Sync usage with man page.
[netbsd-mini2440.git] / sys / external / isc / atheros_hal / dist / ar5211 / ar5211_reset.c
blobc2b6472123aa4a98e038fdbacb6e4e550d93ab1c
1 /*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2006 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 * $Id: ar5211_reset.c,v 1.3 2009/01/06 06:03:57 mrg Exp $
19 #include "opt_ah.h"
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
25 #include "ah.h"
26 #include "ah_internal.h"
27 #include "ah_devid.h"
29 #include "ar5211/ar5211.h"
30 #include "ar5211/ar5211reg.h"
31 #include "ar5211/ar5211phy.h"
33 #include "ah_eeprom_v3.h"
35 /* Add static register initialization vectors */
36 #include "ar5211/boss.ini"
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
42 typedef struct {
43 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
44 uint32_t channelSelect; /* P[7:4]S[3:0] bits */
45 uint16_t channel5111; /* 11a channel for 5111 */
46 } CHAN_INFO_2GHZ;
48 #define CI_2GHZ_INDEX_CORRECTION 19
49 static const CHAN_INFO_2GHZ chan2GHzData[] = {
50 { 1, 0x46, 96 }, /* 2312 -19 */
51 { 1, 0x46, 97 }, /* 2317 -18 */
52 { 1, 0x46, 98 }, /* 2322 -17 */
53 { 1, 0x46, 99 }, /* 2327 -16 */
54 { 1, 0x46, 100 }, /* 2332 -15 */
55 { 1, 0x46, 101 }, /* 2337 -14 */
56 { 1, 0x46, 102 }, /* 2342 -13 */
57 { 1, 0x46, 103 }, /* 2347 -12 */
58 { 1, 0x46, 104 }, /* 2352 -11 */
59 { 1, 0x46, 105 }, /* 2357 -10 */
60 { 1, 0x46, 106 }, /* 2362 -9 */
61 { 1, 0x46, 107 }, /* 2367 -8 */
62 { 1, 0x46, 108 }, /* 2372 -7 */
63 /* index -6 to 0 are pad to make this a nolookup table */
64 { 1, 0x46, 116 }, /* -6 */
65 { 1, 0x46, 116 }, /* -5 */
66 { 1, 0x46, 116 }, /* -4 */
67 { 1, 0x46, 116 }, /* -3 */
68 { 1, 0x46, 116 }, /* -2 */
69 { 1, 0x46, 116 }, /* -1 */
70 { 1, 0x46, 116 }, /* 0 */
71 { 1, 0x46, 116 }, /* 2412 1 */
72 { 1, 0x46, 117 }, /* 2417 2 */
73 { 1, 0x46, 118 }, /* 2422 3 */
74 { 1, 0x46, 119 }, /* 2427 4 */
75 { 1, 0x46, 120 }, /* 2432 5 */
76 { 1, 0x46, 121 }, /* 2437 6 */
77 { 1, 0x46, 122 }, /* 2442 7 */
78 { 1, 0x46, 123 }, /* 2447 8 */
79 { 1, 0x46, 124 }, /* 2452 9 */
80 { 1, 0x46, 125 }, /* 2457 10 */
81 { 1, 0x46, 126 }, /* 2462 11 */
82 { 1, 0x46, 127 }, /* 2467 12 */
83 { 1, 0x46, 128 }, /* 2472 13 */
84 { 1, 0x44, 124 }, /* 2484 14 */
85 { 1, 0x46, 136 }, /* 2512 15 */
86 { 1, 0x46, 140 }, /* 2532 16 */
87 { 1, 0x46, 144 }, /* 2552 17 */
88 { 1, 0x46, 148 }, /* 2572 18 */
89 { 1, 0x46, 152 }, /* 2592 19 */
90 { 1, 0x46, 156 }, /* 2612 20 */
91 { 1, 0x46, 160 }, /* 2632 21 */
92 { 1, 0x46, 164 }, /* 2652 22 */
93 { 1, 0x46, 168 }, /* 2672 23 */
94 { 1, 0x46, 172 }, /* 2692 24 */
95 { 1, 0x46, 176 }, /* 2712 25 */
96 { 1, 0x46, 180 } /* 2732 26 */
99 /* Power timeouts in usec to wait for chip to wake-up. */
100 #define POWER_UP_TIME 2000
102 #define DELAY_PLL_SETTLE 300 /* 300 us */
103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */
105 #define NUM_RATES 8
107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108 static HAL_BOOL ar5211SetChannel(struct ath_hal *, HAL_CHANNEL_INTERNAL *);
109 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
110 uint8_t runTime, int16_t startingNF);
111 static HAL_BOOL ar5211IsNfGood(struct ath_hal *, HAL_CHANNEL_INTERNAL *chan);
112 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *, HAL_CHANNEL *chan);
113 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *, HAL_CHANNEL *chan);
114 static void ar5211SetPowerTable(struct ath_hal *,
115 PCDACS_EEPROM *pSrcStruct, uint16_t channel);
116 static void ar5211SetRateTable(struct ath_hal *,
117 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
118 uint16_t numChannels, HAL_CHANNEL *chan);
119 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
120 const PCDACS_EEPROM *pSrcStruct);
121 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
122 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
123 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
124 uint16_t srcLeft, uint16_t srcRight,
125 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
126 static void ar5211GetLowerUpperValues(uint16_t value,
127 const uint16_t *pList, uint16_t listSize,
128 uint16_t *pLowerValue, uint16_t *pUpperValue);
129 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
130 uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
131 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
133 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);;
134 static void ar5211RequestRfgain(struct ath_hal *);
135 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
136 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
137 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
138 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
141 * Places the device in and out of reset and then places sane
142 * values in the registers based on EEPROM config, initialization
143 * vectors (as determined by the mode), and station configuration
145 * bChannelChange is used to preserve DMA/PCU registers across
146 * a HW Reset during channel change.
148 HAL_BOOL
149 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
150 HAL_CHANNEL *chan, HAL_BOOL bChannelChange, HAL_STATUS *status)
152 uint32_t softLedCfg, softLedState;
153 #define N(a) (sizeof (a) /sizeof (a[0]))
154 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
155 struct ath_hal_5211 *ahp = AH5211(ah);
156 HAL_CHANNEL_INTERNAL *ichan;
157 uint32_t i, ledstate;
158 HAL_STATUS ecode;
159 int q;
161 uint32_t data, synthDelay;
162 uint32_t macStaId1;
163 uint16_t modesIndex = 0, freqIndex = 0;
164 uint32_t saveFrameSeqCount[AR_NUM_DCU];
165 uint32_t saveTsfLow = 0, saveTsfHigh = 0;
166 uint32_t saveDefAntenna;
168 HALDEBUG(ah, HAL_DEBUG_RESET,
169 "%s: opmode %u channel %u/0x%x %s channel\n",
170 __func__, opmode, chan->channel, chan->channelFlags,
171 bChannelChange ? "change" : "same");
173 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
174 #define IS(_c,_f) (((_c)->channelFlags & _f) || 0)
175 if ((IS(chan, CHANNEL_2GHZ) ^ IS(chan,CHANNEL_5GHZ)) == 0) {
176 HALDEBUG(ah, HAL_DEBUG_ANY,
177 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n",
178 __func__, chan->channel, chan->channelFlags);
179 FAIL(HAL_EINVAL);
181 if ((IS(chan, CHANNEL_OFDM) ^ IS(chan, CHANNEL_CCK)) == 0) {
182 HALDEBUG(ah, HAL_DEBUG_ANY,
183 "%s: invalid channel %u/0x%x; not marked as OFDM or CCK\n",
184 __func__, chan->channel, chan->channelFlags);
185 FAIL(HAL_EINVAL);
187 #undef IS
189 * Map public channel to private.
191 ichan = ath_hal_checkchannel(ah, chan);
192 if (ichan == AH_NULL) {
193 HALDEBUG(ah, HAL_DEBUG_ANY,
194 "%s: invalid channel %u/0x%x; no mapping\n",
195 __func__, chan->channel, chan->channelFlags);
196 FAIL(HAL_EINVAL);
198 switch (opmode) {
199 case HAL_M_STA:
200 case HAL_M_IBSS:
201 case HAL_M_HOSTAP:
202 case HAL_M_MONITOR:
203 break;
204 default:
205 HALDEBUG(ah, HAL_DEBUG_ANY,
206 "%s: invalid operating mode %u\n", __func__, opmode);
207 FAIL(HAL_EINVAL);
208 break;
210 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
212 /* Preserve certain DMA hardware registers on a channel change */
213 if (bChannelChange) {
215 * Need to save/restore the TSF because of an issue
216 * that accelerates the TSF during a chip reset.
218 * We could use system timer routines to more
219 * accurately restore the TSF, but
220 * 1. Timer routines on certain platforms are
221 * not accurate enough (e.g. 1 ms resolution).
222 * 2. It would still not be accurate.
224 * The most important aspect of this workaround,
225 * is that, after reset, the TSF is behind
226 * other STAs TSFs. This will allow the STA to
227 * properly resynchronize its TSF in adhoc mode.
229 saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
230 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
232 /* Read frame sequence count */
233 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
234 saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
235 } else {
236 for (i = 0; i < AR_NUM_DCU; i++)
237 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
239 if (!(ichan->privFlags & CHANNEL_DFS))
240 ichan->privFlags &= ~CHANNEL_INTERFERENCE;
241 chan->channelFlags = ichan->channelFlags;
242 chan->privFlags = ichan->privFlags;
246 * Preserve the antenna on a channel change
248 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
249 if (saveDefAntenna == 0)
250 saveDefAntenna = 1;
252 /* Save hardware flag before chip reset clears the register */
253 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
255 /* Save led state from pci config register */
256 ledstate = OS_REG_READ(ah, AR_PCICFG) &
257 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
258 AR_PCICFG_LEDSLOW);
259 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
260 softLedState = OS_REG_READ(ah, AR_GPIODO);
262 if (!ar5211ChipReset(ah, chan->channelFlags)) {
263 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
264 FAIL(HAL_EIO);
267 /* Setup the indices for the next set of register array writes */
268 switch (chan->channelFlags & CHANNEL_ALL) {
269 case CHANNEL_A:
270 modesIndex = 1;
271 freqIndex = 1;
272 break;
273 case CHANNEL_T:
274 modesIndex = 2;
275 freqIndex = 1;
276 break;
277 case CHANNEL_B:
278 modesIndex = 3;
279 freqIndex = 2;
280 break;
281 case CHANNEL_PUREG:
282 modesIndex = 4;
283 freqIndex = 2;
284 break;
285 default:
286 /* Ah, a new wireless mode */
287 HALASSERT(0);
288 break;
291 /* Set correct Baseband to analog shift setting to access analog chips. */
292 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
293 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
294 } else {
295 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
298 /* Write parameters specific to AR5211 */
299 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
300 if (IS_CHAN_2GHZ(chan) &&
301 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
302 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
303 uint32_t ob2GHz, db2GHz;
305 if (IS_CHAN_CCK(chan)) {
306 ob2GHz = ee->ee_ob2GHz[0];
307 db2GHz = ee->ee_db2GHz[0];
308 } else {
309 ob2GHz = ee->ee_ob2GHz[1];
310 db2GHz = ee->ee_db2GHz[1];
312 ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
313 db2GHz = ath_hal_reverseBits(db2GHz, 3);
314 ar5211Mode2_4[25][freqIndex] =
315 (ar5211Mode2_4[25][freqIndex] & ~0xC0) |
316 ((ob2GHz << 6) & 0xC0);
317 ar5211Mode2_4[26][freqIndex] =
318 (ar5211Mode2_4[26][freqIndex] & ~0x0F) |
319 (((ob2GHz >> 2) & 0x1) |
320 ((db2GHz << 1) & 0x0E));
322 for (i = 0; i < N(ar5211Mode2_4); i++)
323 OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
324 ar5211Mode2_4[i][freqIndex]);
327 /* Write the analog registers 6 and 7 before other config */
328 ar5211SetRf6and7(ah, chan);
330 /* Write registers that vary across all modes */
331 for (i = 0; i < N(ar5211Modes); i++)
332 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
334 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
335 for (i = 0; i < N(ar5211BB_RfGain); i++)
336 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
338 /* Write Common Array Parameters */
339 for (i = 0; i < N(ar5211Common); i++) {
340 uint32_t reg = ar5211Common[i][0];
341 /* On channel change, don't reset the PCU registers */
342 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
343 OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
346 /* Fix pre-AR5211 register values, this includes AR5311s. */
347 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
349 * The TX and RX latency values have changed locations
350 * within the USEC register in AR5211. Since they're
351 * set via the .ini, for both AR5211 and AR5311, they
352 * are written properly here for AR5311.
354 data = OS_REG_READ(ah, AR_USEC);
355 /* Must be 0 for proper write in AR5311 */
356 HALASSERT((data & 0x00700000) == 0);
357 OS_REG_WRITE(ah, AR_USEC,
358 (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
359 ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
360 /* The following registers exist only on AR5311. */
361 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
363 /* Set proper ADC & DAC delays for AR5311. */
364 OS_REG_WRITE(ah, 0x00009878, 0x00000008);
366 /* Enable the PCU FIFO corruption ECO on AR5311. */
367 OS_REG_WRITE(ah, AR_DIAG_SW,
368 OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
371 /* Restore certain DMA hardware registers on a channel change */
372 if (bChannelChange) {
373 /* Restore TSF */
374 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
375 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
377 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
378 OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
379 } else {
380 for (i = 0; i < AR_NUM_DCU; i++)
381 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
385 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
386 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
387 | macStaId1
389 ar5211SetOperatingMode(ah, opmode);
391 /* Restore previous led state */
392 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
393 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
394 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
396 /* Restore previous antenna */
397 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
399 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
400 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
402 /* Restore bmiss rssi & count thresholds */
403 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
405 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
408 * for pre-Production Oahu only.
409 * Disable clock gating in all DMA blocks. Helps when using
410 * 11B and AES but results in higher power consumption.
412 if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
413 AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
414 OS_REG_WRITE(ah, AR_CFG,
415 OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
418 /* Setup the transmit power values. */
419 if (!ar5211SetTransmitPower(ah, chan)) {
420 HALDEBUG(ah, HAL_DEBUG_ANY,
421 "%s: error init'ing transmit power\n", __func__);
422 FAIL(HAL_EIO);
426 * Configurable OFDM spoofing for 11n compatibility; used
427 * only when operating in station mode.
429 if (opmode != HAL_M_HOSTAP &&
430 (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
431 /* NB: override the .ini setting */
432 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
433 AR_PHY_FRAME_CTL_ERR_SERV,
434 MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
437 /* Setup board specific options for EEPROM version 3 */
438 ar5211SetBoardValues(ah, chan);
440 if (!ar5211SetChannel(ah, ichan)) {
441 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
442 __func__);
443 FAIL(HAL_EIO);
446 /* Activate the PHY */
447 if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B && IS_CHAN_2GHZ(chan))
448 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
449 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
452 * Wait for the frequency synth to settle (synth goes on
453 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
454 * Value is in 100ns increments.
456 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
457 if (IS_CHAN_CCK(chan)) {
458 synthDelay = (4 * data) / 22;
459 } else {
460 synthDelay = data / 10;
463 * There is an issue if the AP starts the calibration before
464 * the baseband timeout completes. This could result in the
465 * rxclear false triggering. Add an extra delay to ensure this
466 * this does not happen.
468 OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
470 /* Calibrate the AGC and wait for completion. */
471 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
472 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
473 (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
475 /* Perform noise floor and set status */
476 if (!ar5211CalNoiseFloor(ah, ichan)) {
477 if (!IS_CHAN_CCK(chan))
478 chan->channelFlags |= CHANNEL_CW_INT;
479 HALDEBUG(ah, HAL_DEBUG_ANY,
480 "%s: noise floor calibration failed\n", __func__);
481 FAIL(HAL_EIO);
484 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
485 if (ahp->ah_calibrationTime != 0) {
486 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
487 AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
488 ahp->ah_bIQCalibration = AH_TRUE;
491 /* set 1:1 QCU to DCU mapping for all queues */
492 for (q = 0; q < AR_NUM_DCU; q++)
493 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
495 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
496 ar5211ResetTxQueue(ah, q);
498 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
499 OS_REG_WRITE(ah, AR_IMR_S0,
500 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
501 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
502 OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
503 OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
506 * GBL_EIFS must always be written after writing
507 * to any QCUMASK register.
509 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
511 /* Now set up the Interrupt Mask Register and save it for future use */
512 OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
513 ahp->ah_maskReg = INIT_INTERRUPT_MASK;
515 /* Enable bus error interrupts */
516 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
517 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
519 /* Enable interrupts specific to AP */
520 if (opmode == HAL_M_HOSTAP) {
521 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
522 ahp->ah_maskReg |= AR_IMR_MIB;
525 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
526 ar5211EnableRfKill(ah);
529 * Writing to AR_BEACON will start timers. Hence it should
530 * be the last register to be written. Do not reset tsf, do
531 * not enable beacons at this point, but preserve other values
532 * like beaconInterval.
534 OS_REG_WRITE(ah, AR_BEACON,
535 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
537 /* Restore user-specified slot time and timeouts */
538 if (ahp->ah_sifstime != (u_int) -1)
539 ar5211SetSifsTime(ah, ahp->ah_sifstime);
540 if (ahp->ah_slottime != (u_int) -1)
541 ar5211SetSlotTime(ah, ahp->ah_slottime);
542 if (ahp->ah_acktimeout != (u_int) -1)
543 ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
544 if (ahp->ah_ctstimeout != (u_int) -1)
545 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
546 if (AH_PRIVATE(ah)->ah_diagreg != 0)
547 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
549 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
551 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
553 return AH_TRUE;
554 bad:
555 if (*status)
556 *status = ecode;
557 return AH_FALSE;
558 #undef FAIL
559 #undef N
563 * Places the PHY and Radio chips into reset. A full reset
564 * must be called to leave this state. The PCI/MAC/PCU are
565 * not placed into reset as we must receive interrupt to
566 * re-enable the hardware.
568 HAL_BOOL
569 ar5211PhyDisable(struct ath_hal *ah)
571 return ar5211SetResetReg(ah, AR_RC_BB);
575 * Places all of hardware into reset
577 HAL_BOOL
578 ar5211Disable(struct ath_hal *ah)
580 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
581 return AH_FALSE;
583 * Reset the HW - PCI must be reset after the rest of the
584 * device has been reset.
586 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
587 return AH_FALSE;
588 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
590 return AH_TRUE;
594 * Places the hardware into reset and then pulls it out of reset
596 * Only write the PLL if we're changing to or from CCK mode
598 * Attach calls with channelFlags = 0, as the coldreset should have
599 * us in the correct mode and we cannot check the hwchannel flags.
601 HAL_BOOL
602 ar5211ChipReset(struct ath_hal *ah, uint16_t channelFlags)
604 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
605 return AH_FALSE;
607 /* Set CCK and Turbo modes correctly */
608 switch (channelFlags & CHANNEL_ALL) {
609 case CHANNEL_2GHZ|CHANNEL_CCK:
610 case CHANNEL_2GHZ|CHANNEL_CCK|CHANNEL_TURBO:
611 OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
612 OS_REG_WRITE(ah, AR5211_PHY_MODE,
613 AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
614 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
615 /* Wait for the PLL to settle */
616 OS_DELAY(DELAY_PLL_SETTLE);
617 break;
618 case CHANNEL_2GHZ|CHANNEL_OFDM:
619 case CHANNEL_2GHZ|CHANNEL_OFDM|CHANNEL_TURBO:
620 OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
621 if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
622 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
623 OS_DELAY(DELAY_PLL_SETTLE);
624 OS_REG_WRITE(ah, AR5211_PHY_MODE,
625 AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF2GHZ);
627 break;
628 case CHANNEL_A:
629 case CHANNEL_T:
630 if (channelFlags & CHANNEL_TURBO) {
631 OS_REG_WRITE(ah, AR_PHY_TURBO,
632 AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT);
633 } else { /* 5 GHZ OFDM Mode */
634 OS_REG_WRITE(ah, AR_PHY_TURBO, 0);
636 if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
637 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
638 OS_DELAY(DELAY_PLL_SETTLE);
639 OS_REG_WRITE(ah, AR5211_PHY_MODE,
640 AR5211_PHY_MODE_OFDM | AR5211_PHY_MODE_RF5GHZ);
642 break;
644 /* NB: else no flags set - must be attach calling - do nothing */
647 * Reset the HW - PCI must be reset after the rest of the
648 * device has been reset
650 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
651 return AH_FALSE;
652 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
654 /* Bring out of sleep mode (AGAIN) */
655 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
656 return AH_FALSE;
658 /* Clear warm reset register */
659 return ar5211SetResetReg(ah, 0);
663 * Recalibrate the lower PHY chips to account for temperature/environment
664 * changes.
666 HAL_BOOL
667 ar5211PerCalibrationN(struct ath_hal *ah, HAL_CHANNEL *chan, u_int chainMask,
668 HAL_BOOL longCal, HAL_BOOL *isCalDone)
670 struct ath_hal_5211 *ahp = AH5211(ah);
671 HAL_CHANNEL_INTERNAL *ichan;
672 int32_t qCoff, qCoffDenom;
673 uint32_t data;
674 int32_t iqCorrMeas;
675 int32_t iCoff, iCoffDenom;
676 uint32_t powerMeasQ, powerMeasI;
678 ichan = ath_hal_checkchannel(ah, chan);
679 if (ichan == AH_NULL) {
680 HALDEBUG(ah, HAL_DEBUG_ANY,
681 "%s: invalid channel %u/0x%x; no mapping\n",
682 __func__, chan->channel, chan->channelFlags);
683 return AH_FALSE;
685 /* IQ calibration in progress. Check to see if it has finished. */
686 if (ahp->ah_bIQCalibration &&
687 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
688 /* IQ Calibration has finished. */
689 ahp->ah_bIQCalibration = AH_FALSE;
691 /* Read calibration results. */
692 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
693 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
694 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
697 * Prescale these values to remove 64-bit operation requirement at the loss
698 * of a little precision.
700 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
701 qCoffDenom = powerMeasQ / 64;
703 /* Protect against divide-by-0. */
704 if (iCoffDenom != 0 && qCoffDenom != 0) {
705 iCoff = (-iqCorrMeas) / iCoffDenom;
706 /* IQCORR_Q_I_COFF is a signed 6 bit number */
707 iCoff = iCoff & 0x3f;
709 qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
710 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
711 qCoff = qCoff & 0x1f;
713 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
714 powerMeasI);
715 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
716 powerMeasQ);
717 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
718 iqCorrMeas);
719 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
720 iCoff);
721 HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
722 qCoff);
724 /* Write IQ */
725 data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
726 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
727 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
728 ((uint32_t)qCoff);
729 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
732 *isCalDone = !ahp->ah_bIQCalibration;
734 if (longCal) {
735 /* Perform noise floor and set status */
736 if (!ar5211IsNfGood(ah, ichan)) {
737 /* report up and clear internal state */
738 chan->channelFlags |= CHANNEL_CW_INT;
739 ichan->channelFlags &= ~CHANNEL_CW_INT;
740 return AH_FALSE;
742 if (!ar5211CalNoiseFloor(ah, ichan)) {
744 * Delay 5ms before retrying the noise floor
745 * just to make sure, as we are in an error
746 * condition here.
748 OS_DELAY(5000);
749 if (!ar5211CalNoiseFloor(ah, ichan)) {
750 if (!IS_CHAN_CCK(chan))
751 chan->channelFlags |= CHANNEL_CW_INT;
752 return AH_FALSE;
755 ar5211RequestRfgain(ah);
757 return AH_TRUE;
760 HAL_BOOL
761 ar5211PerCalibration(struct ath_hal *ah, HAL_CHANNEL *chan, HAL_BOOL *isIQdone)
763 return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
766 HAL_BOOL
767 ar5211ResetCalValid(struct ath_hal *ah, HAL_CHANNEL *chan)
769 /* XXX */
770 return AH_TRUE;
774 * Writes the given reset bit mask into the reset register
776 static HAL_BOOL
777 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
779 uint32_t mask = resetMask ? resetMask : ~0;
780 HAL_BOOL rt;
782 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
783 OS_REG_WRITE(ah, AR_RC, resetMask);
785 /* need to wait at least 128 clocks when reseting PCI before read */
786 OS_DELAY(15);
788 resetMask &= AR_RC_MAC | AR_RC_BB;
789 mask &= AR_RC_MAC | AR_RC_BB;
790 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
791 if ((resetMask & AR_RC_MAC) == 0) {
792 if (isBigEndian()) {
794 * Set CFG, little-endian for register
795 * and descriptor accesses.
797 mask = INIT_CONFIG_STATUS |
798 AR_CFG_SWTD | AR_CFG_SWRD | AR_CFG_SWRG;
799 OS_REG_WRITE(ah, AR_CFG, LE_READ_4(&mask));
800 } else
801 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
803 return rt;
807 * Takes the MHz channel value and sets the Channel value
809 * ASSUMES: Writes enabled to analog bus before AGC is active
810 * or by disabling the AGC.
812 static HAL_BOOL
813 ar5211SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
815 uint32_t refClk, reg32, data2111;
816 int16_t chan5111, chanIEEE;
818 chanIEEE = ath_hal_mhz2ieee(ah, chan->channel, chan->channelFlags);
819 if (IS_CHAN_2GHZ(chan)) {
820 const CHAN_INFO_2GHZ* ci =
821 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
823 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
824 << 5)
825 | (ci->refClkSel << 4);
826 chan5111 = ci->channel5111;
827 } else {
828 data2111 = 0;
829 chan5111 = chanIEEE;
832 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
833 if (chan5111 >= 145 || (chan5111 & 0x1)) {
834 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
835 refClk = 1;
836 } else {
837 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
838 refClk = 0;
841 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
842 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
843 reg32 >>= 8;
844 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
846 AH_PRIVATE(ah)->ah_curchan = chan;
847 return AH_TRUE;
850 static int16_t
851 ar5211GetNoiseFloor(struct ath_hal *ah)
853 int16_t nf;
855 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
856 if (nf & 0x100)
857 nf = 0 - ((nf ^ 0x1ff) + 1);
858 return nf;
862 * Peform the noisefloor calibration for the length of time set
863 * in runTime (valid values 1 to 7)
865 * Returns: The NF value at the end of the given time (or 0 for failure)
867 int16_t
868 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
870 int i, searchTime;
872 HALASSERT(runTime <= 7);
874 /* Setup noise floor run time and starting value */
875 OS_REG_WRITE(ah, AR_PHY(25),
876 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
877 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
878 /* Calibrate the noise floor */
879 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
880 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
882 /* Compute the required amount of searchTime needed to finish NF */
883 if (runTime == 0) {
884 /* 8 search windows * 6.4us each */
885 searchTime = 8 * 7;
886 } else {
887 /* 512 * runtime search windows * 6.4us each */
888 searchTime = (runTime * 512) * 7;
892 * Do not read noise floor until it has been updated
894 * As a guesstimate - we may only get 1/60th the time on
895 * the air to see search windows in a heavily congested
896 * network (40 us every 2400 us of time)
898 for (i = 0; i < 60; i++) {
899 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
900 break;
901 OS_DELAY(searchTime);
903 if (i >= 60) {
904 HALDEBUG(ah, HAL_DEBUG_NFCAL,
905 "NF with runTime %d failed to end on channel %d\n",
906 runTime, AH_PRIVATE(ah)->ah_curchan->channel);
907 HALDEBUG(ah, HAL_DEBUG_NFCAL,
908 " PHY NF Reg state: 0x%x\n",
909 OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
910 HALDEBUG(ah, HAL_DEBUG_NFCAL,
911 " PHY Active Reg state: 0x%x\n",
912 OS_REG_READ(ah, AR_PHY_ACTIVE));
913 return 0;
916 return ar5211GetNoiseFloor(ah);
919 static HAL_BOOL
920 getNoiseFloorThresh(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, int16_t *nft)
922 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
924 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
925 case CHANNEL_A:
926 *nft = ee->ee_noiseFloorThresh[0];
927 break;
928 case CHANNEL_CCK|CHANNEL_2GHZ:
929 *nft = ee->ee_noiseFloorThresh[1];
930 break;
931 case CHANNEL_OFDM|CHANNEL_2GHZ:
932 *nft = ee->ee_noiseFloorThresh[2];
933 break;
934 default:
935 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
936 __func__, chan->channelFlags);
937 return AH_FALSE;
939 return AH_TRUE;
943 * Read the NF and check it against the noise floor threshhold
945 * Returns: TRUE if the NF is good
947 static HAL_BOOL
948 ar5211IsNfGood(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
950 int16_t nf, nfThresh;
952 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
953 return AH_FALSE;
954 #ifdef AH_DEBUG
955 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
956 HALDEBUG(ah, HAL_DEBUG_ANY,
957 "%s: NF did not complete in calibration window\n", __func__);
958 #endif
959 nf = ar5211GetNoiseFloor(ah);
960 if (nf > nfThresh) {
961 HALDEBUG(ah, HAL_DEBUG_ANY,
962 "%s: noise floor failed; detected %u, threshold %u\n",
963 __func__, nf, nfThresh);
965 * NB: Don't discriminate 2.4 vs 5Ghz, if this
966 * happens it indicates a problem regardless
967 * of the band.
969 chan->channelFlags |= CHANNEL_CW_INT;
971 chan->rawNoiseFloor = nf;
972 return (nf <= nfThresh);
976 * Peform the noisefloor calibration and check for any constant channel
977 * interference.
979 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
980 * it is if'ed for MKK regulatory domain only.
982 * Returns: TRUE for a successful noise floor calibration; else FALSE
984 HAL_BOOL
985 ar5211CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
987 #define N(a) (sizeof (a) / sizeof (a[0]))
988 /* Check for Carrier Wave interference in MKK regulatory zone */
989 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
990 ath_hal_getnfcheckrequired(ah, (HAL_CHANNEL *) chan)) {
991 static const uint8_t runtime[3] = { 0, 2, 7 };
992 int16_t nf, nfThresh;
993 int i;
995 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
996 return AH_FALSE;
998 * Run a quick noise floor that will hopefully
999 * complete (decrease delay time).
1001 for (i = 0; i < N(runtime); i++) {
1002 nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
1003 if (nf > nfThresh) {
1004 HALDEBUG(ah, HAL_DEBUG_ANY,
1005 "%s: run failed with %u > threshold %u "
1006 "(runtime %u)\n", __func__,
1007 nf, nfThresh, runtime[i]);
1008 chan->rawNoiseFloor = 0;
1009 } else
1010 chan->rawNoiseFloor = nf;
1012 return (i <= N(runtime));
1013 } else {
1014 /* Calibrate the noise floor */
1015 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
1016 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
1017 AR_PHY_AGC_CONTROL_NF);
1019 return AH_TRUE;
1020 #undef N
1024 * Adjust NF based on statistical values for 5GHz frequencies.
1026 int16_t
1027 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1029 static const struct {
1030 uint16_t freqLow;
1031 int16_t adjust;
1032 } adjust5111[] = {
1033 { 5790, 11 }, /* NB: ordered high -> low */
1034 { 5730, 10 },
1035 { 5690, 9 },
1036 { 5660, 8 },
1037 { 5610, 7 },
1038 { 5530, 5 },
1039 { 5450, 4 },
1040 { 5379, 2 },
1041 { 5209, 0 }, /* XXX? bogus but doesn't matter */
1042 { 0, 1 },
1044 int i;
1046 for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1048 /* NB: placeholder for 5111's less severe requirement */
1049 return adjust5111[i].adjust / 3;
1053 * Reads EEPROM header info from device structure and programs
1054 * analog registers 6 and 7
1056 * REQUIRES: Access to the analog device
1058 static HAL_BOOL
1059 ar5211SetRf6and7(struct ath_hal *ah, HAL_CHANNEL *chan)
1061 #define N(a) (sizeof (a) / sizeof (a[0]))
1062 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1063 struct ath_hal_5211 *ahp = AH5211(ah);
1064 uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1065 uint16_t tempOB, tempDB;
1066 uint16_t freqIndex;
1067 int i;
1069 freqIndex = (chan->channelFlags & CHANNEL_2GHZ) ? 2 : 1;
1072 * TODO: This array mode correspondes with the index used
1073 * during the read.
1074 * For readability, this should be changed to an enum or #define
1076 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1077 case CHANNEL_A:
1078 if (chan->channel > 4000 && chan->channel < 5260) {
1079 tempOB = ee->ee_ob1;
1080 tempDB = ee->ee_db1;
1081 } else if (chan->channel >= 5260 && chan->channel < 5500) {
1082 tempOB = ee->ee_ob2;
1083 tempDB = ee->ee_db2;
1084 } else if (chan->channel >= 5500 && chan->channel < 5725) {
1085 tempOB = ee->ee_ob3;
1086 tempDB = ee->ee_db3;
1087 } else if (chan->channel >= 5725) {
1088 tempOB = ee->ee_ob4;
1089 tempDB = ee->ee_db4;
1090 } else {
1091 /* XXX panic?? */
1092 tempOB = tempDB = 0;
1095 rfXpdGain = ee->ee_xgain[0];
1096 rfPloSel = ee->ee_xpd[0];
1097 rfPwdXpd = !ee->ee_xpd[0];
1099 ar5211Rf6n7[5][freqIndex] =
1100 (ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1101 (ee->ee_cornerCal.pd84<< 28);
1102 ar5211Rf6n7[6][freqIndex] =
1103 (ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1104 (ee->ee_cornerCal.pd90 << 26);
1105 ar5211Rf6n7[21][freqIndex] =
1106 (ar5211Rf6n7[21][freqIndex] & ~0x08) |
1107 (ee->ee_cornerCal.gSel << 3);
1108 break;
1109 case CHANNEL_CCK|CHANNEL_2GHZ:
1110 tempOB = ee->ee_obFor24;
1111 tempDB = ee->ee_dbFor24;
1112 rfXpdGain = ee->ee_xgain[1];
1113 rfPloSel = ee->ee_xpd[1];
1114 rfPwdXpd = !ee->ee_xpd[1];
1115 break;
1116 case CHANNEL_OFDM|CHANNEL_2GHZ:
1117 tempOB = ee->ee_obFor24g;
1118 tempDB = ee->ee_dbFor24g;
1119 rfXpdGain = ee->ee_xgain[2];
1120 rfPloSel = ee->ee_xpd[2];
1121 rfPwdXpd = !ee->ee_xpd[2];
1122 break;
1123 default:
1124 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1125 __func__, chan->channelFlags);
1126 return AH_FALSE;
1129 HALASSERT(1 <= tempOB && tempOB <= 5);
1130 HALASSERT(1 <= tempDB && tempDB <= 5);
1132 /* Set rfXpdGain and rfPwdXpd */
1133 ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1134 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1135 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1136 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1138 /* Set OB */
1139 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1140 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1141 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1142 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1144 /* Set DB */
1145 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1146 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1148 /* Set rfPloSel */
1149 ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1150 ((rfPloSel << 3) & 0x08);
1152 /* Write the Rf registers 6 & 7 */
1153 for (i = 0; i < N(ar5211Rf6n7); i++)
1154 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1156 /* Now that we have reprogrammed rfgain value, clear the flag. */
1157 ahp->ah_rfgainState = RFGAIN_INACTIVE;
1159 return AH_TRUE;
1160 #undef N
1163 HAL_BOOL
1164 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1165 const HAL_CHANNEL *chan)
1167 #define ANT_SWITCH_TABLE1 0x9960
1168 #define ANT_SWITCH_TABLE2 0x9964
1169 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1170 struct ath_hal_5211 *ahp = AH5211(ah);
1171 uint32_t antSwitchA, antSwitchB;
1172 int ix;
1174 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1175 case CHANNEL_A: ix = 0; break;
1176 case CHANNEL_B: ix = 1; break;
1177 case CHANNEL_PUREG: ix = 2; break;
1178 default:
1179 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1180 __func__, chan->channelFlags);
1181 return AH_FALSE;
1184 antSwitchA = ee->ee_antennaControl[1][ix]
1185 | (ee->ee_antennaControl[2][ix] << 6)
1186 | (ee->ee_antennaControl[3][ix] << 12)
1187 | (ee->ee_antennaControl[4][ix] << 18)
1188 | (ee->ee_antennaControl[5][ix] << 24)
1190 antSwitchB = ee->ee_antennaControl[6][ix]
1191 | (ee->ee_antennaControl[7][ix] << 6)
1192 | (ee->ee_antennaControl[8][ix] << 12)
1193 | (ee->ee_antennaControl[9][ix] << 18)
1194 | (ee->ee_antennaControl[10][ix] << 24)
1197 * For fixed antenna, give the same setting for both switch banks
1199 switch (settings) {
1200 case HAL_ANT_FIXED_A:
1201 antSwitchB = antSwitchA;
1202 break;
1203 case HAL_ANT_FIXED_B:
1204 antSwitchA = antSwitchB;
1205 break;
1206 case HAL_ANT_VARIABLE:
1207 break;
1208 default:
1209 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1210 __func__, settings);
1211 return AH_FALSE;
1213 ahp->ah_diversityControl = settings;
1215 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1216 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1218 return AH_TRUE;
1219 #undef ANT_SWITCH_TABLE1
1220 #undef ANT_SWITCH_TABLE2
1224 * Reads EEPROM header info and programs the device for correct operation
1225 * given the channel value
1227 static HAL_BOOL
1228 ar5211SetBoardValues(struct ath_hal *ah, HAL_CHANNEL *chan)
1230 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1231 struct ath_hal_5211 *ahp = AH5211(ah);
1232 int arrayMode, falseDectectBackoff;
1234 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1235 case CHANNEL_A:
1236 arrayMode = 0;
1237 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1238 AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1239 break;
1240 case CHANNEL_CCK|CHANNEL_2GHZ:
1241 arrayMode = 1;
1242 break;
1243 case CHANNEL_OFDM|CHANNEL_2GHZ:
1244 arrayMode = 2;
1245 break;
1246 default:
1247 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1248 __func__, chan->channelFlags);
1249 return AH_FALSE;
1252 /* Set the antenna register(s) correctly for the chip revision */
1253 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1254 OS_REG_WRITE(ah, AR_PHY(68),
1255 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1256 } else {
1257 OS_REG_WRITE(ah, AR_PHY(68),
1258 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1259 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1261 ar5211SetAntennaSwitchInternal(ah,
1262 ahp->ah_diversityControl, chan);
1264 /* Set the Noise Floor Thresh on ar5211 devices */
1265 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1266 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1268 OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1269 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1270 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1271 OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1272 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1273 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1274 OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1275 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1276 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1277 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1278 OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1279 (ee->ee_txEndToXPAOff[arrayMode] << 24) |
1280 (ee->ee_txEndToXPAOff[arrayMode] << 16) |
1281 (ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1282 ee->ee_txFrameToXPAOn[arrayMode]);
1283 OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1284 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1285 (ee->ee_txEndToXLNAOn[arrayMode] << 8));
1286 OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1287 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1288 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1290 #define NO_FALSE_DETECT_BACKOFF 2
1291 #define CB22_FALSE_DETECT_BACKOFF 6
1293 * False detect backoff - suspected 32 MHz spur causes
1294 * false detects in OFDM, causing Tx Hangs. Decrease
1295 * weak signal sensitivity for this card.
1297 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1298 if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1299 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1300 IS_CHAN_OFDM(chan))
1301 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1302 } else {
1303 uint32_t remainder = chan->channel % 32;
1305 if (remainder && (remainder < 10 || remainder > 22))
1306 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1308 OS_REG_WRITE(ah, 0x9924,
1309 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1310 | ((falseDectectBackoff << 1) & 0xF7));
1312 return AH_TRUE;
1313 #undef NO_FALSE_DETECT_BACKOFF
1314 #undef CB22_FALSE_DETECT_BACKOFF
1318 * Set the limit on the overall output power. Used for dynamic
1319 * transmit power control and the like.
1321 * NOTE: The power is passed in is in units of 0.5 dBm.
1323 HAL_BOOL
1324 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1327 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1328 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1329 return AH_TRUE;
1333 * Sets the transmit power in the baseband for the given
1334 * operating channel and mode.
1336 HAL_BOOL
1337 ar5211SetTransmitPower(struct ath_hal *ah, HAL_CHANNEL *chan)
1339 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1340 TRGT_POWER_INFO *pi;
1341 RD_EDGES_POWER *rep;
1342 PCDACS_EEPROM eepromPcdacs;
1343 u_int nchan, cfgCtl;
1344 int i;
1346 /* setup the pcdac struct to point to the correct info, based on mode */
1347 switch (chan->channelFlags & CHANNEL_ALL_NOTURBO) {
1348 case CHANNEL_A:
1349 eepromPcdacs.numChannels = ee->ee_numChannels11a;
1350 eepromPcdacs.pChannelList= ee->ee_channels11a;
1351 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1352 nchan = ee->ee_numTargetPwr_11a;
1353 pi = ee->ee_trgtPwr_11a;
1354 break;
1355 case CHANNEL_OFDM|CHANNEL_2GHZ:
1356 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1357 eepromPcdacs.pChannelList= ee->ee_channels11g;
1358 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1359 nchan = ee->ee_numTargetPwr_11g;
1360 pi = ee->ee_trgtPwr_11g;
1361 break;
1362 case CHANNEL_CCK|CHANNEL_2GHZ:
1363 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1364 eepromPcdacs.pChannelList= ee->ee_channels11b;
1365 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1366 nchan = ee->ee_numTargetPwr_11b;
1367 pi = ee->ee_trgtPwr_11b;
1368 break;
1369 default:
1370 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1371 __func__, chan->channelFlags);
1372 return AH_FALSE;
1375 ar5211SetPowerTable(ah, &eepromPcdacs, chan->channel);
1377 rep = AH_NULL;
1378 /* Match CTL to EEPROM value */
1379 cfgCtl = ath_hal_getctl(ah, chan);
1380 for (i = 0; i < ee->ee_numCtls; i++)
1381 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1382 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1383 break;
1385 ar5211SetRateTable(ah, rep, pi, nchan, chan);
1387 return AH_TRUE;
1391 * Read the transmit power levels from the structures taken
1392 * from EEPROM. Interpolate read transmit power values for
1393 * this channel. Organize the transmit power values into a
1394 * table for writing into the hardware.
1396 void
1397 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct, uint16_t channel)
1399 static FULL_PCDAC_STRUCT pcdacStruct;
1400 static uint16_t pcdacTable[PWR_TABLE_SIZE];
1402 uint16_t i, j;
1403 uint16_t *pPcdacValues;
1404 int16_t *pScaledUpDbm;
1405 int16_t minScaledPwr;
1406 int16_t maxScaledPwr;
1407 int16_t pwr;
1408 uint16_t pcdacMin = 0;
1409 uint16_t pcdacMax = 63;
1410 uint16_t pcdacTableIndex;
1411 uint16_t scaledPcdac;
1412 uint32_t addr;
1413 uint32_t temp32;
1415 OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1416 OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1417 pPcdacValues = pcdacStruct.PcdacValues;
1418 pScaledUpDbm = pcdacStruct.PwrValues;
1420 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1421 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1422 pPcdacValues[j] = i;
1424 pcdacStruct.numPcdacValues = j;
1425 pcdacStruct.pcdacMin = PCDAC_START;
1426 pcdacStruct.pcdacMax = PCDAC_STOP;
1428 /* Fill out the power values for this channel */
1429 for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1430 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1432 /* Now scale the pcdac values to fit in the 64 entry power table */
1433 minScaledPwr = pScaledUpDbm[0];
1434 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1436 /* find minimum and make monotonic */
1437 for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1438 if (minScaledPwr >= pScaledUpDbm[j]) {
1439 minScaledPwr = pScaledUpDbm[j];
1440 pcdacMin = j;
1443 * Make the full_hsh monotonically increasing otherwise
1444 * interpolation algorithm will get fooled gotta start
1445 * working from the top, hence i = 63 - j.
1447 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1448 if (i == 0)
1449 break;
1450 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1452 * It could be a glitch, so make the power for
1453 * this pcdac the same as the power from the
1454 * next highest pcdac.
1456 pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1460 for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1461 if (maxScaledPwr < pScaledUpDbm[j]) {
1462 maxScaledPwr = pScaledUpDbm[j];
1463 pcdacMax = j;
1466 /* Find the first power level with a pcdac */
1467 pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
1469 /* Write all the first pcdac entries based off the pcdacMin */
1470 pcdacTableIndex = 0;
1471 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1472 pcdacTable[pcdacTableIndex++] = pcdacMin;
1474 i = 0;
1475 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1476 pwr += PWR_STEP;
1477 /* stop if dbM > max_power_possible */
1478 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1479 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1480 i++;
1481 /* scale by 2 and add 1 to enable round up or down as needed */
1482 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1483 pScaledUpDbm[i], pScaledUpDbm[i+1],
1484 (uint16_t)(pPcdacValues[i] * 2),
1485 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1487 pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1488 if (pcdacTable[pcdacTableIndex] > pcdacMax)
1489 pcdacTable[pcdacTableIndex] = pcdacMax;
1490 pcdacTableIndex++;
1493 /* Write all the last pcdac entries based off the last valid pcdac */
1494 while (pcdacTableIndex < PWR_TABLE_SIZE) {
1495 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1496 pcdacTableIndex++;
1499 /* Finally, write the power values into the baseband power table */
1500 addr = AR_PHY_BASE + (608 << 2);
1501 for (i = 0; i < 32; i++) {
1502 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1503 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1504 OS_REG_WRITE(ah, addr, temp32);
1505 addr += 4;
1511 * Set the transmit power in the baseband for the given
1512 * operating channel and mode.
1514 void
1515 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1516 TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1517 HAL_CHANNEL *chan)
1519 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1520 struct ath_hal_5211 *ahp = AH5211(ah);
1521 static uint16_t ratesArray[NUM_RATES];
1522 static const uint16_t tpcScaleReductionTable[5] =
1523 { 0, 3, 6, 9, MAX_RATE_POWER };
1525 uint16_t *pRatesPower;
1526 uint16_t lowerChannel = 0, lowerIndex=0, lowerPower=0;
1527 uint16_t upperChannel = 0, upperIndex=0, upperPower=0;
1528 uint16_t twiceMaxEdgePower=63;
1529 uint16_t twicePower = 0;
1530 uint16_t i, numEdges;
1531 uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1532 uint16_t twiceMaxRDPower;
1533 int16_t scaledPower = 0; /* for gcc -O2 */
1534 uint16_t mask = 0x3f;
1535 HAL_BOOL paPreDEnable = 0;
1536 int8_t twiceAntennaGain, twiceAntennaReduction = 0;
1538 pRatesPower = ratesArray;
1539 twiceMaxRDPower = chan->maxRegTxPower * 2;
1541 if (IS_CHAN_5GHZ(chan)) {
1542 twiceAntennaGain = ee->ee_antennaGainMax[0];
1543 } else {
1544 twiceAntennaGain = ee->ee_antennaGainMax[1];
1547 twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1549 if (pRdEdgesPower) {
1550 /* Get the edge power */
1551 for (i = 0; i < NUM_EDGES; i++) {
1552 if (pRdEdgesPower[i].rdEdge == 0)
1553 break;
1554 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1556 numEdges = i;
1558 ar5211GetLowerUpperValues(chan->channel, tempChannelList,
1559 numEdges, &lowerChannel, &upperChannel);
1560 /* Get the index for this channel */
1561 for (i = 0; i < numEdges; i++)
1562 if (lowerChannel == tempChannelList[i])
1563 break;
1564 HALASSERT(i != numEdges);
1566 if ((lowerChannel == upperChannel &&
1567 lowerChannel == chan->channel) ||
1568 pRdEdgesPower[i].flag) {
1569 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1570 HALASSERT(twiceMaxEdgePower > 0);
1574 /* extrapolate the power values for the test Groups */
1575 for (i = 0; i < numChannels; i++)
1576 tempChannelList[i] = pPowerInfo[i].testChannel;
1578 ar5211GetLowerUpperValues(chan->channel, tempChannelList,
1579 numChannels, &lowerChannel, &upperChannel);
1581 /* get the index for the channel */
1582 for (i = 0; i < numChannels; i++) {
1583 if (lowerChannel == tempChannelList[i])
1584 lowerIndex = i;
1585 if (upperChannel == tempChannelList[i]) {
1586 upperIndex = i;
1587 break;
1591 for (i = 0; i < NUM_RATES; i++) {
1592 if (IS_CHAN_OFDM(chan)) {
1593 /* power for rates 6,9,12,18,24 is all the same */
1594 if (i < 5) {
1595 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1596 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1597 } else if (i == 5) {
1598 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1599 upperPower = pPowerInfo[upperIndex].twicePwr36;
1600 } else if (i == 6) {
1601 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1602 upperPower = pPowerInfo[upperIndex].twicePwr48;
1603 } else if (i == 7) {
1604 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1605 upperPower = pPowerInfo[upperIndex].twicePwr54;
1607 } else {
1608 switch (i) {
1609 case 0:
1610 case 1:
1611 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1612 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1613 break;
1614 case 2:
1615 case 3:
1616 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1617 upperPower = pPowerInfo[upperIndex].twicePwr36;
1618 break;
1619 case 4:
1620 case 5:
1621 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1622 upperPower = pPowerInfo[upperIndex].twicePwr48;
1623 break;
1624 case 6:
1625 case 7:
1626 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1627 upperPower = pPowerInfo[upperIndex].twicePwr54;
1628 break;
1632 twicePower = ar5211GetInterpolatedValue(chan->channel,
1633 lowerChannel, upperChannel, lowerPower, upperPower, 0);
1635 /* Reduce power by band edge restrictions */
1636 twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1639 * If turbo is set, reduce power to keep power
1640 * consumption under 2 Watts. Note that we always do
1641 * this unless specially configured. Then we limit
1642 * power only for non-AP operation.
1644 if (IS_CHAN_TURBO(chan) &&
1645 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1646 #ifdef AH_ENABLE_AP_SUPPORT
1647 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1648 #endif
1650 twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1653 /* Reduce power by max regulatory domain allowed restrictions */
1654 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1656 /* Use 6 Mb power level for transmit power scaling reduction */
1657 /* We don't want to reduce higher rates if its not needed */
1658 if (i == 0) {
1659 scaledPower = pRatesPower[0] -
1660 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1661 if (scaledPower < 1)
1662 scaledPower = 1;
1665 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1668 /* Record txPower at Rate 6 for info gathering */
1669 ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1671 #ifdef AH_DEBUG
1672 HALDEBUG(ah, HAL_DEBUG_RESET,
1673 "%s: final output power setting %d MHz:\n",
1674 __func__, chan->channel);
1675 HALDEBUG(ah, HAL_DEBUG_RESET,
1676 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1677 scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1678 HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1679 tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1680 twiceAntennaReduction / 2);
1681 if (IS_CHAN_TURBO(chan) &&
1682 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1683 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1684 ee->ee_turbo2WMaxPower5);
1685 HALDEBUG(ah, HAL_DEBUG_RESET,
1686 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1687 pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1688 pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1689 pRatesPower[6] / 2, pRatesPower[7] / 2);
1690 #endif /* AH_DEBUG */
1692 /* Write the power table into the hardware */
1693 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1694 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1695 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1696 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1697 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
1698 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1699 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1700 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1701 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1702 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
1704 /* set max power to the power value at rate 6 */
1705 ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1707 AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1711 * Get or interpolate the pcdac value from the calibrated data
1713 uint16_t
1714 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue, const PCDACS_EEPROM *pSrcStruct)
1716 uint16_t powerValue;
1717 uint16_t lFreq = 0, rFreq = 0; /* left and right frequency values */
1718 uint16_t llPcdac = 0, ulPcdac = 0; /* lower and upper left pcdac values */
1719 uint16_t lrPcdac = 0, urPcdac = 0; /* lower and upper right pcdac values */
1720 uint16_t lPwr = 0, uPwr = 0; /* lower and upper temp pwr values */
1721 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1723 if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1724 /* value was copied from srcStruct */
1725 return powerValue;
1727 ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1728 pSrcStruct->numChannels, &lFreq, &rFreq);
1729 ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1730 &llPcdac, &ulPcdac);
1731 ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1732 &lrPcdac, &urPcdac);
1734 /* get the power index for the pcdac value */
1735 ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1736 ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1737 lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1738 llPcdac, ulPcdac, lPwr, uPwr, 0);
1740 ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1741 ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1742 rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1743 lrPcdac, urPcdac, lPwr, uPwr, 0);
1745 return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1746 lScaledPwr, rScaledPwr, 0);
1750 * Find the value from the calibrated source data struct
1752 HAL_BOOL
1753 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1754 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1756 const DATA_PER_CHANNEL *pChannelData;
1757 const uint16_t *pPcdac;
1758 uint16_t i, j;
1760 pChannelData = pSrcStruct->pDataPerChannel;
1761 for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1762 if (pChannelData->channelValue == channel) {
1763 pPcdac = pChannelData->PcdacValues;
1764 for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1765 if (*pPcdac == pcdacValue) {
1766 *powerValue = pChannelData->PwrValues[j];
1767 return AH_TRUE;
1769 pPcdac++;
1772 pChannelData++;
1774 return AH_FALSE;
1778 * Returns interpolated or the scaled up interpolated value
1780 uint16_t
1781 ar5211GetInterpolatedValue(uint16_t target,
1782 uint16_t srcLeft, uint16_t srcRight,
1783 uint16_t targetLeft, uint16_t targetRight,
1784 HAL_BOOL scaleUp)
1786 uint16_t rv;
1787 int16_t lRatio;
1788 uint16_t scaleValue = EEP_SCALE;
1790 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1791 if ((targetLeft * targetRight) == 0)
1792 return 0;
1793 if (scaleUp)
1794 scaleValue = 1;
1796 if (srcRight != srcLeft) {
1798 * Note the ratio always need to be scaled,
1799 * since it will be a fraction.
1801 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1802 if (lRatio < 0) {
1803 /* Return as Left target if value would be negative */
1804 rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1805 } else if (lRatio > EEP_SCALE) {
1806 /* Return as Right target if Ratio is greater than 100% (SCALE) */
1807 rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1808 } else {
1809 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1810 targetLeft) / scaleValue;
1812 } else {
1813 rv = targetLeft;
1814 if (scaleUp)
1815 rv *= EEP_SCALE;
1817 return rv;
1821 * Look for value being within 0.1 of the search values
1822 * however, NDIS can't do float calculations, so multiply everything
1823 * up by EEP_SCALE so can do integer arithmatic
1825 * INPUT value -value to search for
1826 * INPUT pList -ptr to the list to search
1827 * INPUT listSize -number of entries in list
1828 * OUTPUT pLowerValue -return the lower value
1829 * OUTPUT pUpperValue -return the upper value
1831 void
1832 ar5211GetLowerUpperValues(uint16_t value,
1833 const uint16_t *pList, uint16_t listSize,
1834 uint16_t *pLowerValue, uint16_t *pUpperValue)
1836 const uint16_t listEndValue = *(pList + listSize - 1);
1837 uint32_t target = value * EEP_SCALE;
1838 int i;
1841 * See if value is lower than the first value in the list
1842 * if so return first value
1844 if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1845 *pLowerValue = *pList;
1846 *pUpperValue = *pList;
1847 return;
1851 * See if value is greater than last value in list
1852 * if so return last value
1854 if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1855 *pLowerValue = listEndValue;
1856 *pUpperValue = listEndValue;
1857 return;
1860 /* look for value being near or between 2 values in list */
1861 for (i = 0; i < listSize; i++) {
1863 * If value is close to the current value of the list
1864 * then target is not between values, it is one of the values
1866 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1867 *pLowerValue = pList[i];
1868 *pUpperValue = pList[i];
1869 return;
1873 * Look for value being between current value and next value
1874 * if so return these 2 values
1876 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1877 *pLowerValue = pList[i];
1878 *pUpperValue = pList[i + 1];
1879 return;
1885 * Get the upper and lower pcdac given the channel and the pcdac
1886 * used in the search
1888 void
1889 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1890 const PCDACS_EEPROM *pSrcStruct,
1891 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1893 const DATA_PER_CHANNEL *pChannelData;
1894 int i;
1896 /* Find the channel information */
1897 pChannelData = pSrcStruct->pDataPerChannel;
1898 for (i = 0; i < pSrcStruct->numChannels; i++) {
1899 if (pChannelData->channelValue == channel)
1900 break;
1901 pChannelData++;
1903 ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1904 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1907 #define DYN_ADJ_UP_MARGIN 15
1908 #define DYN_ADJ_LO_MARGIN 20
1910 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1911 9, /* numStepsInLadder */
1912 4, /* defaultStepNum */
1913 { { {4, 1, 1, 1}, 6, "FG8"},
1914 { {4, 0, 1, 1}, 4, "FG7"},
1915 { {3, 1, 1, 1}, 3, "FG6"},
1916 { {4, 0, 0, 1}, 1, "FG5"},
1917 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1918 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1919 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1920 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1921 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1926 * Initialize the gain structure to good values
1928 void
1929 ar5211InitializeGainValues(struct ath_hal *ah)
1931 struct ath_hal_5211 *ahp = AH5211(ah);
1932 GAIN_VALUES *gv = &ahp->ah_gainValues;
1934 /* initialize gain optimization values */
1935 gv->currStepNum = gainLadder.defaultStepNum;
1936 gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1937 gv->active = AH_TRUE;
1938 gv->loTrig = 20;
1939 gv->hiTrig = 35;
1942 static HAL_BOOL
1943 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1945 HAL_CHANNEL_INTERNAL *chan = AH_PRIVATE(ah)->ah_curchan;
1946 uint32_t gStep, g;
1947 uint32_t L1, L2, L3, L4;
1949 if (IS_CHAN_CCK(chan)) {
1950 gStep = 0x18;
1951 L1 = 0;
1952 L2 = gStep + 4;
1953 L3 = 0x40;
1954 L4 = L3 + 50;
1956 gv->loTrig = L1;
1957 gv->hiTrig = L4+5;
1958 } else {
1959 gStep = 0x3f;
1960 L1 = 0;
1961 L2 = 50;
1962 L3 = L1;
1963 L4 = L3 + 50;
1965 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1966 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1968 g = gv->currGain;
1970 return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1974 * Enable the probe gain check on the next packet
1976 static void
1977 ar5211RequestRfgain(struct ath_hal *ah)
1979 struct ath_hal_5211 *ahp = AH5211(ah);
1981 /* Enable the gain readback probe */
1982 OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1983 SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1984 | AR_PHY_PAPD_PROBE_NEXT_TX);
1986 ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1990 * Exported call to check for a recent gain reading and return
1991 * the current state of the thermal calibration gain engine.
1993 HAL_RFGAIN
1994 ar5211GetRfgain(struct ath_hal *ah)
1996 struct ath_hal_5211 *ahp = AH5211(ah);
1997 GAIN_VALUES *gv = &ahp->ah_gainValues;
1998 uint32_t rddata;
2000 if (!gv->active)
2001 return HAL_RFGAIN_INACTIVE;
2003 if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
2004 /* Caller had asked to setup a new reading. Check it. */
2005 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
2007 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
2008 /* bit got cleared, we have a new reading. */
2009 gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
2010 /* inactive by default */
2011 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
2013 if (!ar5211InvalidGainReadback(ah, gv) &&
2014 ar5211IsGainAdjustNeeded(ah, gv) &&
2015 ar5211AdjustGain(ah, gv) > 0) {
2017 * Change needed. Copy ladder info
2018 * into eeprom info.
2020 ar5211SetRfgain(ah, gv);
2021 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2025 return ahp->ah_rfgainState;
2029 * Check to see if our readback gain level sits within the linear
2030 * region of our current variable attenuation window
2032 static HAL_BOOL
2033 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2035 return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2039 * Move the rabbit ears in the correct direction.
2041 static int32_t
2042 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2044 /* return > 0 for valid adjustments. */
2045 if (!gv->active)
2046 return -1;
2048 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2049 if (gv->currGain >= gv->hiTrig) {
2050 if (gv->currStepNum == 0) {
2051 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2052 "%s: Max gain limit.\n", __func__);
2053 return -1;
2055 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2056 "%s: Adding gain: currG=%d [%s] --> ",
2057 __func__, gv->currGain, gv->currStep->stepName);
2058 gv->targetGain = gv->currGain;
2059 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2060 gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2061 gv->currStep->stepGain);
2062 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2064 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2065 gv->targetGain, gv->currStep->stepName);
2066 return 1;
2068 if (gv->currGain <= gv->loTrig) {
2069 if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2070 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2071 "%s: Min gain limit.\n", __func__);
2072 return -2;
2074 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2075 "%s: Deducting gain: currG=%d [%s] --> ",
2076 __func__, gv->currGain, gv->currStep->stepName);
2077 gv->targetGain = gv->currGain;
2078 while (gv->targetGain <= gv->loTrig &&
2079 gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2080 gv->targetGain -= 2 *
2081 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2082 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2084 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2085 gv->targetGain, gv->currStep->stepName);
2086 return 2;
2088 return 0; /* caller didn't call needAdjGain first */
2092 * Adjust the 5GHz EEPROM information with the desired calibration values.
2094 static void
2095 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2097 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2099 if (!gv->active)
2100 return;
2101 ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2102 ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2103 ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2104 ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2107 static void
2108 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2110 struct ath_hal_5211 *ahp = AH5211(ah);
2111 uint32_t val;
2113 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2114 switch (opmode) {
2115 case HAL_M_HOSTAP:
2116 OS_REG_WRITE(ah, AR_STA_ID1, val
2117 | AR_STA_ID1_STA_AP
2118 | AR_STA_ID1_RTS_USE_DEF
2119 | ahp->ah_staId1Defaults);
2120 break;
2121 case HAL_M_IBSS:
2122 OS_REG_WRITE(ah, AR_STA_ID1, val
2123 | AR_STA_ID1_ADHOC
2124 | AR_STA_ID1_DESC_ANTENNA
2125 | ahp->ah_staId1Defaults);
2126 break;
2127 case HAL_M_STA:
2128 case HAL_M_MONITOR:
2129 OS_REG_WRITE(ah, AR_STA_ID1, val
2130 | AR_STA_ID1_DEFAULT_ANTENNA
2131 | ahp->ah_staId1Defaults);
2132 break;
2136 void
2137 ar5211SetPCUConfig(struct ath_hal *ah)
2139 ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);