Sync usage with man page.
[netbsd-mini2440.git] / sys / ufs / ffs / ffs_alloc.c
blob48bba6be9794d453fd1335350a2139eb4c3b44ab
1 /* $NetBSD: ffs_alloc.c,v 1.123 2009/04/25 08:32:32 sborrill Exp $ */
3 /*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
33 * Copyright (c) 2002 Networks Associates Technology, Inc.
34 * All rights reserved.
36 * This software was developed for the FreeBSD Project by Marshall
37 * Kirk McKusick and Network Associates Laboratories, the Security
38 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
39 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
40 * research program
42 * Copyright (c) 1982, 1986, 1989, 1993
43 * The Regents of the University of California. All rights reserved.
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
69 * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: ffs_alloc.c,v 1.123 2009/04/25 08:32:32 sborrill Exp $");
75 #if defined(_KERNEL_OPT)
76 #include "opt_ffs.h"
77 #include "opt_quota.h"
78 #endif
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/buf.h>
83 #include <sys/fstrans.h>
84 #include <sys/kauth.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/proc.h>
88 #include <sys/syslog.h>
89 #include <sys/vnode.h>
90 #include <sys/wapbl.h>
92 #include <miscfs/specfs/specdev.h>
93 #include <ufs/ufs/quota.h>
94 #include <ufs/ufs/ufsmount.h>
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/ufs_extern.h>
97 #include <ufs/ufs/ufs_bswap.h>
98 #include <ufs/ufs/ufs_wapbl.h>
100 #include <ufs/ffs/fs.h>
101 #include <ufs/ffs/ffs_extern.h>
103 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int, int);
104 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t, int);
105 static ino_t ffs_dirpref(struct inode *);
106 static daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int);
107 static void ffs_fserr(struct fs *, u_int, const char *);
108 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, int,
109 daddr_t (*)(struct inode *, int, daddr_t, int, int));
110 static daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int, int);
111 static int32_t ffs_mapsearch(struct fs *, struct cg *,
112 daddr_t, int);
113 static void ffs_blkfree_common(struct ufsmount *, struct fs *, dev_t, struct buf *,
114 daddr_t, long, bool);
115 static void ffs_freefile_common(struct ufsmount *, struct fs *, dev_t, struct buf *, ino_t,
116 int, bool);
118 /* if 1, changes in optimalization strategy are logged */
119 int ffs_log_changeopt = 0;
121 /* in ffs_tables.c */
122 extern const int inside[], around[];
123 extern const u_char * const fragtbl[];
125 /* Basic consistency check for block allocations */
126 static int
127 ffs_check_bad_allocation(const char *func, struct fs *fs, daddr_t bno,
128 long size, dev_t dev, ino_t inum)
130 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
131 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
132 printf("dev = 0x%llx, bno = %" PRId64 " bsize = %d, "
133 "size = %ld, fs = %s\n",
134 (long long)dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
135 panic("%s: bad size", func);
138 if (bno >= fs->fs_size) {
139 printf("bad block %" PRId64 ", ino %llu\n", bno,
140 (unsigned long long)inum);
141 ffs_fserr(fs, inum, "bad block");
142 return EINVAL;
144 return 0;
148 * Allocate a block in the file system.
150 * The size of the requested block is given, which must be some
151 * multiple of fs_fsize and <= fs_bsize.
152 * A preference may be optionally specified. If a preference is given
153 * the following hierarchy is used to allocate a block:
154 * 1) allocate the requested block.
155 * 2) allocate a rotationally optimal block in the same cylinder.
156 * 3) allocate a block in the same cylinder group.
157 * 4) quadradically rehash into other cylinder groups, until an
158 * available block is located.
159 * If no block preference is given the following hierarchy is used
160 * to allocate a block:
161 * 1) allocate a block in the cylinder group that contains the
162 * inode for the file.
163 * 2) quadradically rehash into other cylinder groups, until an
164 * available block is located.
166 * => called with um_lock held
167 * => releases um_lock before returning
170 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, int flags,
171 kauth_cred_t cred, daddr_t *bnp)
173 struct ufsmount *ump;
174 struct fs *fs;
175 daddr_t bno;
176 int cg;
177 #ifdef QUOTA
178 int error;
179 #endif
181 fs = ip->i_fs;
182 ump = ip->i_ump;
184 KASSERT(mutex_owned(&ump->um_lock));
186 #ifdef UVM_PAGE_TRKOWN
187 if (ITOV(ip)->v_type == VREG &&
188 lblktosize(fs, (voff_t)lbn) < round_page(ITOV(ip)->v_size)) {
189 struct vm_page *pg;
190 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
191 voff_t off = trunc_page(lblktosize(fs, lbn));
192 voff_t endoff = round_page(lblktosize(fs, lbn) + size);
194 mutex_enter(&uobj->vmobjlock);
195 while (off < endoff) {
196 pg = uvm_pagelookup(uobj, off);
197 KASSERT(pg != NULL);
198 KASSERT(pg->owner == curproc->p_pid);
199 off += PAGE_SIZE;
201 mutex_exit(&uobj->vmobjlock);
203 #endif
205 *bnp = 0;
206 #ifdef DIAGNOSTIC
207 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
208 printf("dev = 0x%llx, bsize = %d, size = %d, fs = %s\n",
209 (unsigned long long)ip->i_dev, fs->fs_bsize, size,
210 fs->fs_fsmnt);
211 panic("ffs_alloc: bad size");
213 if (cred == NOCRED)
214 panic("ffs_alloc: missing credential");
215 #endif /* DIAGNOSTIC */
216 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
217 goto nospace;
218 if (freespace(fs, fs->fs_minfree) <= 0 &&
219 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
220 NULL, NULL) != 0)
221 goto nospace;
222 #ifdef QUOTA
223 mutex_exit(&ump->um_lock);
224 if ((error = chkdq(ip, btodb(size), cred, 0)) != 0)
225 return (error);
226 mutex_enter(&ump->um_lock);
227 #endif
229 if (bpref >= fs->fs_size)
230 bpref = 0;
231 if (bpref == 0)
232 cg = ino_to_cg(fs, ip->i_number);
233 else
234 cg = dtog(fs, bpref);
235 bno = ffs_hashalloc(ip, cg, bpref, size, flags, ffs_alloccg);
236 if (bno > 0) {
237 DIP_ADD(ip, blocks, btodb(size));
238 ip->i_flag |= IN_CHANGE | IN_UPDATE;
239 *bnp = bno;
240 return (0);
242 #ifdef QUOTA
244 * Restore user's disk quota because allocation failed.
246 (void) chkdq(ip, -btodb(size), cred, FORCE);
247 #endif
248 if (flags & B_CONTIG) {
250 * XXX ump->um_lock handling is "suspect" at best.
251 * For the case where ffs_hashalloc() fails early
252 * in the B_CONTIG case we reach here with um_lock
253 * already unlocked, so we can't release it again
254 * like in the normal error path. See kern/39206.
257 * Fail silently - it's up to our caller to report
258 * errors.
260 return (ENOSPC);
262 nospace:
263 mutex_exit(&ump->um_lock);
264 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
265 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
266 return (ENOSPC);
270 * Reallocate a fragment to a bigger size
272 * The number and size of the old block is given, and a preference
273 * and new size is also specified. The allocator attempts to extend
274 * the original block. Failing that, the regular block allocator is
275 * invoked to get an appropriate block.
277 * => called with um_lock held
278 * => return with um_lock released
281 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize,
282 int nsize, kauth_cred_t cred, struct buf **bpp, daddr_t *blknop)
284 struct ufsmount *ump;
285 struct fs *fs;
286 struct buf *bp;
287 int cg, request, error;
288 daddr_t bprev, bno;
290 fs = ip->i_fs;
291 ump = ip->i_ump;
293 KASSERT(mutex_owned(&ump->um_lock));
295 #ifdef UVM_PAGE_TRKOWN
296 if (ITOV(ip)->v_type == VREG) {
297 struct vm_page *pg;
298 struct uvm_object *uobj = &ITOV(ip)->v_uobj;
299 voff_t off = trunc_page(lblktosize(fs, lbprev));
300 voff_t endoff = round_page(lblktosize(fs, lbprev) + osize);
302 mutex_enter(&uobj->vmobjlock);
303 while (off < endoff) {
304 pg = uvm_pagelookup(uobj, off);
305 KASSERT(pg != NULL);
306 KASSERT(pg->owner == curproc->p_pid);
307 KASSERT((pg->flags & PG_CLEAN) == 0);
308 off += PAGE_SIZE;
310 mutex_exit(&uobj->vmobjlock);
312 #endif
314 #ifdef DIAGNOSTIC
315 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
316 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
317 printf(
318 "dev = 0x%llx, bsize = %d, osize = %d, nsize = %d, fs = %s\n",
319 (unsigned long long)ip->i_dev, fs->fs_bsize, osize, nsize,
320 fs->fs_fsmnt);
321 panic("ffs_realloccg: bad size");
323 if (cred == NOCRED)
324 panic("ffs_realloccg: missing credential");
325 #endif /* DIAGNOSTIC */
326 if (freespace(fs, fs->fs_minfree) <= 0 &&
327 kauth_authorize_system(cred, KAUTH_SYSTEM_FS_RESERVEDSPACE, 0, NULL,
328 NULL, NULL) != 0) {
329 mutex_exit(&ump->um_lock);
330 goto nospace;
332 if (fs->fs_magic == FS_UFS2_MAGIC)
333 bprev = ufs_rw64(ip->i_ffs2_db[lbprev], UFS_FSNEEDSWAP(fs));
334 else
335 bprev = ufs_rw32(ip->i_ffs1_db[lbprev], UFS_FSNEEDSWAP(fs));
337 if (bprev == 0) {
338 printf("dev = 0x%llx, bsize = %d, bprev = %" PRId64 ", fs = %s\n",
339 (unsigned long long)ip->i_dev, fs->fs_bsize, bprev,
340 fs->fs_fsmnt);
341 panic("ffs_realloccg: bad bprev");
343 mutex_exit(&ump->um_lock);
346 * Allocate the extra space in the buffer.
348 if (bpp != NULL &&
349 (error = bread(ITOV(ip), lbprev, osize, NOCRED, 0, &bp)) != 0) {
350 brelse(bp, 0);
351 return (error);
353 #ifdef QUOTA
354 if ((error = chkdq(ip, btodb(nsize - osize), cred, 0)) != 0) {
355 if (bpp != NULL) {
356 brelse(bp, 0);
358 return (error);
360 #endif
362 * Check for extension in the existing location.
364 cg = dtog(fs, bprev);
365 mutex_enter(&ump->um_lock);
366 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) {
367 DIP_ADD(ip, blocks, btodb(nsize - osize));
368 ip->i_flag |= IN_CHANGE | IN_UPDATE;
370 if (bpp != NULL) {
371 if (bp->b_blkno != fsbtodb(fs, bno))
372 panic("bad blockno");
373 allocbuf(bp, nsize, 1);
374 memset((char *)bp->b_data + osize, 0, nsize - osize);
375 mutex_enter(bp->b_objlock);
376 KASSERT(!cv_has_waiters(&bp->b_done));
377 bp->b_oflags |= BO_DONE;
378 mutex_exit(bp->b_objlock);
379 *bpp = bp;
381 if (blknop != NULL) {
382 *blknop = bno;
384 return (0);
387 * Allocate a new disk location.
389 if (bpref >= fs->fs_size)
390 bpref = 0;
391 switch ((int)fs->fs_optim) {
392 case FS_OPTSPACE:
394 * Allocate an exact sized fragment. Although this makes
395 * best use of space, we will waste time relocating it if
396 * the file continues to grow. If the fragmentation is
397 * less than half of the minimum free reserve, we choose
398 * to begin optimizing for time.
400 request = nsize;
401 if (fs->fs_minfree < 5 ||
402 fs->fs_cstotal.cs_nffree >
403 fs->fs_dsize * fs->fs_minfree / (2 * 100))
404 break;
406 if (ffs_log_changeopt) {
407 log(LOG_NOTICE,
408 "%s: optimization changed from SPACE to TIME\n",
409 fs->fs_fsmnt);
412 fs->fs_optim = FS_OPTTIME;
413 break;
414 case FS_OPTTIME:
416 * At this point we have discovered a file that is trying to
417 * grow a small fragment to a larger fragment. To save time,
418 * we allocate a full sized block, then free the unused portion.
419 * If the file continues to grow, the `ffs_fragextend' call
420 * above will be able to grow it in place without further
421 * copying. If aberrant programs cause disk fragmentation to
422 * grow within 2% of the free reserve, we choose to begin
423 * optimizing for space.
425 request = fs->fs_bsize;
426 if (fs->fs_cstotal.cs_nffree <
427 fs->fs_dsize * (fs->fs_minfree - 2) / 100)
428 break;
430 if (ffs_log_changeopt) {
431 log(LOG_NOTICE,
432 "%s: optimization changed from TIME to SPACE\n",
433 fs->fs_fsmnt);
436 fs->fs_optim = FS_OPTSPACE;
437 break;
438 default:
439 printf("dev = 0x%llx, optim = %d, fs = %s\n",
440 (unsigned long long)ip->i_dev, fs->fs_optim, fs->fs_fsmnt);
441 panic("ffs_realloccg: bad optim");
442 /* NOTREACHED */
444 bno = ffs_hashalloc(ip, cg, bpref, request, 0, ffs_alloccg);
445 if (bno > 0) {
446 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
447 (ITOV(ip)->v_type != VREG)) {
448 UFS_WAPBL_REGISTER_DEALLOCATION(
449 ip->i_ump->um_mountp, fsbtodb(fs, bprev),
450 osize);
451 } else {
452 ffs_blkfree(fs, ip->i_devvp, bprev, (long)osize,
453 ip->i_number);
455 if (nsize < request) {
456 if ((ip->i_ump->um_mountp->mnt_wapbl) &&
457 (ITOV(ip)->v_type != VREG)) {
458 UFS_WAPBL_REGISTER_DEALLOCATION(
459 ip->i_ump->um_mountp,
460 fsbtodb(fs, (bno + numfrags(fs, nsize))),
461 request - nsize);
462 } else
463 ffs_blkfree(fs, ip->i_devvp,
464 bno + numfrags(fs, nsize),
465 (long)(request - nsize), ip->i_number);
467 DIP_ADD(ip, blocks, btodb(nsize - osize));
468 ip->i_flag |= IN_CHANGE | IN_UPDATE;
469 if (bpp != NULL) {
470 bp->b_blkno = fsbtodb(fs, bno);
471 allocbuf(bp, nsize, 1);
472 memset((char *)bp->b_data + osize, 0, (u_int)nsize - osize);
473 mutex_enter(bp->b_objlock);
474 KASSERT(!cv_has_waiters(&bp->b_done));
475 bp->b_oflags |= BO_DONE;
476 mutex_exit(bp->b_objlock);
477 *bpp = bp;
479 if (blknop != NULL) {
480 *blknop = bno;
482 return (0);
484 mutex_exit(&ump->um_lock);
486 #ifdef QUOTA
488 * Restore user's disk quota because allocation failed.
490 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
491 #endif
492 if (bpp != NULL) {
493 brelse(bp, 0);
496 nospace:
498 * no space available
500 ffs_fserr(fs, kauth_cred_geteuid(cred), "file system full");
501 uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
502 return (ENOSPC);
506 * Allocate an inode in the file system.
508 * If allocating a directory, use ffs_dirpref to select the inode.
509 * If allocating in a directory, the following hierarchy is followed:
510 * 1) allocate the preferred inode.
511 * 2) allocate an inode in the same cylinder group.
512 * 3) quadradically rehash into other cylinder groups, until an
513 * available inode is located.
514 * If no inode preference is given the following hierarchy is used
515 * to allocate an inode:
516 * 1) allocate an inode in cylinder group 0.
517 * 2) quadradically rehash into other cylinder groups, until an
518 * available inode is located.
520 * => um_lock not held upon entry or return
523 ffs_valloc(struct vnode *pvp, int mode, kauth_cred_t cred,
524 struct vnode **vpp)
526 struct ufsmount *ump;
527 struct inode *pip;
528 struct fs *fs;
529 struct inode *ip;
530 struct timespec ts;
531 ino_t ino, ipref;
532 int cg, error;
534 UFS_WAPBL_JUNLOCK_ASSERT(pvp->v_mount);
536 *vpp = NULL;
537 pip = VTOI(pvp);
538 fs = pip->i_fs;
539 ump = pip->i_ump;
541 error = UFS_WAPBL_BEGIN(pvp->v_mount);
542 if (error) {
543 return error;
545 mutex_enter(&ump->um_lock);
546 if (fs->fs_cstotal.cs_nifree == 0)
547 goto noinodes;
549 if ((mode & IFMT) == IFDIR)
550 ipref = ffs_dirpref(pip);
551 else
552 ipref = pip->i_number;
553 if (ipref >= fs->fs_ncg * fs->fs_ipg)
554 ipref = 0;
555 cg = ino_to_cg(fs, ipref);
557 * Track number of dirs created one after another
558 * in a same cg without intervening by files.
560 if ((mode & IFMT) == IFDIR) {
561 if (fs->fs_contigdirs[cg] < 255)
562 fs->fs_contigdirs[cg]++;
563 } else {
564 if (fs->fs_contigdirs[cg] > 0)
565 fs->fs_contigdirs[cg]--;
567 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, ffs_nodealloccg);
568 if (ino == 0)
569 goto noinodes;
570 UFS_WAPBL_END(pvp->v_mount);
571 error = VFS_VGET(pvp->v_mount, ino, vpp);
572 if (error) {
573 int err;
574 err = UFS_WAPBL_BEGIN(pvp->v_mount);
575 if (err == 0)
576 ffs_vfree(pvp, ino, mode);
577 if (err == 0)
578 UFS_WAPBL_END(pvp->v_mount);
579 return (error);
581 KASSERT((*vpp)->v_type == VNON);
582 ip = VTOI(*vpp);
583 if (ip->i_mode) {
584 #if 0
585 printf("mode = 0%o, inum = %d, fs = %s\n",
586 ip->i_mode, ip->i_number, fs->fs_fsmnt);
587 #else
588 printf("dmode %x mode %x dgen %x gen %x\n",
589 DIP(ip, mode), ip->i_mode,
590 DIP(ip, gen), ip->i_gen);
591 printf("size %llx blocks %llx\n",
592 (long long)DIP(ip, size), (long long)DIP(ip, blocks));
593 printf("ino %llu ipref %llu\n", (unsigned long long)ino,
594 (unsigned long long)ipref);
595 #if 0
596 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
597 (int)fs->fs_bsize, NOCRED, 0, &bp);
598 #endif
600 #endif
601 panic("ffs_valloc: dup alloc");
603 if (DIP(ip, blocks)) { /* XXX */
604 printf("free inode %s/%llu had %" PRId64 " blocks\n",
605 fs->fs_fsmnt, (unsigned long long)ino, DIP(ip, blocks));
606 DIP_ASSIGN(ip, blocks, 0);
608 ip->i_flag &= ~IN_SPACECOUNTED;
609 ip->i_flags = 0;
610 DIP_ASSIGN(ip, flags, 0);
612 * Set up a new generation number for this inode.
614 ip->i_gen++;
615 DIP_ASSIGN(ip, gen, ip->i_gen);
616 if (fs->fs_magic == FS_UFS2_MAGIC) {
617 vfs_timestamp(&ts);
618 ip->i_ffs2_birthtime = ts.tv_sec;
619 ip->i_ffs2_birthnsec = ts.tv_nsec;
621 return (0);
622 noinodes:
623 mutex_exit(&ump->um_lock);
624 UFS_WAPBL_END(pvp->v_mount);
625 ffs_fserr(fs, kauth_cred_geteuid(cred), "out of inodes");
626 uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
627 return (ENOSPC);
631 * Find a cylinder group in which to place a directory.
633 * The policy implemented by this algorithm is to allocate a
634 * directory inode in the same cylinder group as its parent
635 * directory, but also to reserve space for its files inodes
636 * and data. Restrict the number of directories which may be
637 * allocated one after another in the same cylinder group
638 * without intervening allocation of files.
640 * If we allocate a first level directory then force allocation
641 * in another cylinder group.
643 static ino_t
644 ffs_dirpref(struct inode *pip)
646 register struct fs *fs;
647 int cg, prefcg;
648 int64_t dirsize, cgsize, curdsz;
649 int avgifree, avgbfree, avgndir;
650 int minifree, minbfree, maxndir;
651 int mincg, minndir;
652 int maxcontigdirs;
654 KASSERT(mutex_owned(&pip->i_ump->um_lock));
656 fs = pip->i_fs;
658 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
659 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
660 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
663 * Force allocation in another cg if creating a first level dir.
665 if (ITOV(pip)->v_vflag & VV_ROOT) {
666 prefcg = random() % fs->fs_ncg;
667 mincg = prefcg;
668 minndir = fs->fs_ipg;
669 for (cg = prefcg; cg < fs->fs_ncg; cg++)
670 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
671 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
672 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
673 mincg = cg;
674 minndir = fs->fs_cs(fs, cg).cs_ndir;
676 for (cg = 0; cg < prefcg; cg++)
677 if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
678 fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
679 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
680 mincg = cg;
681 minndir = fs->fs_cs(fs, cg).cs_ndir;
683 return ((ino_t)(fs->fs_ipg * mincg));
687 * Count various limits which used for
688 * optimal allocation of a directory inode.
690 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
691 minifree = avgifree - fs->fs_ipg / 4;
692 if (minifree < 0)
693 minifree = 0;
694 minbfree = avgbfree - fragstoblks(fs, fs->fs_fpg) / 4;
695 if (minbfree < 0)
696 minbfree = 0;
697 cgsize = (int64_t)fs->fs_fsize * fs->fs_fpg;
698 dirsize = (int64_t)fs->fs_avgfilesize * fs->fs_avgfpdir;
699 if (avgndir != 0) {
700 curdsz = (cgsize - (int64_t)avgbfree * fs->fs_bsize) / avgndir;
701 if (dirsize < curdsz)
702 dirsize = curdsz;
704 if (cgsize < dirsize * 255)
705 maxcontigdirs = cgsize / dirsize;
706 else
707 maxcontigdirs = 255;
708 if (fs->fs_avgfpdir > 0)
709 maxcontigdirs = min(maxcontigdirs,
710 fs->fs_ipg / fs->fs_avgfpdir);
711 if (maxcontigdirs == 0)
712 maxcontigdirs = 1;
715 * Limit number of dirs in one cg and reserve space for
716 * regular files, but only if we have no deficit in
717 * inodes or space.
719 prefcg = ino_to_cg(fs, pip->i_number);
720 for (cg = prefcg; cg < fs->fs_ncg; cg++)
721 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
722 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
723 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
724 if (fs->fs_contigdirs[cg] < maxcontigdirs)
725 return ((ino_t)(fs->fs_ipg * cg));
727 for (cg = 0; cg < prefcg; cg++)
728 if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
729 fs->fs_cs(fs, cg).cs_nifree >= minifree &&
730 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
731 if (fs->fs_contigdirs[cg] < maxcontigdirs)
732 return ((ino_t)(fs->fs_ipg * cg));
735 * This is a backstop when we are deficient in space.
737 for (cg = prefcg; cg < fs->fs_ncg; cg++)
738 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
739 return ((ino_t)(fs->fs_ipg * cg));
740 for (cg = 0; cg < prefcg; cg++)
741 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
742 break;
743 return ((ino_t)(fs->fs_ipg * cg));
747 * Select the desired position for the next block in a file. The file is
748 * logically divided into sections. The first section is composed of the
749 * direct blocks. Each additional section contains fs_maxbpg blocks.
751 * If no blocks have been allocated in the first section, the policy is to
752 * request a block in the same cylinder group as the inode that describes
753 * the file. If no blocks have been allocated in any other section, the
754 * policy is to place the section in a cylinder group with a greater than
755 * average number of free blocks. An appropriate cylinder group is found
756 * by using a rotor that sweeps the cylinder groups. When a new group of
757 * blocks is needed, the sweep begins in the cylinder group following the
758 * cylinder group from which the previous allocation was made. The sweep
759 * continues until a cylinder group with greater than the average number
760 * of free blocks is found. If the allocation is for the first block in an
761 * indirect block, the information on the previous allocation is unavailable;
762 * here a best guess is made based upon the logical block number being
763 * allocated.
765 * If a section is already partially allocated, the policy is to
766 * contiguously allocate fs_maxcontig blocks. The end of one of these
767 * contiguous blocks and the beginning of the next is laid out
768 * contigously if possible.
770 * => um_lock held on entry and exit
772 daddr_t
773 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int flags,
774 int32_t *bap /* XXX ondisk32 */)
776 struct fs *fs;
777 int cg;
778 int avgbfree, startcg;
780 KASSERT(mutex_owned(&ip->i_ump->um_lock));
782 fs = ip->i_fs;
785 * If allocating a contiguous file with B_CONTIG, use the hints
786 * in the inode extentions to return the desired block.
788 * For metadata (indirect blocks) return the address of where
789 * the first indirect block resides - we'll scan for the next
790 * available slot if we need to allocate more than one indirect
791 * block. For data, return the address of the actual block
792 * relative to the address of the first data block.
794 if (flags & B_CONTIG) {
795 KASSERT(ip->i_ffs_first_data_blk != 0);
796 KASSERT(ip->i_ffs_first_indir_blk != 0);
797 if (flags & B_METAONLY)
798 return ip->i_ffs_first_indir_blk;
799 else
800 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
803 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
804 if (lbn < NDADDR + NINDIR(fs)) {
805 cg = ino_to_cg(fs, ip->i_number);
806 return (cgbase(fs, cg) + fs->fs_frag);
809 * Find a cylinder with greater than average number of
810 * unused data blocks.
812 if (indx == 0 || bap[indx - 1] == 0)
813 startcg =
814 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
815 else
816 startcg = dtog(fs,
817 ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
818 startcg %= fs->fs_ncg;
819 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
820 for (cg = startcg; cg < fs->fs_ncg; cg++)
821 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
822 return (cgbase(fs, cg) + fs->fs_frag);
824 for (cg = 0; cg < startcg; cg++)
825 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
826 return (cgbase(fs, cg) + fs->fs_frag);
828 return (0);
831 * We just always try to lay things out contiguously.
833 return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
836 daddr_t
837 ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int flags,
838 int64_t *bap)
840 struct fs *fs;
841 int cg;
842 int avgbfree, startcg;
844 KASSERT(mutex_owned(&ip->i_ump->um_lock));
846 fs = ip->i_fs;
849 * If allocating a contiguous file with B_CONTIG, use the hints
850 * in the inode extentions to return the desired block.
852 * For metadata (indirect blocks) return the address of where
853 * the first indirect block resides - we'll scan for the next
854 * available slot if we need to allocate more than one indirect
855 * block. For data, return the address of the actual block
856 * relative to the address of the first data block.
858 if (flags & B_CONTIG) {
859 KASSERT(ip->i_ffs_first_data_blk != 0);
860 KASSERT(ip->i_ffs_first_indir_blk != 0);
861 if (flags & B_METAONLY)
862 return ip->i_ffs_first_indir_blk;
863 else
864 return ip->i_ffs_first_data_blk + blkstofrags(fs, lbn);
867 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
868 if (lbn < NDADDR + NINDIR(fs)) {
869 cg = ino_to_cg(fs, ip->i_number);
870 return (cgbase(fs, cg) + fs->fs_frag);
873 * Find a cylinder with greater than average number of
874 * unused data blocks.
876 if (indx == 0 || bap[indx - 1] == 0)
877 startcg =
878 ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
879 else
880 startcg = dtog(fs,
881 ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
882 startcg %= fs->fs_ncg;
883 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
884 for (cg = startcg; cg < fs->fs_ncg; cg++)
885 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
886 return (cgbase(fs, cg) + fs->fs_frag);
888 for (cg = 0; cg < startcg; cg++)
889 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
890 return (cgbase(fs, cg) + fs->fs_frag);
892 return (0);
895 * We just always try to lay things out contiguously.
897 return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
902 * Implement the cylinder overflow algorithm.
904 * The policy implemented by this algorithm is:
905 * 1) allocate the block in its requested cylinder group.
906 * 2) quadradically rehash on the cylinder group number.
907 * 3) brute force search for a free block.
909 * => called with um_lock held
910 * => returns with um_lock released on success, held on failure
911 * (*allocator releases lock on success, retains lock on failure)
913 /*VARARGS5*/
914 static daddr_t
915 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref,
916 int size /* size for data blocks, mode for inodes */,
917 int flags, daddr_t (*allocator)(struct inode *, int, daddr_t, int, int))
919 struct fs *fs;
920 daddr_t result;
921 int i, icg = cg;
923 fs = ip->i_fs;
925 * 1: preferred cylinder group
927 result = (*allocator)(ip, cg, pref, size, flags);
928 if (result)
929 return (result);
931 if (flags & B_CONTIG)
932 return (result);
934 * 2: quadratic rehash
936 for (i = 1; i < fs->fs_ncg; i *= 2) {
937 cg += i;
938 if (cg >= fs->fs_ncg)
939 cg -= fs->fs_ncg;
940 result = (*allocator)(ip, cg, 0, size, flags);
941 if (result)
942 return (result);
945 * 3: brute force search
946 * Note that we start at i == 2, since 0 was checked initially,
947 * and 1 is always checked in the quadratic rehash.
949 cg = (icg + 2) % fs->fs_ncg;
950 for (i = 2; i < fs->fs_ncg; i++) {
951 result = (*allocator)(ip, cg, 0, size, flags);
952 if (result)
953 return (result);
954 cg++;
955 if (cg == fs->fs_ncg)
956 cg = 0;
958 return (0);
962 * Determine whether a fragment can be extended.
964 * Check to see if the necessary fragments are available, and
965 * if they are, allocate them.
967 * => called with um_lock held
968 * => returns with um_lock released on success, held on failure
970 static daddr_t
971 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize)
973 struct ufsmount *ump;
974 struct fs *fs;
975 struct cg *cgp;
976 struct buf *bp;
977 daddr_t bno;
978 int frags, bbase;
979 int i, error;
980 u_int8_t *blksfree;
982 fs = ip->i_fs;
983 ump = ip->i_ump;
985 KASSERT(mutex_owned(&ump->um_lock));
987 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
988 return (0);
989 frags = numfrags(fs, nsize);
990 bbase = fragnum(fs, bprev);
991 if (bbase > fragnum(fs, (bprev + frags - 1))) {
992 /* cannot extend across a block boundary */
993 return (0);
995 mutex_exit(&ump->um_lock);
996 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
997 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
998 if (error)
999 goto fail;
1000 cgp = (struct cg *)bp->b_data;
1001 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs)))
1002 goto fail;
1003 cgp->cg_old_time = ufs_rw32(time_second, UFS_FSNEEDSWAP(fs));
1004 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1005 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1006 cgp->cg_time = ufs_rw64(time_second, UFS_FSNEEDSWAP(fs));
1007 bno = dtogd(fs, bprev);
1008 blksfree = cg_blksfree(cgp, UFS_FSNEEDSWAP(fs));
1009 for (i = numfrags(fs, osize); i < frags; i++)
1010 if (isclr(blksfree, bno + i))
1011 goto fail;
1013 * the current fragment can be extended
1014 * deduct the count on fragment being extended into
1015 * increase the count on the remaining fragment (if any)
1016 * allocate the extended piece
1018 for (i = frags; i < fs->fs_frag - bbase; i++)
1019 if (isclr(blksfree, bno + i))
1020 break;
1021 ufs_add32(cgp->cg_frsum[i - numfrags(fs, osize)], -1, UFS_FSNEEDSWAP(fs));
1022 if (i != frags)
1023 ufs_add32(cgp->cg_frsum[i - frags], 1, UFS_FSNEEDSWAP(fs));
1024 mutex_enter(&ump->um_lock);
1025 for (i = numfrags(fs, osize); i < frags; i++) {
1026 clrbit(blksfree, bno + i);
1027 ufs_add32(cgp->cg_cs.cs_nffree, -1, UFS_FSNEEDSWAP(fs));
1028 fs->fs_cstotal.cs_nffree--;
1029 fs->fs_cs(fs, cg).cs_nffree--;
1031 fs->fs_fmod = 1;
1032 ACTIVECG_CLR(fs, cg);
1033 mutex_exit(&ump->um_lock);
1034 bdwrite(bp);
1035 return (bprev);
1037 fail:
1038 brelse(bp, 0);
1039 mutex_enter(&ump->um_lock);
1040 return (0);
1044 * Determine whether a block can be allocated.
1046 * Check to see if a block of the appropriate size is available,
1047 * and if it is, allocate it.
1049 static daddr_t
1050 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size, int flags)
1052 struct ufsmount *ump;
1053 struct fs *fs = ip->i_fs;
1054 struct cg *cgp;
1055 struct buf *bp;
1056 int32_t bno;
1057 daddr_t blkno;
1058 int error, frags, allocsiz, i;
1059 u_int8_t *blksfree;
1060 #ifdef FFS_EI
1061 const int needswap = UFS_FSNEEDSWAP(fs);
1062 #endif
1064 ump = ip->i_ump;
1066 KASSERT(mutex_owned(&ump->um_lock));
1068 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1069 return (0);
1070 mutex_exit(&ump->um_lock);
1071 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1072 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1073 if (error)
1074 goto fail;
1075 cgp = (struct cg *)bp->b_data;
1076 if (!cg_chkmagic(cgp, needswap) ||
1077 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1078 goto fail;
1079 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1080 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1081 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1082 cgp->cg_time = ufs_rw64(time_second, needswap);
1083 if (size == fs->fs_bsize) {
1084 mutex_enter(&ump->um_lock);
1085 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1086 ACTIVECG_CLR(fs, cg);
1087 mutex_exit(&ump->um_lock);
1088 bdwrite(bp);
1089 return (blkno);
1092 * check to see if any fragments are already available
1093 * allocsiz is the size which will be allocated, hacking
1094 * it down to a smaller size if necessary
1096 blksfree = cg_blksfree(cgp, needswap);
1097 frags = numfrags(fs, size);
1098 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1099 if (cgp->cg_frsum[allocsiz] != 0)
1100 break;
1101 if (allocsiz == fs->fs_frag) {
1103 * no fragments were available, so a block will be
1104 * allocated, and hacked up
1106 if (cgp->cg_cs.cs_nbfree == 0)
1107 goto fail;
1108 mutex_enter(&ump->um_lock);
1109 blkno = ffs_alloccgblk(ip, bp, bpref, flags);
1110 bno = dtogd(fs, blkno);
1111 for (i = frags; i < fs->fs_frag; i++)
1112 setbit(blksfree, bno + i);
1113 i = fs->fs_frag - frags;
1114 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1115 fs->fs_cstotal.cs_nffree += i;
1116 fs->fs_cs(fs, cg).cs_nffree += i;
1117 fs->fs_fmod = 1;
1118 ufs_add32(cgp->cg_frsum[i], 1, needswap);
1119 ACTIVECG_CLR(fs, cg);
1120 mutex_exit(&ump->um_lock);
1121 bdwrite(bp);
1122 return (blkno);
1124 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1125 #if 0
1127 * XXX fvdl mapsearch will panic, and never return -1
1128 * also: returning NULL as daddr_t ?
1130 if (bno < 0)
1131 goto fail;
1132 #endif
1133 for (i = 0; i < frags; i++)
1134 clrbit(blksfree, bno + i);
1135 mutex_enter(&ump->um_lock);
1136 ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
1137 fs->fs_cstotal.cs_nffree -= frags;
1138 fs->fs_cs(fs, cg).cs_nffree -= frags;
1139 fs->fs_fmod = 1;
1140 ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
1141 if (frags != allocsiz)
1142 ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
1143 blkno = cgbase(fs, cg) + bno;
1144 ACTIVECG_CLR(fs, cg);
1145 mutex_exit(&ump->um_lock);
1146 bdwrite(bp);
1147 return blkno;
1149 fail:
1150 brelse(bp, 0);
1151 mutex_enter(&ump->um_lock);
1152 return (0);
1156 * Allocate a block in a cylinder group.
1158 * This algorithm implements the following policy:
1159 * 1) allocate the requested block.
1160 * 2) allocate a rotationally optimal block in the same cylinder.
1161 * 3) allocate the next available block on the block rotor for the
1162 * specified cylinder group.
1163 * Note that this routine only allocates fs_bsize blocks; these
1164 * blocks may be fragmented by the routine that allocates them.
1166 static daddr_t
1167 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref, int flags)
1169 struct ufsmount *ump;
1170 struct fs *fs = ip->i_fs;
1171 struct cg *cgp;
1172 int cg;
1173 daddr_t blkno;
1174 int32_t bno;
1175 u_int8_t *blksfree;
1176 #ifdef FFS_EI
1177 const int needswap = UFS_FSNEEDSWAP(fs);
1178 #endif
1180 ump = ip->i_ump;
1182 KASSERT(mutex_owned(&ump->um_lock));
1184 cgp = (struct cg *)bp->b_data;
1185 blksfree = cg_blksfree(cgp, needswap);
1186 if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
1187 bpref = ufs_rw32(cgp->cg_rotor, needswap);
1188 } else {
1189 bpref = blknum(fs, bpref);
1190 bno = dtogd(fs, bpref);
1192 * if the requested block is available, use it
1194 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1195 goto gotit;
1197 * if the requested data block isn't available and we are
1198 * trying to allocate a contiguous file, return an error.
1200 if ((flags & (B_CONTIG | B_METAONLY)) == B_CONTIG)
1201 return (0);
1205 * Take the next available block in this cylinder group.
1207 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1208 if (bno < 0)
1209 return (0);
1210 cgp->cg_rotor = ufs_rw32(bno, needswap);
1211 gotit:
1212 blkno = fragstoblks(fs, bno);
1213 ffs_clrblock(fs, blksfree, blkno);
1214 ffs_clusteracct(fs, cgp, blkno, -1);
1215 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1216 fs->fs_cstotal.cs_nbfree--;
1217 fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
1218 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1219 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1220 int cylno;
1221 cylno = old_cbtocylno(fs, bno);
1222 KASSERT(cylno >= 0);
1223 KASSERT(cylno < fs->fs_old_ncyl);
1224 KASSERT(old_cbtorpos(fs, bno) >= 0);
1225 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bno) < fs->fs_old_nrpos);
1226 ufs_add16(old_cg_blks(fs, cgp, cylno, needswap)[old_cbtorpos(fs, bno)], -1,
1227 needswap);
1228 ufs_add32(old_cg_blktot(cgp, needswap)[cylno], -1, needswap);
1230 fs->fs_fmod = 1;
1231 cg = ufs_rw32(cgp->cg_cgx, needswap);
1232 blkno = cgbase(fs, cg) + bno;
1233 return (blkno);
1237 * Determine whether an inode can be allocated.
1239 * Check to see if an inode is available, and if it is,
1240 * allocate it using the following policy:
1241 * 1) allocate the requested inode.
1242 * 2) allocate the next available inode after the requested
1243 * inode in the specified cylinder group.
1245 static daddr_t
1246 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode, int flags)
1248 struct ufsmount *ump = ip->i_ump;
1249 struct fs *fs = ip->i_fs;
1250 struct cg *cgp;
1251 struct buf *bp, *ibp;
1252 u_int8_t *inosused;
1253 int error, start, len, loc, map, i;
1254 int32_t initediblk;
1255 daddr_t nalloc;
1256 struct ufs2_dinode *dp2;
1257 #ifdef FFS_EI
1258 const int needswap = UFS_FSNEEDSWAP(fs);
1259 #endif
1261 KASSERT(mutex_owned(&ump->um_lock));
1262 UFS_WAPBL_JLOCK_ASSERT(ip->i_ump->um_mountp);
1264 if (fs->fs_cs(fs, cg).cs_nifree == 0)
1265 return (0);
1266 mutex_exit(&ump->um_lock);
1267 ibp = NULL;
1268 initediblk = -1;
1269 retry:
1270 error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1271 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1272 if (error)
1273 goto fail;
1274 cgp = (struct cg *)bp->b_data;
1275 if (!cg_chkmagic(cgp, needswap) || cgp->cg_cs.cs_nifree == 0)
1276 goto fail;
1278 if (ibp != NULL &&
1279 initediblk != ufs_rw32(cgp->cg_initediblk, needswap)) {
1280 /* Another thread allocated more inodes so we retry the test. */
1281 brelse(ibp, 0);
1282 ibp = NULL;
1285 * Check to see if we need to initialize more inodes.
1287 if (fs->fs_magic == FS_UFS2_MAGIC && ibp == NULL) {
1288 initediblk = ufs_rw32(cgp->cg_initediblk, needswap);
1289 nalloc = fs->fs_ipg - ufs_rw32(cgp->cg_cs.cs_nifree, needswap);
1290 if (nalloc + INOPB(fs) > initediblk &&
1291 initediblk < ufs_rw32(cgp->cg_niblk, needswap)) {
1293 * We have to release the cg buffer here to prevent
1294 * a deadlock when reading the inode block will
1295 * run a copy-on-write that might use this cg.
1297 brelse(bp, 0);
1298 bp = NULL;
1299 error = ffs_getblk(ip->i_devvp, fsbtodb(fs,
1300 ino_to_fsba(fs, cg * fs->fs_ipg + initediblk)),
1301 FFS_NOBLK, fs->fs_bsize, false, &ibp);
1302 if (error)
1303 goto fail;
1304 goto retry;
1308 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1309 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1310 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1311 cgp->cg_time = ufs_rw64(time_second, needswap);
1312 inosused = cg_inosused(cgp, needswap);
1313 if (ipref) {
1314 ipref %= fs->fs_ipg;
1315 if (isclr(inosused, ipref))
1316 goto gotit;
1318 start = ufs_rw32(cgp->cg_irotor, needswap) / NBBY;
1319 len = howmany(fs->fs_ipg - ufs_rw32(cgp->cg_irotor, needswap),
1320 NBBY);
1321 loc = skpc(0xff, len, &inosused[start]);
1322 if (loc == 0) {
1323 len = start + 1;
1324 start = 0;
1325 loc = skpc(0xff, len, &inosused[0]);
1326 if (loc == 0) {
1327 printf("cg = %d, irotor = %d, fs = %s\n",
1328 cg, ufs_rw32(cgp->cg_irotor, needswap),
1329 fs->fs_fsmnt);
1330 panic("ffs_nodealloccg: map corrupted");
1331 /* NOTREACHED */
1334 i = start + len - loc;
1335 map = inosused[i];
1336 ipref = i * NBBY;
1337 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1338 if ((map & i) == 0) {
1339 cgp->cg_irotor = ufs_rw32(ipref, needswap);
1340 goto gotit;
1343 printf("fs = %s\n", fs->fs_fsmnt);
1344 panic("ffs_nodealloccg: block not in map");
1345 /* NOTREACHED */
1346 gotit:
1347 UFS_WAPBL_REGISTER_INODE(ip->i_ump->um_mountp, cg * fs->fs_ipg + ipref,
1348 mode);
1350 * Check to see if we need to initialize more inodes.
1352 if (ibp != NULL) {
1353 KASSERT(initediblk == ufs_rw32(cgp->cg_initediblk, needswap));
1354 memset(ibp->b_data, 0, fs->fs_bsize);
1355 dp2 = (struct ufs2_dinode *)(ibp->b_data);
1356 for (i = 0; i < INOPB(fs); i++) {
1358 * Don't bother to swap, it's supposed to be
1359 * random, after all.
1361 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1;
1362 dp2++;
1364 initediblk += INOPB(fs);
1365 cgp->cg_initediblk = ufs_rw32(initediblk, needswap);
1368 mutex_enter(&ump->um_lock);
1369 ACTIVECG_CLR(fs, cg);
1370 setbit(inosused, ipref);
1371 ufs_add32(cgp->cg_cs.cs_nifree, -1, needswap);
1372 fs->fs_cstotal.cs_nifree--;
1373 fs->fs_cs(fs, cg).cs_nifree--;
1374 fs->fs_fmod = 1;
1375 if ((mode & IFMT) == IFDIR) {
1376 ufs_add32(cgp->cg_cs.cs_ndir, 1, needswap);
1377 fs->fs_cstotal.cs_ndir++;
1378 fs->fs_cs(fs, cg).cs_ndir++;
1380 mutex_exit(&ump->um_lock);
1381 if (ibp != NULL) {
1382 bwrite(bp);
1383 bawrite(ibp);
1384 } else
1385 bdwrite(bp);
1386 return (cg * fs->fs_ipg + ipref);
1387 fail:
1388 if (bp != NULL)
1389 brelse(bp, 0);
1390 if (ibp != NULL)
1391 brelse(ibp, 0);
1392 mutex_enter(&ump->um_lock);
1393 return (0);
1397 * Allocate a block or fragment.
1399 * The specified block or fragment is removed from the
1400 * free map, possibly fragmenting a block in the process.
1402 * This implementation should mirror fs_blkfree
1404 * => um_lock not held on entry or exit
1407 ffs_blkalloc(struct inode *ip, daddr_t bno, long size)
1409 int error;
1411 error = ffs_check_bad_allocation(__func__, ip->i_fs, bno, size,
1412 ip->i_dev, ip->i_uid);
1413 if (error)
1414 return error;
1416 return ffs_blkalloc_ump(ip->i_ump, bno, size);
1420 ffs_blkalloc_ump(struct ufsmount *ump, daddr_t bno, long size)
1422 struct fs *fs = ump->um_fs;
1423 struct cg *cgp;
1424 struct buf *bp;
1425 int32_t fragno, cgbno;
1426 int i, error, cg, blk, frags, bbase;
1427 u_int8_t *blksfree;
1428 const int needswap = UFS_FSNEEDSWAP(fs);
1430 KASSERT((u_int)size <= fs->fs_bsize && fragoff(fs, size) == 0 &&
1431 fragnum(fs, bno) + numfrags(fs, size) <= fs->fs_frag);
1432 KASSERT(bno < fs->fs_size);
1434 cg = dtog(fs, bno);
1435 error = bread(ump->um_devvp, fsbtodb(fs, cgtod(fs, cg)),
1436 (int)fs->fs_cgsize, NOCRED, B_MODIFY, &bp);
1437 if (error) {
1438 brelse(bp, 0);
1439 return error;
1441 cgp = (struct cg *)bp->b_data;
1442 if (!cg_chkmagic(cgp, needswap)) {
1443 brelse(bp, 0);
1444 return EIO;
1446 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1447 cgp->cg_time = ufs_rw64(time_second, needswap);
1448 cgbno = dtogd(fs, bno);
1449 blksfree = cg_blksfree(cgp, needswap);
1451 mutex_enter(&ump->um_lock);
1452 if (size == fs->fs_bsize) {
1453 fragno = fragstoblks(fs, cgbno);
1454 if (!ffs_isblock(fs, blksfree, fragno)) {
1455 mutex_exit(&ump->um_lock);
1456 brelse(bp, 0);
1457 return EBUSY;
1459 ffs_clrblock(fs, blksfree, fragno);
1460 ffs_clusteracct(fs, cgp, fragno, -1);
1461 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1462 fs->fs_cstotal.cs_nbfree--;
1463 fs->fs_cs(fs, cg).cs_nbfree--;
1464 } else {
1465 bbase = cgbno - fragnum(fs, cgbno);
1467 frags = numfrags(fs, size);
1468 for (i = 0; i < frags; i++) {
1469 if (isclr(blksfree, cgbno + i)) {
1470 mutex_exit(&ump->um_lock);
1471 brelse(bp, 0);
1472 return EBUSY;
1476 * if a complete block is being split, account for it
1478 fragno = fragstoblks(fs, bbase);
1479 if (ffs_isblock(fs, blksfree, fragno)) {
1480 ufs_add32(cgp->cg_cs.cs_nffree, fs->fs_frag, needswap);
1481 fs->fs_cstotal.cs_nffree += fs->fs_frag;
1482 fs->fs_cs(fs, cg).cs_nffree += fs->fs_frag;
1483 ffs_clusteracct(fs, cgp, fragno, -1);
1484 ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
1485 fs->fs_cstotal.cs_nbfree--;
1486 fs->fs_cs(fs, cg).cs_nbfree--;
1489 * decrement the counts associated with the old frags
1491 blk = blkmap(fs, blksfree, bbase);
1492 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1494 * allocate the fragment
1496 for (i = 0; i < frags; i++) {
1497 clrbit(blksfree, cgbno + i);
1499 ufs_add32(cgp->cg_cs.cs_nffree, -i, needswap);
1500 fs->fs_cstotal.cs_nffree -= i;
1501 fs->fs_cs(fs, cg).cs_nffree -= i;
1503 * add back in counts associated with the new frags
1505 blk = blkmap(fs, blksfree, bbase);
1506 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1508 fs->fs_fmod = 1;
1509 ACTIVECG_CLR(fs, cg);
1510 mutex_exit(&ump->um_lock);
1511 bdwrite(bp);
1512 return 0;
1516 * Free a block or fragment.
1518 * The specified block or fragment is placed back in the
1519 * free map. If a fragment is deallocated, a possible
1520 * block reassembly is checked.
1522 * => um_lock not held on entry or exit
1524 void
1525 ffs_blkfree(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1526 ino_t inum)
1528 struct cg *cgp;
1529 struct buf *bp;
1530 struct ufsmount *ump;
1531 daddr_t cgblkno;
1532 int error, cg;
1533 dev_t dev;
1534 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1535 #ifdef FFS_EI
1536 const int needswap = UFS_FSNEEDSWAP(fs);
1537 #endif
1539 KASSERT(!devvp_is_snapshot);
1541 cg = dtog(fs, bno);
1542 dev = devvp->v_rdev;
1543 ump = VFSTOUFS(devvp->v_specmountpoint);
1544 KASSERT(fs == ump->um_fs);
1545 cgblkno = fsbtodb(fs, cgtod(fs, cg));
1546 if (ffs_snapblkfree(fs, devvp, bno, size, inum))
1547 return;
1549 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1550 if (error)
1551 return;
1553 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1554 NOCRED, B_MODIFY, &bp);
1555 if (error) {
1556 brelse(bp, 0);
1557 return;
1559 cgp = (struct cg *)bp->b_data;
1560 if (!cg_chkmagic(cgp, needswap)) {
1561 brelse(bp, 0);
1562 return;
1565 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1567 bdwrite(bp);
1571 * Free a block or fragment from a snapshot cg copy.
1573 * The specified block or fragment is placed back in the
1574 * free map. If a fragment is deallocated, a possible
1575 * block reassembly is checked.
1577 * => um_lock not held on entry or exit
1579 void
1580 ffs_blkfree_snap(struct fs *fs, struct vnode *devvp, daddr_t bno, long size,
1581 ino_t inum)
1583 struct cg *cgp;
1584 struct buf *bp;
1585 struct ufsmount *ump;
1586 daddr_t cgblkno;
1587 int error, cg;
1588 dev_t dev;
1589 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1590 #ifdef FFS_EI
1591 const int needswap = UFS_FSNEEDSWAP(fs);
1592 #endif
1594 KASSERT(devvp_is_snapshot);
1596 cg = dtog(fs, bno);
1597 dev = VTOI(devvp)->i_devvp->v_rdev;
1598 ump = VFSTOUFS(devvp->v_mount);
1599 cgblkno = fragstoblks(fs, cgtod(fs, cg));
1601 error = ffs_check_bad_allocation(__func__, fs, bno, size, dev, inum);
1602 if (error)
1603 return;
1605 error = bread(devvp, cgblkno, (int)fs->fs_cgsize,
1606 NOCRED, B_MODIFY, &bp);
1607 if (error) {
1608 brelse(bp, 0);
1609 return;
1611 cgp = (struct cg *)bp->b_data;
1612 if (!cg_chkmagic(cgp, needswap)) {
1613 brelse(bp, 0);
1614 return;
1617 ffs_blkfree_common(ump, fs, dev, bp, bno, size, devvp_is_snapshot);
1619 bdwrite(bp);
1622 static void
1623 ffs_blkfree_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1624 struct buf *bp, daddr_t bno, long size, bool devvp_is_snapshot)
1626 struct cg *cgp;
1627 int32_t fragno, cgbno;
1628 int i, cg, blk, frags, bbase;
1629 u_int8_t *blksfree;
1630 const int needswap = UFS_FSNEEDSWAP(fs);
1632 cg = dtog(fs, bno);
1633 cgp = (struct cg *)bp->b_data;
1634 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1635 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1636 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1637 cgp->cg_time = ufs_rw64(time_second, needswap);
1638 cgbno = dtogd(fs, bno);
1639 blksfree = cg_blksfree(cgp, needswap);
1640 mutex_enter(&ump->um_lock);
1641 if (size == fs->fs_bsize) {
1642 fragno = fragstoblks(fs, cgbno);
1643 if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1644 if (devvp_is_snapshot) {
1645 mutex_exit(&ump->um_lock);
1646 return;
1648 printf("dev = 0x%llx, block = %" PRId64 ", fs = %s\n",
1649 (unsigned long long)dev, bno, fs->fs_fsmnt);
1650 panic("blkfree: freeing free block");
1652 ffs_setblock(fs, blksfree, fragno);
1653 ffs_clusteracct(fs, cgp, fragno, 1);
1654 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1655 fs->fs_cstotal.cs_nbfree++;
1656 fs->fs_cs(fs, cg).cs_nbfree++;
1657 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1658 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1659 i = old_cbtocylno(fs, cgbno);
1660 KASSERT(i >= 0);
1661 KASSERT(i < fs->fs_old_ncyl);
1662 KASSERT(old_cbtorpos(fs, cgbno) >= 0);
1663 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, cgbno) < fs->fs_old_nrpos);
1664 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs, cgbno)], 1,
1665 needswap);
1666 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1668 } else {
1669 bbase = cgbno - fragnum(fs, cgbno);
1671 * decrement the counts associated with the old frags
1673 blk = blkmap(fs, blksfree, bbase);
1674 ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
1676 * deallocate the fragment
1678 frags = numfrags(fs, size);
1679 for (i = 0; i < frags; i++) {
1680 if (isset(blksfree, cgbno + i)) {
1681 printf("dev = 0x%llx, block = %" PRId64
1682 ", fs = %s\n",
1683 (unsigned long long)dev, bno + i,
1684 fs->fs_fsmnt);
1685 panic("blkfree: freeing free frag");
1687 setbit(blksfree, cgbno + i);
1689 ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
1690 fs->fs_cstotal.cs_nffree += i;
1691 fs->fs_cs(fs, cg).cs_nffree += i;
1693 * add back in counts associated with the new frags
1695 blk = blkmap(fs, blksfree, bbase);
1696 ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
1698 * if a complete block has been reassembled, account for it
1700 fragno = fragstoblks(fs, bbase);
1701 if (ffs_isblock(fs, blksfree, fragno)) {
1702 ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
1703 fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1704 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1705 ffs_clusteracct(fs, cgp, fragno, 1);
1706 ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
1707 fs->fs_cstotal.cs_nbfree++;
1708 fs->fs_cs(fs, cg).cs_nbfree++;
1709 if ((fs->fs_magic == FS_UFS1_MAGIC) &&
1710 ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
1711 i = old_cbtocylno(fs, bbase);
1712 KASSERT(i >= 0);
1713 KASSERT(i < fs->fs_old_ncyl);
1714 KASSERT(old_cbtorpos(fs, bbase) >= 0);
1715 KASSERT(fs->fs_old_nrpos == 0 || old_cbtorpos(fs, bbase) < fs->fs_old_nrpos);
1716 ufs_add16(old_cg_blks(fs, cgp, i, needswap)[old_cbtorpos(fs,
1717 bbase)], 1, needswap);
1718 ufs_add32(old_cg_blktot(cgp, needswap)[i], 1, needswap);
1722 fs->fs_fmod = 1;
1723 ACTIVECG_CLR(fs, cg);
1724 mutex_exit(&ump->um_lock);
1728 * Free an inode.
1731 ffs_vfree(struct vnode *vp, ino_t ino, int mode)
1734 return ffs_freefile(vp->v_mount, ino, mode);
1738 * Do the actual free operation.
1739 * The specified inode is placed back in the free map.
1741 * => um_lock not held on entry or exit
1744 ffs_freefile(struct mount *mp, ino_t ino, int mode)
1746 struct ufsmount *ump = VFSTOUFS(mp);
1747 struct fs *fs = ump->um_fs;
1748 struct vnode *devvp;
1749 struct cg *cgp;
1750 struct buf *bp;
1751 int error, cg;
1752 daddr_t cgbno;
1753 dev_t dev;
1754 #ifdef FFS_EI
1755 const int needswap = UFS_FSNEEDSWAP(fs);
1756 #endif
1758 cg = ino_to_cg(fs, ino);
1759 devvp = ump->um_devvp;
1760 dev = devvp->v_rdev;
1761 cgbno = fsbtodb(fs, cgtod(fs, cg));
1763 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1764 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1765 (long long)dev, (unsigned long long)ino, fs->fs_fsmnt);
1766 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1767 NOCRED, B_MODIFY, &bp);
1768 if (error) {
1769 brelse(bp, 0);
1770 return (error);
1772 cgp = (struct cg *)bp->b_data;
1773 if (!cg_chkmagic(cgp, needswap)) {
1774 brelse(bp, 0);
1775 return (0);
1778 ffs_freefile_common(ump, fs, dev, bp, ino, mode, false);
1780 bdwrite(bp);
1782 return 0;
1786 ffs_freefile_snap(struct fs *fs, struct vnode *devvp, ino_t ino, int mode)
1788 struct ufsmount *ump;
1789 struct cg *cgp;
1790 struct buf *bp;
1791 int error, cg;
1792 daddr_t cgbno;
1793 dev_t dev;
1794 #ifdef FFS_EI
1795 const int needswap = UFS_FSNEEDSWAP(fs);
1796 #endif
1798 KASSERT(devvp->v_type != VBLK);
1800 cg = ino_to_cg(fs, ino);
1801 dev = VTOI(devvp)->i_devvp->v_rdev;
1802 ump = VFSTOUFS(devvp->v_mount);
1803 cgbno = fragstoblks(fs, cgtod(fs, cg));
1804 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1805 panic("ifree: range: dev = 0x%llx, ino = %llu, fs = %s",
1806 (unsigned long long)dev, (unsigned long long)ino,
1807 fs->fs_fsmnt);
1808 error = bread(devvp, cgbno, (int)fs->fs_cgsize,
1809 NOCRED, B_MODIFY, &bp);
1810 if (error) {
1811 brelse(bp, 0);
1812 return (error);
1814 cgp = (struct cg *)bp->b_data;
1815 if (!cg_chkmagic(cgp, needswap)) {
1816 brelse(bp, 0);
1817 return (0);
1819 ffs_freefile_common(ump, fs, dev, bp, ino, mode, true);
1821 bdwrite(bp);
1823 return 0;
1826 static void
1827 ffs_freefile_common(struct ufsmount *ump, struct fs *fs, dev_t dev,
1828 struct buf *bp, ino_t ino, int mode, bool devvp_is_snapshot)
1830 int cg;
1831 struct cg *cgp;
1832 u_int8_t *inosused;
1833 #ifdef FFS_EI
1834 const int needswap = UFS_FSNEEDSWAP(fs);
1835 #endif
1837 cg = ino_to_cg(fs, ino);
1838 cgp = (struct cg *)bp->b_data;
1839 cgp->cg_old_time = ufs_rw32(time_second, needswap);
1840 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1841 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1842 cgp->cg_time = ufs_rw64(time_second, needswap);
1843 inosused = cg_inosused(cgp, needswap);
1844 ino %= fs->fs_ipg;
1845 if (isclr(inosused, ino)) {
1846 printf("ifree: dev = 0x%llx, ino = %llu, fs = %s\n",
1847 (unsigned long long)dev, (unsigned long long)ino +
1848 cg * fs->fs_ipg, fs->fs_fsmnt);
1849 if (fs->fs_ronly == 0)
1850 panic("ifree: freeing free inode");
1852 clrbit(inosused, ino);
1853 if (!devvp_is_snapshot)
1854 UFS_WAPBL_UNREGISTER_INODE(ump->um_mountp,
1855 ino + cg * fs->fs_ipg, mode);
1856 if (ino < ufs_rw32(cgp->cg_irotor, needswap))
1857 cgp->cg_irotor = ufs_rw32(ino, needswap);
1858 ufs_add32(cgp->cg_cs.cs_nifree, 1, needswap);
1859 mutex_enter(&ump->um_lock);
1860 fs->fs_cstotal.cs_nifree++;
1861 fs->fs_cs(fs, cg).cs_nifree++;
1862 if ((mode & IFMT) == IFDIR) {
1863 ufs_add32(cgp->cg_cs.cs_ndir, -1, needswap);
1864 fs->fs_cstotal.cs_ndir--;
1865 fs->fs_cs(fs, cg).cs_ndir--;
1867 fs->fs_fmod = 1;
1868 ACTIVECG_CLR(fs, cg);
1869 mutex_exit(&ump->um_lock);
1873 * Check to see if a file is free.
1876 ffs_checkfreefile(struct fs *fs, struct vnode *devvp, ino_t ino)
1878 struct cg *cgp;
1879 struct buf *bp;
1880 daddr_t cgbno;
1881 int ret, cg;
1882 u_int8_t *inosused;
1883 const bool devvp_is_snapshot = (devvp->v_type != VBLK);
1885 KASSERT(devvp_is_snapshot);
1887 cg = ino_to_cg(fs, ino);
1888 if (devvp_is_snapshot)
1889 cgbno = fragstoblks(fs, cgtod(fs, cg));
1890 else
1891 cgbno = fsbtodb(fs, cgtod(fs, cg));
1892 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1893 return 1;
1894 if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, 0, &bp)) {
1895 brelse(bp, 0);
1896 return 1;
1898 cgp = (struct cg *)bp->b_data;
1899 if (!cg_chkmagic(cgp, UFS_FSNEEDSWAP(fs))) {
1900 brelse(bp, 0);
1901 return 1;
1903 inosused = cg_inosused(cgp, UFS_FSNEEDSWAP(fs));
1904 ino %= fs->fs_ipg;
1905 ret = isclr(inosused, ino);
1906 brelse(bp, 0);
1907 return ret;
1911 * Find a block of the specified size in the specified cylinder group.
1913 * It is a panic if a request is made to find a block if none are
1914 * available.
1916 static int32_t
1917 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
1919 int32_t bno;
1920 int start, len, loc, i;
1921 int blk, field, subfield, pos;
1922 int ostart, olen;
1923 u_int8_t *blksfree;
1924 #ifdef FFS_EI
1925 const int needswap = UFS_FSNEEDSWAP(fs);
1926 #endif
1928 /* KASSERT(mutex_owned(&ump->um_lock)); */
1931 * find the fragment by searching through the free block
1932 * map for an appropriate bit pattern
1934 if (bpref)
1935 start = dtogd(fs, bpref) / NBBY;
1936 else
1937 start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
1938 blksfree = cg_blksfree(cgp, needswap);
1939 len = howmany(fs->fs_fpg, NBBY) - start;
1940 ostart = start;
1941 olen = len;
1942 loc = scanc((u_int)len,
1943 (const u_char *)&blksfree[start],
1944 (const u_char *)fragtbl[fs->fs_frag],
1945 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1946 if (loc == 0) {
1947 len = start + 1;
1948 start = 0;
1949 loc = scanc((u_int)len,
1950 (const u_char *)&blksfree[0],
1951 (const u_char *)fragtbl[fs->fs_frag],
1952 (1 << (allocsiz - 1 + (fs->fs_frag & (NBBY - 1)))));
1953 if (loc == 0) {
1954 printf("start = %d, len = %d, fs = %s\n",
1955 ostart, olen, fs->fs_fsmnt);
1956 printf("offset=%d %ld\n",
1957 ufs_rw32(cgp->cg_freeoff, needswap),
1958 (long)blksfree - (long)cgp);
1959 printf("cg %d\n", cgp->cg_cgx);
1960 panic("ffs_alloccg: map corrupted");
1961 /* NOTREACHED */
1964 bno = (start + len - loc) * NBBY;
1965 cgp->cg_frotor = ufs_rw32(bno, needswap);
1967 * found the byte in the map
1968 * sift through the bits to find the selected frag
1970 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1971 blk = blkmap(fs, blksfree, bno);
1972 blk <<= 1;
1973 field = around[allocsiz];
1974 subfield = inside[allocsiz];
1975 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1976 if ((blk & field) == subfield)
1977 return (bno + pos);
1978 field <<= 1;
1979 subfield <<= 1;
1982 printf("bno = %d, fs = %s\n", bno, fs->fs_fsmnt);
1983 panic("ffs_alloccg: block not in map");
1984 /* return (-1); */
1988 * Update the cluster map because of an allocation or free.
1990 * Cnt == 1 means free; cnt == -1 means allocating.
1992 void
1993 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
1995 int32_t *sump;
1996 int32_t *lp;
1997 u_char *freemapp, *mapp;
1998 int i, start, end, forw, back, map, bit;
1999 #ifdef FFS_EI
2000 const int needswap = UFS_FSNEEDSWAP(fs);
2001 #endif
2003 /* KASSERT(mutex_owned(&ump->um_lock)); */
2005 if (fs->fs_contigsumsize <= 0)
2006 return;
2007 freemapp = cg_clustersfree(cgp, needswap);
2008 sump = cg_clustersum(cgp, needswap);
2010 * Allocate or clear the actual block.
2012 if (cnt > 0)
2013 setbit(freemapp, blkno);
2014 else
2015 clrbit(freemapp, blkno);
2017 * Find the size of the cluster going forward.
2019 start = blkno + 1;
2020 end = start + fs->fs_contigsumsize;
2021 if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
2022 end = ufs_rw32(cgp->cg_nclusterblks, needswap);
2023 mapp = &freemapp[start / NBBY];
2024 map = *mapp++;
2025 bit = 1 << (start % NBBY);
2026 for (i = start; i < end; i++) {
2027 if ((map & bit) == 0)
2028 break;
2029 if ((i & (NBBY - 1)) != (NBBY - 1)) {
2030 bit <<= 1;
2031 } else {
2032 map = *mapp++;
2033 bit = 1;
2036 forw = i - start;
2038 * Find the size of the cluster going backward.
2040 start = blkno - 1;
2041 end = start - fs->fs_contigsumsize;
2042 if (end < 0)
2043 end = -1;
2044 mapp = &freemapp[start / NBBY];
2045 map = *mapp--;
2046 bit = 1 << (start % NBBY);
2047 for (i = start; i > end; i--) {
2048 if ((map & bit) == 0)
2049 break;
2050 if ((i & (NBBY - 1)) != 0) {
2051 bit >>= 1;
2052 } else {
2053 map = *mapp--;
2054 bit = 1 << (NBBY - 1);
2057 back = start - i;
2059 * Account for old cluster and the possibly new forward and
2060 * back clusters.
2062 i = back + forw + 1;
2063 if (i > fs->fs_contigsumsize)
2064 i = fs->fs_contigsumsize;
2065 ufs_add32(sump[i], cnt, needswap);
2066 if (back > 0)
2067 ufs_add32(sump[back], -cnt, needswap);
2068 if (forw > 0)
2069 ufs_add32(sump[forw], -cnt, needswap);
2072 * Update cluster summary information.
2074 lp = &sump[fs->fs_contigsumsize];
2075 for (i = fs->fs_contigsumsize; i > 0; i--)
2076 if (ufs_rw32(*lp--, needswap) > 0)
2077 break;
2078 fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
2082 * Fserr prints the name of a file system with an error diagnostic.
2084 * The form of the error message is:
2085 * fs: error message
2087 static void
2088 ffs_fserr(struct fs *fs, u_int uid, const char *cp)
2091 log(LOG_ERR, "uid %d, pid %d, command %s, on %s: %s\n",
2092 uid, curproc->p_pid, curproc->p_comm, fs->fs_fsmnt, cp);