Sync usage with man page.
[netbsd-mini2440.git] / sys / ufs / lfs / lfs_vfsops.c
blob9a7f2d9498c8c9b723432866e069836db3edf51d
1 /* $NetBSD: lfs_vfsops.c,v 1.281 2009/12/07 04:12:10 eeh Exp $ */
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc.
6 * All rights reserved.
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant@hhhh.org>.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
32 /*-
33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.281 2009/12/07 04:12:10 eeh Exp $");
66 #if defined(_KERNEL_OPT)
67 #include "opt_lfs.h"
68 #include "opt_quota.h"
69 #endif
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/namei.h>
74 #include <sys/proc.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/mount.h>
78 #include <sys/kthread.h>
79 #include <sys/buf.h>
80 #include <sys/device.h>
81 #include <sys/mbuf.h>
82 #include <sys/file.h>
83 #include <sys/disklabel.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/malloc.h>
87 #include <sys/pool.h>
88 #include <sys/socket.h>
89 #include <sys/syslog.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/conf.h>
93 #include <sys/kauth.h>
94 #include <sys/module.h>
96 #include <miscfs/specfs/specdev.h>
98 #include <ufs/ufs/quota.h>
99 #include <ufs/ufs/inode.h>
100 #include <ufs/ufs/ufsmount.h>
101 #include <ufs/ufs/ufs_extern.h>
103 #include <uvm/uvm.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106 #include <uvm/uvm_pdaemon.h>
108 #include <ufs/lfs/lfs.h>
109 #include <ufs/lfs/lfs_extern.h>
111 #include <miscfs/genfs/genfs.h>
112 #include <miscfs/genfs/genfs_node.h>
114 MODULE(MODULE_CLASS_VFS, lfs, "ffs");
116 static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
117 static bool lfs_issequential_hole(const struct ufsmount *,
118 daddr_t, daddr_t);
120 static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
122 static struct sysctllog *lfs_sysctl_log;
124 extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
125 extern const struct vnodeopv_desc lfs_specop_opv_desc;
126 extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
128 pid_t lfs_writer_daemon = 0;
129 int lfs_do_flush = 0;
130 #ifdef LFS_KERNEL_RFW
131 int lfs_do_rfw = 0;
132 #endif
134 const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
135 &lfs_vnodeop_opv_desc,
136 &lfs_specop_opv_desc,
137 &lfs_fifoop_opv_desc,
138 NULL,
141 struct vfsops lfs_vfsops = {
142 MOUNT_LFS,
143 sizeof (struct ufs_args),
144 lfs_mount,
145 ufs_start,
146 lfs_unmount,
147 ufs_root,
148 ufs_quotactl,
149 lfs_statvfs,
150 lfs_sync,
151 lfs_vget,
152 lfs_fhtovp,
153 lfs_vptofh,
154 lfs_init,
155 lfs_reinit,
156 lfs_done,
157 lfs_mountroot,
158 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
159 vfs_stdextattrctl,
160 (void *)eopnotsupp, /* vfs_suspendctl */
161 genfs_renamelock_enter,
162 genfs_renamelock_exit,
163 (void *)eopnotsupp,
164 lfs_vnodeopv_descs,
166 { NULL, NULL },
169 const struct genfs_ops lfs_genfsops = {
170 .gop_size = lfs_gop_size,
171 .gop_alloc = ufs_gop_alloc,
172 .gop_write = lfs_gop_write,
173 .gop_markupdate = ufs_gop_markupdate,
176 static const struct ufs_ops lfs_ufsops = {
177 .uo_itimes = NULL,
178 .uo_update = lfs_update,
179 .uo_truncate = lfs_truncate,
180 .uo_valloc = lfs_valloc,
181 .uo_vfree = lfs_vfree,
182 .uo_balloc = lfs_balloc,
183 .uo_unmark_vnode = lfs_unmark_vnode,
186 struct shortlong {
187 const char *sname;
188 const char *lname;
191 static int
192 sysctl_lfs_dostats(SYSCTLFN_ARGS)
194 extern struct lfs_stats lfs_stats;
195 extern int lfs_dostats;
196 int error;
198 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
199 if (error || newp == NULL)
200 return (error);
202 if (lfs_dostats == 0)
203 memset(&lfs_stats, 0, sizeof(lfs_stats));
205 return (0);
208 static void
209 lfs_sysctl_setup(struct sysctllog **clog)
211 int i;
212 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
213 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
214 #ifdef DEBUG
215 extern int lfs_debug_log_subsys[DLOG_MAX];
216 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
217 { "rollforward", "Debug roll-forward code" },
218 { "alloc", "Debug inode allocation and free list" },
219 { "avail", "Debug space-available-now accounting" },
220 { "flush", "Debug flush triggers" },
221 { "lockedlist", "Debug locked list accounting" },
222 { "vnode_verbose", "Verbose per-vnode-written debugging" },
223 { "vnode", "Debug vnode use during segment write" },
224 { "segment", "Debug segment writing" },
225 { "seguse", "Debug segment used-bytes accounting" },
226 { "cleaner", "Debug cleaning routines" },
227 { "mount", "Debug mount/unmount routines" },
228 { "pagecache", "Debug UBC interactions" },
229 { "dirop", "Debug directory-operation accounting" },
230 { "malloc", "Debug private malloc accounting" },
232 #endif /* DEBUG */
233 struct shortlong stat_names[] = { /* Must match lfs.h! */
234 { "segsused", "Number of new segments allocated" },
235 { "psegwrites", "Number of partial-segment writes" },
236 { "psyncwrites", "Number of synchronous partial-segment"
237 " writes" },
238 { "pcleanwrites", "Number of partial-segment writes by the"
239 " cleaner" },
240 { "blocktot", "Number of blocks written" },
241 { "cleanblocks", "Number of blocks written by the cleaner" },
242 { "ncheckpoints", "Number of checkpoints made" },
243 { "nwrites", "Number of whole writes" },
244 { "nsync_writes", "Number of synchronous writes" },
245 { "wait_exceeded", "Number of times writer waited for"
246 " cleaner" },
247 { "write_exceeded", "Number of times writer invoked flush" },
248 { "flush_invoked", "Number of times flush was invoked" },
249 { "vflush_invoked", "Number of time vflush was called" },
250 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
251 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
252 { "segs_reclaimed", "Number of segments reclaimed" },
255 sysctl_createv(clog, 0, NULL, NULL,
256 CTLFLAG_PERMANENT,
257 CTLTYPE_NODE, "vfs", NULL,
258 NULL, 0, NULL, 0,
259 CTL_VFS, CTL_EOL);
260 sysctl_createv(clog, 0, NULL, NULL,
261 CTLFLAG_PERMANENT,
262 CTLTYPE_NODE, "lfs",
263 SYSCTL_DESCR("Log-structured file system"),
264 NULL, 0, NULL, 0,
265 CTL_VFS, 5, CTL_EOL);
267 * XXX the "5" above could be dynamic, thereby eliminating one
268 * more instance of the "number to vfs" mapping problem, but
269 * "5" is the order as taken from sys/mount.h
272 sysctl_createv(clog, 0, NULL, NULL,
273 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
274 CTLTYPE_INT, "flushindir", NULL,
275 NULL, 0, &lfs_writeindir, 0,
276 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
277 sysctl_createv(clog, 0, NULL, NULL,
278 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
279 CTLTYPE_INT, "clean_vnhead", NULL,
280 NULL, 0, &lfs_clean_vnhead, 0,
281 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
282 sysctl_createv(clog, 0, NULL, NULL,
283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
284 CTLTYPE_INT, "dostats",
285 SYSCTL_DESCR("Maintain statistics on LFS operations"),
286 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
287 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
288 sysctl_createv(clog, 0, NULL, NULL,
289 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
290 CTLTYPE_INT, "pagetrip",
291 SYSCTL_DESCR("How many dirty pages in fs triggers"
292 " a flush"),
293 NULL, 0, &lfs_fs_pagetrip, 0,
294 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
295 sysctl_createv(clog, 0, NULL, NULL,
296 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
297 CTLTYPE_INT, "ignore_lazy_sync",
298 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
299 NULL, 0, &lfs_ignore_lazy_sync, 0,
300 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
301 #ifdef LFS_KERNEL_RFW
302 sysctl_createv(clog, 0, NULL, NULL,
303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
304 CTLTYPE_INT, "rfw",
305 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
306 NULL, 0, &lfs_do_rfw, 0,
307 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
308 #endif
310 sysctl_createv(clog, 0, NULL, NULL,
311 CTLFLAG_PERMANENT,
312 CTLTYPE_NODE, "stats",
313 SYSCTL_DESCR("Debugging options"),
314 NULL, 0, NULL, 0,
315 CTL_VFS, 5, LFS_STATS, CTL_EOL);
316 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
317 sysctl_createv(clog, 0, NULL, NULL,
318 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
319 CTLTYPE_INT, stat_names[i].sname,
320 SYSCTL_DESCR(stat_names[i].lname),
321 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
322 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
325 #ifdef DEBUG
326 sysctl_createv(clog, 0, NULL, NULL,
327 CTLFLAG_PERMANENT,
328 CTLTYPE_NODE, "debug",
329 SYSCTL_DESCR("Debugging options"),
330 NULL, 0, NULL, 0,
331 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
332 for (i = 0; i < DLOG_MAX; i++) {
333 sysctl_createv(clog, 0, NULL, NULL,
334 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
335 CTLTYPE_INT, dlog_names[i].sname,
336 SYSCTL_DESCR(dlog_names[i].lname),
337 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
338 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
340 #endif
343 static int
344 lfs_modcmd(modcmd_t cmd, void *arg)
346 int error;
348 switch (cmd) {
349 case MODULE_CMD_INIT:
350 error = vfs_attach(&lfs_vfsops);
351 if (error != 0)
352 break;
353 lfs_sysctl_setup(&lfs_sysctl_log);
354 break;
355 case MODULE_CMD_FINI:
356 error = vfs_detach(&lfs_vfsops);
357 if (error != 0)
358 break;
359 sysctl_teardown(&lfs_sysctl_log);
360 break;
361 default:
362 error = ENOTTY;
363 break;
366 return (error);
370 * XXX Same structure as FFS inodes? Should we share a common pool?
372 struct pool lfs_inode_pool;
373 struct pool lfs_dinode_pool;
374 struct pool lfs_inoext_pool;
375 struct pool lfs_lbnentry_pool;
378 * The writer daemon. UVM keeps track of how many dirty pages we are holding
379 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
380 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
382 static void
383 lfs_writerd(void *arg)
385 struct mount *mp, *nmp;
386 struct lfs *fs;
387 int fsflags;
388 int loopcount;
390 lfs_writer_daemon = curproc->p_pid;
392 mutex_enter(&lfs_lock);
393 for (;;) {
394 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
395 &lfs_lock);
398 * Look through the list of LFSs to see if any of them
399 * have requested pageouts.
401 mutex_enter(&mountlist_lock);
402 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
403 mp = nmp) {
404 if (vfs_busy(mp, &nmp)) {
405 continue;
407 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
408 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
409 fs = VFSTOUFS(mp)->um_lfs;
410 mutex_enter(&lfs_lock);
411 fsflags = 0;
412 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
413 lfs_dirvcount > LFS_MAX_DIROP) &&
414 fs->lfs_dirops == 0)
415 fsflags |= SEGM_CKP;
416 if (fs->lfs_pdflush) {
417 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
418 fs->lfs_pdflush = 0;
419 lfs_flush_fs(fs, fsflags);
420 mutex_exit(&lfs_lock);
421 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
422 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
423 mutex_exit(&lfs_lock);
424 lfs_writer_enter(fs, "wrdirop");
425 lfs_flush_pchain(fs);
426 lfs_writer_leave(fs);
427 } else
428 mutex_exit(&lfs_lock);
430 vfs_unbusy(mp, false, &nmp);
432 mutex_exit(&mountlist_lock);
435 * If global state wants a flush, flush everything.
437 mutex_enter(&lfs_lock);
438 loopcount = 0;
439 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
440 locked_queue_bytes > LFS_MAX_BYTES ||
441 lfs_subsys_pages > LFS_MAX_PAGES) {
443 if (lfs_do_flush) {
444 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
446 if (locked_queue_count > LFS_MAX_BUFS) {
447 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
448 locked_queue_count, LFS_MAX_BUFS));
450 if (locked_queue_bytes > LFS_MAX_BYTES) {
451 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
452 locked_queue_bytes, LFS_MAX_BYTES));
454 if (lfs_subsys_pages > LFS_MAX_PAGES) {
455 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
456 lfs_subsys_pages, LFS_MAX_PAGES));
459 lfs_flush(NULL, SEGM_WRITERD, 0);
460 lfs_do_flush = 0;
463 /* NOTREACHED */
467 * Initialize the filesystem, most work done by ufs_init.
469 void
470 lfs_init(void)
473 malloc_type_attach(M_SEGMENT);
474 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
475 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
476 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
477 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
478 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
479 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
480 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
481 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
482 ufs_init();
484 #ifdef DEBUG
485 memset(lfs_log, 0, sizeof(lfs_log));
486 #endif
487 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
488 cv_init(&locked_queue_cv, "lfsbuf");
489 cv_init(&lfs_writing_cv, "lfsflush");
492 void
493 lfs_reinit(void)
495 ufs_reinit();
498 void
499 lfs_done(void)
501 ufs_done();
502 mutex_destroy(&lfs_lock);
503 cv_destroy(&locked_queue_cv);
504 cv_destroy(&lfs_writing_cv);
505 pool_destroy(&lfs_inode_pool);
506 pool_destroy(&lfs_dinode_pool);
507 pool_destroy(&lfs_inoext_pool);
508 pool_destroy(&lfs_lbnentry_pool);
509 malloc_type_detach(M_SEGMENT);
513 * Called by main() when ufs is going to be mounted as root.
516 lfs_mountroot(void)
518 extern struct vnode *rootvp;
519 struct mount *mp;
520 struct lwp *l = curlwp;
521 int error;
523 if (device_class(root_device) != DV_DISK)
524 return (ENODEV);
526 if (rootdev == NODEV)
527 return (ENODEV);
528 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
529 vrele(rootvp);
530 return (error);
532 if ((error = lfs_mountfs(rootvp, mp, l))) {
533 vfs_unbusy(mp, false, NULL);
534 vfs_destroy(mp);
535 return (error);
537 mutex_enter(&mountlist_lock);
538 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
539 mutex_exit(&mountlist_lock);
540 (void)lfs_statvfs(mp, &mp->mnt_stat);
541 vfs_unbusy(mp, false, NULL);
542 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
543 return (0);
547 * VFS Operations.
549 * mount system call
552 lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
554 struct lwp *l = curlwp;
555 struct vnode *devvp;
556 struct ufs_args *args = data;
557 struct ufsmount *ump = NULL;
558 struct lfs *fs = NULL; /* LFS */
559 int error = 0, update;
560 mode_t accessmode;
562 if (*data_len < sizeof *args)
563 return EINVAL;
565 if (mp->mnt_flag & MNT_GETARGS) {
566 ump = VFSTOUFS(mp);
567 if (ump == NULL)
568 return EIO;
569 args->fspec = NULL;
570 *data_len = sizeof *args;
571 return 0;
574 update = mp->mnt_flag & MNT_UPDATE;
576 /* Check arguments */
577 if (args->fspec != NULL) {
579 * Look up the name and verify that it's sane.
581 error = namei_simple_user(args->fspec,
582 NSM_FOLLOW_NOEMULROOT, &devvp);
583 if (error != 0)
584 return (error);
586 if (!update) {
588 * Be sure this is a valid block device
590 if (devvp->v_type != VBLK)
591 error = ENOTBLK;
592 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
593 error = ENXIO;
594 } else {
596 * Be sure we're still naming the same device
597 * used for our initial mount
599 ump = VFSTOUFS(mp);
600 if (devvp != ump->um_devvp)
601 error = EINVAL;
603 } else {
604 if (!update) {
605 /* New mounts must have a filename for the device */
606 return (EINVAL);
607 } else {
608 /* Use the extant mount */
609 ump = VFSTOUFS(mp);
610 devvp = ump->um_devvp;
611 vref(devvp);
617 * If mount by non-root, then verify that user has necessary
618 * permissions on the device.
620 if (error == 0) {
621 accessmode = VREAD;
622 if (update ?
623 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
624 (mp->mnt_flag & MNT_RDONLY) == 0)
625 accessmode |= VWRITE;
626 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
627 error = genfs_can_mount(devvp, accessmode, l->l_cred);
628 VOP_UNLOCK(devvp, 0);
631 if (error) {
632 vrele(devvp);
633 return (error);
636 if (!update) {
637 int flags;
639 if (mp->mnt_flag & MNT_RDONLY)
640 flags = FREAD;
641 else
642 flags = FREAD|FWRITE;
643 error = VOP_OPEN(devvp, flags, FSCRED);
644 if (error)
645 goto fail;
646 error = lfs_mountfs(devvp, mp, l); /* LFS */
647 if (error) {
648 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
649 (void)VOP_CLOSE(devvp, flags, NOCRED);
650 VOP_UNLOCK(devvp, 0);
651 goto fail;
654 ump = VFSTOUFS(mp);
655 fs = ump->um_lfs;
656 } else {
658 * Update the mount.
662 * The initial mount got a reference on this
663 * device, so drop the one obtained via
664 * namei(), above.
666 vrele(devvp);
668 ump = VFSTOUFS(mp);
669 fs = ump->um_lfs;
670 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
672 * Changing from read-only to read/write.
673 * Note in the superblocks that we're writing.
675 fs->lfs_ronly = 0;
676 if (fs->lfs_pflags & LFS_PF_CLEAN) {
677 fs->lfs_pflags &= ~LFS_PF_CLEAN;
678 lfs_writesuper(fs, fs->lfs_sboffs[0]);
679 lfs_writesuper(fs, fs->lfs_sboffs[1]);
682 if (args->fspec == NULL)
683 return EINVAL;
686 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
687 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
688 if (error == 0)
689 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
690 sizeof(fs->lfs_fsmnt));
691 return error;
693 fail:
694 vrele(devvp);
695 return (error);
700 * Common code for mount and mountroot
701 * LFS specific
704 lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
706 struct dlfs *tdfs, *dfs, *adfs;
707 struct lfs *fs;
708 struct ufsmount *ump;
709 struct vnode *vp;
710 struct buf *bp, *abp;
711 struct partinfo dpart;
712 dev_t dev;
713 int error, i, ronly, secsize, fsbsize;
714 kauth_cred_t cred;
715 CLEANERINFO *cip;
716 SEGUSE *sup;
717 daddr_t sb_addr;
719 cred = l ? l->l_cred : NOCRED;
722 * Flush out any old buffers remaining from a previous use.
724 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
725 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
726 VOP_UNLOCK(devvp, 0);
727 if (error)
728 return (error);
730 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
731 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
732 secsize = DEV_BSIZE;
733 else
734 secsize = dpart.disklab->d_secsize;
736 /* Don't free random space on error. */
737 bp = NULL;
738 abp = NULL;
739 ump = NULL;
741 sb_addr = LFS_LABELPAD / secsize;
742 while (1) {
743 /* Read in the superblock. */
744 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
745 if (error)
746 goto out;
747 dfs = (struct dlfs *)bp->b_data;
749 /* Check the basics. */
750 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
751 dfs->dlfs_version > LFS_VERSION ||
752 dfs->dlfs_bsize < sizeof(struct dlfs)) {
753 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
754 error = EINVAL; /* XXX needs translation */
755 goto out;
757 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
758 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
759 dfs->dlfs_inodefmt));
760 error = EINVAL;
761 goto out;
764 if (dfs->dlfs_version == 1)
765 fsbsize = secsize;
766 else {
767 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
768 dfs->dlfs_fsbtodb);
770 * Could be, if the frag size is large enough, that we
771 * don't have the "real" primary superblock. If that's
772 * the case, get the real one, and try again.
774 if (sb_addr != dfs->dlfs_sboffs[0] <<
775 dfs->dlfs_fsbtodb) {
776 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
777 " 0x%llx is not right, trying 0x%llx\n",
778 (long long)sb_addr,
779 (long long)(dfs->dlfs_sboffs[0] <<
780 dfs->dlfs_fsbtodb)));
781 sb_addr = dfs->dlfs_sboffs[0] <<
782 dfs->dlfs_fsbtodb;
783 brelse(bp, 0);
784 continue;
787 break;
791 * Check the second superblock to see which is newer; then mount
792 * using the older of the two. This is necessary to ensure that
793 * the filesystem is valid if it was not unmounted cleanly.
796 if (dfs->dlfs_sboffs[1] &&
797 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
799 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
800 LFS_SBPAD, cred, 0, &abp);
801 if (error)
802 goto out;
803 adfs = (struct dlfs *)abp->b_data;
805 if (dfs->dlfs_version == 1) {
806 /* 1s resolution comparison */
807 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
808 tdfs = adfs;
809 else
810 tdfs = dfs;
811 } else {
812 /* monotonic infinite-resolution comparison */
813 if (adfs->dlfs_serial < dfs->dlfs_serial)
814 tdfs = adfs;
815 else
816 tdfs = dfs;
819 /* Check the basics. */
820 if (tdfs->dlfs_magic != LFS_MAGIC ||
821 tdfs->dlfs_bsize > MAXBSIZE ||
822 tdfs->dlfs_version > LFS_VERSION ||
823 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
824 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
825 " sanity failed\n"));
826 error = EINVAL; /* XXX needs translation */
827 goto out;
829 } else {
830 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
831 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
832 error = EINVAL;
833 goto out;
836 /* Allocate the mount structure, copy the superblock into it. */
837 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
838 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
840 /* Compatibility */
841 if (fs->lfs_version < 2) {
842 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
843 fs->lfs_ibsize = fs->lfs_bsize;
844 fs->lfs_start = fs->lfs_sboffs[0];
845 fs->lfs_tstamp = fs->lfs_otstamp;
846 fs->lfs_fsbtodb = 0;
848 if (fs->lfs_resvseg == 0)
849 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
850 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
853 * If we aren't going to be able to write meaningfully to this
854 * filesystem, and were not mounted readonly, bomb out now.
856 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
857 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
858 " we need BUFPAGES >= %lld\n",
859 (long long)((bufmem_hiwater / bufmem_lowater) *
860 LFS_INVERSE_MAX_BYTES(
861 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
862 free(fs, M_UFSMNT);
863 error = EFBIG; /* XXX needs translation */
864 goto out;
867 /* Before rolling forward, lock so vget will sleep for other procs */
868 if (l != NULL) {
869 fs->lfs_flags = LFS_NOTYET;
870 fs->lfs_rfpid = l->l_proc->p_pid;
873 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
874 ump->um_lfs = fs;
875 ump->um_ops = &lfs_ufsops;
876 ump->um_fstype = UFS1;
877 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
878 brelse(bp, BC_INVAL);
879 brelse(abp, BC_INVAL);
880 } else {
881 brelse(bp, 0);
882 brelse(abp, 0);
884 bp = NULL;
885 abp = NULL;
888 /* Set up the I/O information */
889 fs->lfs_devbsize = secsize;
890 fs->lfs_iocount = 0;
891 fs->lfs_diropwait = 0;
892 fs->lfs_activesb = 0;
893 fs->lfs_uinodes = 0;
894 fs->lfs_ravail = 0;
895 fs->lfs_favail = 0;
896 fs->lfs_sbactive = 0;
898 /* Set up the ifile and lock aflags */
899 fs->lfs_doifile = 0;
900 fs->lfs_writer = 0;
901 fs->lfs_dirops = 0;
902 fs->lfs_nadirop = 0;
903 fs->lfs_seglock = 0;
904 fs->lfs_pdflush = 0;
905 fs->lfs_sleepers = 0;
906 fs->lfs_pages = 0;
907 rw_init(&fs->lfs_fraglock);
908 rw_init(&fs->lfs_iflock);
909 cv_init(&fs->lfs_stopcv, "lfsstop");
911 /* Set the file system readonly/modify bits. */
912 fs->lfs_ronly = ronly;
913 if (ronly == 0)
914 fs->lfs_fmod = 1;
916 /* Initialize the mount structure. */
917 dev = devvp->v_rdev;
918 mp->mnt_data = ump;
919 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
920 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
921 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
922 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
923 mp->mnt_stat.f_iosize = fs->lfs_bsize;
924 mp->mnt_flag |= MNT_LOCAL;
925 mp->mnt_fs_bshift = fs->lfs_bshift;
926 ump->um_flags = 0;
927 ump->um_mountp = mp;
928 ump->um_dev = dev;
929 ump->um_devvp = devvp;
930 ump->um_bptrtodb = fs->lfs_fsbtodb;
931 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
932 ump->um_nindir = fs->lfs_nindir;
933 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
934 for (i = 0; i < MAXQUOTAS; i++)
935 ump->um_quotas[i] = NULLVP;
936 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
937 ump->um_dirblksiz = DIRBLKSIZ;
938 ump->um_maxfilesize = fs->lfs_maxfilesize;
939 if (ump->um_maxsymlinklen > 0)
940 mp->mnt_iflag |= IMNT_DTYPE;
941 devvp->v_specmountpoint = mp;
943 /* Set up reserved memory for pageout */
944 lfs_setup_resblks(fs);
945 /* Set up vdirop tailq */
946 TAILQ_INIT(&fs->lfs_dchainhd);
947 /* and paging tailq */
948 TAILQ_INIT(&fs->lfs_pchainhd);
949 /* and delayed segment accounting for truncation list */
950 LIST_INIT(&fs->lfs_segdhd);
953 * We use the ifile vnode for almost every operation. Instead of
954 * retrieving it from the hash table each time we retrieve it here,
955 * artificially increment the reference count and keep a pointer
956 * to it in the incore copy of the superblock.
958 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
959 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
960 goto out;
962 fs->lfs_ivnode = vp;
963 vref(vp);
965 /* Set up inode bitmap and order free list */
966 lfs_order_freelist(fs);
968 /* Set up segment usage flags for the autocleaner. */
969 fs->lfs_nactive = 0;
970 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
971 M_SEGMENT, M_WAITOK);
972 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
973 M_SEGMENT, M_WAITOK);
974 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
975 M_SEGMENT, M_WAITOK);
976 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
977 for (i = 0; i < fs->lfs_nseg; i++) {
978 int changed;
980 LFS_SEGENTRY(sup, fs, i, bp);
981 changed = 0;
982 if (!ronly) {
983 if (sup->su_nbytes == 0 &&
984 !(sup->su_flags & SEGUSE_EMPTY)) {
985 sup->su_flags |= SEGUSE_EMPTY;
986 ++changed;
987 } else if (!(sup->su_nbytes == 0) &&
988 (sup->su_flags & SEGUSE_EMPTY)) {
989 sup->su_flags &= ~SEGUSE_EMPTY;
990 ++changed;
992 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
993 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
994 ++changed;
997 fs->lfs_suflags[0][i] = sup->su_flags;
998 if (changed)
999 LFS_WRITESEGENTRY(sup, fs, i, bp);
1000 else
1001 brelse(bp, 0);
1004 #ifdef LFS_KERNEL_RFW
1005 lfs_roll_forward(fs, mp, l);
1006 #endif
1008 /* If writing, sb is not clean; record in case of immediate crash */
1009 if (!fs->lfs_ronly) {
1010 fs->lfs_pflags &= ~LFS_PF_CLEAN;
1011 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1012 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1015 /* Allow vget now that roll-forward is complete */
1016 fs->lfs_flags &= ~(LFS_NOTYET);
1017 wakeup(&fs->lfs_flags);
1020 * Initialize the ifile cleaner info with information from
1021 * the superblock.
1023 LFS_CLEANERINFO(cip, fs, bp);
1024 cip->clean = fs->lfs_nclean;
1025 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
1026 cip->avail = fs->lfs_avail;
1027 cip->bfree = fs->lfs_bfree;
1028 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1031 * Mark the current segment as ACTIVE, since we're going to
1032 * be writing to it.
1034 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
1035 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1036 fs->lfs_nactive++;
1037 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
1039 /* Now that roll-forward is done, unlock the Ifile */
1040 vput(vp);
1042 /* Start the pagedaemon-anticipating daemon */
1043 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
1044 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1045 panic("fork lfs_writer");
1047 printf("WARNING: the log-structured file system is experimental\n"
1048 "WARNING: it may cause system crashes and/or corrupt data\n");
1050 return (0);
1052 out:
1053 if (bp)
1054 brelse(bp, 0);
1055 if (abp)
1056 brelse(abp, 0);
1057 if (ump) {
1058 free(ump->um_lfs, M_UFSMNT);
1059 free(ump, M_UFSMNT);
1060 mp->mnt_data = NULL;
1063 return (error);
1067 * unmount system call
1070 lfs_unmount(struct mount *mp, int mntflags)
1072 struct lwp *l = curlwp;
1073 struct ufsmount *ump;
1074 struct lfs *fs;
1075 int error, flags, ronly;
1076 vnode_t *vp;
1078 flags = 0;
1079 if (mntflags & MNT_FORCE)
1080 flags |= FORCECLOSE;
1082 ump = VFSTOUFS(mp);
1083 fs = ump->um_lfs;
1085 /* Two checkpoints */
1086 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1087 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1089 /* wake up the cleaner so it can die */
1090 lfs_wakeup_cleaner(fs);
1091 mutex_enter(&lfs_lock);
1092 while (fs->lfs_sleepers)
1093 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
1094 &lfs_lock);
1095 mutex_exit(&lfs_lock);
1097 #ifdef QUOTA
1098 if (mp->mnt_flag & MNT_QUOTA) {
1099 int i;
1100 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
1101 if (error)
1102 return (error);
1103 for (i = 0; i < MAXQUOTAS; i++) {
1104 if (ump->um_quotas[i] == NULLVP)
1105 continue;
1106 quotaoff(l, mp, i);
1109 * Here we fall through to vflush again to ensure
1110 * that we have gotten rid of all the system vnodes.
1113 #endif
1114 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1115 return (error);
1116 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1117 return (error);
1118 vp = fs->lfs_ivnode;
1119 mutex_enter(&vp->v_interlock);
1120 if (LIST_FIRST(&vp->v_dirtyblkhd))
1121 panic("lfs_unmount: still dirty blocks on ifile vnode");
1122 mutex_exit(&vp->v_interlock);
1124 /* Explicitly write the superblock, to update serial and pflags */
1125 fs->lfs_pflags |= LFS_PF_CLEAN;
1126 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1127 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1128 mutex_enter(&lfs_lock);
1129 while (fs->lfs_iocount)
1130 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1131 &lfs_lock);
1132 mutex_exit(&lfs_lock);
1134 /* Finish with the Ifile, now that we're done with it */
1135 vgone(fs->lfs_ivnode);
1137 ronly = !fs->lfs_ronly;
1138 if (ump->um_devvp->v_type != VBAD)
1139 ump->um_devvp->v_specmountpoint = NULL;
1140 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1141 error = VOP_CLOSE(ump->um_devvp,
1142 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1143 vput(ump->um_devvp);
1145 /* Complain about page leakage */
1146 if (fs->lfs_pages > 0)
1147 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1148 fs->lfs_pages, lfs_subsys_pages);
1150 /* Free per-mount data structures */
1151 free(fs->lfs_ino_bitmap, M_SEGMENT);
1152 free(fs->lfs_suflags[0], M_SEGMENT);
1153 free(fs->lfs_suflags[1], M_SEGMENT);
1154 free(fs->lfs_suflags, M_SEGMENT);
1155 lfs_free_resblks(fs);
1156 cv_destroy(&fs->lfs_stopcv);
1157 rw_destroy(&fs->lfs_fraglock);
1158 rw_destroy(&fs->lfs_iflock);
1159 free(fs, M_UFSMNT);
1160 free(ump, M_UFSMNT);
1162 mp->mnt_data = NULL;
1163 mp->mnt_flag &= ~MNT_LOCAL;
1164 return (error);
1168 * Get file system statistics.
1170 * NB: We don't lock to access the superblock here, because it's not
1171 * really that important if we get it wrong.
1174 lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1176 struct lfs *fs;
1177 struct ufsmount *ump;
1179 ump = VFSTOUFS(mp);
1180 fs = ump->um_lfs;
1181 if (fs->lfs_magic != LFS_MAGIC)
1182 panic("lfs_statvfs: magic");
1184 sbp->f_bsize = fs->lfs_bsize;
1185 sbp->f_frsize = fs->lfs_fsize;
1186 sbp->f_iosize = fs->lfs_bsize;
1187 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1189 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1190 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1191 #if 0
1192 if (sbp->f_bfree < 0)
1193 sbp->f_bfree = 0;
1194 #endif
1196 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1197 if (sbp->f_bfree > sbp->f_bresvd)
1198 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1199 else
1200 sbp->f_bavail = 0;
1202 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1203 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1204 sbp->f_favail = sbp->f_ffree;
1205 sbp->f_fresvd = 0;
1206 copy_statvfs_info(sbp, mp);
1207 return (0);
1211 * Go through the disk queues to initiate sandbagged IO;
1212 * go through the inodes to write those that have been modified;
1213 * initiate the writing of the super block if it has been modified.
1215 * Note: we are always called with the filesystem marked `MPBUSY'.
1218 lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1220 int error;
1221 struct lfs *fs;
1223 fs = VFSTOUFS(mp)->um_lfs;
1224 if (fs->lfs_ronly)
1225 return 0;
1227 /* Snapshots should not hose the syncer */
1229 * XXX Sync can block here anyway, since we don't have a very
1230 * XXX good idea of how much data is pending. If it's more
1231 * XXX than a segment and lfs_nextseg is close to the end of
1232 * XXX the log, we'll likely block.
1234 mutex_enter(&lfs_lock);
1235 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1236 mutex_exit(&lfs_lock);
1237 return 0;
1239 mutex_exit(&lfs_lock);
1241 lfs_writer_enter(fs, "lfs_dirops");
1243 /* All syncs must be checkpoints until roll-forward is implemented. */
1244 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1245 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1246 lfs_writer_leave(fs);
1247 #ifdef QUOTA
1248 qsync(mp);
1249 #endif
1250 return (error);
1254 * Look up an LFS dinode number to find its incore vnode. If not already
1255 * in core, read it in from the specified device. Return the inode locked.
1256 * Detection and handling of mount points must be done by the calling routine.
1259 lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1261 struct lfs *fs;
1262 struct ufs1_dinode *dip;
1263 struct inode *ip;
1264 struct buf *bp;
1265 struct ifile *ifp;
1266 struct vnode *vp;
1267 struct ufsmount *ump;
1268 daddr_t daddr;
1269 dev_t dev;
1270 int error, retries;
1271 struct timespec ts;
1273 memset(&ts, 0, sizeof ts); /* XXX gcc */
1275 ump = VFSTOUFS(mp);
1276 dev = ump->um_dev;
1277 fs = ump->um_lfs;
1280 * If the filesystem is not completely mounted yet, suspend
1281 * any access requests (wait for roll-forward to complete).
1283 mutex_enter(&lfs_lock);
1284 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1285 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1286 &lfs_lock);
1287 mutex_exit(&lfs_lock);
1289 retry:
1290 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1291 return (0);
1293 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1294 *vpp = NULL;
1295 return (error);
1298 mutex_enter(&ufs_hashlock);
1299 if (ufs_ihashget(dev, ino, 0) != NULL) {
1300 mutex_exit(&ufs_hashlock);
1301 ungetnewvnode(vp);
1302 goto retry;
1305 /* Translate the inode number to a disk address. */
1306 if (ino == LFS_IFILE_INUM)
1307 daddr = fs->lfs_idaddr;
1308 else {
1309 /* XXX bounds-check this too */
1310 LFS_IENTRY(ifp, fs, ino, bp);
1311 daddr = ifp->if_daddr;
1312 if (fs->lfs_version > 1) {
1313 ts.tv_sec = ifp->if_atime_sec;
1314 ts.tv_nsec = ifp->if_atime_nsec;
1317 brelse(bp, 0);
1318 if (daddr == LFS_UNUSED_DADDR) {
1319 *vpp = NULLVP;
1320 mutex_exit(&ufs_hashlock);
1321 ungetnewvnode(vp);
1322 return (ENOENT);
1326 /* Allocate/init new vnode/inode. */
1327 lfs_vcreate(mp, ino, vp);
1330 * Put it onto its hash chain and lock it so that other requests for
1331 * this inode will block if they arrive while we are sleeping waiting
1332 * for old data structures to be purged or for the contents of the
1333 * disk portion of this inode to be read.
1335 ip = VTOI(vp);
1336 ufs_ihashins(ip);
1337 mutex_exit(&ufs_hashlock);
1340 * XXX
1341 * This may not need to be here, logically it should go down with
1342 * the i_devvp initialization.
1343 * Ask Kirk.
1345 ip->i_lfs = ump->um_lfs;
1347 /* Read in the disk contents for the inode, copy into the inode. */
1348 retries = 0;
1349 again:
1350 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1351 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1352 NOCRED, 0, &bp);
1353 if (error) {
1355 * The inode does not contain anything useful, so it would
1356 * be misleading to leave it on its hash chain. With mode
1357 * still zero, it will be unlinked and returned to the free
1358 * list by vput().
1360 vput(vp);
1361 brelse(bp, 0);
1362 *vpp = NULL;
1363 return (error);
1366 dip = lfs_ifind(fs, ino, bp);
1367 if (dip == NULL) {
1368 /* Assume write has not completed yet; try again */
1369 brelse(bp, BC_INVAL);
1370 ++retries;
1371 if (retries > LFS_IFIND_RETRIES) {
1372 #ifdef DEBUG
1373 /* If the seglock is held look at the bpp to see
1374 what is there anyway */
1375 mutex_enter(&lfs_lock);
1376 if (fs->lfs_seglock > 0) {
1377 struct buf **bpp;
1378 struct ufs1_dinode *dp;
1379 int i;
1381 for (bpp = fs->lfs_sp->bpp;
1382 bpp != fs->lfs_sp->cbpp; ++bpp) {
1383 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1384 bpp != fs->lfs_sp->bpp) {
1385 /* Inode block */
1386 printf("lfs_vget: block 0x%" PRIx64 ": ",
1387 (*bpp)->b_blkno);
1388 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1389 for (i = 0; i < INOPB(fs); i++)
1390 if (dp[i].di_u.inumber)
1391 printf("%d ", dp[i].di_u.inumber);
1392 printf("\n");
1396 mutex_exit(&lfs_lock);
1397 #endif /* DEBUG */
1398 panic("lfs_vget: dinode not found");
1400 mutex_enter(&lfs_lock);
1401 if (fs->lfs_iocount) {
1402 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1403 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1404 "lfs ifind", 1, &lfs_lock);
1405 } else
1406 retries = LFS_IFIND_RETRIES;
1407 mutex_exit(&lfs_lock);
1408 goto again;
1410 *ip->i_din.ffs1_din = *dip;
1411 brelse(bp, 0);
1413 if (fs->lfs_version > 1) {
1414 ip->i_ffs1_atime = ts.tv_sec;
1415 ip->i_ffs1_atimensec = ts.tv_nsec;
1418 lfs_vinit(mp, &vp);
1420 *vpp = vp;
1422 KASSERT(VOP_ISLOCKED(vp));
1424 return (0);
1428 * File handle to vnode
1431 lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1433 struct lfid lfh;
1434 struct buf *bp;
1435 IFILE *ifp;
1436 int32_t daddr;
1437 struct lfs *fs;
1438 vnode_t *vp;
1440 if (fhp->fid_len != sizeof(struct lfid))
1441 return EINVAL;
1443 memcpy(&lfh, fhp, sizeof(lfh));
1444 if (lfh.lfid_ino < LFS_IFILE_INUM)
1445 return ESTALE;
1447 fs = VFSTOUFS(mp)->um_lfs;
1448 if (lfh.lfid_ident != fs->lfs_ident)
1449 return ESTALE;
1451 if (lfh.lfid_ino >
1452 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1453 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1454 return ESTALE;
1456 mutex_enter(&ufs_ihash_lock);
1457 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
1458 mutex_exit(&ufs_ihash_lock);
1459 if (vp == NULL) {
1460 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1461 daddr = ifp->if_daddr;
1462 brelse(bp, 0);
1463 if (daddr == LFS_UNUSED_DADDR)
1464 return ESTALE;
1467 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1471 * Vnode pointer to File handle
1473 /* ARGSUSED */
1475 lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1477 struct inode *ip;
1478 struct lfid lfh;
1480 if (*fh_size < sizeof(struct lfid)) {
1481 *fh_size = sizeof(struct lfid);
1482 return E2BIG;
1484 *fh_size = sizeof(struct lfid);
1485 ip = VTOI(vp);
1486 memset(&lfh, 0, sizeof(lfh));
1487 lfh.lfid_len = sizeof(struct lfid);
1488 lfh.lfid_ino = ip->i_number;
1489 lfh.lfid_gen = ip->i_gen;
1490 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1491 memcpy(fhp, &lfh, sizeof(lfh));
1492 return (0);
1496 * ufs_bmaparray callback function for writing.
1498 * Since blocks will be written to the new segment anyway,
1499 * we don't care about current daddr of them.
1501 static bool
1502 lfs_issequential_hole(const struct ufsmount *ump,
1503 daddr_t daddr0, daddr_t daddr1)
1505 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1506 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1508 KASSERT(daddr0 == UNWRITTEN ||
1509 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1510 KASSERT(daddr1 == UNWRITTEN ||
1511 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1513 /* NOTE: all we want to know here is 'hole or not'. */
1514 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1517 * treat UNWRITTENs and all resident blocks as 'contiguous'
1519 if (daddr0 != 0 && daddr1 != 0)
1520 return true;
1523 * both are in hole?
1525 if (daddr0 == 0 && daddr1 == 0)
1526 return true; /* all holes are 'contiguous' for us. */
1528 return false;
1532 * lfs_gop_write functions exactly like genfs_gop_write, except that
1533 * (1) it requires the seglock to be held by its caller, and sp->fip
1534 * to be properly initialized (it will return without re-initializing
1535 * sp->fip, and without calling lfs_writeseg).
1536 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1537 * to determine how large a block it can write at once (though it does
1538 * still use VOP_BMAP to find holes in the file);
1539 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1540 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1541 * now have clusters of clusters, ick.)
1543 static int
1544 lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1545 int flags)
1547 int i, error, run, haveeof = 0;
1548 int fs_bshift;
1549 vaddr_t kva;
1550 off_t eof, offset, startoffset = 0;
1551 size_t bytes, iobytes, skipbytes;
1552 bool async = (flags & PGO_SYNCIO) == 0;
1553 daddr_t lbn, blkno;
1554 struct vm_page *pg;
1555 struct buf *mbp, *bp;
1556 struct vnode *devvp = VTOI(vp)->i_devvp;
1557 struct inode *ip = VTOI(vp);
1558 struct lfs *fs = ip->i_lfs;
1559 struct segment *sp = fs->lfs_sp;
1560 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1562 ASSERT_SEGLOCK(fs);
1564 /* The Ifile lives in the buffer cache */
1565 KASSERT(vp != fs->lfs_ivnode);
1568 * We don't want to fill the disk before the cleaner has a chance
1569 * to make room for us. If we're in danger of doing that, fail
1570 * with EAGAIN. The caller will have to notice this, unlock
1571 * so the cleaner can run, relock and try again.
1573 * We must write everything, however, if our vnode is being
1574 * reclaimed.
1576 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1577 goto tryagain;
1580 * Sometimes things slip past the filters in lfs_putpages,
1581 * and the pagedaemon tries to write pages---problem is
1582 * that the pagedaemon never acquires the segment lock.
1584 * Alternatively, pages that were clean when we called
1585 * genfs_putpages may have become dirty in the meantime. In this
1586 * case the segment header is not properly set up for blocks
1587 * to be added to it.
1589 * Unbusy and unclean the pages, and put them on the ACTIVE
1590 * queue under the hypothesis that they couldn't have got here
1591 * unless they were modified *quite* recently.
1593 * XXXUBC that last statement is an oversimplification of course.
1595 if (!LFS_SEGLOCK_HELD(fs) ||
1596 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1597 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1598 goto tryagain;
1601 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1602 vp, pgs, npages, flags);
1604 GOP_SIZE(vp, vp->v_size, &eof, 0);
1605 haveeof = 1;
1607 if (vp->v_type == VREG)
1608 fs_bshift = vp->v_mount->mnt_fs_bshift;
1609 else
1610 fs_bshift = DEV_BSHIFT;
1611 error = 0;
1612 pg = pgs[0];
1613 startoffset = pg->offset;
1614 KASSERT(eof >= 0);
1616 if (startoffset >= eof) {
1617 goto tryagain;
1618 } else
1619 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1620 skipbytes = 0;
1622 KASSERT(bytes != 0);
1624 /* Swap PG_DELWRI for PG_PAGEOUT */
1625 for (i = 0; i < npages; i++) {
1626 if (pgs[i]->flags & PG_DELWRI) {
1627 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1628 pgs[i]->flags &= ~PG_DELWRI;
1629 pgs[i]->flags |= PG_PAGEOUT;
1630 uvm_pageout_start(1);
1631 mutex_enter(&uvm_pageqlock);
1632 uvm_pageunwire(pgs[i]);
1633 mutex_exit(&uvm_pageqlock);
1638 * Check to make sure we're starting on a block boundary.
1639 * We'll check later to make sure we always write entire
1640 * blocks (or fragments).
1642 if (startoffset & fs->lfs_bmask)
1643 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1644 startoffset, fs->lfs_bmask,
1645 startoffset & fs->lfs_bmask);
1646 KASSERT((startoffset & fs->lfs_bmask) == 0);
1647 if (bytes & fs->lfs_ffmask) {
1648 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1649 panic("lfs_gop_write: non-integer blocks");
1653 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1654 * If we would, write what we have and try again. If we don't
1655 * have anything to write, we'll have to sleep.
1657 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1658 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1659 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1660 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1661 #if 0
1662 " with nfinfo=%d at offset 0x%x\n",
1663 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1664 (unsigned)fs->lfs_offset));
1665 #endif
1666 lfs_updatemeta(sp);
1667 lfs_release_finfo(fs);
1668 (void) lfs_writeseg(fs, sp);
1670 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1673 * Having given up all of the pager_map we were holding,
1674 * we can now wait for aiodoned to reclaim it for us
1675 * without fear of deadlock.
1677 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1678 UVMPAGER_MAPIN_WAITOK);
1681 mbp = getiobuf(NULL, true);
1682 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1683 vp, mbp, vp->v_numoutput, bytes);
1684 mbp->b_bufsize = npages << PAGE_SHIFT;
1685 mbp->b_data = (void *)kva;
1686 mbp->b_resid = mbp->b_bcount = bytes;
1687 mbp->b_cflags = BC_BUSY|BC_AGE;
1688 mbp->b_iodone = uvm_aio_biodone;
1690 bp = NULL;
1691 for (offset = startoffset;
1692 bytes > 0;
1693 offset += iobytes, bytes -= iobytes) {
1694 lbn = offset >> fs_bshift;
1695 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1696 lfs_issequential_hole);
1697 if (error) {
1698 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1699 error,0,0,0);
1700 skipbytes += bytes;
1701 bytes = 0;
1702 break;
1705 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1706 bytes);
1707 if (blkno == (daddr_t)-1) {
1708 skipbytes += iobytes;
1709 continue;
1713 * Discover how much we can really pack into this buffer.
1715 /* If no room in the current segment, finish it up */
1716 if (sp->sum_bytes_left < sizeof(int32_t) ||
1717 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1718 int vers;
1720 lfs_updatemeta(sp);
1721 vers = sp->fip->fi_version;
1722 lfs_release_finfo(fs);
1723 (void) lfs_writeseg(fs, sp);
1725 lfs_acquire_finfo(fs, ip->i_number, vers);
1727 /* Check both for space in segment and space in segsum */
1728 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1729 << fs_bshift);
1730 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1731 << fs_bshift);
1732 KASSERT(iobytes > 0);
1734 /* if it's really one i/o, don't make a second buf */
1735 if (offset == startoffset && iobytes == bytes) {
1736 bp = mbp;
1738 * All the LFS output is done by the segwriter. It
1739 * will increment numoutput by one for all the bufs it
1740 * recieves. However this buffer needs one extra to
1741 * account for aiodone.
1743 mutex_enter(&vp->v_interlock);
1744 vp->v_numoutput++;
1745 mutex_exit(&vp->v_interlock);
1746 } else {
1747 bp = getiobuf(NULL, true);
1748 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1749 vp, bp, vp->v_numoutput, 0);
1750 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1752 * LFS doesn't like async I/O here, dies with
1753 * and assert in lfs_bwrite(). Is that assert
1754 * valid? I retained non-async behaviour when
1755 * converted this to use nestiobuf --pooka
1757 bp->b_flags &= ~B_ASYNC;
1760 /* XXX This is silly ... is this necessary? */
1761 mutex_enter(&bufcache_lock);
1762 mutex_enter(&vp->v_interlock);
1763 bgetvp(vp, bp);
1764 mutex_exit(&vp->v_interlock);
1765 mutex_exit(&bufcache_lock);
1767 bp->b_lblkno = lblkno(fs, offset);
1768 bp->b_private = mbp;
1769 if (devvp->v_type == VBLK) {
1770 bp->b_dev = devvp->v_rdev;
1772 VOP_BWRITE(bp);
1773 while (lfs_gatherblock(sp, bp, NULL))
1774 continue;
1777 nestiobuf_done(mbp, skipbytes, error);
1778 if (skipbytes) {
1779 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1781 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1783 if (!async) {
1784 /* Start a segment write. */
1785 UVMHIST_LOG(ubchist, "flushing", 0,0,0,0);
1786 mutex_enter(&lfs_lock);
1787 lfs_flush(fs, 0, 1);
1788 mutex_exit(&lfs_lock);
1790 return (0);
1792 tryagain:
1794 * We can't write the pages, for whatever reason.
1795 * Clean up after ourselves, and make the caller try again.
1797 mutex_enter(&vp->v_interlock);
1799 /* Tell why we're here, if we know */
1800 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1801 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1802 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1803 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1804 } else if (haveeof && startoffset >= eof) {
1805 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1806 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1807 pgs[0]->offset, eof, npages));
1808 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1809 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1810 } else {
1811 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1814 mutex_enter(&uvm_pageqlock);
1815 for (i = 0; i < npages; i++) {
1816 pg = pgs[i];
1818 if (pg->flags & PG_PAGEOUT)
1819 uvm_pageout_done(1);
1820 if (pg->flags & PG_DELWRI) {
1821 uvm_pageunwire(pg);
1823 uvm_pageactivate(pg);
1824 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1825 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1826 vp, pg->offset));
1827 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1828 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1829 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1830 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1831 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1832 pg->wire_count));
1833 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1834 pg->loan_count));
1836 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1837 uvm_page_unbusy(pgs, npages);
1838 mutex_exit(&uvm_pageqlock);
1839 mutex_exit(&vp->v_interlock);
1840 return EAGAIN;
1844 * finish vnode/inode initialization.
1845 * used by lfs_vget and lfs_fastvget.
1847 void
1848 lfs_vinit(struct mount *mp, struct vnode **vpp)
1850 struct vnode *vp = *vpp;
1851 struct inode *ip = VTOI(vp);
1852 struct ufsmount *ump = VFSTOUFS(mp);
1853 struct lfs *fs = ump->um_lfs;
1854 int i;
1856 ip->i_mode = ip->i_ffs1_mode;
1857 ip->i_nlink = ip->i_ffs1_nlink;
1858 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1859 ip->i_flags = ip->i_ffs1_flags;
1860 ip->i_gen = ip->i_ffs1_gen;
1861 ip->i_uid = ip->i_ffs1_uid;
1862 ip->i_gid = ip->i_ffs1_gid;
1864 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1865 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1868 * Initialize the vnode from the inode, check for aliases. In all
1869 * cases re-init ip, the underlying vnode/inode may have changed.
1871 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1872 ip = VTOI(vp);
1874 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1875 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1876 #ifdef DEBUG
1877 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1878 i < NDADDR; i++) {
1879 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1880 i == 0)
1881 continue;
1882 if (ip->i_ffs1_db[i] != 0) {
1883 inconsistent:
1884 lfs_dump_dinode(ip->i_din.ffs1_din);
1885 panic("inconsistent inode");
1888 for ( ; i < NDADDR + NIADDR; i++) {
1889 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1890 goto inconsistent;
1893 #endif /* DEBUG */
1894 for (i = 0; i < NDADDR; i++)
1895 if (ip->i_ffs1_db[i] != 0)
1896 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1899 #ifdef DIAGNOSTIC
1900 if (vp->v_type == VNON) {
1901 # ifdef DEBUG
1902 lfs_dump_dinode(ip->i_din.ffs1_din);
1903 # endif
1904 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1905 (unsigned long long)ip->i_number,
1906 (ip->i_mode & IFMT) >> 12);
1908 #endif /* DIAGNOSTIC */
1911 * Finish inode initialization now that aliasing has been resolved.
1914 ip->i_devvp = ump->um_devvp;
1915 vref(ip->i_devvp);
1916 genfs_node_init(vp, &lfs_genfsops);
1917 uvm_vnp_setsize(vp, ip->i_size);
1919 /* Initialize hiblk from file size */
1920 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1922 *vpp = vp;
1926 * Resize the filesystem to contain the specified number of segments.
1929 lfs_resize_fs(struct lfs *fs, int newnsegs)
1931 SEGUSE *sup;
1932 struct buf *bp, *obp;
1933 daddr_t olast, nlast, ilast, noff, start, end;
1934 struct vnode *ivp;
1935 struct inode *ip;
1936 int error, badnews, inc, oldnsegs;
1937 int sbbytes, csbbytes, gain, cgain;
1938 int i;
1940 /* Only support v2 and up */
1941 if (fs->lfs_version < 2)
1942 return EOPNOTSUPP;
1944 /* If we're doing nothing, do it fast */
1945 oldnsegs = fs->lfs_nseg;
1946 if (newnsegs == oldnsegs)
1947 return 0;
1949 /* We always have to have two superblocks */
1950 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1951 return EFBIG;
1953 ivp = fs->lfs_ivnode;
1954 ip = VTOI(ivp);
1955 error = 0;
1957 /* Take the segment lock so no one else calls lfs_newseg() */
1958 lfs_seglock(fs, SEGM_PROT);
1961 * Make sure the segments we're going to be losing, if any,
1962 * are in fact empty. We hold the seglock, so their status
1963 * cannot change underneath us. Count the superblocks we lose,
1964 * while we're at it.
1966 sbbytes = csbbytes = 0;
1967 cgain = 0;
1968 for (i = newnsegs; i < oldnsegs; i++) {
1969 LFS_SEGENTRY(sup, fs, i, bp);
1970 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1971 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1972 sbbytes += LFS_SBPAD;
1973 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1974 ++cgain;
1975 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1976 csbbytes += LFS_SBPAD;
1978 brelse(bp, 0);
1979 if (badnews) {
1980 error = EBUSY;
1981 goto out;
1985 /* Note old and new segment table endpoints, and old ifile size */
1986 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1987 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1988 ilast = ivp->v_size >> fs->lfs_bshift;
1989 noff = nlast - olast;
1992 * Make sure no one can use the Ifile while we change it around.
1993 * Even after taking the iflock we need to make sure no one still
1994 * is holding Ifile buffers, so we get each one, to drain them.
1995 * (XXX this could be done better.)
1997 rw_enter(&fs->lfs_iflock, RW_WRITER);
1998 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1999 for (i = 0; i < ilast; i++) {
2000 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
2001 brelse(bp, 0);
2004 /* Allocate new Ifile blocks */
2005 for (i = ilast; i < ilast + noff; i++) {
2006 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
2007 &bp) != 0)
2008 panic("balloc extending ifile");
2009 memset(bp->b_data, 0, fs->lfs_bsize);
2010 VOP_BWRITE(bp);
2013 /* Register new ifile size */
2014 ip->i_size += noff * fs->lfs_bsize;
2015 ip->i_ffs1_size = ip->i_size;
2016 uvm_vnp_setsize(ivp, ip->i_size);
2018 /* Copy the inode table to its new position */
2019 if (noff != 0) {
2020 if (noff < 0) {
2021 start = nlast;
2022 end = ilast + noff;
2023 inc = 1;
2024 } else {
2025 start = ilast + noff - 1;
2026 end = nlast - 1;
2027 inc = -1;
2029 for (i = start; i != end; i += inc) {
2030 if (bread(ivp, i, fs->lfs_bsize, NOCRED,
2031 B_MODIFY, &bp) != 0)
2032 panic("resize: bread dst blk failed");
2033 if (bread(ivp, i - noff, fs->lfs_bsize,
2034 NOCRED, 0, &obp))
2035 panic("resize: bread src blk failed");
2036 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2037 VOP_BWRITE(bp);
2038 brelse(obp, 0);
2042 /* If we are expanding, write the new empty SEGUSE entries */
2043 if (newnsegs > oldnsegs) {
2044 for (i = oldnsegs; i < newnsegs; i++) {
2045 if ((error = bread(ivp, i / fs->lfs_sepb +
2046 fs->lfs_cleansz, fs->lfs_bsize,
2047 NOCRED, B_MODIFY, &bp)) != 0)
2048 panic("lfs: ifile read: %d", error);
2049 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2050 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2051 memset(sup, 0, sizeof(*sup));
2052 i++;
2054 VOP_BWRITE(bp);
2058 /* Zero out unused superblock offsets */
2059 for (i = 2; i < LFS_MAXNUMSB; i++)
2060 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2061 fs->lfs_sboffs[i] = 0x0;
2064 * Correct superblock entries that depend on fs size.
2065 * The computations of these are as follows:
2067 * size = segtod(fs, nseg)
2068 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2069 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2070 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2071 * + (segtod(fs, 1) - (offset - curseg))
2072 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2074 * XXX - we should probably adjust minfreeseg as well.
2076 gain = (newnsegs - oldnsegs);
2077 fs->lfs_nseg = newnsegs;
2078 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2079 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2080 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2081 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2082 - gain * btofsb(fs, fs->lfs_bsize / 2);
2083 if (gain > 0) {
2084 fs->lfs_nclean += gain;
2085 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2086 } else {
2087 fs->lfs_nclean -= cgain;
2088 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2089 btofsb(fs, csbbytes);
2092 /* Resize segment flag cache */
2093 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2094 fs->lfs_nseg * sizeof(u_int32_t),
2095 M_SEGMENT, M_WAITOK);
2096 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2097 fs->lfs_nseg * sizeof(u_int32_t),
2098 M_SEGMENT, M_WAITOK);
2099 for (i = oldnsegs; i < newnsegs; i++)
2100 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2102 /* Truncate Ifile if necessary */
2103 if (noff < 0)
2104 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2105 NOCRED);
2107 /* Update cleaner info so the cleaner can die */
2108 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
2109 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2110 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2111 VOP_BWRITE(bp);
2113 /* Let Ifile accesses proceed */
2114 VOP_UNLOCK(ivp, 0);
2115 rw_exit(&fs->lfs_iflock);
2117 out:
2118 lfs_segunlock(fs);
2119 return error;