc
, RT2560_CSR4
, tmp
);
2594 DPRINTF(("setting MAC address to %s\n", ether_sprintf(addr
)));
2598 rt2560_get_macaddr(struct rt2560_softc
*sc
, uint8_t *addr
)
2602 tmp
= RAL_READ(sc
, RT2560_CSR3
);
2603 addr
[0] = tmp
& 0xff;
2604 addr
[1] = (tmp
>> 8) & 0xff;
2605 addr
[2] = (tmp
>> 16) & 0xff;
2606 addr
[3] = (tmp
>> 24);
2608 tmp
= RAL_READ(sc
, RT2560_CSR4
);
2609 addr
[4] = tmp
& 0xff;
2610 addr
[5] = (tmp
>> 8) & 0xff;
2614 rt2560_update_promisc(struct rt2560_softc
*sc
)
2616 struct ifnet
*ifp
= &sc
->sc_if
;
2619 tmp
= RAL_READ(sc
, RT2560_RXCSR0
);
2621 tmp
&= ~RT2560_DROP_NOT_TO_ME
;
2622 if (!(ifp
->if_flags
& IFF_PROMISC
))
2623 tmp
|= RT2560_DROP_NOT_TO_ME
;
2625 RAL_WRITE(sc
, RT2560_RXCSR0
, tmp
);
2627 DPRINTF(("%s promiscuous mode\n", (ifp
->if_flags
& IFF_PROMISC
) ?
2628 "entering" : "leaving"));
2632 rt2560_set_txantenna(struct rt2560_softc
*sc
, int antenna
)
2637 tx
= rt2560_bbp_read(sc
, RT2560_BBP_TX
) & ~RT2560_BBP_ANTMASK
;
2639 tx
|= RT2560_BBP_ANTA
;
2640 else if (antenna
== 2)
2641 tx
|= RT2560_BBP_ANTB
;
2643 tx
|= RT2560_BBP_DIVERSITY
;
2645 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2646 if (sc
->rf_rev
== RT2560_RF_2525E
|| sc
->rf_rev
== RT2560_RF_2526
||
2647 sc
->rf_rev
== RT2560_RF_5222
)
2648 tx
|= RT2560_BBP_FLIPIQ
;
2650 rt2560_bbp_write(sc
, RT2560_BBP_TX
, tx
);
2652 /* update values for CCK and OFDM in BBPCSR1 */
2653 tmp
= RAL_READ(sc
, RT2560_BBPCSR1
) & ~0x00070007;
2654 tmp
|= (tx
& 0x7) << 16 | (tx
& 0x7);
2655 RAL_WRITE(sc
, RT2560_BBPCSR1
, tmp
);
2659 rt2560_set_rxantenna(struct rt2560_softc
*sc
, int antenna
)
2663 rx
= rt2560_bbp_read(sc
, RT2560_BBP_RX
) & ~RT2560_BBP_ANTMASK
;
2665 rx
|= RT2560_BBP_ANTA
;
2666 else if (antenna
== 2)
2667 rx
|= RT2560_BBP_ANTB
;
2669 rx
|= RT2560_BBP_DIVERSITY
;
2671 /* need to force no I/Q flip for RF 2525e and 2526 */
2672 if (sc
->rf_rev
== RT2560_RF_2525E
|| sc
->rf_rev
== RT2560_RF_2526
)
2673 rx
&= ~RT2560_BBP_FLIPIQ
;
2675 rt2560_bbp_write(sc
, RT2560_BBP_RX
, rx
);
2679 rt2560_get_rf(int rev
)
2682 case RT2560_RF_2522
: return "RT2522";
2683 case RT2560_RF_2523
: return "RT2523";
2684 case RT2560_RF_2524
: return "RT2524";
2685 case RT2560_RF_2525
: return "RT2525";
2686 case RT2560_RF_2525E
: return "RT2525e";
2687 case RT2560_RF_2526
: return "RT2526";
2688 case RT2560_RF_5222
: return "RT5222";
2689 default: return "unknown";
2694 rt2560_read_eeprom(struct rt2560_softc
*sc
)
2699 val
= rt2560_eeprom_read(sc
, RT2560_EEPROM_CONFIG0
);
2700 sc
->rf_rev
= (val
>> 11) & 0x1f;
2701 sc
->hw_radio
= (val
>> 10) & 0x1;
2702 sc
->led_mode
= (val
>> 6) & 0x7;
2703 sc
->rx_ant
= (val
>> 4) & 0x3;
2704 sc
->tx_ant
= (val
>> 2) & 0x3;
2705 sc
->nb_ant
= val
& 0x3;
2707 /* read default values for BBP registers */
2708 for (i
= 0; i
< 16; i
++) {
2709 val
= rt2560_eeprom_read(sc
, RT2560_EEPROM_BBP_BASE
+ i
);
2710 sc
->bbp_prom
[i
].reg
= val
>> 8;
2711 sc
->bbp_prom
[i
].val
= val
& 0xff;
2714 /* read Tx power for all b/g channels */
2715 for (i
= 0; i
< 14 / 2; i
++) {
2716 val
= rt2560_eeprom_read(sc
, RT2560_EEPROM_TXPOWER
+ i
);
2717 sc
->txpow
[i
* 2] = val
>> 8;
2718 sc
->txpow
[i
* 2 + 1] = val
& 0xff;
2723 rt2560_bbp_init(struct rt2560_softc
*sc
)
2725 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2728 /* wait for BBP to be ready */
2729 for (ntries
= 0; ntries
< 100; ntries
++) {
2730 if (rt2560_bbp_read(sc
, RT2560_BBP_VERSION
) != 0)
2734 if (ntries
== 100) {
2735 aprint_error_dev(&sc
->sc_dev
, "timeout waiting for BBP\n");
2739 /* initialize BBP registers to default values */
2740 for (i
= 0; i
< N(rt2560_def_bbp
); i
++) {
2741 rt2560_bbp_write(sc
, rt2560_def_bbp
[i
].reg
,
2742 rt2560_def_bbp
[i
].val
);
2745 /* initialize BBP registers to values stored in EEPROM */
2746 for (i
= 0; i
< 16; i
++) {
2747 if (sc
->bbp_prom
[i
].reg
== 0xff)
2749 rt2560_bbp_write(sc
, sc
->bbp_prom
[i
].reg
, sc
->bbp_prom
[i
].val
);
2758 rt2560_init(struct ifnet
*ifp
)
2760 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2761 struct rt2560_softc
*sc
= ifp
->if_softc
;
2762 struct ieee80211com
*ic
= &sc
->sc_ic
;
2766 /* for CardBus, power on the socket */
2767 if (!(sc
->sc_flags
& RT2560_ENABLED
)) {
2768 if (sc
->sc_enable
!= NULL
&& (*sc
->sc_enable
)(sc
) != 0) {
2769 aprint_error_dev(&sc
->sc_dev
, "could not enable device\n");
2772 sc
->sc_flags
|= RT2560_ENABLED
;
2775 rt2560_stop(ifp
, 1);
2777 /* setup tx rings */
2778 tmp
= RT2560_PRIO_RING_COUNT
<< 24 |
2779 RT2560_ATIM_RING_COUNT
<< 16 |
2780 RT2560_TX_RING_COUNT
<< 8 |
2781 RT2560_TX_DESC_SIZE
;
2783 /* rings _must_ be initialized in this _exact_ order! */
2784 RAL_WRITE(sc
, RT2560_TXCSR2
, tmp
);
2785 RAL_WRITE(sc
, RT2560_TXCSR3
, sc
->txq
.physaddr
);
2786 RAL_WRITE(sc
, RT2560_TXCSR5
, sc
->prioq
.physaddr
);
2787 RAL_WRITE(sc
, RT2560_TXCSR4
, sc
->atimq
.physaddr
);
2788 RAL_WRITE(sc
, RT2560_TXCSR6
, sc
->bcnq
.physaddr
);
2791 tmp
= RT2560_RX_RING_COUNT
<< 8 | RT2560_RX_DESC_SIZE
;
2793 RAL_WRITE(sc
, RT2560_RXCSR1
, tmp
);
2794 RAL_WRITE(sc
, RT2560_RXCSR2
, sc
->rxq
.physaddr
);
2796 /* initialize MAC registers to default values */
2797 for (i
= 0; i
< N(rt2560_def_mac
); i
++)
2798 RAL_WRITE(sc
, rt2560_def_mac
[i
].reg
, rt2560_def_mac
[i
].val
);
2800 IEEE80211_ADDR_COPY(ic
->ic_myaddr
, CLLADDR(ifp
->if_sadl
));
2801 rt2560_set_macaddr(sc
, ic
->ic_myaddr
);
2803 /* set basic rate set (will be updated later) */
2804 RAL_WRITE(sc
, RT2560_ARSP_PLCP_1
, 0x153);
2806 rt2560_update_slot(ifp
);
2807 rt2560_update_plcp(sc
);
2808 rt2560_update_led(sc
, 0, 0);
2810 RAL_WRITE(sc
, RT2560_CSR1
, RT2560_RESET_ASIC
);
2811 RAL_WRITE(sc
, RT2560_CSR1
, RT2560_HOST_READY
);
2813 if (rt2560_bbp_init(sc
) != 0) {
2814 rt2560_stop(ifp
, 1);
2818 rt2560_set_txantenna(sc
, 1);
2819 rt2560_set_rxantenna(sc
, 1);
2821 /* set default BSS channel */
2822 ic
->ic_bss
->ni_chan
= ic
->ic_ibss_chan
;
2823 rt2560_set_chan(sc
, ic
->ic_bss
->ni_chan
);
2826 tmp
= RT2560_DROP_PHY_ERROR
| RT2560_DROP_CRC_ERROR
;
2827 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
2828 tmp
|= RT2560_DROP_CTL
| RT2560_DROP_VERSION_ERROR
;
2829 if (ic
->ic_opmode
!= IEEE80211_M_HOSTAP
)
2830 tmp
|= RT2560_DROP_TODS
;
2831 if (!(ifp
->if_flags
& IFF_PROMISC
))
2832 tmp
|= RT2560_DROP_NOT_TO_ME
;
2834 RAL_WRITE(sc
, RT2560_RXCSR0
, tmp
);
2836 /* clear old FCS and Rx FIFO errors */
2837 RAL_READ(sc
, RT2560_CNT0
);
2838 RAL_READ(sc
, RT2560_CNT4
);
2840 /* clear any pending interrupts */
2841 RAL_WRITE(sc
, RT2560_CSR7
, 0xffffffff);
2843 /* enable interrupts */
2844 RAL_WRITE(sc
, RT2560_CSR8
, RT2560_INTR_MASK
);
2846 ifp
->if_flags
&= ~IFF_OACTIVE
;
2847 ifp
->if_flags
|= IFF_RUNNING
;
2849 if (ic
->ic_opmode
== IEEE80211_M_MONITOR
)
2850 ieee80211_new_state(ic
, IEEE80211_S_RUN
, -1);
2852 ieee80211_new_state(ic
, IEEE80211_S_SCAN
, -1);
2859 rt2560_stop(struct ifnet
*ifp
, int disable
)
2861 struct rt2560_softc
*sc
= ifp
->if_softc
;
2862 struct ieee80211com
*ic
= &sc
->sc_ic
;
2864 sc
->sc_tx_timer
= 0;
2866 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
2868 ieee80211_new_state(ic
, IEEE80211_S_INIT
, -1); /* free all nodes */
2871 RAL_WRITE(sc
, RT2560_TXCSR0
, RT2560_ABORT_TX
);
2874 RAL_WRITE(sc
, RT2560_RXCSR0
, RT2560_DISABLE_RX
);
2876 /* reset ASIC (and thus, BBP) */
2877 RAL_WRITE(sc
, RT2560_CSR1
, RT2560_RESET_ASIC
);
2878 RAL_WRITE(sc
, RT2560_CSR1
, 0);
2880 /* disable interrupts */
2881 RAL_WRITE(sc
, RT2560_CSR8
, 0xffffffff);
2883 /* clear any pending interrupt */
2884 RAL_WRITE(sc
, RT2560_CSR7
, 0xffffffff);
2886 /* reset Tx and Rx rings */
2887 rt2560_reset_tx_ring(sc
, &sc
->txq
);
2888 rt2560_reset_tx_ring(sc
, &sc
->atimq
);
2889 rt2560_reset_tx_ring(sc
, &sc
->prioq
);
2890 rt2560_reset_tx_ring(sc
, &sc
->bcnq
);
2891 rt2560_reset_rx_ring(sc
, &sc
->rxq
);