Sync usage with man page.
[netbsd-mini2440.git] / sys / miscfs / genfs / genfs_io.c
blob221e963e734f45fe6c25c38769621d19ceed0828
1 /* $NetBSD: genfs_io.c,v 1.20 2009/04/18 15:40:33 pooka Exp $ */
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.20 2009/04/18 15:40:33 pooka Exp $");
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
67 int genfs_maxdio = MAXPHYS;
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
72 int i;
74 for (i = 0; i < npages; i++) {
75 struct vm_page *pg = pgs[i];
77 if (pg == NULL || pg == PGO_DONTCARE)
78 continue;
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
89 * generic VM getpages routine.
90 * Return PG_BUSY pages for the given range,
91 * reading from backing store if necessary.
94 int
95 genfs_getpages(void *v)
97 struct vop_getpages_args /* {
98 struct vnode *a_vp;
99 voff_t a_offset;
100 struct vm_page **a_m;
101 int *a_count;
102 int a_centeridx;
103 vm_prot_t a_access_type;
104 int a_advice;
105 int a_flags;
106 } */ *ap = v;
108 off_t newsize, diskeof, memeof;
109 off_t offset, origoffset, startoffset, endoffset;
110 daddr_t lbn, blkno;
111 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
112 int fs_bshift, fs_bsize, dev_bshift;
113 const int flags = ap->a_flags;
114 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
115 vaddr_t kva;
116 struct buf *bp, *mbp;
117 struct vnode *vp = ap->a_vp;
118 struct vnode *devvp;
119 struct genfs_node *gp = VTOG(vp);
120 struct uvm_object *uobj = &vp->v_uobj;
121 struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
122 int pgs_size;
123 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
124 const bool async = (flags & PGO_SYNCIO) == 0;
125 const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 bool sawhole = false;
127 bool has_trans = false;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
130 voff_t origvsize;
131 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
134 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
137 vp->v_type == VLNK || vp->v_type == VBLK);
139 pgs = NULL;
140 pgs_size = 0;
142 startover:
143 error = 0;
144 origvsize = vp->v_size;
145 origoffset = ap->a_offset;
146 orignpages = *ap->a_count;
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 #if defined(DIAGNOSTIC)
150 off_t writeeof;
151 #endif /* defined(DIAGNOSTIC) */
153 newsize = MAX(origvsize,
154 origoffset + (orignpages << PAGE_SHIFT));
155 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
156 #if defined(DIAGNOSTIC)
157 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
158 if (newsize > round_page(writeeof)) {
159 panic("%s: past eof", __func__);
161 #endif /* defined(DIAGNOSTIC) */
162 } else {
163 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
165 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
166 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
167 KASSERT(orignpages > 0);
170 * Bounds-check the request.
173 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
174 if ((flags & PGO_LOCKED) == 0) {
175 mutex_exit(&uobj->vmobjlock);
177 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
178 origoffset, *ap->a_count, memeof,0);
179 error = EINVAL;
180 goto out_err;
183 /* uobj is locked */
185 if ((flags & PGO_NOTIMESTAMP) == 0 &&
186 (vp->v_type != VBLK ||
187 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
188 int updflags = 0;
190 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
191 updflags = GOP_UPDATE_ACCESSED;
193 if (write) {
194 updflags |= GOP_UPDATE_MODIFIED;
196 if (updflags != 0) {
197 GOP_MARKUPDATE(vp, updflags);
201 if (write) {
202 gp->g_dirtygen++;
203 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
204 vn_syncer_add_to_worklist(vp, filedelay);
206 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
207 vp->v_iflag |= VI_WRMAPDIRTY;
212 * For PGO_LOCKED requests, just return whatever's in memory.
215 if (flags & PGO_LOCKED) {
216 int nfound;
218 npages = *ap->a_count;
219 #if defined(DEBUG)
220 for (i = 0; i < npages; i++) {
221 pg = ap->a_m[i];
222 KASSERT(pg == NULL || pg == PGO_DONTCARE);
224 #endif /* defined(DEBUG) */
225 nfound = uvn_findpages(uobj, origoffset, &npages,
226 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
227 KASSERT(npages == *ap->a_count);
228 if (nfound == 0) {
229 error = EBUSY;
230 goto out_err;
232 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
233 genfs_rel_pages(ap->a_m, npages);
236 * restore the array.
239 for (i = 0; i < npages; i++) {
240 pg = ap->a_m[i];
242 if (pg != NULL || pg != PGO_DONTCARE) {
243 ap->a_m[i] = NULL;
246 } else {
247 rw_exit(&gp->g_glock);
249 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
250 goto out_err;
252 mutex_exit(&uobj->vmobjlock);
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
259 if (vp->v_type != VBLK) {
260 fs_bshift = vp->v_mount->mnt_fs_bshift;
261 dev_bshift = vp->v_mount->mnt_dev_bshift;
262 } else {
263 fs_bshift = DEV_BSHIFT;
264 dev_bshift = DEV_BSHIFT;
266 fs_bsize = 1 << fs_bshift;
268 orignpages = MIN(orignpages,
269 round_page(memeof - origoffset) >> PAGE_SHIFT);
270 npages = orignpages;
271 startoffset = origoffset & ~(fs_bsize - 1);
272 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
273 fs_bsize - 1) & ~(fs_bsize - 1));
274 endoffset = MIN(endoffset, round_page(memeof));
275 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
277 pgs_size = sizeof(struct vm_page *) *
278 ((endoffset - startoffset) >> PAGE_SHIFT);
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
292 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 ridx, npages, startoffset, endoffset);
295 if (!has_trans) {
296 fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 has_trans = true;
301 * hold g_glock to prevent a race with truncate.
303 * check if our idea of v_size is still valid.
306 if (blockalloc) {
307 rw_enter(&gp->g_glock, RW_WRITER);
308 } else {
309 rw_enter(&gp->g_glock, RW_READER);
311 mutex_enter(&uobj->vmobjlock);
312 if (vp->v_size < origvsize) {
313 rw_exit(&gp->g_glock);
314 if (pgs != pgs_onstack)
315 kmem_free(pgs, pgs_size);
316 goto startover;
319 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
320 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
321 rw_exit(&gp->g_glock);
322 KASSERT(async != 0);
323 genfs_rel_pages(&pgs[ridx], orignpages);
324 mutex_exit(&uobj->vmobjlock);
325 error = EBUSY;
326 goto out_err;
330 * if the pages are already resident, just return them.
333 for (i = 0; i < npages; i++) {
334 struct vm_page *pg1 = pgs[ridx + i];
336 if ((pg1->flags & PG_FAKE) ||
337 (blockalloc && (pg1->flags & PG_RDONLY))) {
338 break;
341 if (i == npages) {
342 rw_exit(&gp->g_glock);
343 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
344 npages += ridx;
345 goto out;
349 * if PGO_OVERWRITE is set, don't bother reading the pages.
352 if (overwrite) {
353 rw_exit(&gp->g_glock);
354 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
356 for (i = 0; i < npages; i++) {
357 struct vm_page *pg1 = pgs[ridx + i];
359 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
361 npages += ridx;
362 goto out;
366 * the page wasn't resident and we're not overwriting,
367 * so we're going to have to do some i/o.
368 * find any additional pages needed to cover the expanded range.
371 npages = (endoffset - startoffset) >> PAGE_SHIFT;
372 if (startoffset != origoffset || npages != orignpages) {
375 * we need to avoid deadlocks caused by locking
376 * additional pages at lower offsets than pages we
377 * already have locked. unlock them all and start over.
380 genfs_rel_pages(&pgs[ridx], orignpages);
381 memset(pgs, 0, pgs_size);
383 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
384 startoffset, endoffset, 0,0);
385 npgs = npages;
386 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
387 async ? UFP_NOWAIT : UFP_ALL) != npages) {
388 rw_exit(&gp->g_glock);
389 KASSERT(async != 0);
390 genfs_rel_pages(pgs, npages);
391 mutex_exit(&uobj->vmobjlock);
392 error = EBUSY;
393 goto out_err;
396 mutex_exit(&uobj->vmobjlock);
399 * read the desired page(s).
402 totalbytes = npages << PAGE_SHIFT;
403 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
404 tailbytes = totalbytes - bytes;
405 skipbytes = 0;
407 kva = uvm_pagermapin(pgs, npages,
408 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
410 mbp = getiobuf(vp, true);
411 mbp->b_bufsize = totalbytes;
412 mbp->b_data = (void *)kva;
413 mbp->b_resid = mbp->b_bcount = bytes;
414 mbp->b_cflags = BC_BUSY;
415 if (async) {
416 mbp->b_flags = B_READ | B_ASYNC;
417 mbp->b_iodone = uvm_aio_biodone;
418 } else {
419 mbp->b_flags = B_READ;
420 mbp->b_iodone = NULL;
422 if (async)
423 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
424 else
425 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
428 * if EOF is in the middle of the range, zero the part past EOF.
429 * skip over pages which are not PG_FAKE since in that case they have
430 * valid data that we need to preserve.
433 tailstart = bytes;
434 while (tailbytes > 0) {
435 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
437 KASSERT(len <= tailbytes);
438 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
439 memset((void *)(kva + tailstart), 0, len);
440 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
441 kva, tailstart, len, 0);
443 tailstart += len;
444 tailbytes -= len;
448 * now loop over the pages, reading as needed.
451 bp = NULL;
452 for (offset = startoffset;
453 bytes > 0;
454 offset += iobytes, bytes -= iobytes) {
457 * skip pages which don't need to be read.
460 pidx = (offset - startoffset) >> PAGE_SHIFT;
461 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
462 size_t b;
464 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
465 if ((pgs[pidx]->flags & PG_RDONLY)) {
466 sawhole = true;
468 b = MIN(PAGE_SIZE, bytes);
469 offset += b;
470 bytes -= b;
471 skipbytes += b;
472 pidx++;
473 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
474 offset, 0,0,0);
475 if (bytes == 0) {
476 goto loopdone;
481 * bmap the file to find out the blkno to read from and
482 * how much we can read in one i/o. if bmap returns an error,
483 * skip the rest of the top-level i/o.
486 lbn = offset >> fs_bshift;
487 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
488 if (error) {
489 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
490 lbn, error,0,0);
491 skipbytes += bytes;
492 goto loopdone;
496 * see how many pages can be read with this i/o.
497 * reduce the i/o size if necessary to avoid
498 * overwriting pages with valid data.
501 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
502 bytes);
503 if (offset + iobytes > round_page(offset)) {
504 pcount = 1;
505 while (pidx + pcount < npages &&
506 pgs[pidx + pcount]->flags & PG_FAKE) {
507 pcount++;
509 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
510 (offset - trunc_page(offset)));
514 * if this block isn't allocated, zero it instead of
515 * reading it. unless we are going to allocate blocks,
516 * mark the pages we zeroed PG_RDONLY.
519 if (blkno < 0) {
520 int holepages = (round_page(offset + iobytes) -
521 trunc_page(offset)) >> PAGE_SHIFT;
522 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
524 sawhole = true;
525 memset((char *)kva + (offset - startoffset), 0,
526 iobytes);
527 skipbytes += iobytes;
529 for (i = 0; i < holepages; i++) {
530 if (write) {
531 pgs[pidx + i]->flags &= ~PG_CLEAN;
533 if (!blockalloc) {
534 pgs[pidx + i]->flags |= PG_RDONLY;
537 continue;
541 * allocate a sub-buf for this piece of the i/o
542 * (or just use mbp if there's only 1 piece),
543 * and start it going.
546 if (offset == startoffset && iobytes == bytes) {
547 bp = mbp;
548 } else {
549 bp = getiobuf(vp, true);
550 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
552 bp->b_lblkno = 0;
554 /* adjust physical blkno for partial blocks */
555 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
556 dev_bshift);
558 UVMHIST_LOG(ubchist,
559 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
560 bp, offset, iobytes, bp->b_blkno);
562 VOP_STRATEGY(devvp, bp);
565 loopdone:
566 nestiobuf_done(mbp, skipbytes, error);
567 if (async) {
568 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
569 rw_exit(&gp->g_glock);
570 error = 0;
571 goto out_err;
573 if (bp != NULL) {
574 error = biowait(mbp);
577 /* Remove the mapping (make KVA available as soon as possible) */
578 uvm_pagermapout(kva, npages);
581 * if this we encountered a hole then we have to do a little more work.
582 * for read faults, we marked the page PG_RDONLY so that future
583 * write accesses to the page will fault again.
584 * for write faults, we must make sure that the backing store for
585 * the page is completely allocated while the pages are locked.
588 if (!error && sawhole && blockalloc) {
590 * XXX: This assumes that we come here only via
591 * the mmio path
593 if (vp->v_mount->mnt_wapbl) {
594 error = WAPBL_BEGIN(vp->v_mount);
597 if (!error) {
598 error = GOP_ALLOC(vp, startoffset,
599 npages << PAGE_SHIFT, 0, cred);
600 if (vp->v_mount->mnt_wapbl) {
601 WAPBL_END(vp->v_mount);
605 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
606 startoffset, npages << PAGE_SHIFT, error,0);
607 if (!error) {
608 for (i = 0; i < npages; i++) {
609 if (pgs[i] == NULL) {
610 continue;
612 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
613 UVMHIST_LOG(ubchist, "mark dirty pg %p",
614 pgs[i],0,0,0);
618 rw_exit(&gp->g_glock);
620 putiobuf(mbp);
622 mutex_enter(&uobj->vmobjlock);
625 * we're almost done! release the pages...
626 * for errors, we free the pages.
627 * otherwise we activate them and mark them as valid and clean.
628 * also, unbusy pages that were not actually requested.
631 if (error) {
632 for (i = 0; i < npages; i++) {
633 if (pgs[i] == NULL) {
634 continue;
636 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
637 pgs[i], pgs[i]->flags, 0,0);
638 if (pgs[i]->flags & PG_FAKE) {
639 pgs[i]->flags |= PG_RELEASED;
642 mutex_enter(&uvm_pageqlock);
643 uvm_page_unbusy(pgs, npages);
644 mutex_exit(&uvm_pageqlock);
645 mutex_exit(&uobj->vmobjlock);
646 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
647 goto out_err;
650 out:
651 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
652 error = 0;
653 mutex_enter(&uvm_pageqlock);
654 for (i = 0; i < npages; i++) {
655 pg = pgs[i];
656 if (pg == NULL) {
657 continue;
659 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
660 pg, pg->flags, 0,0);
661 if (pg->flags & PG_FAKE && !overwrite) {
662 pg->flags &= ~(PG_FAKE);
663 pmap_clear_modify(pgs[i]);
665 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
666 if (i < ridx || i >= ridx + orignpages || async) {
667 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
668 pg, pg->offset,0,0);
669 if (pg->flags & PG_WANTED) {
670 wakeup(pg);
672 if (pg->flags & PG_FAKE) {
673 KASSERT(overwrite);
674 uvm_pagezero(pg);
676 if (pg->flags & PG_RELEASED) {
677 uvm_pagefree(pg);
678 continue;
680 uvm_pageenqueue(pg);
681 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
682 UVM_PAGE_OWN(pg, NULL);
685 mutex_exit(&uvm_pageqlock);
686 mutex_exit(&uobj->vmobjlock);
687 if (ap->a_m != NULL) {
688 memcpy(ap->a_m, &pgs[ridx],
689 orignpages * sizeof(struct vm_page *));
692 out_err:
693 if (pgs != NULL && pgs != pgs_onstack)
694 kmem_free(pgs, pgs_size);
695 if (has_trans)
696 fstrans_done(vp->v_mount);
697 return (error);
701 * generic VM putpages routine.
702 * Write the given range of pages to backing store.
704 * => "offhi == 0" means flush all pages at or after "offlo".
705 * => object should be locked by caller. we return with the
706 * object unlocked.
707 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
708 * thus, a caller might want to unlock higher level resources
709 * (e.g. vm_map) before calling flush.
710 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
711 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
712 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
713 * that new pages are inserted on the tail end of the list. thus,
714 * we can make a complete pass through the object in one go by starting
715 * at the head and working towards the tail (new pages are put in
716 * front of us).
717 * => NOTE: we are allowed to lock the page queues, so the caller
718 * must not be holding the page queue lock.
720 * note on "cleaning" object and PG_BUSY pages:
721 * this routine is holding the lock on the object. the only time
722 * that it can run into a PG_BUSY page that it does not own is if
723 * some other process has started I/O on the page (e.g. either
724 * a pagein, or a pageout). if the PG_BUSY page is being paged
725 * in, then it can not be dirty (!PG_CLEAN) because no one has
726 * had a chance to modify it yet. if the PG_BUSY page is being
727 * paged out then it means that someone else has already started
728 * cleaning the page for us (how nice!). in this case, if we
729 * have syncio specified, then after we make our pass through the
730 * object we need to wait for the other PG_BUSY pages to clear
731 * off (i.e. we need to do an iosync). also note that once a
732 * page is PG_BUSY it must stay in its object until it is un-busyed.
734 * note on page traversal:
735 * we can traverse the pages in an object either by going down the
736 * linked list in "uobj->memq", or we can go over the address range
737 * by page doing hash table lookups for each address. depending
738 * on how many pages are in the object it may be cheaper to do one
739 * or the other. we set "by_list" to true if we are using memq.
740 * if the cost of a hash lookup was equal to the cost of the list
741 * traversal we could compare the number of pages in the start->stop
742 * range to the total number of pages in the object. however, it
743 * seems that a hash table lookup is more expensive than the linked
744 * list traversal, so we multiply the number of pages in the
745 * range by an estimate of the relatively higher cost of the hash lookup.
749 genfs_putpages(void *v)
751 struct vop_putpages_args /* {
752 struct vnode *a_vp;
753 voff_t a_offlo;
754 voff_t a_offhi;
755 int a_flags;
756 } */ *ap = v;
758 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
759 ap->a_flags, NULL);
763 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
764 int origflags, struct vm_page **busypg)
766 struct uvm_object *uobj = &vp->v_uobj;
767 kmutex_t *slock = &uobj->vmobjlock;
768 off_t off;
769 /* Even for strange MAXPHYS, the shift rounds down to a page */
770 #define maxpages (MAXPHYS >> PAGE_SHIFT)
771 int i, error, npages, nback;
772 int freeflag;
773 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
774 bool wasclean, by_list, needs_clean, yld;
775 bool async = (origflags & PGO_SYNCIO) == 0;
776 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
777 struct lwp *l = curlwp ? curlwp : &lwp0;
778 struct genfs_node *gp = VTOG(vp);
779 int flags;
780 int dirtygen;
781 bool modified;
782 bool need_wapbl;
783 bool has_trans;
784 bool cleanall;
785 bool onworklst;
787 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
789 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
790 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
791 KASSERT(startoff < endoff || endoff == 0);
793 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
794 vp, uobj->uo_npages, startoff, endoff - startoff);
796 has_trans = false;
797 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
798 (origflags & PGO_JOURNALLOCKED) == 0);
800 retry:
801 modified = false;
802 flags = origflags;
803 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
804 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
805 if (uobj->uo_npages == 0) {
806 if (vp->v_iflag & VI_ONWORKLST) {
807 vp->v_iflag &= ~VI_WRMAPDIRTY;
808 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
809 vn_syncer_remove_from_worklist(vp);
811 if (has_trans) {
812 if (need_wapbl)
813 WAPBL_END(vp->v_mount);
814 fstrans_done(vp->v_mount);
816 mutex_exit(slock);
817 return (0);
821 * the vnode has pages, set up to process the request.
824 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
825 mutex_exit(slock);
826 if (pagedaemon) {
827 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
828 if (error)
829 return error;
830 } else
831 fstrans_start(vp->v_mount, FSTRANS_LAZY);
832 if (need_wapbl) {
833 error = WAPBL_BEGIN(vp->v_mount);
834 if (error) {
835 fstrans_done(vp->v_mount);
836 return error;
839 has_trans = true;
840 mutex_enter(slock);
841 goto retry;
844 error = 0;
845 wasclean = (vp->v_numoutput == 0);
846 off = startoff;
847 if (endoff == 0 || flags & PGO_ALLPAGES) {
848 endoff = trunc_page(LLONG_MAX);
850 by_list = (uobj->uo_npages <=
851 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
853 #if !defined(DEBUG)
855 * if this vnode is known not to have dirty pages,
856 * don't bother to clean it out.
859 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
860 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
861 goto skip_scan;
863 flags &= ~PGO_CLEANIT;
865 #endif /* !defined(DEBUG) */
868 * start the loop. when scanning by list, hold the last page
869 * in the list before we start. pages allocated after we start
870 * will be added to the end of the list, so we can stop at the
871 * current last page.
874 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
875 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
876 (vp->v_iflag & VI_ONWORKLST) != 0;
877 dirtygen = gp->g_dirtygen;
878 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
879 if (by_list) {
880 curmp.uobject = uobj;
881 curmp.offset = (voff_t)-1;
882 curmp.flags = PG_BUSY;
883 endmp.uobject = uobj;
884 endmp.offset = (voff_t)-1;
885 endmp.flags = PG_BUSY;
886 pg = TAILQ_FIRST(&uobj->memq);
887 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
888 } else {
889 pg = uvm_pagelookup(uobj, off);
891 nextpg = NULL;
892 while (by_list || off < endoff) {
895 * if the current page is not interesting, move on to the next.
898 KASSERT(pg == NULL || pg->uobject == uobj);
899 KASSERT(pg == NULL ||
900 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
901 (pg->flags & PG_BUSY) != 0);
902 if (by_list) {
903 if (pg == &endmp) {
904 break;
906 if (pg->offset < startoff || pg->offset >= endoff ||
907 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
908 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
909 wasclean = false;
911 pg = TAILQ_NEXT(pg, listq.queue);
912 continue;
914 off = pg->offset;
915 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
916 if (pg != NULL) {
917 wasclean = false;
919 off += PAGE_SIZE;
920 if (off < endoff) {
921 pg = uvm_pagelookup(uobj, off);
923 continue;
927 * if the current page needs to be cleaned and it's busy,
928 * wait for it to become unbusy.
931 yld = (l->l_cpu->ci_schedstate.spc_flags &
932 SPCF_SHOULDYIELD) && !pagedaemon;
933 if (pg->flags & PG_BUSY || yld) {
934 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
935 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
936 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
937 error = EDEADLK;
938 if (busypg != NULL)
939 *busypg = pg;
940 break;
942 if (pagedaemon) {
944 * someone has taken the page while we
945 * dropped the lock for fstrans_start.
947 break;
949 if (by_list) {
950 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
951 UVMHIST_LOG(ubchist, "curmp next %p",
952 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
954 if (yld) {
955 mutex_exit(slock);
956 preempt();
957 mutex_enter(slock);
958 } else {
959 pg->flags |= PG_WANTED;
960 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
961 mutex_enter(slock);
963 if (by_list) {
964 UVMHIST_LOG(ubchist, "after next %p",
965 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
966 pg = TAILQ_NEXT(&curmp, listq.queue);
967 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
968 } else {
969 pg = uvm_pagelookup(uobj, off);
971 continue;
975 * if we're freeing, remove all mappings of the page now.
976 * if we're cleaning, check if the page is needs to be cleaned.
979 if (flags & PGO_FREE) {
980 pmap_page_protect(pg, VM_PROT_NONE);
981 } else if (flags & PGO_CLEANIT) {
984 * if we still have some hope to pull this vnode off
985 * from the syncer queue, write-protect the page.
988 if (cleanall && wasclean &&
989 gp->g_dirtygen == dirtygen) {
992 * uobj pages get wired only by uvm_fault
993 * where uobj is locked.
996 if (pg->wire_count == 0) {
997 pmap_page_protect(pg,
998 VM_PROT_READ|VM_PROT_EXECUTE);
999 } else {
1000 cleanall = false;
1005 if (flags & PGO_CLEANIT) {
1006 needs_clean = pmap_clear_modify(pg) ||
1007 (pg->flags & PG_CLEAN) == 0;
1008 pg->flags |= PG_CLEAN;
1009 } else {
1010 needs_clean = false;
1014 * if we're cleaning, build a cluster.
1015 * the cluster will consist of pages which are currently dirty,
1016 * but they will be returned to us marked clean.
1017 * if not cleaning, just operate on the one page.
1020 if (needs_clean) {
1021 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1022 wasclean = false;
1023 memset(pgs, 0, sizeof(pgs));
1024 pg->flags |= PG_BUSY;
1025 UVM_PAGE_OWN(pg, "genfs_putpages");
1028 * first look backward.
1031 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1032 nback = npages;
1033 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1034 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1035 if (nback) {
1036 memmove(&pgs[0], &pgs[npages - nback],
1037 nback * sizeof(pgs[0]));
1038 if (npages - nback < nback)
1039 memset(&pgs[nback], 0,
1040 (npages - nback) * sizeof(pgs[0]));
1041 else
1042 memset(&pgs[npages - nback], 0,
1043 nback * sizeof(pgs[0]));
1047 * then plug in our page of interest.
1050 pgs[nback] = pg;
1053 * then look forward to fill in the remaining space in
1054 * the array of pages.
1057 npages = maxpages - nback - 1;
1058 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1059 &pgs[nback + 1],
1060 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1061 npages += nback + 1;
1062 } else {
1063 pgs[0] = pg;
1064 npages = 1;
1065 nback = 0;
1069 * apply FREE or DEACTIVATE options if requested.
1072 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1073 mutex_enter(&uvm_pageqlock);
1075 for (i = 0; i < npages; i++) {
1076 tpg = pgs[i];
1077 KASSERT(tpg->uobject == uobj);
1078 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1079 pg = tpg;
1080 if (tpg->offset < startoff || tpg->offset >= endoff)
1081 continue;
1082 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1083 uvm_pagedeactivate(tpg);
1084 } else if (flags & PGO_FREE) {
1085 pmap_page_protect(tpg, VM_PROT_NONE);
1086 if (tpg->flags & PG_BUSY) {
1087 tpg->flags |= freeflag;
1088 if (pagedaemon) {
1089 uvm_pageout_start(1);
1090 uvm_pagedequeue(tpg);
1092 } else {
1095 * ``page is not busy''
1096 * implies that npages is 1
1097 * and needs_clean is false.
1100 nextpg = TAILQ_NEXT(tpg, listq.queue);
1101 uvm_pagefree(tpg);
1102 if (pagedaemon)
1103 uvmexp.pdfreed++;
1107 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1108 mutex_exit(&uvm_pageqlock);
1110 if (needs_clean) {
1111 modified = true;
1114 * start the i/o. if we're traversing by list,
1115 * keep our place in the list with a marker page.
1118 if (by_list) {
1119 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1120 listq.queue);
1122 mutex_exit(slock);
1123 error = GOP_WRITE(vp, pgs, npages, flags);
1124 mutex_enter(slock);
1125 if (by_list) {
1126 pg = TAILQ_NEXT(&curmp, listq.queue);
1127 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1129 if (error) {
1130 break;
1132 if (by_list) {
1133 continue;
1138 * find the next page and continue if there was no error.
1141 if (by_list) {
1142 if (nextpg) {
1143 pg = nextpg;
1144 nextpg = NULL;
1145 } else {
1146 pg = TAILQ_NEXT(pg, listq.queue);
1148 } else {
1149 off += (npages - nback) << PAGE_SHIFT;
1150 if (off < endoff) {
1151 pg = uvm_pagelookup(uobj, off);
1155 if (by_list) {
1156 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1159 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1160 (vp->v_type != VBLK ||
1161 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1162 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1166 * if we're cleaning and there was nothing to clean,
1167 * take us off the syncer list. if we started any i/o
1168 * and we're doing sync i/o, wait for all writes to finish.
1171 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1172 (vp->v_iflag & VI_ONWORKLST) != 0) {
1173 #if defined(DEBUG)
1174 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1175 if ((pg->flags & PG_CLEAN) == 0) {
1176 printf("%s: %p: !CLEAN\n", __func__, pg);
1178 if (pmap_is_modified(pg)) {
1179 printf("%s: %p: modified\n", __func__, pg);
1182 #endif /* defined(DEBUG) */
1183 vp->v_iflag &= ~VI_WRMAPDIRTY;
1184 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1185 vn_syncer_remove_from_worklist(vp);
1188 #if !defined(DEBUG)
1189 skip_scan:
1190 #endif /* !defined(DEBUG) */
1192 /* Wait for output to complete. */
1193 if (!wasclean && !async && vp->v_numoutput != 0) {
1194 while (vp->v_numoutput != 0)
1195 cv_wait(&vp->v_cv, slock);
1197 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1198 mutex_exit(slock);
1200 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1202 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1203 * retrying is not a big deal because, in many cases,
1204 * uobj->uo_npages is already 0 here.
1206 mutex_enter(slock);
1207 goto retry;
1210 if (has_trans) {
1211 if (need_wapbl)
1212 WAPBL_END(vp->v_mount);
1213 fstrans_done(vp->v_mount);
1216 return (error);
1220 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1222 off_t off;
1223 vaddr_t kva;
1224 size_t len;
1225 int error;
1226 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1228 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1229 vp, pgs, npages, flags);
1231 off = pgs[0]->offset;
1232 kva = uvm_pagermapin(pgs, npages,
1233 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1234 len = npages << PAGE_SHIFT;
1236 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1237 uvm_aio_biodone);
1239 return error;
1243 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1245 off_t off;
1246 vaddr_t kva;
1247 size_t len;
1248 int error;
1249 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1251 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1252 vp, pgs, npages, flags);
1254 off = pgs[0]->offset;
1255 kva = uvm_pagermapin(pgs, npages,
1256 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1257 len = npages << PAGE_SHIFT;
1259 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1260 uvm_aio_biodone);
1262 return error;
1266 * Backend routine for doing I/O to vnode pages. Pages are already locked
1267 * and mapped into kernel memory. Here we just look up the underlying
1268 * device block addresses and call the strategy routine.
1271 static int
1272 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1273 enum uio_rw rw, void (*iodone)(struct buf *))
1275 int s, error, run;
1276 int fs_bshift, dev_bshift;
1277 off_t eof, offset, startoffset;
1278 size_t bytes, iobytes, skipbytes;
1279 daddr_t lbn, blkno;
1280 struct buf *mbp, *bp;
1281 struct vnode *devvp;
1282 bool async = (flags & PGO_SYNCIO) == 0;
1283 bool write = rw == UIO_WRITE;
1284 int brw = write ? B_WRITE : B_READ;
1285 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1287 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1288 vp, kva, len, flags);
1290 KASSERT(vp->v_size <= vp->v_writesize);
1291 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1292 if (vp->v_type != VBLK) {
1293 fs_bshift = vp->v_mount->mnt_fs_bshift;
1294 dev_bshift = vp->v_mount->mnt_dev_bshift;
1295 } else {
1296 fs_bshift = DEV_BSHIFT;
1297 dev_bshift = DEV_BSHIFT;
1299 error = 0;
1300 startoffset = off;
1301 bytes = MIN(len, eof - startoffset);
1302 skipbytes = 0;
1303 KASSERT(bytes != 0);
1305 if (write) {
1306 mutex_enter(&vp->v_interlock);
1307 vp->v_numoutput += 2;
1308 mutex_exit(&vp->v_interlock);
1310 mbp = getiobuf(vp, true);
1311 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1312 vp, mbp, vp->v_numoutput, bytes);
1313 mbp->b_bufsize = len;
1314 mbp->b_data = (void *)kva;
1315 mbp->b_resid = mbp->b_bcount = bytes;
1316 mbp->b_cflags = BC_BUSY | BC_AGE;
1317 if (async) {
1318 mbp->b_flags = brw | B_ASYNC;
1319 mbp->b_iodone = iodone;
1320 } else {
1321 mbp->b_flags = brw;
1322 mbp->b_iodone = NULL;
1324 if (curlwp == uvm.pagedaemon_lwp)
1325 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1326 else if (async)
1327 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1328 else
1329 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1331 bp = NULL;
1332 for (offset = startoffset;
1333 bytes > 0;
1334 offset += iobytes, bytes -= iobytes) {
1335 lbn = offset >> fs_bshift;
1336 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1337 if (error) {
1338 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1339 skipbytes += bytes;
1340 bytes = 0;
1341 break;
1344 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1345 bytes);
1346 if (blkno == (daddr_t)-1) {
1347 if (!write) {
1348 memset((char *)kva + (offset - startoffset), 0,
1349 iobytes);
1351 skipbytes += iobytes;
1352 continue;
1355 /* if it's really one i/o, don't make a second buf */
1356 if (offset == startoffset && iobytes == bytes) {
1357 bp = mbp;
1358 } else {
1359 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1360 vp, bp, vp->v_numoutput, 0);
1361 bp = getiobuf(vp, true);
1362 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1364 bp->b_lblkno = 0;
1366 /* adjust physical blkno for partial blocks */
1367 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1368 dev_bshift);
1369 UVMHIST_LOG(ubchist,
1370 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1371 vp, offset, bp->b_bcount, bp->b_blkno);
1373 VOP_STRATEGY(devvp, bp);
1375 if (skipbytes) {
1376 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1378 nestiobuf_done(mbp, skipbytes, error);
1379 if (async) {
1380 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1381 return (0);
1383 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1384 error = biowait(mbp);
1385 s = splbio();
1386 (*iodone)(mbp);
1387 splx(s);
1388 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1389 return (error);
1393 genfs_compat_getpages(void *v)
1395 struct vop_getpages_args /* {
1396 struct vnode *a_vp;
1397 voff_t a_offset;
1398 struct vm_page **a_m;
1399 int *a_count;
1400 int a_centeridx;
1401 vm_prot_t a_access_type;
1402 int a_advice;
1403 int a_flags;
1404 } */ *ap = v;
1406 off_t origoffset;
1407 struct vnode *vp = ap->a_vp;
1408 struct uvm_object *uobj = &vp->v_uobj;
1409 struct vm_page *pg, **pgs;
1410 vaddr_t kva;
1411 int i, error, orignpages, npages;
1412 struct iovec iov;
1413 struct uio uio;
1414 kauth_cred_t cred = curlwp->l_cred;
1415 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1417 error = 0;
1418 origoffset = ap->a_offset;
1419 orignpages = *ap->a_count;
1420 pgs = ap->a_m;
1422 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1423 vn_syncer_add_to_worklist(vp, filedelay);
1425 if (ap->a_flags & PGO_LOCKED) {
1426 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1427 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1429 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1431 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1432 mutex_exit(&uobj->vmobjlock);
1433 return (EINVAL);
1435 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1436 mutex_exit(&uobj->vmobjlock);
1437 return 0;
1439 npages = orignpages;
1440 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1441 mutex_exit(&uobj->vmobjlock);
1442 kva = uvm_pagermapin(pgs, npages,
1443 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1444 for (i = 0; i < npages; i++) {
1445 pg = pgs[i];
1446 if ((pg->flags & PG_FAKE) == 0) {
1447 continue;
1449 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1450 iov.iov_len = PAGE_SIZE;
1451 uio.uio_iov = &iov;
1452 uio.uio_iovcnt = 1;
1453 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1454 uio.uio_rw = UIO_READ;
1455 uio.uio_resid = PAGE_SIZE;
1456 UIO_SETUP_SYSSPACE(&uio);
1457 /* XXX vn_lock */
1458 error = VOP_READ(vp, &uio, 0, cred);
1459 if (error) {
1460 break;
1462 if (uio.uio_resid) {
1463 memset(iov.iov_base, 0, uio.uio_resid);
1466 uvm_pagermapout(kva, npages);
1467 mutex_enter(&uobj->vmobjlock);
1468 mutex_enter(&uvm_pageqlock);
1469 for (i = 0; i < npages; i++) {
1470 pg = pgs[i];
1471 if (error && (pg->flags & PG_FAKE) != 0) {
1472 pg->flags |= PG_RELEASED;
1473 } else {
1474 pmap_clear_modify(pg);
1475 uvm_pageactivate(pg);
1478 if (error) {
1479 uvm_page_unbusy(pgs, npages);
1481 mutex_exit(&uvm_pageqlock);
1482 mutex_exit(&uobj->vmobjlock);
1483 return (error);
1487 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1488 int flags)
1490 off_t offset;
1491 struct iovec iov;
1492 struct uio uio;
1493 kauth_cred_t cred = curlwp->l_cred;
1494 struct buf *bp;
1495 vaddr_t kva;
1496 int error;
1498 offset = pgs[0]->offset;
1499 kva = uvm_pagermapin(pgs, npages,
1500 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1502 iov.iov_base = (void *)kva;
1503 iov.iov_len = npages << PAGE_SHIFT;
1504 uio.uio_iov = &iov;
1505 uio.uio_iovcnt = 1;
1506 uio.uio_offset = offset;
1507 uio.uio_rw = UIO_WRITE;
1508 uio.uio_resid = npages << PAGE_SHIFT;
1509 UIO_SETUP_SYSSPACE(&uio);
1510 /* XXX vn_lock */
1511 error = VOP_WRITE(vp, &uio, 0, cred);
1513 mutex_enter(&vp->v_interlock);
1514 vp->v_numoutput++;
1515 mutex_exit(&vp->v_interlock);
1517 bp = getiobuf(vp, true);
1518 bp->b_cflags = BC_BUSY | BC_AGE;
1519 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1520 bp->b_data = (char *)kva;
1521 bp->b_bcount = npages << PAGE_SHIFT;
1522 bp->b_bufsize = npages << PAGE_SHIFT;
1523 bp->b_resid = 0;
1524 bp->b_error = error;
1525 uvm_aio_aiodone(bp);
1526 return (error);
1530 * Process a uio using direct I/O. If we reach a part of the request
1531 * which cannot be processed in this fashion for some reason, just return.
1532 * The caller must handle some additional part of the request using
1533 * buffered I/O before trying direct I/O again.
1536 void
1537 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1539 struct vmspace *vs;
1540 struct iovec *iov;
1541 vaddr_t va;
1542 size_t len;
1543 const int mask = DEV_BSIZE - 1;
1544 int error;
1545 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1546 (ioflag & IO_JOURNALLOCKED) == 0);
1549 * We only support direct I/O to user space for now.
1552 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1553 return;
1557 * If the vnode is mapped, we would need to get the getpages lock
1558 * to stabilize the bmap, but then we would get into trouble whil e
1559 * locking the pages if the pages belong to this same vnode (or a
1560 * multi-vnode cascade to the same effect). Just fall back to
1561 * buffered I/O if the vnode is mapped to avoid this mess.
1564 if (vp->v_vflag & VV_MAPPED) {
1565 return;
1568 if (need_wapbl) {
1569 error = WAPBL_BEGIN(vp->v_mount);
1570 if (error)
1571 return;
1575 * Do as much of the uio as possible with direct I/O.
1578 vs = uio->uio_vmspace;
1579 while (uio->uio_resid) {
1580 iov = uio->uio_iov;
1581 if (iov->iov_len == 0) {
1582 uio->uio_iov++;
1583 uio->uio_iovcnt--;
1584 continue;
1586 va = (vaddr_t)iov->iov_base;
1587 len = MIN(iov->iov_len, genfs_maxdio);
1588 len &= ~mask;
1591 * If the next chunk is smaller than DEV_BSIZE or extends past
1592 * the current EOF, then fall back to buffered I/O.
1595 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1596 break;
1600 * Check alignment. The file offset must be at least
1601 * sector-aligned. The exact constraint on memory alignment
1602 * is very hardware-dependent, but requiring sector-aligned
1603 * addresses there too is safe.
1606 if (uio->uio_offset & mask || va & mask) {
1607 break;
1609 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1610 uio->uio_rw);
1611 if (error) {
1612 break;
1614 iov->iov_base = (char *)iov->iov_base + len;
1615 iov->iov_len -= len;
1616 uio->uio_offset += len;
1617 uio->uio_resid -= len;
1620 if (need_wapbl)
1621 WAPBL_END(vp->v_mount);
1625 * Iodone routine for direct I/O. We don't do much here since the request is
1626 * always synchronous, so the caller will do most of the work after biowait().
1629 static void
1630 genfs_dio_iodone(struct buf *bp)
1633 KASSERT((bp->b_flags & B_ASYNC) == 0);
1634 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1635 mutex_enter(bp->b_objlock);
1636 vwakeup(bp);
1637 mutex_exit(bp->b_objlock);
1639 putiobuf(bp);
1643 * Process one chunk of a direct I/O request.
1646 static int
1647 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1648 off_t off, enum uio_rw rw)
1650 struct vm_map *map;
1651 struct pmap *upm, *kpm;
1652 size_t klen = round_page(uva + len) - trunc_page(uva);
1653 off_t spoff, epoff;
1654 vaddr_t kva, puva;
1655 paddr_t pa;
1656 vm_prot_t prot;
1657 int error, rv, poff, koff;
1658 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1659 (rw == UIO_WRITE ? PGO_FREE : 0);
1662 * For writes, verify that this range of the file already has fully
1663 * allocated backing store. If there are any holes, just punt and
1664 * make the caller take the buffered write path.
1667 if (rw == UIO_WRITE) {
1668 daddr_t lbn, elbn, blkno;
1669 int bsize, bshift, run;
1671 bshift = vp->v_mount->mnt_fs_bshift;
1672 bsize = 1 << bshift;
1673 lbn = off >> bshift;
1674 elbn = (off + len + bsize - 1) >> bshift;
1675 while (lbn < elbn) {
1676 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1677 if (error) {
1678 return error;
1680 if (blkno == (daddr_t)-1) {
1681 return ENOSPC;
1683 lbn += 1 + run;
1688 * Flush any cached pages for parts of the file that we're about to
1689 * access. If we're writing, invalidate pages as well.
1692 spoff = trunc_page(off);
1693 epoff = round_page(off + len);
1694 mutex_enter(&vp->v_interlock);
1695 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1696 if (error) {
1697 return error;
1701 * Wire the user pages and remap them into kernel memory.
1704 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1705 error = uvm_vslock(vs, (void *)uva, len, prot);
1706 if (error) {
1707 return error;
1710 map = &vs->vm_map;
1711 upm = vm_map_pmap(map);
1712 kpm = vm_map_pmap(kernel_map);
1713 kva = uvm_km_alloc(kernel_map, klen, 0,
1714 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1715 puva = trunc_page(uva);
1716 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1717 rv = pmap_extract(upm, puva + poff, &pa);
1718 KASSERT(rv);
1719 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1721 pmap_update(kpm);
1724 * Do the I/O.
1727 koff = uva - trunc_page(uva);
1728 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1729 genfs_dio_iodone);
1732 * Tear down the kernel mapping.
1735 pmap_remove(kpm, kva, kva + klen);
1736 pmap_update(kpm);
1737 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1740 * Unwire the user pages.
1743 uvm_vsunlock(vs, (void *)uva, len);
1744 return error;