Sync usage with man page.
[netbsd-mini2440.git] / sys / dev / pci / if_ti.c
blob3cb3ee9a82c1e25aa56f026618d19e3223039951
1 /* $NetBSD: if_ti.c,v 1.86 2009/09/27 12:52:59 tsutsui Exp $ */
3 /*
4 * Copyright (c) 1997, 1998, 1999
5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
34 * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp
38 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
39 * Manuals, sample driver and firmware source kits are available
40 * from http://www.alteon.com/support/openkits.
42 * Written by Bill Paul <wpaul@ctr.columbia.edu>
43 * Electrical Engineering Department
44 * Columbia University, New York City
48 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
49 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
50 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
51 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
52 * filtering and jumbo (9014 byte) frames. The hardware is largely
53 * controlled by firmware, which must be loaded into the NIC during
54 * initialization.
56 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
57 * revision, which supports new features such as extended commands,
58 * extended jumbo receive ring desciptors and a mini receive ring.
60 * Alteon Networks is to be commended for releasing such a vast amount
61 * of development material for the Tigon NIC without requiring an NDA
62 * (although they really should have done it a long time ago). With
63 * any luck, the other vendors will finally wise up and follow Alteon's
64 * stellar example.
66 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
67 * this driver by #including it as a C header file. This bloats the
68 * driver somewhat, but it's the easiest method considering that the
69 * driver code and firmware code need to be kept in sync. The source
70 * for the firmware is not provided with the FreeBSD distribution since
71 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
73 * The following people deserve special thanks:
74 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
75 * for testing
76 * - Raymond Lee of Netgear, for providing a pair of Netgear
77 * GA620 Tigon 2 boards for testing
78 * - Ulf Zimmermann, for bringing the GA620 to my attention and
79 * convincing me to write this driver.
80 * - Andrew Gallatin for providing FreeBSD/Alpha support.
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.86 2009/09/27 12:52:59 tsutsui Exp $");
86 #include "bpfilter.h"
87 #include "opt_inet.h"
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/socket.h>
96 #include <sys/queue.h>
97 #include <sys/device.h>
98 #include <sys/reboot.h>
100 #include <uvm/uvm_extern.h>
102 #include <net/if.h>
103 #include <net/if_arp.h>
104 #include <net/if_ether.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
108 #if NBPFILTER > 0
109 #include <net/bpf.h>
110 #endif
112 #ifdef INET
113 #include <netinet/in.h>
114 #include <netinet/if_inarp.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #endif
120 #include <sys/bus.h>
122 #include <dev/pci/pcireg.h>
123 #include <dev/pci/pcivar.h>
124 #include <dev/pci/pcidevs.h>
126 #include <dev/pci/if_tireg.h>
128 #include <dev/microcode/tigon/ti_fw.h>
129 #include <dev/microcode/tigon/ti_fw2.h>
132 * Various supported device vendors/types and their names.
135 static const struct ti_type ti_devs[] = {
136 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC,
137 "Alteon AceNIC 1000BASE-SX Ethernet" },
138 { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER,
139 "Alteon AceNIC 1000BASE-T Ethernet" },
140 { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985,
141 "3Com 3c985-SX Gigabit Ethernet" },
142 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620,
143 "Netgear GA620 1000BASE-SX Ethernet" },
144 { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T,
145 "Netgear GA620 1000BASE-T Ethernet" },
146 { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON,
147 "Silicon Graphics Gigabit Ethernet" },
148 { 0, 0, NULL }
151 static const struct ti_type *ti_type_match(struct pci_attach_args *);
152 static int ti_probe(device_t, cfdata_t, void *);
153 static void ti_attach(device_t, device_t, void *);
154 static bool ti_shutdown(device_t, int);
155 static void ti_txeof_tigon1(struct ti_softc *);
156 static void ti_txeof_tigon2(struct ti_softc *);
157 static void ti_rxeof(struct ti_softc *);
159 static void ti_stats_update(struct ti_softc *);
160 static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, u_int32_t *);
161 static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, u_int32_t *);
163 static int ti_intr(void *);
164 static void ti_start(struct ifnet *);
165 static int ti_ioctl(struct ifnet *, u_long, void *);
166 static void ti_init(void *);
167 static void ti_init2(struct ti_softc *);
168 static void ti_stop(struct ti_softc *);
169 static void ti_watchdog(struct ifnet *);
170 static int ti_ifmedia_upd(struct ifnet *);
171 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
173 static u_int32_t ti_eeprom_putbyte(struct ti_softc *, int);
174 static u_int8_t ti_eeprom_getbyte(struct ti_softc *, int, u_int8_t *);
175 static int ti_read_eeprom(struct ti_softc *, void *, int, int);
177 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
178 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
179 static void ti_setmulti(struct ti_softc *);
181 static void ti_mem(struct ti_softc *, u_int32_t, u_int32_t, const void *);
182 static void ti_loadfw(struct ti_softc *);
183 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
184 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int);
185 static void ti_handle_events(struct ti_softc *);
186 static int ti_alloc_jumbo_mem(struct ti_softc *);
187 static void *ti_jalloc(struct ti_softc *);
188 static void ti_jfree(struct mbuf *, void *, size_t, void *);
189 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
190 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t);
191 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
192 static int ti_init_rx_ring_std(struct ti_softc *);
193 static void ti_free_rx_ring_std(struct ti_softc *);
194 static int ti_init_rx_ring_jumbo(struct ti_softc *);
195 static void ti_free_rx_ring_jumbo(struct ti_softc *);
196 static int ti_init_rx_ring_mini(struct ti_softc *);
197 static void ti_free_rx_ring_mini(struct ti_softc *);
198 static void ti_free_tx_ring(struct ti_softc *);
199 static int ti_init_tx_ring(struct ti_softc *);
201 static int ti_64bitslot_war(struct ti_softc *);
202 static int ti_chipinit(struct ti_softc *);
203 static int ti_gibinit(struct ti_softc *);
205 static int ti_ether_ioctl(struct ifnet *, u_long, void *);
207 CFATTACH_DECL(ti, sizeof(struct ti_softc),
208 ti_probe, ti_attach, NULL, NULL);
211 * Send an instruction or address to the EEPROM, check for ACK.
213 static u_int32_t
214 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
216 int i, ack = 0;
219 * Make sure we're in TX mode.
221 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
224 * Feed in each bit and stobe the clock.
226 for (i = 0x80; i; i >>= 1) {
227 if (byte & i) {
228 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
229 } else {
230 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
232 DELAY(1);
233 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
234 DELAY(1);
235 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
239 * Turn off TX mode.
241 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
244 * Check for ack.
246 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
247 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
248 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250 return (ack);
254 * Read a byte of data stored in the EEPROM at address 'addr.'
255 * We have to send two address bytes since the EEPROM can hold
256 * more than 256 bytes of data.
258 static u_int8_t
259 ti_eeprom_getbyte(struct ti_softc *sc, int addr, u_int8_t *dest)
261 int i;
262 u_int8_t byte = 0;
264 EEPROM_START();
267 * Send write control code to EEPROM.
269 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
270 printf("%s: failed to send write command, status: %x\n",
271 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
272 return (1);
276 * Send first byte of address of byte we want to read.
278 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
279 printf("%s: failed to send address, status: %x\n",
280 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
281 return (1);
284 * Send second byte address of byte we want to read.
286 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
287 printf("%s: failed to send address, status: %x\n",
288 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 return (1);
292 EEPROM_STOP();
293 EEPROM_START();
295 * Send read control code to EEPROM.
297 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
298 printf("%s: failed to send read command, status: %x\n",
299 device_xname(&sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
300 return (1);
304 * Start reading bits from EEPROM.
306 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
307 for (i = 0x80; i; i >>= 1) {
308 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
309 DELAY(1);
310 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
311 byte |= i;
312 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
313 DELAY(1);
316 EEPROM_STOP();
319 * No ACK generated for read, so just return byte.
322 *dest = byte;
324 return (0);
328 * Read a sequence of bytes from the EEPROM.
330 static int
331 ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt)
333 char *dest = destv;
334 int err = 0, i;
335 u_int8_t byte = 0;
337 for (i = 0; i < cnt; i++) {
338 err = ti_eeprom_getbyte(sc, off + i, &byte);
339 if (err)
340 break;
341 *(dest + i) = byte;
344 return (err ? 1 : 0);
348 * NIC memory access function. Can be used to either clear a section
349 * of NIC local memory or (if tbuf is non-NULL) copy data into it.
351 static void
352 ti_mem(struct ti_softc *sc, u_int32_t addr, u_int32_t len, const void *xbuf)
354 int segptr, segsize, cnt;
355 const void *ptr;
357 segptr = addr;
358 cnt = len;
359 ptr = xbuf;
361 while (cnt) {
362 if (cnt < TI_WINLEN)
363 segsize = cnt;
364 else
365 segsize = TI_WINLEN - (segptr % TI_WINLEN);
366 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
367 if (xbuf == NULL) {
368 bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle,
369 TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0,
370 segsize / 4);
371 } else {
372 #ifdef __BUS_SPACE_HAS_STREAM_METHODS
373 bus_space_write_region_stream_4(sc->ti_btag,
374 sc->ti_bhandle,
375 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
376 (const u_int32_t *)ptr, segsize / 4);
377 #else
378 bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle,
379 TI_WINDOW + (segptr & (TI_WINLEN - 1)),
380 (const u_int32_t *)ptr, segsize / 4);
381 #endif
382 ptr = (const char *)ptr + segsize;
384 segptr += segsize;
385 cnt -= segsize;
388 return;
392 * Load firmware image into the NIC. Check that the firmware revision
393 * is acceptable and see if we want the firmware for the Tigon 1 or
394 * Tigon 2.
396 static void
397 ti_loadfw(struct ti_softc *sc)
399 switch (sc->ti_hwrev) {
400 case TI_HWREV_TIGON:
401 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
402 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
403 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
404 printf("%s: firmware revision mismatch; want "
405 "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
406 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
407 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
408 tigonFwReleaseMinor, tigonFwReleaseFix);
409 return;
411 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText);
412 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData);
413 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata);
414 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
415 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
416 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
417 break;
418 case TI_HWREV_TIGON_II:
419 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
420 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
421 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
422 printf("%s: firmware revision mismatch; want "
423 "%d.%d.%d, got %d.%d.%d\n", device_xname(&sc->sc_dev),
424 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
425 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
426 tigon2FwReleaseMinor, tigon2FwReleaseFix);
427 return;
429 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText);
430 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData);
431 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
432 tigon2FwRodata);
433 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
434 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
435 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
436 break;
437 default:
438 printf("%s: can't load firmware: unknown hardware rev\n",
439 device_xname(&sc->sc_dev));
440 break;
443 return;
447 * Send the NIC a command via the command ring.
449 static void
450 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
452 u_int32_t index;
454 index = sc->ti_cmd_saved_prodidx;
455 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
456 TI_INC(index, TI_CMD_RING_CNT);
457 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
458 sc->ti_cmd_saved_prodidx = index;
462 * Send the NIC an extended command. The 'len' parameter specifies the
463 * number of command slots to include after the initial command.
465 static void
466 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len)
468 char *arg = argv;
469 u_int32_t index;
470 int i;
472 index = sc->ti_cmd_saved_prodidx;
473 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(u_int32_t *)(cmd));
474 TI_INC(index, TI_CMD_RING_CNT);
475 for (i = 0; i < len; i++) {
476 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
477 *(u_int32_t *)(&arg[i * 4]));
478 TI_INC(index, TI_CMD_RING_CNT);
480 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
481 sc->ti_cmd_saved_prodidx = index;
485 * Handle events that have triggered interrupts.
487 static void
488 ti_handle_events(struct ti_softc *sc)
490 struct ti_event_desc *e;
492 if (sc->ti_rdata->ti_event_ring == NULL)
493 return;
495 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
496 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
497 switch (TI_EVENT_EVENT(e)) {
498 case TI_EV_LINKSTAT_CHANGED:
499 sc->ti_linkstat = TI_EVENT_CODE(e);
500 if (sc->ti_linkstat == TI_EV_CODE_LINK_UP)
501 printf("%s: 10/100 link up\n",
502 device_xname(&sc->sc_dev));
503 else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP)
504 printf("%s: gigabit link up\n",
505 device_xname(&sc->sc_dev));
506 else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
507 printf("%s: link down\n",
508 device_xname(&sc->sc_dev));
509 break;
510 case TI_EV_ERROR:
511 if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD)
512 printf("%s: invalid command\n",
513 device_xname(&sc->sc_dev));
514 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD)
515 printf("%s: unknown command\n",
516 device_xname(&sc->sc_dev));
517 else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG)
518 printf("%s: bad config data\n",
519 device_xname(&sc->sc_dev));
520 break;
521 case TI_EV_FIRMWARE_UP:
522 ti_init2(sc);
523 break;
524 case TI_EV_STATS_UPDATED:
525 ti_stats_update(sc);
526 break;
527 case TI_EV_RESET_JUMBO_RING:
528 case TI_EV_MCAST_UPDATED:
529 /* Who cares. */
530 break;
531 default:
532 printf("%s: unknown event: %d\n",
533 device_xname(&sc->sc_dev), TI_EVENT_EVENT(e));
534 break;
536 /* Advance the consumer index. */
537 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
538 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
541 return;
545 * Memory management for the jumbo receive ring is a pain in the
546 * butt. We need to allocate at least 9018 bytes of space per frame,
547 * _and_ it has to be contiguous (unless you use the extended
548 * jumbo descriptor format). Using malloc() all the time won't
549 * work: malloc() allocates memory in powers of two, which means we
550 * would end up wasting a considerable amount of space by allocating
551 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
552 * to do our own memory management.
554 * The driver needs to allocate a contiguous chunk of memory at boot
555 * time. We then chop this up ourselves into 9K pieces and use them
556 * as external mbuf storage.
558 * One issue here is how much memory to allocate. The jumbo ring has
559 * 256 slots in it, but at 9K per slot than can consume over 2MB of
560 * RAM. This is a bit much, especially considering we also need
561 * RAM for the standard ring and mini ring (on the Tigon 2). To
562 * save space, we only actually allocate enough memory for 64 slots
563 * by default, which works out to between 500 and 600K. This can
564 * be tuned by changing a #define in if_tireg.h.
567 static int
568 ti_alloc_jumbo_mem(struct ti_softc *sc)
570 char *ptr;
571 int i;
572 struct ti_jpool_entry *entry;
573 bus_dma_segment_t dmaseg;
574 int error, dmanseg;
576 /* Grab a big chunk o' storage. */
577 if ((error = bus_dmamem_alloc(sc->sc_dmat,
578 TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
579 BUS_DMA_NOWAIT)) != 0) {
580 aprint_error_dev(&sc->sc_dev, "can't allocate jumbo buffer, error = %d\n",
581 error);
582 return (error);
585 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
586 TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf,
587 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
588 aprint_error_dev(&sc->sc_dev, "can't map jumbo buffer, error = %d\n",
589 error);
590 return (error);
593 if ((error = bus_dmamap_create(sc->sc_dmat,
594 TI_JMEM, 1,
595 TI_JMEM, 0, BUS_DMA_NOWAIT,
596 &sc->jumbo_dmamap)) != 0) {
597 aprint_error_dev(&sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n",
598 error);
599 return (error);
602 if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap,
603 sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL,
604 BUS_DMA_NOWAIT)) != 0) {
605 aprint_error_dev(&sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n",
606 error);
607 return (error);
609 sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr;
611 SIMPLEQ_INIT(&sc->ti_jfree_listhead);
612 SIMPLEQ_INIT(&sc->ti_jinuse_listhead);
615 * Now divide it up into 9K pieces and save the addresses
616 * in an array.
618 ptr = sc->ti_cdata.ti_jumbo_buf;
619 for (i = 0; i < TI_JSLOTS; i++) {
620 sc->ti_cdata.ti_jslots[i] = ptr;
621 ptr += TI_JLEN;
622 entry = malloc(sizeof(struct ti_jpool_entry),
623 M_DEVBUF, M_NOWAIT);
624 if (entry == NULL) {
625 free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF);
626 sc->ti_cdata.ti_jumbo_buf = NULL;
627 printf("%s: no memory for jumbo "
628 "buffer queue!\n", device_xname(&sc->sc_dev));
629 return (ENOBUFS);
631 entry->slot = i;
632 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry,
633 jpool_entries);
636 return (0);
640 * Allocate a jumbo buffer.
642 static void *
643 ti_jalloc(struct ti_softc *sc)
645 struct ti_jpool_entry *entry;
647 entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead);
649 if (entry == NULL) {
650 printf("%s: no free jumbo buffers\n", device_xname(&sc->sc_dev));
651 return (NULL);
654 SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries);
655 SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries);
657 return (sc->ti_cdata.ti_jslots[entry->slot]);
661 * Release a jumbo buffer.
663 static void
664 ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg)
666 struct ti_softc *sc;
667 int i, s;
668 struct ti_jpool_entry *entry;
670 /* Extract the softc struct pointer. */
671 sc = (struct ti_softc *)arg;
673 if (sc == NULL)
674 panic("ti_jfree: didn't get softc pointer!");
676 /* calculate the slot this buffer belongs to */
678 i = ((char *)tbuf
679 - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN;
681 if ((i < 0) || (i >= TI_JSLOTS))
682 panic("ti_jfree: asked to free buffer that we don't manage!");
684 s = splvm();
685 entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead);
686 if (entry == NULL)
687 panic("ti_jfree: buffer not in use!");
688 entry->slot = i;
689 SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries);
690 SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries);
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 splx(s);
699 * Intialize a standard receive ring descriptor.
701 static int
702 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
704 struct mbuf *m_new = NULL;
705 struct ti_rx_desc *r;
706 int error;
708 if (dmamap == NULL) {
709 /* if (m) panic() */
711 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
712 MCLBYTES, 0, BUS_DMA_NOWAIT,
713 &dmamap)) != 0) {
714 aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
715 error);
716 return (ENOMEM);
719 sc->std_dmamap[i] = dmamap;
721 if (m == NULL) {
722 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
723 if (m_new == NULL) {
724 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
725 "-- packet dropped!\n");
726 return (ENOBUFS);
729 MCLGET(m_new, M_DONTWAIT);
730 if (!(m_new->m_flags & M_EXT)) {
731 aprint_error_dev(&sc->sc_dev, "cluster allocation failed "
732 "-- packet dropped!\n");
733 m_freem(m_new);
734 return (ENOBUFS);
736 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
737 m_adj(m_new, ETHER_ALIGN);
739 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
740 mtod(m_new, void *), m_new->m_len, NULL,
741 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
742 aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
743 error);
744 return (ENOMEM);
746 } else {
747 m_new = m;
748 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
749 m_new->m_data = m_new->m_ext.ext_buf;
750 m_adj(m_new, ETHER_ALIGN);
752 /* reuse the dmamap */
755 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
756 r = &sc->ti_rdata->ti_rx_std_ring[i];
757 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
758 r->ti_type = TI_BDTYPE_RECV_BD;
759 r->ti_flags = 0;
760 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
761 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
762 if (sc->ethercom.ec_if.if_capenable &
763 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
764 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
765 r->ti_len = m_new->m_len; /* == ds_len */
766 r->ti_idx = i;
768 return (0);
772 * Intialize a mini receive ring descriptor. This only applies to
773 * the Tigon 2.
775 static int
776 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
778 struct mbuf *m_new = NULL;
779 struct ti_rx_desc *r;
780 int error;
782 if (dmamap == NULL) {
783 /* if (m) panic() */
785 if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1,
786 MHLEN, 0, BUS_DMA_NOWAIT,
787 &dmamap)) != 0) {
788 aprint_error_dev(&sc->sc_dev, "can't create recv map, error = %d\n",
789 error);
790 return (ENOMEM);
793 sc->mini_dmamap[i] = dmamap;
795 if (m == NULL) {
796 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
797 if (m_new == NULL) {
798 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
799 "-- packet dropped!\n");
800 return (ENOBUFS);
802 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
803 m_adj(m_new, ETHER_ALIGN);
805 if ((error = bus_dmamap_load(sc->sc_dmat, dmamap,
806 mtod(m_new, void *), m_new->m_len, NULL,
807 BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
808 aprint_error_dev(&sc->sc_dev, "can't load recv map, error = %d\n",
809 error);
810 return (ENOMEM);
812 } else {
813 m_new = m;
814 m_new->m_data = m_new->m_pktdat;
815 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
816 m_adj(m_new, ETHER_ALIGN);
818 /* reuse the dmamap */
821 r = &sc->ti_rdata->ti_rx_mini_ring[i];
822 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
823 TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr;
824 r->ti_type = TI_BDTYPE_RECV_BD;
825 r->ti_flags = TI_BDFLAG_MINI_RING;
826 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
827 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
828 if (sc->ethercom.ec_if.if_capenable &
829 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
830 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
831 r->ti_len = m_new->m_len; /* == ds_len */
832 r->ti_idx = i;
834 return (0);
838 * Initialize a jumbo receive ring descriptor. This allocates
839 * a jumbo buffer from the pool managed internally by the driver.
841 static int
842 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
844 struct mbuf *m_new = NULL;
845 struct ti_rx_desc *r;
847 if (m == NULL) {
848 void * tbuf = NULL;
850 /* Allocate the mbuf. */
851 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
852 if (m_new == NULL) {
853 aprint_error_dev(&sc->sc_dev, "mbuf allocation failed "
854 "-- packet dropped!\n");
855 return (ENOBUFS);
858 /* Allocate the jumbo buffer */
859 tbuf = ti_jalloc(sc);
860 if (tbuf == NULL) {
861 m_freem(m_new);
862 aprint_error_dev(&sc->sc_dev, "jumbo allocation failed "
863 "-- packet dropped!\n");
864 return (ENOBUFS);
867 /* Attach the buffer to the mbuf. */
868 MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO,
869 M_DEVBUF, ti_jfree, sc);
870 m_new->m_flags |= M_EXT_RW;
871 m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO;
872 } else {
873 m_new = m;
874 m_new->m_data = m_new->m_ext.ext_buf;
875 m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO;
878 m_adj(m_new, ETHER_ALIGN);
879 /* Set up the descriptor. */
880 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
881 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
882 TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr +
883 (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf);
884 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
885 r->ti_flags = TI_BDFLAG_JUMBO_RING;
886 if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx)
887 r->ti_flags |= TI_BDFLAG_IP_CKSUM;
888 if (sc->ethercom.ec_if.if_capenable &
889 (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
890 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
891 r->ti_len = m_new->m_len;
892 r->ti_idx = i;
894 return (0);
898 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
899 * that's 1MB or memory, which is a lot. For now, we fill only the first
900 * 256 ring entries and hope that our CPU is fast enough to keep up with
901 * the NIC.
903 static int
904 ti_init_rx_ring_std(struct ti_softc *sc)
906 int i;
907 struct ti_cmd_desc cmd;
909 for (i = 0; i < TI_SSLOTS; i++) {
910 if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
911 return (ENOBUFS);
914 TI_UPDATE_STDPROD(sc, i - 1);
915 sc->ti_std = i - 1;
917 return (0);
920 static void
921 ti_free_rx_ring_std(struct ti_softc *sc)
923 int i;
925 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
926 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
927 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
928 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
930 /* if (sc->std_dmamap[i] == 0) panic() */
931 bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]);
932 sc->std_dmamap[i] = 0;
934 memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0,
935 sizeof(struct ti_rx_desc));
938 return;
941 static int
942 ti_init_rx_ring_jumbo(struct ti_softc *sc)
944 int i;
945 struct ti_cmd_desc cmd;
947 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
948 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
949 return (ENOBUFS);
952 TI_UPDATE_JUMBOPROD(sc, i - 1);
953 sc->ti_jumbo = i - 1;
955 return (0);
958 static void
959 ti_free_rx_ring_jumbo(struct ti_softc *sc)
961 int i;
963 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
964 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
965 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
966 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
968 memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0,
969 sizeof(struct ti_rx_desc));
972 return;
975 static int
976 ti_init_rx_ring_mini(struct ti_softc *sc)
978 int i;
980 for (i = 0; i < TI_MSLOTS; i++) {
981 if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS)
982 return (ENOBUFS);
985 TI_UPDATE_MINIPROD(sc, i - 1);
986 sc->ti_mini = i - 1;
988 return (0);
991 static void
992 ti_free_rx_ring_mini(struct ti_softc *sc)
994 int i;
996 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
997 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
998 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
999 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
1001 /* if (sc->mini_dmamap[i] == 0) panic() */
1002 bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]);
1003 sc->mini_dmamap[i] = 0;
1005 memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0,
1006 sizeof(struct ti_rx_desc));
1009 return;
1012 static void
1013 ti_free_tx_ring(struct ti_softc *sc)
1015 int i;
1016 struct txdmamap_pool_entry *dma;
1018 if (sc->ti_rdata->ti_tx_ring == NULL)
1019 return;
1021 for (i = 0; i < TI_TX_RING_CNT; i++) {
1022 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
1023 m_freem(sc->ti_cdata.ti_tx_chain[i]);
1024 sc->ti_cdata.ti_tx_chain[i] = NULL;
1026 /* if (sc->txdma[i] == 0) panic() */
1027 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1028 link);
1029 sc->txdma[i] = 0;
1031 memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0,
1032 sizeof(struct ti_tx_desc));
1035 while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) {
1036 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
1037 bus_dmamap_destroy(sc->sc_dmat, dma->dmamap);
1038 free(dma, M_DEVBUF);
1041 return;
1044 static int
1045 ti_init_tx_ring(struct ti_softc *sc)
1047 int i, error;
1048 bus_dmamap_t dmamap;
1049 struct txdmamap_pool_entry *dma;
1051 sc->ti_txcnt = 0;
1052 sc->ti_tx_saved_considx = 0;
1053 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
1055 SIMPLEQ_INIT(&sc->txdma_list);
1056 for (i = 0; i < TI_RSLOTS; i++) {
1057 /* I've seen mbufs with 30 fragments. */
1058 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
1059 40, ETHER_MAX_LEN_JUMBO, 0,
1060 BUS_DMA_NOWAIT, &dmamap)) != 0) {
1061 aprint_error_dev(&sc->sc_dev, "can't create tx map, error = %d\n",
1062 error);
1063 return (ENOMEM);
1065 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1066 if (!dma) {
1067 aprint_error_dev(&sc->sc_dev, "can't alloc txdmamap_pool_entry\n");
1068 bus_dmamap_destroy(sc->sc_dmat, dmamap);
1069 return (ENOMEM);
1071 dma->dmamap = dmamap;
1072 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
1075 return (0);
1079 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
1080 * but we have to support the old way too so that Tigon 1 cards will
1081 * work.
1083 static void
1084 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
1086 struct ti_cmd_desc cmd;
1087 u_int16_t *m;
1088 u_int32_t ext[2] = {0, 0};
1090 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1092 switch (sc->ti_hwrev) {
1093 case TI_HWREV_TIGON:
1094 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1095 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1096 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
1097 break;
1098 case TI_HWREV_TIGON_II:
1099 ext[0] = htons(m[0]);
1100 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1101 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2);
1102 break;
1103 default:
1104 printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1105 break;
1108 return;
1111 static void
1112 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
1114 struct ti_cmd_desc cmd;
1115 u_int16_t *m;
1116 u_int32_t ext[2] = {0, 0};
1118 m = (u_int16_t *)&addr->ether_addr_octet[0]; /* XXX */
1120 switch (sc->ti_hwrev) {
1121 case TI_HWREV_TIGON:
1122 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
1123 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
1124 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
1125 break;
1126 case TI_HWREV_TIGON_II:
1127 ext[0] = htons(m[0]);
1128 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
1129 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2);
1130 break;
1131 default:
1132 printf("%s: unknown hwrev\n", device_xname(&sc->sc_dev));
1133 break;
1136 return;
1140 * Configure the Tigon's multicast address filter.
1142 * The actual multicast table management is a bit of a pain, thanks to
1143 * slight brain damage on the part of both Alteon and us. With our
1144 * multicast code, we are only alerted when the multicast address table
1145 * changes and at that point we only have the current list of addresses:
1146 * we only know the current state, not the previous state, so we don't
1147 * actually know what addresses were removed or added. The firmware has
1148 * state, but we can't get our grubby mits on it, and there is no 'delete
1149 * all multicast addresses' command. Hence, we have to maintain our own
1150 * state so we know what addresses have been programmed into the NIC at
1151 * any given time.
1153 static void
1154 ti_setmulti(struct ti_softc *sc)
1156 struct ifnet *ifp;
1157 struct ti_cmd_desc cmd;
1158 struct ti_mc_entry *mc;
1159 u_int32_t intrs;
1160 struct ether_multi *enm;
1161 struct ether_multistep step;
1163 ifp = &sc->ethercom.ec_if;
1165 /* Disable interrupts. */
1166 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1167 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1169 /* First, zot all the existing filters. */
1170 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1171 ti_del_mcast(sc, &mc->mc_addr);
1172 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1173 free(mc, M_DEVBUF);
1177 * Remember all multicast addresses so that we can delete them
1178 * later. Punt if there is a range of addresses or memory shortage.
1180 ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
1181 while (enm != NULL) {
1182 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1183 ETHER_ADDR_LEN) != 0)
1184 goto allmulti;
1185 if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF,
1186 M_NOWAIT)) == NULL)
1187 goto allmulti;
1188 memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN);
1189 SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1190 ETHER_NEXT_MULTI(step, enm);
1193 /* Accept only programmed multicast addresses */
1194 ifp->if_flags &= ~IFF_ALLMULTI;
1195 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1197 /* Now program new ones. */
1198 SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries)
1199 ti_add_mcast(sc, &mc->mc_addr);
1201 /* Re-enable interrupts. */
1202 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1204 return;
1206 allmulti:
1207 /* No need to keep individual multicast addresses */
1208 while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) {
1209 SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1210 free(mc, M_DEVBUF);
1213 /* Accept all multicast addresses */
1214 ifp->if_flags |= IFF_ALLMULTI;
1215 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1217 /* Re-enable interrupts. */
1218 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1222 * Check to see if the BIOS has configured us for a 64 bit slot when
1223 * we aren't actually in one. If we detect this condition, we can work
1224 * around it on the Tigon 2 by setting a bit in the PCI state register,
1225 * but for the Tigon 1 we must give up and abort the interface attach.
1227 static int
1228 ti_64bitslot_war(struct ti_softc *sc)
1230 if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) {
1231 CSR_WRITE_4(sc, 0x600, 0);
1232 CSR_WRITE_4(sc, 0x604, 0);
1233 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1234 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1235 if (sc->ti_hwrev == TI_HWREV_TIGON)
1236 return (EINVAL);
1237 else {
1238 TI_SETBIT(sc, TI_PCI_STATE,
1239 TI_PCISTATE_32BIT_BUS);
1240 return (0);
1245 return (0);
1249 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1250 * self-test results.
1252 static int
1253 ti_chipinit(struct ti_softc *sc)
1255 u_int32_t cacheline;
1256 u_int32_t pci_writemax = 0;
1257 u_int32_t rev;
1259 /* Initialize link to down state. */
1260 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1262 /* Set endianness before we access any non-PCI registers. */
1263 #if BYTE_ORDER == BIG_ENDIAN
1264 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1265 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1266 #else
1267 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1268 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1269 #endif
1271 /* Check the ROM failed bit to see if self-tests passed. */
1272 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1273 printf("%s: board self-diagnostics failed!\n",
1274 device_xname(&sc->sc_dev));
1275 return (ENODEV);
1278 /* Halt the CPU. */
1279 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1281 /* Figure out the hardware revision. */
1282 rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK;
1283 switch (rev) {
1284 case TI_REV_TIGON_I:
1285 sc->ti_hwrev = TI_HWREV_TIGON;
1286 break;
1287 case TI_REV_TIGON_II:
1288 sc->ti_hwrev = TI_HWREV_TIGON_II;
1289 break;
1290 default:
1291 printf("%s: unsupported chip revision 0x%x\n",
1292 device_xname(&sc->sc_dev), rev);
1293 return (ENODEV);
1296 /* Do special setup for Tigon 2. */
1297 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1298 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1299 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K);
1300 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1303 /* Set up the PCI state register. */
1304 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1305 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1306 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1309 /* Clear the read/write max DMA parameters. */
1310 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1311 TI_PCISTATE_READ_MAXDMA));
1313 /* Get cache line size. */
1314 cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG));
1317 * If the system has set enabled the PCI memory write
1318 * and invalidate command in the command register, set
1319 * the write max parameter accordingly. This is necessary
1320 * to use MWI with the Tigon 2.
1322 if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1323 & PCI_COMMAND_INVALIDATE_ENABLE) {
1324 switch (cacheline) {
1325 case 1:
1326 case 4:
1327 case 8:
1328 case 16:
1329 case 32:
1330 case 64:
1331 break;
1332 default:
1333 /* Disable PCI memory write and invalidate. */
1334 if (bootverbose)
1335 printf("%s: cache line size %d not "
1336 "supported; disabling PCI MWI\n",
1337 device_xname(&sc->sc_dev), cacheline);
1338 CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG,
1339 CSR_READ_4(sc, PCI_COMMAND_STATUS_REG)
1340 & ~PCI_COMMAND_INVALIDATE_ENABLE);
1341 break;
1345 #ifdef __brokenalpha__
1347 * From the Alteon sample driver:
1348 * Must insure that we do not cross an 8K (bytes) boundary
1349 * for DMA reads. Our highest limit is 1K bytes. This is a
1350 * restriction on some ALPHA platforms with early revision
1351 * 21174 PCI chipsets, such as the AlphaPC 164lx
1353 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax|TI_PCI_READMAX_1024);
1354 #else
1355 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1356 #endif
1358 /* This sets the min dma param all the way up (0xff). */
1359 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1361 /* Configure DMA variables. */
1362 #if BYTE_ORDER == BIG_ENDIAN
1363 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1364 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1365 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1366 TI_OPMODE_DONT_FRAG_JUMBO);
1367 #else
1368 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1369 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1370 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1371 #endif
1374 * Only allow 1 DMA channel to be active at a time.
1375 * I don't think this is a good idea, but without it
1376 * the firmware racks up lots of nicDmaReadRingFull
1377 * errors.
1378 * Incompatible with hardware assisted checksums.
1380 if ((sc->ethercom.ec_if.if_capenable &
1381 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1382 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
1383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0)
1384 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1386 /* Recommended settings from Tigon manual. */
1387 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1388 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1390 if (ti_64bitslot_war(sc)) {
1391 printf("%s: bios thinks we're in a 64 bit slot, "
1392 "but we aren't", device_xname(&sc->sc_dev));
1393 return (EINVAL);
1396 return (0);
1400 * Initialize the general information block and firmware, and
1401 * start the CPU(s) running.
1403 static int
1404 ti_gibinit(struct ti_softc *sc)
1406 struct ti_rcb *rcb;
1407 int i;
1408 struct ifnet *ifp;
1410 ifp = &sc->ethercom.ec_if;
1412 /* Disable interrupts for now. */
1413 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1415 /* Tell the chip where to find the general information block. */
1416 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1417 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc));
1419 /* Load the firmware into SRAM. */
1420 ti_loadfw(sc);
1422 /* Set up the contents of the general info and ring control blocks. */
1424 /* Set up the event ring and producer pointer. */
1425 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1427 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0);
1428 rcb->ti_flags = 0;
1429 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1430 TI_CDEVPRODADDR(sc);
1432 sc->ti_ev_prodidx.ti_idx = 0;
1433 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1434 sc->ti_ev_saved_considx = 0;
1436 /* Set up the command ring and producer mailbox. */
1437 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1439 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1440 rcb->ti_flags = 0;
1441 rcb->ti_max_len = 0;
1442 for (i = 0; i < TI_CMD_RING_CNT; i++) {
1443 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1445 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1446 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1447 sc->ti_cmd_saved_prodidx = 0;
1450 * Assign the address of the stats refresh buffer.
1451 * We re-use the current stats buffer for this to
1452 * conserve memory.
1454 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1455 TI_CDSTATSADDR(sc);
1457 /* Set up the standard receive ring. */
1458 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1459 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0);
1460 rcb->ti_max_len = ETHER_MAX_LEN;
1461 rcb->ti_flags = 0;
1462 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1463 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1464 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1465 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1466 if (VLAN_ATTACHED(&sc->ethercom))
1467 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1469 /* Set up the jumbo receive ring. */
1470 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1471 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0);
1472 rcb->ti_max_len = ETHER_MAX_LEN_JUMBO;
1473 rcb->ti_flags = 0;
1474 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1475 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1476 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1477 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1478 if (VLAN_ATTACHED(&sc->ethercom))
1479 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1482 * Set up the mini ring. Only activated on the
1483 * Tigon 2 but the slot in the config block is
1484 * still there on the Tigon 1.
1486 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1487 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0);
1488 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1489 if (sc->ti_hwrev == TI_HWREV_TIGON)
1490 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1491 else
1492 rcb->ti_flags = 0;
1493 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1494 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1495 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
1496 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM;
1497 if (VLAN_ATTACHED(&sc->ethercom))
1498 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1501 * Set up the receive return ring.
1503 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1504 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0);
1505 rcb->ti_flags = 0;
1506 rcb->ti_max_len = TI_RETURN_RING_CNT;
1507 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1508 TI_CDRTNPRODADDR(sc);
1511 * Set up the tx ring. Note: for the Tigon 2, we have the option
1512 * of putting the transmit ring in the host's address space and
1513 * letting the chip DMA it instead of leaving the ring in the NIC's
1514 * memory and accessing it through the shared memory region. We
1515 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1516 * so we have to revert to the shared memory scheme if we detect
1517 * a Tigon 1 chip.
1519 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1520 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1521 sc->ti_tx_ring_nic =
1522 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1524 memset((char *)sc->ti_rdata->ti_tx_ring, 0,
1525 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1526 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1527 if (sc->ti_hwrev == TI_HWREV_TIGON)
1528 rcb->ti_flags = 0;
1529 else
1530 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1531 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
1532 rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM;
1534 * When we get the packet, there is a pseudo-header seed already
1535 * in the th_sum or uh_sum field. Make sure the firmware doesn't
1536 * compute the pseudo-header checksum again!
1538 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
1539 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM|
1540 TI_RCB_FLAG_NO_PHDR_CKSUM;
1541 if (VLAN_ATTACHED(&sc->ethercom))
1542 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1543 rcb->ti_max_len = TI_TX_RING_CNT;
1544 if (sc->ti_hwrev == TI_HWREV_TIGON)
1545 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1546 else
1547 TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0);
1548 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1549 TI_CDTXCONSADDR(sc);
1552 * We're done frobbing the General Information Block. Sync
1553 * it. Note we take care of the first stats sync here, as
1554 * well.
1556 TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1558 /* Set up tuneables */
1559 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) ||
1560 (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
1561 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1562 (sc->ti_rx_coal_ticks / 10));
1563 else
1564 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1565 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1566 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1567 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1568 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1569 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1571 /* Turn interrupts on. */
1572 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1573 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1575 /* Start CPU. */
1576 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1578 return (0);
1582 * look for id in the device list, returning the first match
1584 static const struct ti_type *
1585 ti_type_match(struct pci_attach_args *pa)
1587 const struct ti_type *t;
1589 t = ti_devs;
1590 while (t->ti_name != NULL) {
1591 if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) &&
1592 (PCI_PRODUCT(pa->pa_id) == t->ti_did)) {
1593 return (t);
1595 t++;
1598 return (NULL);
1602 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1603 * against our list and return its name if we find a match.
1605 static int
1606 ti_probe(device_t parent, cfdata_t match, void *aux)
1608 struct pci_attach_args *pa = aux;
1609 const struct ti_type *t;
1611 t = ti_type_match(pa);
1613 return ((t == NULL) ? 0 : 1);
1616 static void
1617 ti_attach(device_t parent, device_t self, void *aux)
1619 u_int32_t command;
1620 struct ifnet *ifp;
1621 struct ti_softc *sc;
1622 u_int8_t eaddr[ETHER_ADDR_LEN];
1623 struct pci_attach_args *pa = aux;
1624 pci_chipset_tag_t pc = pa->pa_pc;
1625 pci_intr_handle_t ih;
1626 const char *intrstr = NULL;
1627 bus_dma_segment_t dmaseg;
1628 int error, dmanseg, nolinear;
1629 const struct ti_type *t;
1631 t = ti_type_match(pa);
1632 if (t == NULL) {
1633 printf("ti_attach: were did the card go ?\n");
1634 return;
1637 printf(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class));
1639 sc = device_private(self);
1642 * Map control/status registers.
1644 nolinear = 0;
1645 if (pci_mapreg_map(pa, 0x10,
1646 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1647 BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle,
1648 NULL, NULL)) {
1649 nolinear = 1;
1650 if (pci_mapreg_map(pa, 0x10,
1651 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
1652 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) {
1653 printf(": can't map memory space\n");
1654 return;
1657 if (nolinear == 0)
1658 sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle);
1659 else
1660 sc->ti_vhandle = NULL;
1662 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1663 command |= PCI_COMMAND_MASTER_ENABLE;
1664 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1666 /* Allocate interrupt */
1667 if (pci_intr_map(pa, &ih)) {
1668 aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
1669 return;
1671 intrstr = pci_intr_string(pc, ih);
1672 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ti_intr, sc);
1673 if (sc->sc_ih == NULL) {
1674 aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
1675 if (intrstr != NULL)
1676 aprint_error(" at %s", intrstr);
1677 aprint_error("\n");
1678 return;
1680 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
1682 if (ti_chipinit(sc)) {
1683 aprint_error_dev(self, "chip initialization failed\n");
1684 goto fail2;
1688 * Deal with some chip diffrences.
1690 switch (sc->ti_hwrev) {
1691 case TI_HWREV_TIGON:
1692 sc->sc_tx_encap = ti_encap_tigon1;
1693 sc->sc_tx_eof = ti_txeof_tigon1;
1694 if (nolinear == 1)
1695 aprint_error_dev(self, "memory space not mapped linear\n");
1696 break;
1698 case TI_HWREV_TIGON_II:
1699 sc->sc_tx_encap = ti_encap_tigon2;
1700 sc->sc_tx_eof = ti_txeof_tigon2;
1701 break;
1703 default:
1704 printf("%s: Unknown chip version: %d\n", device_xname(self),
1705 sc->ti_hwrev);
1706 goto fail2;
1709 /* Zero out the NIC's on-board SRAM. */
1710 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1712 /* Init again -- zeroing memory may have clobbered some registers. */
1713 if (ti_chipinit(sc)) {
1714 aprint_error_dev(self, "chip initialization failed\n");
1715 goto fail2;
1719 * Get station address from the EEPROM. Note: the manual states
1720 * that the MAC address is at offset 0x8c, however the data is
1721 * stored as two longwords (since that's how it's loaded into
1722 * the NIC). This means the MAC address is actually preceded
1723 * by two zero bytes. We need to skip over those.
1725 if (ti_read_eeprom(sc, (void *)&eaddr,
1726 TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1727 aprint_error_dev(self, "failed to read station address\n");
1728 goto fail2;
1732 * A Tigon chip was detected. Inform the world.
1734 aprint_error_dev(self, "Ethernet address: %s\n",
1735 ether_sprintf(eaddr));
1737 sc->sc_dmat = pa->pa_dmat;
1739 /* Allocate the general information block and ring buffers. */
1740 if ((error = bus_dmamem_alloc(sc->sc_dmat,
1741 sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg,
1742 BUS_DMA_NOWAIT)) != 0) {
1743 aprint_error_dev(&sc->sc_dev, "can't allocate ring buffer, error = %d\n",
1744 error);
1745 goto fail2;
1748 if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg,
1749 sizeof(struct ti_ring_data), (void **)&sc->ti_rdata,
1750 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
1751 aprint_error_dev(&sc->sc_dev, "can't map ring buffer, error = %d\n",
1752 error);
1753 goto fail2;
1756 if ((error = bus_dmamap_create(sc->sc_dmat,
1757 sizeof(struct ti_ring_data), 1,
1758 sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT,
1759 &sc->info_dmamap)) != 0) {
1760 aprint_error_dev(&sc->sc_dev, "can't create ring buffer DMA map, error = %d\n",
1761 error);
1762 goto fail2;
1765 if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap,
1766 sc->ti_rdata, sizeof(struct ti_ring_data), NULL,
1767 BUS_DMA_NOWAIT)) != 0) {
1768 aprint_error_dev(&sc->sc_dev, "can't load ring buffer DMA map, error = %d\n",
1769 error);
1770 goto fail2;
1773 sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr;
1775 memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data));
1777 /* Try to allocate memory for jumbo buffers. */
1778 if (ti_alloc_jumbo_mem(sc)) {
1779 aprint_error_dev(self, "jumbo buffer allocation failed\n");
1780 goto fail2;
1783 SIMPLEQ_INIT(&sc->ti_mc_listhead);
1786 * We really need a better way to tell a 1000baseT card
1787 * from a 1000baseSX one, since in theory there could be
1788 * OEMed 1000baseT cards from lame vendors who aren't
1789 * clever enough to change the PCI ID. For the moment
1790 * though, the AceNIC is the only copper card available.
1792 if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON &&
1793 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) ||
1794 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR &&
1795 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T))
1796 sc->ti_copper = 1;
1797 else
1798 sc->ti_copper = 0;
1800 /* Set default tuneable values. */
1801 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1802 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1803 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1804 sc->ti_rx_max_coal_bds = 64;
1805 sc->ti_tx_max_coal_bds = 128;
1806 sc->ti_tx_buf_ratio = 21;
1808 /* Set up ifnet structure */
1809 ifp = &sc->ethercom.ec_if;
1810 ifp->if_softc = sc;
1811 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
1812 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1813 ifp->if_ioctl = ti_ioctl;
1814 ifp->if_start = ti_start;
1815 ifp->if_watchdog = ti_watchdog;
1816 IFQ_SET_READY(&ifp->if_snd);
1818 #if 0
1820 * XXX This is not really correct -- we don't necessarily
1821 * XXX want to queue up as many as we can transmit at the
1822 * XXX upper layer like that. Someone with a board should
1823 * XXX check to see how this affects performance.
1825 ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1;
1826 #endif
1829 * We can support 802.1Q VLAN-sized frames.
1831 sc->ethercom.ec_capabilities |=
1832 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
1835 * We can do IPv4, TCPv4, and UDPv4 checksums in hardware.
1837 ifp->if_capabilities |=
1838 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1839 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1840 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1842 /* Set up ifmedia support. */
1843 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1844 if (sc->ti_copper) {
1846 * Copper cards allow manual 10/100 mode selection,
1847 * but not manual 1000baseT mode selection. Why?
1848 * Because currently there's no way to specify the
1849 * master/slave setting through the firmware interface,
1850 * so Alteon decided to just bag it and handle it
1851 * via autonegotiation.
1853 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1854 ifmedia_add(&sc->ifmedia,
1855 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1856 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1857 ifmedia_add(&sc->ifmedia,
1858 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1859 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_T, 0, NULL);
1860 ifmedia_add(&sc->ifmedia,
1861 IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
1862 } else {
1863 /* Fiber cards don't support 10/100 modes. */
1864 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1865 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1867 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1868 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1871 * Call MI attach routines.
1873 if_attach(ifp);
1874 ether_ifattach(ifp, eaddr);
1877 * Add shutdown hook so that DMA is disabled prior to reboot. Not
1878 * doing do could allow DMA to corrupt kernel memory during the
1879 * reboot before the driver initializes.
1881 if (pmf_device_register1(self, NULL, NULL, ti_shutdown))
1882 pmf_class_network_register(self, ifp);
1883 else
1884 aprint_error_dev(self, "couldn't establish power handler\n");
1886 return;
1887 fail2:
1888 pci_intr_disestablish(pc, sc->sc_ih);
1889 return;
1893 * Frame reception handling. This is called if there's a frame
1894 * on the receive return list.
1896 * Note: we have to be able to handle three possibilities here:
1897 * 1) the frame is from the mini receive ring (can only happen)
1898 * on Tigon 2 boards)
1899 * 2) the frame is from the jumbo receive ring
1900 * 3) the frame is from the standard receive ring
1903 static void
1904 ti_rxeof(struct ti_softc *sc)
1906 struct ifnet *ifp;
1907 struct ti_cmd_desc cmd;
1909 ifp = &sc->ethercom.ec_if;
1911 while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1912 struct ti_rx_desc *cur_rx;
1913 u_int32_t rxidx;
1914 struct mbuf *m = NULL;
1915 struct ether_header *eh;
1916 bus_dmamap_t dmamap;
1918 cur_rx =
1919 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1920 rxidx = cur_rx->ti_idx;
1921 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1923 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1924 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1925 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1926 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1927 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1928 ifp->if_ierrors++;
1929 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1930 continue;
1932 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL)
1933 == ENOBUFS) {
1934 ifp->if_ierrors++;
1935 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1936 continue;
1938 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1939 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1940 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1941 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1942 dmamap = sc->mini_dmamap[rxidx];
1943 sc->mini_dmamap[rxidx] = 0;
1944 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1945 ifp->if_ierrors++;
1946 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1947 continue;
1949 if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap)
1950 == ENOBUFS) {
1951 ifp->if_ierrors++;
1952 ti_newbuf_mini(sc, sc->ti_mini, m, dmamap);
1953 continue;
1955 } else {
1956 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1957 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1958 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1959 dmamap = sc->std_dmamap[rxidx];
1960 sc->std_dmamap[rxidx] = 0;
1961 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1962 ifp->if_ierrors++;
1963 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1964 continue;
1966 if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap)
1967 == ENOBUFS) {
1968 ifp->if_ierrors++;
1969 ti_newbuf_std(sc, sc->ti_std, m, dmamap);
1970 continue;
1974 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1975 ifp->if_ipackets++;
1976 m->m_pkthdr.rcvif = ifp;
1978 #if NBPFILTER > 0
1980 * Handle BPF listeners. Let the BPF user see the packet, but
1981 * don't pass it up to the ether_input() layer unless it's
1982 * a broadcast packet, multicast packet, matches our ethernet
1983 * address or the interface is in promiscuous mode.
1985 if (ifp->if_bpf)
1986 bpf_mtap(ifp->if_bpf, m);
1987 #endif
1989 eh = mtod(m, struct ether_header *);
1990 switch (ntohs(eh->ether_type)) {
1991 #ifdef INET
1992 case ETHERTYPE_IP:
1994 struct ip *ip = (struct ip *) (eh + 1);
1997 * Note the Tigon firmware does not invert
1998 * the checksum for us, hence the XOR.
2000 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2001 if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0)
2002 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2004 * ntohs() the constant so the compiler can
2005 * optimize...
2007 * XXX Figure out a sane way to deal with
2008 * fragmented packets.
2010 if ((ip->ip_off & htons(IP_MF|IP_OFFMASK)) == 0) {
2011 switch (ip->ip_p) {
2012 case IPPROTO_TCP:
2013 m->m_pkthdr.csum_data =
2014 cur_rx->ti_tcp_udp_cksum;
2015 m->m_pkthdr.csum_flags |=
2016 M_CSUM_TCPv4|M_CSUM_DATA;
2017 break;
2018 case IPPROTO_UDP:
2019 m->m_pkthdr.csum_data =
2020 cur_rx->ti_tcp_udp_cksum;
2021 m->m_pkthdr.csum_flags |=
2022 M_CSUM_UDPv4|M_CSUM_DATA;
2023 break;
2024 default:
2025 /* Nothing */;
2028 break;
2030 #endif
2031 default:
2032 /* Nothing. */
2033 break;
2036 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
2037 VLAN_INPUT_TAG(ifp, m,
2038 /* ti_vlan_tag also has the priority, trim it */
2039 cur_rx->ti_vlan_tag & 4095,
2040 continue);
2043 (*ifp->if_input)(ifp, m);
2046 /* Only necessary on the Tigon 1. */
2047 if (sc->ti_hwrev == TI_HWREV_TIGON)
2048 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
2049 sc->ti_rx_saved_considx);
2051 TI_UPDATE_STDPROD(sc, sc->ti_std);
2052 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
2053 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
2056 static void
2057 ti_txeof_tigon1(struct ti_softc *sc)
2059 struct ti_tx_desc *cur_tx = NULL;
2060 struct ifnet *ifp;
2061 struct txdmamap_pool_entry *dma;
2063 ifp = &sc->ethercom.ec_if;
2066 * Go through our tx ring and free mbufs for those
2067 * frames that have been sent.
2069 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2070 u_int32_t idx = 0;
2072 idx = sc->ti_tx_saved_considx;
2073 if (idx > 383)
2074 CSR_WRITE_4(sc, TI_WINBASE,
2075 TI_TX_RING_BASE + 6144);
2076 else if (idx > 255)
2077 CSR_WRITE_4(sc, TI_WINBASE,
2078 TI_TX_RING_BASE + 4096);
2079 else if (idx > 127)
2080 CSR_WRITE_4(sc, TI_WINBASE,
2081 TI_TX_RING_BASE + 2048);
2082 else
2083 CSR_WRITE_4(sc, TI_WINBASE,
2084 TI_TX_RING_BASE);
2085 cur_tx = &sc->ti_tx_ring_nic[idx % 128];
2086 if (cur_tx->ti_flags & TI_BDFLAG_END)
2087 ifp->if_opackets++;
2088 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2089 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2090 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2092 dma = sc->txdma[idx];
2093 KDASSERT(dma != NULL);
2094 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2095 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2096 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2098 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2099 sc->txdma[idx] = NULL;
2101 sc->ti_txcnt--;
2102 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2103 ifp->if_timer = 0;
2106 if (cur_tx != NULL)
2107 ifp->if_flags &= ~IFF_OACTIVE;
2110 static void
2111 ti_txeof_tigon2(struct ti_softc *sc)
2113 struct ti_tx_desc *cur_tx = NULL;
2114 struct ifnet *ifp;
2115 struct txdmamap_pool_entry *dma;
2116 int firstidx, cnt;
2118 ifp = &sc->ethercom.ec_if;
2121 * Go through our tx ring and free mbufs for those
2122 * frames that have been sent.
2124 firstidx = sc->ti_tx_saved_considx;
2125 cnt = 0;
2126 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
2127 u_int32_t idx = 0;
2129 idx = sc->ti_tx_saved_considx;
2130 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
2131 if (cur_tx->ti_flags & TI_BDFLAG_END)
2132 ifp->if_opackets++;
2133 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
2134 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
2135 sc->ti_cdata.ti_tx_chain[idx] = NULL;
2137 dma = sc->txdma[idx];
2138 KDASSERT(dma != NULL);
2139 bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0,
2140 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2141 bus_dmamap_unload(sc->sc_dmat, dma->dmamap);
2143 SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link);
2144 sc->txdma[idx] = NULL;
2146 cnt++;
2147 sc->ti_txcnt--;
2148 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
2149 ifp->if_timer = 0;
2152 if (cnt != 0)
2153 TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE);
2155 if (cur_tx != NULL)
2156 ifp->if_flags &= ~IFF_OACTIVE;
2159 static int
2160 ti_intr(void *xsc)
2162 struct ti_softc *sc;
2163 struct ifnet *ifp;
2165 sc = xsc;
2166 ifp = &sc->ethercom.ec_if;
2168 #ifdef notdef
2169 /* Avoid this for now -- checking this register is expensive. */
2170 /* Make sure this is really our interrupt. */
2171 if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE))
2172 return (0);
2173 #endif
2175 /* Ack interrupt and stop others from occuring. */
2176 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2178 if (ifp->if_flags & IFF_RUNNING) {
2179 /* Check RX return ring producer/consumer */
2180 ti_rxeof(sc);
2182 /* Check TX ring producer/consumer */
2183 (*sc->sc_tx_eof)(sc);
2186 ti_handle_events(sc);
2188 /* Re-enable interrupts. */
2189 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2191 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2192 IFQ_IS_EMPTY(&ifp->if_snd) == 0)
2193 ti_start(ifp);
2195 return (1);
2198 static void
2199 ti_stats_update(struct ti_softc *sc)
2201 struct ifnet *ifp;
2203 ifp = &sc->ethercom.ec_if;
2205 TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
2207 ifp->if_collisions +=
2208 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
2209 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
2210 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
2211 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
2212 ifp->if_collisions;
2214 TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
2218 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
2219 * pointers to descriptors.
2221 static int
2222 ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2224 struct ti_tx_desc *f = NULL;
2225 u_int32_t frag, cur, cnt = 0;
2226 struct txdmamap_pool_entry *dma;
2227 bus_dmamap_t dmamap;
2228 int error, i;
2229 struct m_tag *mtag;
2230 u_int16_t csum_flags = 0;
2232 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2233 if (dma == NULL) {
2234 return ENOMEM;
2236 dmamap = dma->dmamap;
2238 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2239 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2240 if (error) {
2241 struct mbuf *m;
2242 int j = 0;
2243 for (m = m_head; m; m = m->m_next)
2244 j++;
2245 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2246 "error %d\n", m_head->m_pkthdr.len, j, error);
2247 return (ENOMEM);
2250 cur = frag = *txidx;
2252 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2253 /* IP header checksum field must be 0! */
2254 csum_flags |= TI_BDFLAG_IP_CKSUM;
2256 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2257 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2259 /* XXX fragmented packet checksum capability? */
2262 * Start packing the mbufs in this chain into
2263 * the fragment pointers. Stop when we run out
2264 * of fragments or hit the end of the mbuf chain.
2266 for (i = 0; i < dmamap->dm_nsegs; i++) {
2267 if (frag > 383)
2268 CSR_WRITE_4(sc, TI_WINBASE,
2269 TI_TX_RING_BASE + 6144);
2270 else if (frag > 255)
2271 CSR_WRITE_4(sc, TI_WINBASE,
2272 TI_TX_RING_BASE + 4096);
2273 else if (frag > 127)
2274 CSR_WRITE_4(sc, TI_WINBASE,
2275 TI_TX_RING_BASE + 2048);
2276 else
2277 CSR_WRITE_4(sc, TI_WINBASE,
2278 TI_TX_RING_BASE);
2279 f = &sc->ti_tx_ring_nic[frag % 128];
2280 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2281 break;
2282 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2283 f->ti_len = dmamap->dm_segs[i].ds_len;
2284 f->ti_flags = csum_flags;
2285 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2286 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2287 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2288 } else {
2289 f->ti_vlan_tag = 0;
2292 * Sanity check: avoid coming within 16 descriptors
2293 * of the end of the ring.
2295 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2296 return (ENOBUFS);
2297 cur = frag;
2298 TI_INC(frag, TI_TX_RING_CNT);
2299 cnt++;
2302 if (i < dmamap->dm_nsegs)
2303 return (ENOBUFS);
2305 if (frag == sc->ti_tx_saved_considx)
2306 return (ENOBUFS);
2308 sc->ti_tx_ring_nic[cur % 128].ti_flags |=
2309 TI_BDFLAG_END;
2311 /* Sync the packet's DMA map. */
2312 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2313 BUS_DMASYNC_PREWRITE);
2315 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2316 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2317 sc->txdma[cur] = dma;
2318 sc->ti_txcnt += cnt;
2320 *txidx = frag;
2322 return (0);
2325 static int
2326 ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
2328 struct ti_tx_desc *f = NULL;
2329 u_int32_t frag, firstfrag, cur, cnt = 0;
2330 struct txdmamap_pool_entry *dma;
2331 bus_dmamap_t dmamap;
2332 int error, i;
2333 struct m_tag *mtag;
2334 u_int16_t csum_flags = 0;
2336 dma = SIMPLEQ_FIRST(&sc->txdma_list);
2337 if (dma == NULL) {
2338 return ENOMEM;
2340 dmamap = dma->dmamap;
2342 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head,
2343 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
2344 if (error) {
2345 struct mbuf *m;
2346 int j = 0;
2347 for (m = m_head; m; m = m->m_next)
2348 j++;
2349 printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) "
2350 "error %d\n", m_head->m_pkthdr.len, j, error);
2351 return (ENOMEM);
2354 cur = firstfrag = frag = *txidx;
2356 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) {
2357 /* IP header checksum field must be 0! */
2358 csum_flags |= TI_BDFLAG_IP_CKSUM;
2360 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2361 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
2363 /* XXX fragmented packet checksum capability? */
2366 * Start packing the mbufs in this chain into
2367 * the fragment pointers. Stop when we run out
2368 * of fragments or hit the end of the mbuf chain.
2370 for (i = 0; i < dmamap->dm_nsegs; i++) {
2371 f = &sc->ti_rdata->ti_tx_ring[frag];
2372 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
2373 break;
2374 TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr;
2375 f->ti_len = dmamap->dm_segs[i].ds_len;
2376 f->ti_flags = csum_flags;
2377 if ((mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head))) {
2378 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
2379 f->ti_vlan_tag = VLAN_TAG_VALUE(mtag);
2380 } else {
2381 f->ti_vlan_tag = 0;
2384 * Sanity check: avoid coming within 16 descriptors
2385 * of the end of the ring.
2387 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
2388 return (ENOBUFS);
2389 cur = frag;
2390 TI_INC(frag, TI_TX_RING_CNT);
2391 cnt++;
2394 if (i < dmamap->dm_nsegs)
2395 return (ENOBUFS);
2397 if (frag == sc->ti_tx_saved_considx)
2398 return (ENOBUFS);
2400 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
2402 /* Sync the packet's DMA map. */
2403 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
2404 BUS_DMASYNC_PREWRITE);
2406 /* Sync the descriptors we are using. */
2407 TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE);
2409 sc->ti_cdata.ti_tx_chain[cur] = m_head;
2410 SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link);
2411 sc->txdma[cur] = dma;
2412 sc->ti_txcnt += cnt;
2414 *txidx = frag;
2416 return (0);
2420 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2421 * to the mbuf data regions directly in the transmit descriptors.
2423 static void
2424 ti_start(struct ifnet *ifp)
2426 struct ti_softc *sc;
2427 struct mbuf *m_head = NULL;
2428 u_int32_t prodidx = 0;
2430 sc = ifp->if_softc;
2432 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
2434 while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
2435 IFQ_POLL(&ifp->if_snd, m_head);
2436 if (m_head == NULL)
2437 break;
2440 * Pack the data into the transmit ring. If we
2441 * don't have room, set the OACTIVE flag and wait
2442 * for the NIC to drain the ring.
2444 if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) {
2445 ifp->if_flags |= IFF_OACTIVE;
2446 break;
2449 IFQ_DEQUEUE(&ifp->if_snd, m_head);
2452 * If there's a BPF listener, bounce a copy of this frame
2453 * to him.
2455 #if NBPFILTER > 0
2456 if (ifp->if_bpf)
2457 bpf_mtap(ifp->if_bpf, m_head);
2458 #endif
2461 /* Transmit */
2462 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
2465 * Set a timeout in case the chip goes out to lunch.
2467 ifp->if_timer = 5;
2470 static void
2471 ti_init(void *xsc)
2473 struct ti_softc *sc = xsc;
2474 int s;
2476 s = splnet();
2478 /* Cancel pending I/O and flush buffers. */
2479 ti_stop(sc);
2481 /* Init the gen info block, ring control blocks and firmware. */
2482 if (ti_gibinit(sc)) {
2483 aprint_error_dev(&sc->sc_dev, "initialization failure\n");
2484 splx(s);
2485 return;
2488 splx(s);
2491 static void
2492 ti_init2(struct ti_softc *sc)
2494 struct ti_cmd_desc cmd;
2495 struct ifnet *ifp;
2496 const u_int8_t *m;
2497 struct ifmedia *ifm;
2498 int tmp;
2500 ifp = &sc->ethercom.ec_if;
2502 /* Specify MTU and interface index. */
2503 CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(&sc->sc_dev)); /* ??? */
2505 tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
2506 if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
2507 tmp += ETHER_VLAN_ENCAP_LEN;
2508 CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp);
2510 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2512 /* Load our MAC address. */
2513 m = (const u_int8_t *)CLLADDR(ifp->if_sadl);
2514 CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]);
2515 CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16)
2516 | (m[4] << 8) | m[5]);
2517 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2519 /* Enable or disable promiscuous mode as needed. */
2520 if (ifp->if_flags & IFF_PROMISC) {
2521 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2522 } else {
2523 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2526 /* Program multicast filter. */
2527 ti_setmulti(sc);
2530 * If this is a Tigon 1, we should tell the
2531 * firmware to use software packet filtering.
2533 if (sc->ti_hwrev == TI_HWREV_TIGON) {
2534 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2537 /* Init RX ring. */
2538 ti_init_rx_ring_std(sc);
2540 /* Init jumbo RX ring. */
2541 if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN))
2542 ti_init_rx_ring_jumbo(sc);
2545 * If this is a Tigon 2, we can also configure the
2546 * mini ring.
2548 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2549 ti_init_rx_ring_mini(sc);
2551 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2552 sc->ti_rx_saved_considx = 0;
2554 /* Init TX ring. */
2555 ti_init_tx_ring(sc);
2557 /* Tell firmware we're alive. */
2558 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2560 /* Enable host interrupts. */
2561 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2563 ifp->if_flags |= IFF_RUNNING;
2564 ifp->if_flags &= ~IFF_OACTIVE;
2567 * Make sure to set media properly. We have to do this
2568 * here since we have to issue commands in order to set
2569 * the link negotiation and we can't issue commands until
2570 * the firmware is running.
2572 ifm = &sc->ifmedia;
2573 tmp = ifm->ifm_media;
2574 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2575 ti_ifmedia_upd(ifp);
2576 ifm->ifm_media = tmp;
2580 * Set media options.
2582 static int
2583 ti_ifmedia_upd(struct ifnet *ifp)
2585 struct ti_softc *sc;
2586 struct ifmedia *ifm;
2587 struct ti_cmd_desc cmd;
2589 sc = ifp->if_softc;
2590 ifm = &sc->ifmedia;
2592 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2593 return (EINVAL);
2595 switch (IFM_SUBTYPE(ifm->ifm_media)) {
2596 case IFM_AUTO:
2597 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB|
2598 TI_GLNK_FULL_DUPLEX|TI_GLNK_RX_FLOWCTL_Y|
2599 TI_GLNK_AUTONEGENB|TI_GLNK_ENB);
2600 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB|TI_LNK_10MB|
2601 TI_LNK_FULL_DUPLEX|TI_LNK_HALF_DUPLEX|
2602 TI_LNK_AUTONEGENB|TI_LNK_ENB);
2603 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2604 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2605 break;
2606 case IFM_1000_SX:
2607 case IFM_1000_T:
2608 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2609 CSR_WRITE_4(sc, TI_GCR_GLINK,
2610 TI_GLNK_PREF|TI_GLNK_1000MB|TI_GLNK_FULL_DUPLEX|
2611 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2612 } else {
2613 CSR_WRITE_4(sc, TI_GCR_GLINK,
2614 TI_GLNK_PREF|TI_GLNK_1000MB|
2615 TI_GLNK_RX_FLOWCTL_Y|TI_GLNK_ENB);
2617 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2618 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2619 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2620 break;
2621 case IFM_100_FX:
2622 case IFM_10_FL:
2623 case IFM_100_TX:
2624 case IFM_10_T:
2625 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2626 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB|TI_LNK_PREF);
2627 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2628 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) {
2629 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2630 } else {
2631 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2633 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2634 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2635 } else {
2636 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2638 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2639 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2640 break;
2643 sc->ethercom.ec_if.if_baudrate =
2644 ifmedia_baudrate(ifm->ifm_media);
2646 return (0);
2650 * Report current media status.
2652 static void
2653 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2655 struct ti_softc *sc;
2656 u_int32_t media = 0;
2658 sc = ifp->if_softc;
2660 ifmr->ifm_status = IFM_AVALID;
2661 ifmr->ifm_active = IFM_ETHER;
2663 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2664 return;
2666 ifmr->ifm_status |= IFM_ACTIVE;
2668 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2669 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2670 if (sc->ti_copper)
2671 ifmr->ifm_active |= IFM_1000_T;
2672 else
2673 ifmr->ifm_active |= IFM_1000_SX;
2674 if (media & TI_GLNK_FULL_DUPLEX)
2675 ifmr->ifm_active |= IFM_FDX;
2676 else
2677 ifmr->ifm_active |= IFM_HDX;
2678 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2679 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2680 if (sc->ti_copper) {
2681 if (media & TI_LNK_100MB)
2682 ifmr->ifm_active |= IFM_100_TX;
2683 if (media & TI_LNK_10MB)
2684 ifmr->ifm_active |= IFM_10_T;
2685 } else {
2686 if (media & TI_LNK_100MB)
2687 ifmr->ifm_active |= IFM_100_FX;
2688 if (media & TI_LNK_10MB)
2689 ifmr->ifm_active |= IFM_10_FL;
2691 if (media & TI_LNK_FULL_DUPLEX)
2692 ifmr->ifm_active |= IFM_FDX;
2693 if (media & TI_LNK_HALF_DUPLEX)
2694 ifmr->ifm_active |= IFM_HDX;
2697 sc->ethercom.ec_if.if_baudrate =
2698 ifmedia_baudrate(sc->ifmedia.ifm_media);
2701 static int
2702 ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2704 struct ifaddr *ifa = (struct ifaddr *) data;
2705 struct ti_softc *sc = ifp->if_softc;
2707 if ((ifp->if_flags & IFF_UP) == 0) {
2708 ifp->if_flags |= IFF_UP;
2709 ti_init(sc);
2712 switch (cmd) {
2713 case SIOCINITIFADDR:
2715 switch (ifa->ifa_addr->sa_family) {
2716 #ifdef INET
2717 case AF_INET:
2718 arp_ifinit(ifp, ifa);
2719 break;
2720 #endif
2721 default:
2722 break;
2724 break;
2726 default:
2727 return (EINVAL);
2730 return (0);
2733 static int
2734 ti_ioctl(struct ifnet *ifp, u_long command, void *data)
2736 struct ti_softc *sc = ifp->if_softc;
2737 struct ifreq *ifr = (struct ifreq *) data;
2738 int s, error = 0;
2739 struct ti_cmd_desc cmd;
2741 s = splnet();
2743 switch (command) {
2744 case SIOCINITIFADDR:
2745 error = ti_ether_ioctl(ifp, command, data);
2746 break;
2747 case SIOCSIFMTU:
2748 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO)
2749 error = EINVAL;
2750 else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET){
2751 ti_init(sc);
2752 error = 0;
2754 break;
2755 case SIOCSIFFLAGS:
2756 if ((error = ifioctl_common(ifp, command, data)) != 0)
2757 break;
2758 if (ifp->if_flags & IFF_UP) {
2760 * If only the state of the PROMISC flag changed,
2761 * then just use the 'set promisc mode' command
2762 * instead of reinitializing the entire NIC. Doing
2763 * a full re-init means reloading the firmware and
2764 * waiting for it to start up, which may take a
2765 * second or two.
2767 if (ifp->if_flags & IFF_RUNNING &&
2768 ifp->if_flags & IFF_PROMISC &&
2769 !(sc->ti_if_flags & IFF_PROMISC)) {
2770 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2771 TI_CMD_CODE_PROMISC_ENB, 0);
2772 } else if (ifp->if_flags & IFF_RUNNING &&
2773 !(ifp->if_flags & IFF_PROMISC) &&
2774 sc->ti_if_flags & IFF_PROMISC) {
2775 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2776 TI_CMD_CODE_PROMISC_DIS, 0);
2777 } else
2778 ti_init(sc);
2779 } else {
2780 if (ifp->if_flags & IFF_RUNNING) {
2781 ti_stop(sc);
2784 sc->ti_if_flags = ifp->if_flags;
2785 error = 0;
2786 break;
2787 case SIOCSIFMEDIA:
2788 case SIOCGIFMEDIA:
2789 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2790 break;
2791 default:
2792 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
2793 break;
2795 error = 0;
2797 if (command == SIOCSIFCAP)
2798 ti_init(sc);
2799 else if (command != SIOCADDMULTI && command != SIOCDELMULTI)
2801 else if (ifp->if_flags & IFF_RUNNING)
2802 ti_setmulti(sc);
2803 break;
2806 (void)splx(s);
2808 return (error);
2811 static void
2812 ti_watchdog(struct ifnet *ifp)
2814 struct ti_softc *sc;
2816 sc = ifp->if_softc;
2818 aprint_error_dev(&sc->sc_dev, "watchdog timeout -- resetting\n");
2819 ti_stop(sc);
2820 ti_init(sc);
2822 ifp->if_oerrors++;
2826 * Stop the adapter and free any mbufs allocated to the
2827 * RX and TX lists.
2829 static void
2830 ti_stop(struct ti_softc *sc)
2832 struct ifnet *ifp;
2833 struct ti_cmd_desc cmd;
2835 ifp = &sc->ethercom.ec_if;
2837 /* Disable host interrupts. */
2838 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2840 * Tell firmware we're shutting down.
2842 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2844 /* Halt and reinitialize. */
2845 ti_chipinit(sc);
2846 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2847 ti_chipinit(sc);
2849 /* Free the RX lists. */
2850 ti_free_rx_ring_std(sc);
2852 /* Free jumbo RX list. */
2853 ti_free_rx_ring_jumbo(sc);
2855 /* Free mini RX list. */
2856 ti_free_rx_ring_mini(sc);
2858 /* Free TX buffers. */
2859 ti_free_tx_ring(sc);
2861 sc->ti_ev_prodidx.ti_idx = 0;
2862 sc->ti_return_prodidx.ti_idx = 0;
2863 sc->ti_tx_considx.ti_idx = 0;
2864 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2866 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2870 * Stop all chip I/O so that the kernel's probe routines don't
2871 * get confused by errant DMAs when rebooting.
2873 static bool
2874 ti_shutdown(device_t self, int howto)
2876 struct ti_softc *sc;
2878 sc = device_private(self);
2879 ti_chipinit(sc);
2881 return true;