Sync usage with man page.
[netbsd-mini2440.git] / sys / dev / pci / amr.c
blob6690223f329a90265d12ecd8859df9b805857729
1 /* $NetBSD: amr.c,v 1.52 2009/05/12 08:22:59 cegger Exp $ */
3 /*-
4 * Copyright (c) 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1999,2000 Michael Smith
34 * Copyright (c) 2000 BSDi
35 * All rights reserved.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
58 * from FreeBSD: amr_pci.c,v 1.5 2000/08/30 07:52:40 msmith Exp
59 * from FreeBSD: amr.c,v 1.16 2000/08/30 07:52:40 msmith Exp
63 * Driver for AMI RAID controllers.
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: amr.c,v 1.52 2009/05/12 08:22:59 cegger Exp $");
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/device.h>
73 #include <sys/queue.h>
74 #include <sys/proc.h>
75 #include <sys/buf.h>
76 #include <sys/malloc.h>
77 #include <sys/conf.h>
78 #include <sys/kthread.h>
79 #include <sys/kauth.h>
81 #include <uvm/uvm_extern.h>
83 #include <machine/endian.h>
84 #include <sys/bus.h>
86 #include <dev/pci/pcidevs.h>
87 #include <dev/pci/pcivar.h>
88 #include <dev/pci/amrreg.h>
89 #include <dev/pci/amrvar.h>
90 #include <dev/pci/amrio.h>
92 #include "locators.h"
94 static void amr_attach(device_t, device_t, void *);
95 static void amr_ccb_dump(struct amr_softc *, struct amr_ccb *);
96 static void *amr_enquire(struct amr_softc *, u_int8_t, u_int8_t, u_int8_t,
97 void *);
98 static int amr_init(struct amr_softc *, const char *,
99 struct pci_attach_args *pa);
100 static int amr_intr(void *);
101 static int amr_match(device_t, cfdata_t, void *);
102 static int amr_print(void *, const char *);
103 static void amr_shutdown(void *);
104 static void amr_teardown(struct amr_softc *);
105 static void amr_thread(void *);
107 static int amr_quartz_get_work(struct amr_softc *,
108 struct amr_mailbox_resp *);
109 static int amr_quartz_submit(struct amr_softc *, struct amr_ccb *);
110 static int amr_std_get_work(struct amr_softc *, struct amr_mailbox_resp *);
111 static int amr_std_submit(struct amr_softc *, struct amr_ccb *);
113 static dev_type_open(amropen);
114 static dev_type_close(amrclose);
115 static dev_type_ioctl(amrioctl);
117 CFATTACH_DECL(amr, sizeof(struct amr_softc),
118 amr_match, amr_attach, NULL, NULL);
120 const struct cdevsw amr_cdevsw = {
121 amropen, amrclose, noread, nowrite, amrioctl,
122 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
125 extern struct cfdriver amr_cd;
127 #define AT_QUARTZ 0x01 /* `Quartz' chipset */
128 #define AT_SIG 0x02 /* Check for signature */
130 static struct amr_pci_type {
131 u_short apt_vendor;
132 u_short apt_product;
133 u_short apt_flags;
134 } const amr_pci_type[] = {
135 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID, 0 },
136 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID2, 0 },
137 { PCI_VENDOR_AMI, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
138 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ },
139 { PCI_VENDOR_INTEL, PCI_PRODUCT_AMI_MEGARAID3, AT_QUARTZ | AT_SIG },
140 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
141 { PCI_VENDOR_INTEL, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
142 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
143 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI, AT_QUARTZ },
144 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4DI_2, AT_QUARTZ },
145 { PCI_VENDOR_DELL, PCI_PRODUCT_DELL_PERC_4ESI, AT_QUARTZ },
146 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_PERC_4SC, AT_QUARTZ },
147 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320X, AT_QUARTZ },
148 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_320E, AT_QUARTZ },
149 { PCI_VENDOR_SYMBIOS, PCI_PRODUCT_SYMBIOS_MEGARAID_300X, AT_QUARTZ },
152 static struct amr_typestr {
153 const char *at_str;
154 int at_sig;
155 } const amr_typestr[] = {
156 { "Series 431", AMR_SIG_431 },
157 { "Series 438", AMR_SIG_438 },
158 { "Series 466", AMR_SIG_466 },
159 { "Series 467", AMR_SIG_467 },
160 { "Series 490", AMR_SIG_490 },
161 { "Series 762", AMR_SIG_762 },
162 { "HP NetRAID (T5)", AMR_SIG_T5 },
163 { "HP NetRAID (T7)", AMR_SIG_T7 },
166 static struct {
167 const char *ds_descr;
168 int ds_happy;
169 } const amr_dstate[] = {
170 { "offline", 0 },
171 { "degraded", 1 },
172 { "optimal", 1 },
173 { "online", 1 },
174 { "failed", 0 },
175 { "rebuilding", 1 },
176 { "hotspare", 0 },
179 static void *amr_sdh;
181 static int amr_max_segs;
182 int amr_max_xfer;
184 static inline u_int8_t
185 amr_inb(struct amr_softc *amr, int off)
188 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
189 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
190 return (bus_space_read_1(amr->amr_iot, amr->amr_ioh, off));
193 static inline u_int32_t
194 amr_inl(struct amr_softc *amr, int off)
197 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
198 BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
199 return (bus_space_read_4(amr->amr_iot, amr->amr_ioh, off));
202 static inline void
203 amr_outb(struct amr_softc *amr, int off, u_int8_t val)
206 bus_space_write_1(amr->amr_iot, amr->amr_ioh, off, val);
207 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 1,
208 BUS_SPACE_BARRIER_WRITE);
211 static inline void
212 amr_outl(struct amr_softc *amr, int off, u_int32_t val)
215 bus_space_write_4(amr->amr_iot, amr->amr_ioh, off, val);
216 bus_space_barrier(amr->amr_iot, amr->amr_ioh, off, 4,
217 BUS_SPACE_BARRIER_WRITE);
221 * Match a supported device.
223 static int
224 amr_match(device_t parent, cfdata_t match, void *aux)
226 struct pci_attach_args *pa;
227 pcireg_t s;
228 int i;
230 pa = (struct pci_attach_args *)aux;
233 * Don't match the device if it's operating in I2O mode. In this
234 * case it should be handled by the `iop' driver.
236 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
237 return (0);
239 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
240 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
241 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
242 break;
244 if (i == sizeof(amr_pci_type) / sizeof(amr_pci_type[0]))
245 return (0);
247 if ((amr_pci_type[i].apt_flags & AT_SIG) == 0)
248 return (1);
250 s = pci_conf_read(pa->pa_pc, pa->pa_tag, AMR_QUARTZ_SIG_REG) & 0xffff;
251 return (s == AMR_QUARTZ_SIG0 || s == AMR_QUARTZ_SIG1);
255 * Attach a supported device.
257 static void
258 amr_attach(device_t parent, device_t self, void *aux)
260 struct pci_attach_args *pa;
261 struct amr_attach_args amra;
262 const struct amr_pci_type *apt;
263 struct amr_softc *amr;
264 pci_chipset_tag_t pc;
265 pci_intr_handle_t ih;
266 const char *intrstr;
267 pcireg_t reg;
268 int rseg, i, j, size, rv, memreg, ioreg;
269 struct amr_ccb *ac;
270 int locs[AMRCF_NLOCS];
272 aprint_naive(": RAID controller\n");
274 amr = device_private(self);
275 pa = (struct pci_attach_args *)aux;
276 pc = pa->pa_pc;
278 for (i = 0; i < sizeof(amr_pci_type) / sizeof(amr_pci_type[0]); i++)
279 if (PCI_VENDOR(pa->pa_id) == amr_pci_type[i].apt_vendor &&
280 PCI_PRODUCT(pa->pa_id) == amr_pci_type[i].apt_product)
281 break;
282 apt = amr_pci_type + i;
284 memreg = ioreg = 0;
285 for (i = 0x10; i <= 0x14; i += 4) {
286 reg = pci_conf_read(pc, pa->pa_tag, i);
287 switch (PCI_MAPREG_TYPE(reg)) {
288 case PCI_MAPREG_TYPE_MEM:
289 if (PCI_MAPREG_MEM_SIZE(reg) != 0)
290 memreg = i;
291 break;
292 case PCI_MAPREG_TYPE_IO:
293 if (PCI_MAPREG_IO_SIZE(reg) != 0)
294 ioreg = i;
295 break;
300 if (memreg && pci_mapreg_map(pa, memreg, PCI_MAPREG_TYPE_MEM, 0,
301 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
303 else if (ioreg && pci_mapreg_map(pa, ioreg, PCI_MAPREG_TYPE_IO, 0,
304 &amr->amr_iot, &amr->amr_ioh, NULL, &amr->amr_ios) == 0)
306 else {
307 aprint_error("can't map control registers\n");
308 amr_teardown(amr);
309 return;
312 amr->amr_flags |= AMRF_PCI_REGS;
313 amr->amr_dmat = pa->pa_dmat;
314 amr->amr_pc = pa->pa_pc;
316 /* Enable the device. */
317 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
318 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
319 reg | PCI_COMMAND_MASTER_ENABLE);
321 /* Map and establish the interrupt. */
322 if (pci_intr_map(pa, &ih)) {
323 aprint_error("can't map interrupt\n");
324 amr_teardown(amr);
325 return;
327 intrstr = pci_intr_string(pc, ih);
328 amr->amr_ih = pci_intr_establish(pc, ih, IPL_BIO, amr_intr, amr);
329 if (amr->amr_ih == NULL) {
330 aprint_error("can't establish interrupt");
331 if (intrstr != NULL)
332 aprint_error(" at %s", intrstr);
333 aprint_error("\n");
334 amr_teardown(amr);
335 return;
337 amr->amr_flags |= AMRF_PCI_INTR;
340 * Allocate space for the mailbox and S/G lists. Some controllers
341 * don't like S/G lists to be located below 0x2000, so we allocate
342 * enough slop to enable us to compensate.
344 * The standard mailbox structure needs to be aligned on a 16-byte
345 * boundary. The 64-bit mailbox has one extra field, 4 bytes in
346 * size, which precedes the standard mailbox.
348 size = AMR_SGL_SIZE * AMR_MAX_CMDS + 0x2000;
349 amr->amr_dmasize = size;
351 if ((rv = bus_dmamem_alloc(amr->amr_dmat, size, PAGE_SIZE, 0,
352 &amr->amr_dmaseg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
353 aprint_error_dev(&amr->amr_dv, "unable to allocate buffer, rv = %d\n",
354 rv);
355 amr_teardown(amr);
356 return;
358 amr->amr_flags |= AMRF_DMA_ALLOC;
360 if ((rv = bus_dmamem_map(amr->amr_dmat, &amr->amr_dmaseg, rseg, size,
361 (void **)&amr->amr_mbox,
362 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
363 aprint_error_dev(&amr->amr_dv, "unable to map buffer, rv = %d\n",
364 rv);
365 amr_teardown(amr);
366 return;
368 amr->amr_flags |= AMRF_DMA_MAP;
370 if ((rv = bus_dmamap_create(amr->amr_dmat, size, 1, size, 0,
371 BUS_DMA_NOWAIT, &amr->amr_dmamap)) != 0) {
372 aprint_error_dev(&amr->amr_dv, "unable to create buffer DMA map, rv = %d\n",
373 rv);
374 amr_teardown(amr);
375 return;
377 amr->amr_flags |= AMRF_DMA_CREATE;
379 if ((rv = bus_dmamap_load(amr->amr_dmat, amr->amr_dmamap,
380 amr->amr_mbox, size, NULL, BUS_DMA_NOWAIT)) != 0) {
381 aprint_error_dev(&amr->amr_dv, "unable to load buffer DMA map, rv = %d\n",
382 rv);
383 amr_teardown(amr);
384 return;
386 amr->amr_flags |= AMRF_DMA_LOAD;
388 memset(amr->amr_mbox, 0, size);
390 amr->amr_mbox_paddr = amr->amr_dmamap->dm_segs[0].ds_addr;
391 amr->amr_sgls_paddr = (amr->amr_mbox_paddr + 0x1fff) & ~0x1fff;
392 amr->amr_sgls = (struct amr_sgentry *)((char *)amr->amr_mbox +
393 amr->amr_sgls_paddr - amr->amr_dmamap->dm_segs[0].ds_addr);
396 * Allocate and initalise the command control blocks.
398 ac = malloc(sizeof(*ac) * AMR_MAX_CMDS, M_DEVBUF, M_NOWAIT | M_ZERO);
399 amr->amr_ccbs = ac;
400 SLIST_INIT(&amr->amr_ccb_freelist);
401 TAILQ_INIT(&amr->amr_ccb_active);
402 amr->amr_flags |= AMRF_CCBS;
404 if (amr_max_xfer == 0) {
405 amr_max_xfer = min(((AMR_MAX_SEGS - 1) * PAGE_SIZE), MAXPHYS);
406 amr_max_segs = (amr_max_xfer + (PAGE_SIZE * 2) - 1) / PAGE_SIZE;
409 for (i = 0; i < AMR_MAX_CMDS; i++, ac++) {
410 rv = bus_dmamap_create(amr->amr_dmat, amr_max_xfer,
411 amr_max_segs, amr_max_xfer, 0,
412 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ac->ac_xfer_map);
413 if (rv != 0)
414 break;
416 ac->ac_ident = i;
417 amr_ccb_free(amr, ac);
419 if (i != AMR_MAX_CMDS) {
420 aprint_error_dev(&amr->amr_dv, "memory exhausted\n");
421 amr_teardown(amr);
422 return;
426 * Take care of model-specific tasks.
428 if ((apt->apt_flags & AT_QUARTZ) != 0) {
429 amr->amr_submit = amr_quartz_submit;
430 amr->amr_get_work = amr_quartz_get_work;
431 } else {
432 amr->amr_submit = amr_std_submit;
433 amr->amr_get_work = amr_std_get_work;
435 /* Notify the controller of the mailbox location. */
436 amr_outl(amr, AMR_SREG_MBOX, (u_int32_t)amr->amr_mbox_paddr + 16);
437 amr_outb(amr, AMR_SREG_MBOX_ENABLE, AMR_SMBOX_ENABLE_ADDR);
439 /* Clear outstanding interrupts and enable interrupts. */
440 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
441 amr_outb(amr, AMR_SREG_TOGL,
442 amr_inb(amr, AMR_SREG_TOGL) | AMR_STOGL_ENABLE);
446 * Retrieve parameters, and tell the world about us.
448 amr->amr_enqbuf = malloc(AMR_ENQUIRY_BUFSIZE, M_DEVBUF, M_NOWAIT);
449 amr->amr_flags |= AMRF_ENQBUF;
450 amr->amr_maxqueuecnt = i;
451 aprint_normal(": AMI RAID ");
452 if (amr_init(amr, intrstr, pa) != 0) {
453 amr_teardown(amr);
454 return;
458 * Cap the maximum number of outstanding commands. AMI's Linux
459 * driver doesn't trust the controller's reported value, and lockups
460 * have been seen when we do.
462 amr->amr_maxqueuecnt = min(amr->amr_maxqueuecnt, AMR_MAX_CMDS);
463 if (amr->amr_maxqueuecnt > i)
464 amr->amr_maxqueuecnt = i;
466 /* Set our `shutdownhook' before we start any device activity. */
467 if (amr_sdh == NULL)
468 amr_sdh = shutdownhook_establish(amr_shutdown, NULL);
470 /* Attach sub-devices. */
471 for (j = 0; j < amr->amr_numdrives; j++) {
472 if (amr->amr_drive[j].al_size == 0)
473 continue;
474 amra.amra_unit = j;
476 locs[AMRCF_UNIT] = j;
478 amr->amr_drive[j].al_dv = config_found_sm_loc(&amr->amr_dv,
479 "amr", locs, &amra, amr_print, config_stdsubmatch);
482 SIMPLEQ_INIT(&amr->amr_ccb_queue);
484 /* XXX This doesn't work for newer boards yet. */
485 if ((apt->apt_flags & AT_QUARTZ) == 0) {
486 rv = kthread_create(PRI_NONE, 0, NULL, amr_thread, amr,
487 &amr->amr_thread, "%s", device_xname(&amr->amr_dv));
488 if (rv != 0)
489 aprint_error_dev(&amr->amr_dv, "unable to create thread (%d)",
490 rv);
491 else
492 amr->amr_flags |= AMRF_THREAD;
497 * Free up resources.
499 static void
500 amr_teardown(struct amr_softc *amr)
502 struct amr_ccb *ac;
503 int fl;
505 fl = amr->amr_flags;
507 if ((fl & AMRF_THREAD) != 0) {
508 amr->amr_flags |= AMRF_THREAD_EXIT;
509 wakeup(amr_thread);
510 while ((amr->amr_flags & AMRF_THREAD_EXIT) != 0)
511 tsleep(&amr->amr_flags, PWAIT, "amrexit", 0);
513 if ((fl & AMRF_CCBS) != 0) {
514 SLIST_FOREACH(ac, &amr->amr_ccb_freelist, ac_chain.slist) {
515 bus_dmamap_destroy(amr->amr_dmat, ac->ac_xfer_map);
517 free(amr->amr_ccbs, M_DEVBUF);
519 if ((fl & AMRF_ENQBUF) != 0)
520 free(amr->amr_enqbuf, M_DEVBUF);
521 if ((fl & AMRF_DMA_LOAD) != 0)
522 bus_dmamap_unload(amr->amr_dmat, amr->amr_dmamap);
523 if ((fl & AMRF_DMA_MAP) != 0)
524 bus_dmamem_unmap(amr->amr_dmat, (void *)amr->amr_mbox,
525 amr->amr_dmasize);
526 if ((fl & AMRF_DMA_ALLOC) != 0)
527 bus_dmamem_free(amr->amr_dmat, &amr->amr_dmaseg, 1);
528 if ((fl & AMRF_DMA_CREATE) != 0)
529 bus_dmamap_destroy(amr->amr_dmat, amr->amr_dmamap);
530 if ((fl & AMRF_PCI_INTR) != 0)
531 pci_intr_disestablish(amr->amr_pc, amr->amr_ih);
532 if ((fl & AMRF_PCI_REGS) != 0)
533 bus_space_unmap(amr->amr_iot, amr->amr_ioh, amr->amr_ios);
537 * Print autoconfiguration message for a sub-device.
539 static int
540 amr_print(void *aux, const char *pnp)
542 struct amr_attach_args *amra;
544 amra = (struct amr_attach_args *)aux;
546 if (pnp != NULL)
547 aprint_normal("block device at %s", pnp);
548 aprint_normal(" unit %d", amra->amra_unit);
549 return (UNCONF);
553 * Retrieve operational parameters and describe the controller.
555 static int
556 amr_init(struct amr_softc *amr, const char *intrstr,
557 struct pci_attach_args *pa)
559 struct amr_adapter_info *aa;
560 struct amr_prodinfo *ap;
561 struct amr_enquiry *ae;
562 struct amr_enquiry3 *aex;
563 const char *prodstr;
564 u_int i, sig, ishp;
565 char sbuf[64];
568 * Try to get 40LD product info, which tells us what the card is
569 * labelled as.
571 ap = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_PRODUCT_INFO, 0,
572 amr->amr_enqbuf);
573 if (ap != NULL) {
574 aprint_normal("<%.80s>\n", ap->ap_product);
575 if (intrstr != NULL)
576 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
577 intrstr);
578 aprint_normal_dev(&amr->amr_dv, "firmware %.16s, BIOS %.16s, %dMB RAM\n",
579 ap->ap_firmware, ap->ap_bios,
580 le16toh(ap->ap_memsize));
582 amr->amr_maxqueuecnt = ap->ap_maxio;
585 * Fetch and record state of logical drives.
587 aex = amr_enquire(amr, AMR_CMD_CONFIG, AMR_CONFIG_ENQ3,
588 AMR_CONFIG_ENQ3_SOLICITED_FULL, amr->amr_enqbuf);
589 if (aex == NULL) {
590 aprint_error_dev(&amr->amr_dv, "ENQUIRY3 failed\n");
591 return (-1);
594 if (aex->ae_numldrives > __arraycount(aex->ae_drivestate)) {
595 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
596 " than the array can handle (%zu)\n",
597 aex->ae_numldrives,
598 __arraycount(aex->ae_drivestate));
599 aex->ae_numldrives = __arraycount(aex->ae_drivestate);
601 if (aex->ae_numldrives > AMR_MAX_UNITS) {
602 aprint_error_dev(&amr->amr_dv,
603 "adjust AMR_MAX_UNITS to %d (currently %d)"
604 "\n", AMR_MAX_UNITS,
605 amr->amr_numdrives);
606 amr->amr_numdrives = AMR_MAX_UNITS;
607 } else
608 amr->amr_numdrives = aex->ae_numldrives;
610 for (i = 0; i < amr->amr_numdrives; i++) {
611 amr->amr_drive[i].al_size =
612 le32toh(aex->ae_drivesize[i]);
613 amr->amr_drive[i].al_state = aex->ae_drivestate[i];
614 amr->amr_drive[i].al_properties = aex->ae_driveprop[i];
617 return (0);
621 * Try 8LD extended ENQUIRY to get the controller signature. Once
622 * found, search for a product description.
624 ae = amr_enquire(amr, AMR_CMD_EXT_ENQUIRY2, 0, 0, amr->amr_enqbuf);
625 if (ae != NULL) {
626 i = 0;
627 sig = le32toh(ae->ae_signature);
629 while (i < sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
630 if (amr_typestr[i].at_sig == sig)
631 break;
632 i++;
634 if (i == sizeof(amr_typestr) / sizeof(amr_typestr[0])) {
635 snprintf(sbuf, sizeof(sbuf),
636 "unknown ENQUIRY2 sig (0x%08x)", sig);
637 prodstr = sbuf;
638 } else
639 prodstr = amr_typestr[i].at_str;
640 } else {
641 ae = amr_enquire(amr, AMR_CMD_ENQUIRY, 0, 0, amr->amr_enqbuf);
642 if (ae == NULL) {
643 aprint_error_dev(&amr->amr_dv, "unsupported controller\n");
644 return (-1);
647 switch (PCI_PRODUCT(pa->pa_id)) {
648 case PCI_PRODUCT_AMI_MEGARAID:
649 prodstr = "Series 428";
650 break;
651 case PCI_PRODUCT_AMI_MEGARAID2:
652 prodstr = "Series 434";
653 break;
654 default:
655 snprintf(sbuf, sizeof(sbuf), "unknown PCI dev (0x%04x)",
656 PCI_PRODUCT(pa->pa_id));
657 prodstr = sbuf;
658 break;
663 * HP NetRaid controllers have a special encoding of the firmware
664 * and BIOS versions. The AMI version seems to have it as strings
665 * whereas the HP version does it with a leading uppercase character
666 * and two binary numbers.
668 aa = &ae->ae_adapter;
670 if (aa->aa_firmware[2] >= 'A' && aa->aa_firmware[2] <= 'Z' &&
671 aa->aa_firmware[1] < ' ' && aa->aa_firmware[0] < ' ' &&
672 aa->aa_bios[2] >= 'A' && aa->aa_bios[2] <= 'Z' &&
673 aa->aa_bios[1] < ' ' && aa->aa_bios[0] < ' ') {
674 if (le32toh(ae->ae_signature) == AMR_SIG_438) {
675 /* The AMI 438 is a NetRaid 3si in HP-land. */
676 prodstr = "HP NetRaid 3si";
678 ishp = 1;
679 } else
680 ishp = 0;
682 aprint_normal("<%s>\n", prodstr);
683 if (intrstr != NULL)
684 aprint_normal_dev(&amr->amr_dv, "interrupting at %s\n",
685 intrstr);
687 if (ishp)
688 aprint_normal_dev(&amr->amr_dv, "firmware <%c.%02d.%02d>, BIOS <%c.%02d.%02d>"
689 ", %dMB RAM\n", aa->aa_firmware[2],
690 aa->aa_firmware[1], aa->aa_firmware[0], aa->aa_bios[2],
691 aa->aa_bios[1], aa->aa_bios[0], aa->aa_memorysize);
692 else
693 aprint_normal_dev(&amr->amr_dv, "firmware <%.4s>, BIOS <%.4s>, %dMB RAM\n",
694 aa->aa_firmware, aa->aa_bios,
695 aa->aa_memorysize);
697 amr->amr_maxqueuecnt = aa->aa_maxio;
700 * Record state of logical drives.
702 if (ae->ae_ldrv.al_numdrives > __arraycount(ae->ae_ldrv.al_size)) {
703 aprint_error_dev(&amr->amr_dv, "Inquiry returned more drives (%d)"
704 " than the array can handle (%zu)\n",
705 ae->ae_ldrv.al_numdrives,
706 __arraycount(ae->ae_ldrv.al_size));
707 ae->ae_ldrv.al_numdrives = __arraycount(ae->ae_ldrv.al_size);
709 if (ae->ae_ldrv.al_numdrives > AMR_MAX_UNITS) {
710 aprint_error_dev(&amr->amr_dv, "adjust AMR_MAX_UNITS to %d (currently %d)\n",
711 ae->ae_ldrv.al_numdrives,
712 AMR_MAX_UNITS);
713 amr->amr_numdrives = AMR_MAX_UNITS;
714 } else
715 amr->amr_numdrives = ae->ae_ldrv.al_numdrives;
717 for (i = 0; i < amr->amr_numdrives; i++) {
718 amr->amr_drive[i].al_size = le32toh(ae->ae_ldrv.al_size[i]);
719 amr->amr_drive[i].al_state = ae->ae_ldrv.al_state[i];
720 amr->amr_drive[i].al_properties = ae->ae_ldrv.al_properties[i];
723 return (0);
727 * Flush the internal cache on each configured controller. Called at
728 * shutdown time.
730 static void
731 amr_shutdown(void *cookie)
733 extern struct cfdriver amr_cd;
734 struct amr_softc *amr;
735 struct amr_ccb *ac;
736 int i, rv, s;
738 for (i = 0; i < amr_cd.cd_ndevs; i++) {
739 if ((amr = device_lookup_private(&amr_cd, i)) == NULL)
740 continue;
742 if ((rv = amr_ccb_alloc(amr, &ac)) == 0) {
743 ac->ac_cmd.mb_command = AMR_CMD_FLUSH;
744 s = splbio();
745 rv = amr_ccb_poll(amr, ac, 30000);
746 splx(s);
747 amr_ccb_free(amr, ac);
749 if (rv != 0)
750 aprint_error_dev(&amr->amr_dv, "unable to flush cache (%d)\n", rv);
755 * Interrupt service routine.
757 static int
758 amr_intr(void *cookie)
760 struct amr_softc *amr;
761 struct amr_ccb *ac;
762 struct amr_mailbox_resp mbox;
763 u_int i, forus, idx;
765 amr = cookie;
766 forus = 0;
768 while ((*amr->amr_get_work)(amr, &mbox) == 0) {
769 /* Iterate over completed commands in this result. */
770 for (i = 0; i < mbox.mb_nstatus; i++) {
771 idx = mbox.mb_completed[i] - 1;
772 ac = amr->amr_ccbs + idx;
774 if (idx >= amr->amr_maxqueuecnt) {
775 printf("%s: bad status (bogus ID: %u=%u)\n",
776 device_xname(&amr->amr_dv), i, idx);
777 continue;
780 if ((ac->ac_flags & AC_ACTIVE) == 0) {
781 printf("%s: bad status (not active; 0x04%x)\n",
782 device_xname(&amr->amr_dv), ac->ac_flags);
783 continue;
786 ac->ac_status = mbox.mb_status;
787 ac->ac_flags = (ac->ac_flags & ~AC_ACTIVE) |
788 AC_COMPLETE;
789 TAILQ_REMOVE(&amr->amr_ccb_active, ac, ac_chain.tailq);
791 if ((ac->ac_flags & AC_MOAN) != 0)
792 printf("%s: ccb %d completed\n",
793 device_xname(&amr->amr_dv), ac->ac_ident);
795 /* Pass notification to upper layers. */
796 if (ac->ac_handler != NULL)
797 (*ac->ac_handler)(ac);
798 else
799 wakeup(ac);
801 forus = 1;
804 if (forus)
805 amr_ccb_enqueue(amr, NULL);
807 return (forus);
811 * Watchdog thread.
813 static void
814 amr_thread(void *cookie)
816 struct amr_softc *amr;
817 struct amr_ccb *ac;
818 struct amr_logdrive *al;
819 struct amr_enquiry *ae;
820 int rv, i, s;
822 amr = cookie;
823 ae = amr->amr_enqbuf;
825 for (;;) {
826 tsleep(amr_thread, PWAIT, "amrwdog", AMR_WDOG_TICKS);
828 if ((amr->amr_flags & AMRF_THREAD_EXIT) != 0) {
829 amr->amr_flags ^= AMRF_THREAD_EXIT;
830 wakeup(&amr->amr_flags);
831 kthread_exit(0);
834 s = splbio();
835 amr_intr(cookie);
836 ac = TAILQ_FIRST(&amr->amr_ccb_active);
837 while (ac != NULL) {
838 if (ac->ac_start_time + AMR_TIMEOUT > time_uptime)
839 break;
840 if ((ac->ac_flags & AC_MOAN) == 0) {
841 printf("%s: ccb %d timed out; mailbox:\n",
842 device_xname(&amr->amr_dv), ac->ac_ident);
843 amr_ccb_dump(amr, ac);
844 ac->ac_flags |= AC_MOAN;
846 ac = TAILQ_NEXT(ac, ac_chain.tailq);
848 splx(s);
850 if ((rv = amr_ccb_alloc(amr, &ac)) != 0) {
851 printf("%s: ccb_alloc failed (%d)\n",
852 device_xname(&amr->amr_dv), rv);
853 continue;
856 ac->ac_cmd.mb_command = AMR_CMD_ENQUIRY;
858 rv = amr_ccb_map(amr, ac, amr->amr_enqbuf,
859 AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
860 if (rv != 0) {
861 aprint_error_dev(&amr->amr_dv, "ccb_map failed (%d)\n",
862 rv);
863 amr_ccb_free(amr, ac);
864 continue;
867 rv = amr_ccb_wait(amr, ac);
868 amr_ccb_unmap(amr, ac);
869 if (rv != 0) {
870 aprint_error_dev(&amr->amr_dv, "enquiry failed (st=%d)\n",
871 ac->ac_status);
872 continue;
874 amr_ccb_free(amr, ac);
876 al = amr->amr_drive;
877 for (i = 0; i < __arraycount(ae->ae_ldrv.al_state); i++, al++) {
878 if (al->al_dv == NULL)
879 continue;
880 if (al->al_state == ae->ae_ldrv.al_state[i])
881 continue;
883 printf("%s: state changed: %s -> %s\n",
884 device_xname(al->al_dv),
885 amr_drive_state(al->al_state, NULL),
886 amr_drive_state(ae->ae_ldrv.al_state[i], NULL));
888 al->al_state = ae->ae_ldrv.al_state[i];
894 * Return a text description of a logical drive's current state.
896 const char *
897 amr_drive_state(int state, int *happy)
899 const char *str;
901 state = AMR_DRV_CURSTATE(state);
902 if (state >= sizeof(amr_dstate) / sizeof(amr_dstate[0])) {
903 if (happy)
904 *happy = 1;
905 str = "status unknown";
906 } else {
907 if (happy)
908 *happy = amr_dstate[state].ds_happy;
909 str = amr_dstate[state].ds_descr;
912 return (str);
916 * Run a generic enquiry-style command.
918 static void *
919 amr_enquire(struct amr_softc *amr, u_int8_t cmd, u_int8_t cmdsub,
920 u_int8_t cmdqual, void *sbuf)
922 struct amr_ccb *ac;
923 u_int8_t *mb;
924 int rv;
926 if (amr_ccb_alloc(amr, &ac) != 0)
927 return (NULL);
929 /* Build the command proper. */
930 mb = (u_int8_t *)&ac->ac_cmd;
931 mb[0] = cmd;
932 mb[2] = cmdsub;
933 mb[3] = cmdqual;
935 rv = amr_ccb_map(amr, ac, sbuf, AMR_ENQUIRY_BUFSIZE, AC_XFER_IN);
936 if (rv == 0) {
937 rv = amr_ccb_poll(amr, ac, 2000);
938 amr_ccb_unmap(amr, ac);
940 amr_ccb_free(amr, ac);
942 return (rv ? NULL : sbuf);
946 * Allocate and initialise a CCB.
949 amr_ccb_alloc(struct amr_softc *amr, struct amr_ccb **acp)
951 int s;
953 s = splbio();
954 if ((*acp = SLIST_FIRST(&amr->amr_ccb_freelist)) == NULL) {
955 splx(s);
956 return (EAGAIN);
958 SLIST_REMOVE_HEAD(&amr->amr_ccb_freelist, ac_chain.slist);
959 splx(s);
961 return (0);
965 * Free a CCB.
967 void
968 amr_ccb_free(struct amr_softc *amr, struct amr_ccb *ac)
970 int s;
972 memset(&ac->ac_cmd, 0, sizeof(ac->ac_cmd));
973 ac->ac_cmd.mb_ident = ac->ac_ident + 1;
974 ac->ac_cmd.mb_busy = 1;
975 ac->ac_handler = NULL;
976 ac->ac_flags = 0;
978 s = splbio();
979 SLIST_INSERT_HEAD(&amr->amr_ccb_freelist, ac, ac_chain.slist);
980 splx(s);
984 * If a CCB is specified, enqueue it. Pull CCBs off the software queue in
985 * the order that they were enqueued and try to submit their command blocks
986 * to the controller for execution.
988 void
989 amr_ccb_enqueue(struct amr_softc *amr, struct amr_ccb *ac)
991 int s;
993 s = splbio();
995 if (ac != NULL)
996 SIMPLEQ_INSERT_TAIL(&amr->amr_ccb_queue, ac, ac_chain.simpleq);
998 while ((ac = SIMPLEQ_FIRST(&amr->amr_ccb_queue)) != NULL) {
999 if ((*amr->amr_submit)(amr, ac) != 0)
1000 break;
1001 SIMPLEQ_REMOVE_HEAD(&amr->amr_ccb_queue, ac_chain.simpleq);
1002 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1005 splx(s);
1009 * Map the specified CCB's data buffer onto the bus, and fill the
1010 * scatter-gather list.
1013 amr_ccb_map(struct amr_softc *amr, struct amr_ccb *ac, void *data, int size,
1014 int tflag)
1016 struct amr_sgentry *sge;
1017 struct amr_mailbox_cmd *mb;
1018 int nsegs, i, rv, sgloff;
1019 bus_dmamap_t xfer;
1020 int dmaflag = 0;
1022 xfer = ac->ac_xfer_map;
1024 rv = bus_dmamap_load(amr->amr_dmat, xfer, data, size, NULL,
1025 BUS_DMA_NOWAIT);
1026 if (rv != 0)
1027 return (rv);
1029 mb = &ac->ac_cmd;
1030 ac->ac_xfer_size = size;
1031 ac->ac_flags |= (tflag & (AC_XFER_OUT | AC_XFER_IN));
1032 sgloff = AMR_SGL_SIZE * ac->ac_ident;
1034 if (tflag & AC_XFER_OUT)
1035 dmaflag |= BUS_DMASYNC_PREWRITE;
1036 if (tflag & AC_XFER_IN)
1037 dmaflag |= BUS_DMASYNC_PREREAD;
1039 /* We don't need to use a scatter/gather list for just 1 segment. */
1040 nsegs = xfer->dm_nsegs;
1041 if (nsegs == 1) {
1042 mb->mb_nsgelem = 0;
1043 mb->mb_physaddr = htole32(xfer->dm_segs[0].ds_addr);
1044 ac->ac_flags |= AC_NOSGL;
1045 } else {
1046 mb->mb_nsgelem = nsegs;
1047 mb->mb_physaddr = htole32(amr->amr_sgls_paddr + sgloff);
1049 sge = (struct amr_sgentry *)((char *)amr->amr_sgls + sgloff);
1050 for (i = 0; i < nsegs; i++, sge++) {
1051 sge->sge_addr = htole32(xfer->dm_segs[i].ds_addr);
1052 sge->sge_count = htole32(xfer->dm_segs[i].ds_len);
1056 bus_dmamap_sync(amr->amr_dmat, xfer, 0, ac->ac_xfer_size, dmaflag);
1058 if ((ac->ac_flags & AC_NOSGL) == 0)
1059 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, sgloff,
1060 AMR_SGL_SIZE, BUS_DMASYNC_PREWRITE);
1062 return (0);
1066 * Unmap the specified CCB's data buffer.
1068 void
1069 amr_ccb_unmap(struct amr_softc *amr, struct amr_ccb *ac)
1071 int dmaflag = 0;
1073 if (ac->ac_flags & AC_XFER_IN)
1074 dmaflag |= BUS_DMASYNC_POSTREAD;
1075 if (ac->ac_flags & AC_XFER_OUT)
1076 dmaflag |= BUS_DMASYNC_POSTWRITE;
1078 if ((ac->ac_flags & AC_NOSGL) == 0)
1079 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap,
1080 AMR_SGL_SIZE * ac->ac_ident, AMR_SGL_SIZE,
1081 BUS_DMASYNC_POSTWRITE);
1082 bus_dmamap_sync(amr->amr_dmat, ac->ac_xfer_map, 0, ac->ac_xfer_size,
1083 dmaflag);
1084 bus_dmamap_unload(amr->amr_dmat, ac->ac_xfer_map);
1088 * Submit a command to the controller and poll on completion. Return
1089 * non-zero on timeout or error. Must be called with interrupts blocked.
1092 amr_ccb_poll(struct amr_softc *amr, struct amr_ccb *ac, int timo)
1094 int rv;
1096 if ((rv = (*amr->amr_submit)(amr, ac)) != 0)
1097 return (rv);
1098 TAILQ_INSERT_TAIL(&amr->amr_ccb_active, ac, ac_chain.tailq);
1100 for (timo *= 10; timo != 0; timo--) {
1101 amr_intr(amr);
1102 if ((ac->ac_flags & AC_COMPLETE) != 0)
1103 break;
1104 DELAY(100);
1107 return (timo == 0 || ac->ac_status != 0 ? EIO : 0);
1111 * Submit a command to the controller and sleep on completion. Return
1112 * non-zero on error.
1115 amr_ccb_wait(struct amr_softc *amr, struct amr_ccb *ac)
1117 int s;
1119 s = splbio();
1120 amr_ccb_enqueue(amr, ac);
1121 tsleep(ac, PRIBIO, "amrcmd", 0);
1122 splx(s);
1124 return (ac->ac_status != 0 ? EIO : 0);
1127 #if 0
1129 * Wait for the mailbox to become available.
1131 static int
1132 amr_mbox_wait(struct amr_softc *amr)
1134 int timo;
1136 for (timo = 10000; timo != 0; timo--) {
1137 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1138 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1139 if (amr->amr_mbox->mb_cmd.mb_busy == 0)
1140 break;
1141 DELAY(100);
1144 if (timo == 0)
1145 printf("%s: controller wedged\n", device_xname(&amr->amr_dv));
1147 return (timo != 0 ? 0 : EAGAIN);
1149 #endif
1152 * Tell the controller that the mailbox contains a valid command. Must be
1153 * called with interrupts blocked.
1155 static int
1156 amr_quartz_submit(struct amr_softc *amr, struct amr_ccb *ac)
1158 u_int32_t v;
1160 amr->amr_mbox->mb_poll = 0;
1161 amr->amr_mbox->mb_ack = 0;
1162 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1163 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1164 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1165 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1166 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1167 return (EAGAIN);
1169 v = amr_inl(amr, AMR_QREG_IDB);
1170 if ((v & AMR_QIDB_SUBMIT) != 0) {
1171 amr->amr_mbox->mb_cmd.mb_busy = 0;
1172 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1173 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1174 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1175 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1176 return (EAGAIN);
1179 amr->amr_mbox->mb_segment = 0;
1180 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1181 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1182 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1184 ac->ac_start_time = time_uptime;
1185 ac->ac_flags |= AC_ACTIVE;
1186 amr_outl(amr, AMR_QREG_IDB,
1187 (amr->amr_mbox_paddr + 16) | AMR_QIDB_SUBMIT);
1188 return (0);
1191 static int
1192 amr_std_submit(struct amr_softc *amr, struct amr_ccb *ac)
1195 amr->amr_mbox->mb_poll = 0;
1196 amr->amr_mbox->mb_ack = 0;
1197 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1198 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1199 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1200 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1201 if (amr->amr_mbox->mb_cmd.mb_busy != 0)
1202 return (EAGAIN);
1204 if ((amr_inb(amr, AMR_SREG_MBOX_BUSY) & AMR_SMBOX_BUSY_FLAG) != 0) {
1205 amr->amr_mbox->mb_cmd.mb_busy = 0;
1206 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1207 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1208 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1209 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1210 return (EAGAIN);
1213 amr->amr_mbox->mb_segment = 0;
1214 memcpy(&amr->amr_mbox->mb_cmd, &ac->ac_cmd, sizeof(ac->ac_cmd));
1215 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1216 sizeof(struct amr_mailbox), BUS_DMASYNC_PREWRITE);
1218 ac->ac_start_time = time_uptime;
1219 ac->ac_flags |= AC_ACTIVE;
1220 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_POST);
1221 return (0);
1225 * Claim any work that the controller has completed; acknowledge completion,
1226 * save details of the completion in (mbsave). Must be called with
1227 * interrupts blocked.
1229 static int
1230 amr_quartz_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1233 /* Work waiting for us? */
1234 if (amr_inl(amr, AMR_QREG_ODB) != AMR_QODB_READY)
1235 return (-1);
1237 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1238 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1240 /* Save the mailbox, which contains a list of completed commands. */
1241 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1243 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1244 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1246 /* Ack the interrupt and mailbox transfer. */
1247 amr_outl(amr, AMR_QREG_ODB, AMR_QODB_READY);
1248 amr_outl(amr, AMR_QREG_IDB, (amr->amr_mbox_paddr+16) | AMR_QIDB_ACK);
1251 * This waits for the controller to notice that we've taken the
1252 * command from it. It's very inefficient, and we shouldn't do it,
1253 * but if we remove this code, we stop completing commands under
1254 * load.
1256 * Peter J says we shouldn't do this. The documentation says we
1257 * should. Who is right?
1259 while ((amr_inl(amr, AMR_QREG_IDB) & AMR_QIDB_ACK) != 0)
1260 DELAY(10);
1262 return (0);
1265 static int
1266 amr_std_get_work(struct amr_softc *amr, struct amr_mailbox_resp *mbsave)
1268 u_int8_t istat;
1270 /* Check for valid interrupt status. */
1271 if (((istat = amr_inb(amr, AMR_SREG_INTR)) & AMR_SINTR_VALID) == 0)
1272 return (-1);
1274 /* Ack the interrupt. */
1275 amr_outb(amr, AMR_SREG_INTR, istat);
1277 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1278 sizeof(struct amr_mailbox), BUS_DMASYNC_POSTREAD);
1280 /* Save mailbox, which contains a list of completed commands. */
1281 memcpy(mbsave, &amr->amr_mbox->mb_resp, sizeof(*mbsave));
1283 bus_dmamap_sync(amr->amr_dmat, amr->amr_dmamap, 0,
1284 sizeof(struct amr_mailbox), BUS_DMASYNC_PREREAD);
1286 /* Ack mailbox transfer. */
1287 amr_outb(amr, AMR_SREG_CMD, AMR_SCMD_ACKINTR);
1289 return (0);
1292 static void
1293 amr_ccb_dump(struct amr_softc *amr, struct amr_ccb *ac)
1295 int i;
1297 printf("%s: ", device_xname(&amr->amr_dv));
1298 for (i = 0; i < 4; i++)
1299 printf("%08x ", ((u_int32_t *)&ac->ac_cmd)[i]);
1300 printf("\n");
1303 static int
1304 amropen(dev_t dev, int flag, int mode, struct lwp *l)
1306 struct amr_softc *amr;
1308 if ((amr = device_lookup_private(&amr_cd, minor(dev))) == NULL)
1309 return (ENXIO);
1310 if ((amr->amr_flags & AMRF_OPEN) != 0)
1311 return (EBUSY);
1313 amr->amr_flags |= AMRF_OPEN;
1314 return (0);
1317 static int
1318 amrclose(dev_t dev, int flag, int mode, struct lwp *l)
1320 struct amr_softc *amr;
1322 amr = device_lookup_private(&amr_cd, minor(dev));
1323 amr->amr_flags &= ~AMRF_OPEN;
1324 return (0);
1327 static int
1328 amrioctl(dev_t dev, u_long cmd, void *data, int flag,
1329 struct lwp *l)
1331 struct amr_softc *amr;
1332 struct amr_user_ioctl *au;
1333 struct amr_ccb *ac;
1334 struct amr_mailbox_ioctl *mbi;
1335 unsigned long au_length;
1336 uint8_t *au_cmd;
1337 int error;
1338 void *dp = NULL, *au_buffer;
1340 amr = device_lookup_private(&amr_cd, minor(dev));
1342 /* This should be compatible with the FreeBSD interface */
1344 switch (cmd) {
1345 case AMR_IO_VERSION:
1346 *(int *)data = AMR_IO_VERSION_NUMBER;
1347 return 0;
1348 case AMR_IO_COMMAND:
1349 error = kauth_authorize_device_passthru(l->l_cred, dev,
1350 KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
1351 if (error)
1352 return (error);
1354 au = (struct amr_user_ioctl *)data;
1355 au_cmd = au->au_cmd;
1356 au_buffer = au->au_buffer;
1357 au_length = au->au_length;
1358 break;
1359 default:
1360 return ENOTTY;
1363 if (au_cmd[0] == AMR_CMD_PASS) {
1364 /* not yet */
1365 return EOPNOTSUPP;
1368 if (au_length <= 0 || au_length > MAXPHYS || au_cmd[0] == 0x06)
1369 return (EINVAL);
1372 * allocate kernel memory for data, doing I/O directly to user
1373 * buffer isn't that easy.
1375 dp = malloc(au_length, M_DEVBUF, M_WAITOK|M_ZERO);
1376 if (dp == NULL)
1377 return ENOMEM;
1378 if ((error = copyin(au_buffer, dp, au_length)) != 0)
1379 goto out;
1381 /* direct command to controller */
1382 while (amr_ccb_alloc(amr, &ac) != 0) {
1383 error = tsleep(NULL, PRIBIO | PCATCH, "armmbx", hz);
1384 if (error == EINTR)
1385 goto out;
1388 mbi = (struct amr_mailbox_ioctl *)&ac->ac_cmd;
1389 mbi->mb_command = au_cmd[0];
1390 mbi->mb_channel = au_cmd[1];
1391 mbi->mb_param = au_cmd[2];
1392 mbi->mb_pad[0] = au_cmd[3];
1393 mbi->mb_drive = au_cmd[4];
1394 error = amr_ccb_map(amr, ac, dp, (int)au_length,
1395 AC_XFER_IN | AC_XFER_OUT);
1396 if (error == 0) {
1397 error = amr_ccb_wait(amr, ac);
1398 amr_ccb_unmap(amr, ac);
1399 if (error == 0)
1400 error = copyout(dp, au_buffer, au_length);
1403 amr_ccb_free(amr, ac);
1404 out:
1405 free(dp, M_DEVBUF);
1406 return (error);