Sync usage with man page.
[netbsd-mini2440.git] / sys / uvm / uvm_page.c
blobc2b79a924bf0fe27c22321a737e3ba940701f82b
1 /* $NetBSD: uvm_page.c,v 1.151 2009/08/18 19:08:39 thorpej Exp $ */
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 * All rights reserved.
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 * Carnegie Mellon requests users of this software to return to
60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
70 * uvm_page.c: page ops.
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.151 2009/08/18 19:08:39 thorpej Exp $");
76 #include "opt_ddb.h"
77 #include "opt_uvmhist.h"
78 #include "opt_readahead.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/malloc.h>
83 #include <sys/sched.h>
84 #include <sys/kernel.h>
85 #include <sys/vnode.h>
86 #include <sys/proc.h>
87 #include <sys/atomic.h>
88 #include <sys/cpu.h>
90 #include <uvm/uvm.h>
91 #include <uvm/uvm_ddb.h>
92 #include <uvm/uvm_pdpolicy.h>
95 * global vars... XXXCDC: move to uvm. structure.
99 * physical memory config is stored in vm_physmem.
102 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
103 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
106 * Some supported CPUs in a given architecture don't support all
107 * of the things necessary to do idle page zero'ing efficiently.
108 * We therefore provide a way to disable it from machdep code here.
111 * XXX disabled until we can find a way to do this without causing
112 * problems for either CPU caches or DMA latency.
114 bool vm_page_zero_enable = false;
117 * number of pages per-CPU to reserve for the kernel.
119 int vm_page_reserve_kernel = 5;
122 * physical memory size;
124 int physmem;
127 * local variables
131 * these variables record the values returned by vm_page_bootstrap,
132 * for debugging purposes. The implementation of uvm_pageboot_alloc
133 * and pmap_startup here also uses them internally.
136 static vaddr_t virtual_space_start;
137 static vaddr_t virtual_space_end;
140 * we allocate an initial number of page colors in uvm_page_init(),
141 * and remember them. We may re-color pages as cache sizes are
142 * discovered during the autoconfiguration phase. But we can never
143 * free the initial set of buckets, since they are allocated using
144 * uvm_pageboot_alloc().
147 static bool have_recolored_pages /* = false */;
149 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
151 #ifdef DEBUG
152 vaddr_t uvm_zerocheckkva;
153 #endif /* DEBUG */
156 * local prototypes
159 static void uvm_pageinsert(struct vm_page *);
160 static void uvm_pageremove(struct vm_page *);
163 * per-object tree of pages
166 static signed int
167 uvm_page_compare_nodes(const struct rb_node *n1, const struct rb_node *n2)
169 const struct vm_page *pg1 = (const void *)n1;
170 const struct vm_page *pg2 = (const void *)n2;
171 const voff_t a = pg1->offset;
172 const voff_t b = pg2->offset;
174 if (a < b)
175 return 1;
176 if (a > b)
177 return -1;
178 return 0;
181 static signed int
182 uvm_page_compare_key(const struct rb_node *n, const void *key)
184 const struct vm_page *pg = (const void *)n;
185 const voff_t a = pg->offset;
186 const voff_t b = *(const voff_t *)key;
188 if (a < b)
189 return 1;
190 if (a > b)
191 return -1;
192 return 0;
195 const struct rb_tree_ops uvm_page_tree_ops = {
196 .rbto_compare_nodes = uvm_page_compare_nodes,
197 .rbto_compare_key = uvm_page_compare_key,
201 * inline functions
205 * uvm_pageinsert: insert a page in the object.
207 * => caller must lock object
208 * => caller must lock page queues
209 * => call should have already set pg's object and offset pointers
210 * and bumped the version counter
213 static inline void
214 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
215 struct vm_page *where)
218 KASSERT(uobj == pg->uobject);
219 KASSERT(mutex_owned(&uobj->vmobjlock));
220 KASSERT((pg->flags & PG_TABLED) == 0);
221 KASSERT(where == NULL || (where->flags & PG_TABLED));
222 KASSERT(where == NULL || (where->uobject == uobj));
224 if (UVM_OBJ_IS_VNODE(uobj)) {
225 if (uobj->uo_npages == 0) {
226 struct vnode *vp = (struct vnode *)uobj;
228 vholdl(vp);
230 if (UVM_OBJ_IS_VTEXT(uobj)) {
231 atomic_inc_uint(&uvmexp.execpages);
232 } else {
233 atomic_inc_uint(&uvmexp.filepages);
235 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
236 atomic_inc_uint(&uvmexp.anonpages);
239 if (where)
240 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
241 else
242 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
243 pg->flags |= PG_TABLED;
244 uobj->uo_npages++;
248 static inline void
249 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
251 bool success;
253 KASSERT(uobj == pg->uobject);
254 success = rb_tree_insert_node(&uobj->rb_tree, &pg->rb_node);
255 KASSERT(success);
258 static inline void
259 uvm_pageinsert(struct vm_page *pg)
261 struct uvm_object *uobj = pg->uobject;
263 uvm_pageinsert_tree(uobj, pg);
264 uvm_pageinsert_list(uobj, pg, NULL);
268 * uvm_page_remove: remove page from object.
270 * => caller must lock object
271 * => caller must lock page queues
274 static inline void
275 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
278 KASSERT(uobj == pg->uobject);
279 KASSERT(mutex_owned(&uobj->vmobjlock));
280 KASSERT(pg->flags & PG_TABLED);
282 if (UVM_OBJ_IS_VNODE(uobj)) {
283 if (uobj->uo_npages == 1) {
284 struct vnode *vp = (struct vnode *)uobj;
286 holdrelel(vp);
288 if (UVM_OBJ_IS_VTEXT(uobj)) {
289 atomic_dec_uint(&uvmexp.execpages);
290 } else {
291 atomic_dec_uint(&uvmexp.filepages);
293 } else if (UVM_OBJ_IS_AOBJ(uobj)) {
294 atomic_dec_uint(&uvmexp.anonpages);
297 /* object should be locked */
298 uobj->uo_npages--;
299 TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
300 pg->flags &= ~PG_TABLED;
301 pg->uobject = NULL;
304 static inline void
305 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
308 KASSERT(uobj == pg->uobject);
309 rb_tree_remove_node(&uobj->rb_tree, &pg->rb_node);
312 static inline void
313 uvm_pageremove(struct vm_page *pg)
315 struct uvm_object *uobj = pg->uobject;
317 uvm_pageremove_tree(uobj, pg);
318 uvm_pageremove_list(uobj, pg);
321 static void
322 uvm_page_init_buckets(struct pgfreelist *pgfl)
324 int color, i;
326 for (color = 0; color < uvmexp.ncolors; color++) {
327 for (i = 0; i < PGFL_NQUEUES; i++) {
328 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
334 * uvm_page_init: init the page system. called from uvm_init().
336 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
339 void
340 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
342 vsize_t freepages, pagecount, bucketcount, n;
343 struct pgflbucket *bucketarray, *cpuarray;
344 struct vm_page *pagearray;
345 int lcv;
346 u_int i;
347 paddr_t paddr;
349 KASSERT(ncpu <= 1);
350 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
353 * init the page queues and page queue locks, except the free
354 * list; we allocate that later (with the initial vm_page
355 * structures).
358 curcpu()->ci_data.cpu_uvm = &uvm.cpus[0];
359 uvm_reclaim_init();
360 uvmpdpol_init();
361 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
362 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
365 * allocate vm_page structures.
369 * sanity check:
370 * before calling this function the MD code is expected to register
371 * some free RAM with the uvm_page_physload() function. our job
372 * now is to allocate vm_page structures for this memory.
375 if (vm_nphysseg == 0)
376 panic("uvm_page_bootstrap: no memory pre-allocated");
379 * first calculate the number of free pages...
381 * note that we use start/end rather than avail_start/avail_end.
382 * this allows us to allocate extra vm_page structures in case we
383 * want to return some memory to the pool after booting.
386 freepages = 0;
387 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
388 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
391 * Let MD code initialize the number of colors, or default
392 * to 1 color if MD code doesn't care.
394 if (uvmexp.ncolors == 0)
395 uvmexp.ncolors = 1;
396 uvmexp.colormask = uvmexp.ncolors - 1;
399 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
400 * use. for each page of memory we use we need a vm_page structure.
401 * thus, the total number of pages we can use is the total size of
402 * the memory divided by the PAGE_SIZE plus the size of the vm_page
403 * structure. we add one to freepages as a fudge factor to avoid
404 * truncation errors (since we can only allocate in terms of whole
405 * pages).
408 bucketcount = uvmexp.ncolors * VM_NFREELIST;
409 pagecount = ((freepages + 1) << PAGE_SHIFT) /
410 (PAGE_SIZE + sizeof(struct vm_page));
412 bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
413 sizeof(struct pgflbucket) * 2) + (pagecount *
414 sizeof(struct vm_page)));
415 cpuarray = bucketarray + bucketcount;
416 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
419 uvm.page_free[lcv].pgfl_buckets =
420 (bucketarray + (lcv * uvmexp.ncolors));
421 uvm_page_init_buckets(&uvm.page_free[lcv]);
422 uvm.cpus[0].page_free[lcv].pgfl_buckets =
423 (cpuarray + (lcv * uvmexp.ncolors));
424 uvm_page_init_buckets(&uvm.cpus[0].page_free[lcv]);
426 memset(pagearray, 0, pagecount * sizeof(struct vm_page));
429 * init the vm_page structures and put them in the correct place.
432 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
433 n = vm_physmem[lcv].end - vm_physmem[lcv].start;
435 /* set up page array pointers */
436 vm_physmem[lcv].pgs = pagearray;
437 pagearray += n;
438 pagecount -= n;
439 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
441 /* init and free vm_pages (we've already zeroed them) */
442 paddr = ptoa(vm_physmem[lcv].start);
443 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
444 vm_physmem[lcv].pgs[i].phys_addr = paddr;
445 #ifdef __HAVE_VM_PAGE_MD
446 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
447 #endif
448 if (atop(paddr) >= vm_physmem[lcv].avail_start &&
449 atop(paddr) <= vm_physmem[lcv].avail_end) {
450 uvmexp.npages++;
451 /* add page to free pool */
452 uvm_pagefree(&vm_physmem[lcv].pgs[i]);
458 * pass up the values of virtual_space_start and
459 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
460 * layers of the VM.
463 *kvm_startp = round_page(virtual_space_start);
464 *kvm_endp = trunc_page(virtual_space_end);
465 #ifdef DEBUG
467 * steal kva for uvm_pagezerocheck().
469 uvm_zerocheckkva = *kvm_startp;
470 *kvm_startp += PAGE_SIZE;
471 #endif /* DEBUG */
474 * init various thresholds.
477 uvmexp.reserve_pagedaemon = 1;
478 uvmexp.reserve_kernel = vm_page_reserve_kernel;
481 * determine if we should zero pages in the idle loop.
484 uvm.cpus[0].page_idle_zero = vm_page_zero_enable;
487 * done!
490 uvm.page_init_done = true;
494 * uvm_setpagesize: set the page size
496 * => sets page_shift and page_mask from uvmexp.pagesize.
499 void
500 uvm_setpagesize(void)
504 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
505 * to be a constant (indicated by being a non-zero value).
507 if (uvmexp.pagesize == 0) {
508 if (PAGE_SIZE == 0)
509 panic("uvm_setpagesize: uvmexp.pagesize not set");
510 uvmexp.pagesize = PAGE_SIZE;
512 uvmexp.pagemask = uvmexp.pagesize - 1;
513 if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
514 panic("uvm_setpagesize: page size not a power of two");
515 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
516 if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
517 break;
521 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
524 vaddr_t
525 uvm_pageboot_alloc(vsize_t size)
527 static bool initialized = false;
528 vaddr_t addr;
529 #if !defined(PMAP_STEAL_MEMORY)
530 vaddr_t vaddr;
531 paddr_t paddr;
532 #endif
535 * on first call to this function, initialize ourselves.
537 if (initialized == false) {
538 pmap_virtual_space(&virtual_space_start, &virtual_space_end);
540 /* round it the way we like it */
541 virtual_space_start = round_page(virtual_space_start);
542 virtual_space_end = trunc_page(virtual_space_end);
544 initialized = true;
547 /* round to page size */
548 size = round_page(size);
550 #if defined(PMAP_STEAL_MEMORY)
553 * defer bootstrap allocation to MD code (it may want to allocate
554 * from a direct-mapped segment). pmap_steal_memory should adjust
555 * virtual_space_start/virtual_space_end if necessary.
558 addr = pmap_steal_memory(size, &virtual_space_start,
559 &virtual_space_end);
561 return(addr);
563 #else /* !PMAP_STEAL_MEMORY */
566 * allocate virtual memory for this request
568 if (virtual_space_start == virtual_space_end ||
569 (virtual_space_end - virtual_space_start) < size)
570 panic("uvm_pageboot_alloc: out of virtual space");
572 addr = virtual_space_start;
574 #ifdef PMAP_GROWKERNEL
576 * If the kernel pmap can't map the requested space,
577 * then allocate more resources for it.
579 if (uvm_maxkaddr < (addr + size)) {
580 uvm_maxkaddr = pmap_growkernel(addr + size);
581 if (uvm_maxkaddr < (addr + size))
582 panic("uvm_pageboot_alloc: pmap_growkernel() failed");
584 #endif
586 virtual_space_start += size;
589 * allocate and mapin physical pages to back new virtual pages
592 for (vaddr = round_page(addr) ; vaddr < addr + size ;
593 vaddr += PAGE_SIZE) {
595 if (!uvm_page_physget(&paddr))
596 panic("uvm_pageboot_alloc: out of memory");
599 * Note this memory is no longer managed, so using
600 * pmap_kenter is safe.
602 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
604 pmap_update(pmap_kernel());
605 return(addr);
606 #endif /* PMAP_STEAL_MEMORY */
609 #if !defined(PMAP_STEAL_MEMORY)
611 * uvm_page_physget: "steal" one page from the vm_physmem structure.
613 * => attempt to allocate it off the end of a segment in which the "avail"
614 * values match the start/end values. if we can't do that, then we
615 * will advance both values (making them equal, and removing some
616 * vm_page structures from the non-avail area).
617 * => return false if out of memory.
620 /* subroutine: try to allocate from memory chunks on the specified freelist */
621 static bool uvm_page_physget_freelist(paddr_t *, int);
623 static bool
624 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
626 int lcv, x;
628 /* pass 1: try allocating from a matching end */
629 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
630 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
631 #else
632 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
633 #endif
636 if (uvm.page_init_done == true)
637 panic("uvm_page_physget: called _after_ bootstrap");
639 if (vm_physmem[lcv].free_list != freelist)
640 continue;
642 /* try from front */
643 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
644 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
645 *paddrp = ptoa(vm_physmem[lcv].avail_start);
646 vm_physmem[lcv].avail_start++;
647 vm_physmem[lcv].start++;
648 /* nothing left? nuke it */
649 if (vm_physmem[lcv].avail_start ==
650 vm_physmem[lcv].end) {
651 if (vm_nphysseg == 1)
652 panic("uvm_page_physget: out of memory!");
653 vm_nphysseg--;
654 for (x = lcv ; x < vm_nphysseg ; x++)
655 /* structure copy */
656 vm_physmem[x] = vm_physmem[x+1];
658 return (true);
661 /* try from rear */
662 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
663 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
664 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
665 vm_physmem[lcv].avail_end--;
666 vm_physmem[lcv].end--;
667 /* nothing left? nuke it */
668 if (vm_physmem[lcv].avail_end ==
669 vm_physmem[lcv].start) {
670 if (vm_nphysseg == 1)
671 panic("uvm_page_physget: out of memory!");
672 vm_nphysseg--;
673 for (x = lcv ; x < vm_nphysseg ; x++)
674 /* structure copy */
675 vm_physmem[x] = vm_physmem[x+1];
677 return (true);
681 /* pass2: forget about matching ends, just allocate something */
682 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
683 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
684 #else
685 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
686 #endif
689 /* any room in this bank? */
690 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
691 continue; /* nope */
693 *paddrp = ptoa(vm_physmem[lcv].avail_start);
694 vm_physmem[lcv].avail_start++;
695 /* truncate! */
696 vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
698 /* nothing left? nuke it */
699 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
700 if (vm_nphysseg == 1)
701 panic("uvm_page_physget: out of memory!");
702 vm_nphysseg--;
703 for (x = lcv ; x < vm_nphysseg ; x++)
704 /* structure copy */
705 vm_physmem[x] = vm_physmem[x+1];
707 return (true);
710 return (false); /* whoops! */
713 bool
714 uvm_page_physget(paddr_t *paddrp)
716 int i;
718 /* try in the order of freelist preference */
719 for (i = 0; i < VM_NFREELIST; i++)
720 if (uvm_page_physget_freelist(paddrp, i) == true)
721 return (true);
722 return (false);
724 #endif /* PMAP_STEAL_MEMORY */
727 * uvm_page_physload: load physical memory into VM system
729 * => all args are PFs
730 * => all pages in start/end get vm_page structures
731 * => areas marked by avail_start/avail_end get added to the free page pool
732 * => we are limited to VM_PHYSSEG_MAX physical memory segments
735 void
736 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
737 paddr_t avail_end, int free_list)
739 int preload, lcv;
740 psize_t npages;
741 struct vm_page *pgs;
742 struct vm_physseg *ps;
744 if (uvmexp.pagesize == 0)
745 panic("uvm_page_physload: page size not set!");
746 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
747 panic("uvm_page_physload: bad free list %d", free_list);
748 if (start >= end)
749 panic("uvm_page_physload: start >= end");
752 * do we have room?
755 if (vm_nphysseg == VM_PHYSSEG_MAX) {
756 printf("uvm_page_physload: unable to load physical memory "
757 "segment\n");
758 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
759 VM_PHYSSEG_MAX, (long long)start, (long long)end);
760 printf("\tincrease VM_PHYSSEG_MAX\n");
761 return;
765 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
766 * called yet, so malloc is not available).
769 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
770 if (vm_physmem[lcv].pgs)
771 break;
773 preload = (lcv == vm_nphysseg);
776 * if VM is already running, attempt to malloc() vm_page structures
779 if (!preload) {
780 #if defined(VM_PHYSSEG_NOADD)
781 panic("uvm_page_physload: tried to add RAM after vm_mem_init");
782 #else
783 /* XXXCDC: need some sort of lockout for this case */
784 paddr_t paddr;
785 npages = end - start; /* # of pages */
786 pgs = malloc(sizeof(struct vm_page) * npages,
787 M_VMPAGE, M_NOWAIT);
788 if (pgs == NULL) {
789 printf("uvm_page_physload: can not malloc vm_page "
790 "structs for segment\n");
791 printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
792 return;
794 /* zero data, init phys_addr and free_list, and free pages */
795 memset(pgs, 0, sizeof(struct vm_page) * npages);
796 for (lcv = 0, paddr = ptoa(start) ;
797 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
798 pgs[lcv].phys_addr = paddr;
799 pgs[lcv].free_list = free_list;
800 if (atop(paddr) >= avail_start &&
801 atop(paddr) <= avail_end)
802 uvm_pagefree(&pgs[lcv]);
804 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */
805 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
806 #endif
807 } else {
808 pgs = NULL;
809 npages = 0;
813 * now insert us in the proper place in vm_physmem[]
816 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
817 /* random: put it at the end (easy!) */
818 ps = &vm_physmem[vm_nphysseg];
819 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
821 int x;
822 /* sort by address for binary search */
823 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
824 if (start < vm_physmem[lcv].start)
825 break;
826 ps = &vm_physmem[lcv];
827 /* move back other entries, if necessary ... */
828 for (x = vm_nphysseg ; x > lcv ; x--)
829 /* structure copy */
830 vm_physmem[x] = vm_physmem[x - 1];
832 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
834 int x;
835 /* sort by largest segment first */
836 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
837 if ((end - start) >
838 (vm_physmem[lcv].end - vm_physmem[lcv].start))
839 break;
840 ps = &vm_physmem[lcv];
841 /* move back other entries, if necessary ... */
842 for (x = vm_nphysseg ; x > lcv ; x--)
843 /* structure copy */
844 vm_physmem[x] = vm_physmem[x - 1];
846 #else
847 panic("uvm_page_physload: unknown physseg strategy selected!");
848 #endif
850 ps->start = start;
851 ps->end = end;
852 ps->avail_start = avail_start;
853 ps->avail_end = avail_end;
854 if (preload) {
855 ps->pgs = NULL;
856 } else {
857 ps->pgs = pgs;
858 ps->lastpg = pgs + npages - 1;
860 ps->free_list = free_list;
861 vm_nphysseg++;
863 if (!preload) {
864 uvmpdpol_reinit();
869 * uvm_page_recolor: Recolor the pages if the new bucket count is
870 * larger than the old one.
873 void
874 uvm_page_recolor(int newncolors)
876 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
877 struct pgfreelist gpgfl, pgfl;
878 struct vm_page *pg;
879 vsize_t bucketcount;
880 int lcv, color, i, ocolors;
881 struct uvm_cpu *ucpu;
883 if (newncolors <= uvmexp.ncolors)
884 return;
886 if (uvm.page_init_done == false) {
887 uvmexp.ncolors = newncolors;
888 return;
891 bucketcount = newncolors * VM_NFREELIST;
892 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2,
893 M_VMPAGE, M_NOWAIT);
894 cpuarray = bucketarray + bucketcount;
895 if (bucketarray == NULL) {
896 printf("WARNING: unable to allocate %ld page color buckets\n",
897 (long) bucketcount);
898 return;
901 mutex_spin_enter(&uvm_fpageqlock);
903 /* Make sure we should still do this. */
904 if (newncolors <= uvmexp.ncolors) {
905 mutex_spin_exit(&uvm_fpageqlock);
906 free(bucketarray, M_VMPAGE);
907 return;
910 oldbucketarray = uvm.page_free[0].pgfl_buckets;
911 ocolors = uvmexp.ncolors;
913 uvmexp.ncolors = newncolors;
914 uvmexp.colormask = uvmexp.ncolors - 1;
916 ucpu = curcpu()->ci_data.cpu_uvm;
917 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
918 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
919 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
920 uvm_page_init_buckets(&gpgfl);
921 uvm_page_init_buckets(&pgfl);
922 for (color = 0; color < ocolors; color++) {
923 for (i = 0; i < PGFL_NQUEUES; i++) {
924 while ((pg = LIST_FIRST(&uvm.page_free[
925 lcv].pgfl_buckets[color].pgfl_queues[i]))
926 != NULL) {
927 LIST_REMOVE(pg, pageq.list); /* global */
928 LIST_REMOVE(pg, listq.list); /* cpu */
929 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
930 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
931 i], pg, pageq.list);
932 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
933 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
934 i], pg, listq.list);
938 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
939 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
942 if (have_recolored_pages) {
943 mutex_spin_exit(&uvm_fpageqlock);
944 free(oldbucketarray, M_VMPAGE);
945 return;
948 have_recolored_pages = true;
949 mutex_spin_exit(&uvm_fpageqlock);
953 * uvm_cpu_attach: initialize per-CPU data structures.
956 void
957 uvm_cpu_attach(struct cpu_info *ci)
959 struct pgflbucket *bucketarray;
960 struct pgfreelist pgfl;
961 struct uvm_cpu *ucpu;
962 vsize_t bucketcount;
963 int lcv;
965 if (CPU_IS_PRIMARY(ci)) {
966 /* Already done in uvm_page_init(). */
967 return;
970 /* Add more reserve pages for this CPU. */
971 uvmexp.reserve_kernel += vm_page_reserve_kernel;
973 /* Configure this CPU's free lists. */
974 bucketcount = uvmexp.ncolors * VM_NFREELIST;
975 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
976 M_VMPAGE, M_WAITOK);
977 ucpu = &uvm.cpus[cpu_index(ci)];
978 ci->ci_data.cpu_uvm = ucpu;
979 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
980 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
981 uvm_page_init_buckets(&pgfl);
982 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
987 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
990 static struct vm_page *
991 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
992 int *trycolorp)
994 struct pgflist *freeq;
995 struct vm_page *pg;
996 int color, trycolor = *trycolorp;
997 struct pgfreelist *gpgfl, *pgfl;
999 KASSERT(mutex_owned(&uvm_fpageqlock));
1001 color = trycolor;
1002 pgfl = &ucpu->page_free[flist];
1003 gpgfl = &uvm.page_free[flist];
1004 do {
1005 /* cpu, try1 */
1006 if ((pg = LIST_FIRST((freeq =
1007 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1008 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1009 uvmexp.cpuhit++;
1010 goto gotit;
1012 /* global, try1 */
1013 if ((pg = LIST_FIRST((freeq =
1014 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
1015 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
1016 uvmexp.cpumiss++;
1017 goto gotit;
1019 /* cpu, try2 */
1020 if ((pg = LIST_FIRST((freeq =
1021 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1022 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1023 uvmexp.cpuhit++;
1024 goto gotit;
1026 /* global, try2 */
1027 if ((pg = LIST_FIRST((freeq =
1028 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
1029 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
1030 uvmexp.cpumiss++;
1031 goto gotit;
1033 color = (color + 1) & uvmexp.colormask;
1034 } while (color != trycolor);
1036 return (NULL);
1038 gotit:
1039 LIST_REMOVE(pg, pageq.list); /* global list */
1040 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1041 uvmexp.free--;
1043 /* update zero'd page count */
1044 if (pg->flags & PG_ZERO)
1045 uvmexp.zeropages--;
1047 if (color == trycolor)
1048 uvmexp.colorhit++;
1049 else {
1050 uvmexp.colormiss++;
1051 *trycolorp = color;
1054 return (pg);
1058 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1060 * => return null if no pages free
1061 * => wake up pagedaemon if number of free pages drops below low water mark
1062 * => if obj != NULL, obj must be locked (to put in obj's tree)
1063 * => if anon != NULL, anon must be locked (to put in anon)
1064 * => only one of obj or anon can be non-null
1065 * => caller must activate/deactivate page if it is not wired.
1066 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1067 * => policy decision: it is more important to pull a page off of the
1068 * appropriate priority free list than it is to get a zero'd or
1069 * unknown contents page. This is because we live with the
1070 * consequences of a bad free list decision for the entire
1071 * lifetime of the page, e.g. if the page comes from memory that
1072 * is slower to access.
1075 struct vm_page *
1076 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1077 int flags, int strat, int free_list)
1079 int lcv, try1, try2, zeroit = 0, color;
1080 struct uvm_cpu *ucpu;
1081 struct vm_page *pg;
1082 lwp_t *l;
1084 KASSERT(obj == NULL || anon == NULL);
1085 KASSERT(anon == NULL || off == 0);
1086 KASSERT(off == trunc_page(off));
1087 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock));
1088 KASSERT(anon == NULL || mutex_owned(&anon->an_lock));
1090 mutex_spin_enter(&uvm_fpageqlock);
1093 * This implements a global round-robin page coloring
1094 * algorithm.
1096 * XXXJRT: What about virtually-indexed caches?
1099 ucpu = curcpu()->ci_data.cpu_uvm;
1100 color = ucpu->page_free_nextcolor;
1103 * check to see if we need to generate some free pages waking
1104 * the pagedaemon.
1107 uvm_kick_pdaemon();
1110 * fail if any of these conditions is true:
1111 * [1] there really are no free pages, or
1112 * [2] only kernel "reserved" pages remain and
1113 * reserved pages have not been requested.
1114 * [3] only pagedaemon "reserved" pages remain and
1115 * the requestor isn't the pagedaemon.
1116 * we make kernel reserve pages available if called by a
1117 * kernel thread or a realtime thread.
1119 l = curlwp;
1120 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
1121 flags |= UVM_PGA_USERESERVE;
1123 if ((uvmexp.free <= uvmexp.reserve_kernel &&
1124 (flags & UVM_PGA_USERESERVE) == 0) ||
1125 (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1126 curlwp != uvm.pagedaemon_lwp))
1127 goto fail;
1129 #if PGFL_NQUEUES != 2
1130 #error uvm_pagealloc_strat needs to be updated
1131 #endif
1134 * If we want a zero'd page, try the ZEROS queue first, otherwise
1135 * we try the UNKNOWN queue first.
1137 if (flags & UVM_PGA_ZERO) {
1138 try1 = PGFL_ZEROS;
1139 try2 = PGFL_UNKNOWN;
1140 } else {
1141 try1 = PGFL_UNKNOWN;
1142 try2 = PGFL_ZEROS;
1145 again:
1146 switch (strat) {
1147 case UVM_PGA_STRAT_NORMAL:
1148 /* Check freelists: descending priority (ascending id) order */
1149 for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1150 pg = uvm_pagealloc_pgfl(ucpu, lcv,
1151 try1, try2, &color);
1152 if (pg != NULL)
1153 goto gotit;
1156 /* No pages free! */
1157 goto fail;
1159 case UVM_PGA_STRAT_ONLY:
1160 case UVM_PGA_STRAT_FALLBACK:
1161 /* Attempt to allocate from the specified free list. */
1162 KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1163 pg = uvm_pagealloc_pgfl(ucpu, free_list,
1164 try1, try2, &color);
1165 if (pg != NULL)
1166 goto gotit;
1168 /* Fall back, if possible. */
1169 if (strat == UVM_PGA_STRAT_FALLBACK) {
1170 strat = UVM_PGA_STRAT_NORMAL;
1171 goto again;
1174 /* No pages free! */
1175 goto fail;
1177 default:
1178 panic("uvm_pagealloc_strat: bad strat %d", strat);
1179 /* NOTREACHED */
1182 gotit:
1184 * We now know which color we actually allocated from; set
1185 * the next color accordingly.
1188 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1191 * update allocation statistics and remember if we have to
1192 * zero the page
1195 if (flags & UVM_PGA_ZERO) {
1196 if (pg->flags & PG_ZERO) {
1197 uvmexp.pga_zerohit++;
1198 zeroit = 0;
1199 } else {
1200 uvmexp.pga_zeromiss++;
1201 zeroit = 1;
1203 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1204 ucpu->page_idle_zero = vm_page_zero_enable;
1207 KASSERT(pg->pqflags == PQ_FREE);
1209 pg->offset = off;
1210 pg->uobject = obj;
1211 pg->uanon = anon;
1212 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1213 if (anon) {
1214 anon->an_page = pg;
1215 pg->pqflags = PQ_ANON;
1216 atomic_inc_uint(&uvmexp.anonpages);
1217 } else {
1218 if (obj) {
1219 uvm_pageinsert(pg);
1221 pg->pqflags = 0;
1223 mutex_spin_exit(&uvm_fpageqlock);
1225 #if defined(UVM_PAGE_TRKOWN)
1226 pg->owner_tag = NULL;
1227 #endif
1228 UVM_PAGE_OWN(pg, "new alloc");
1230 if (flags & UVM_PGA_ZERO) {
1232 * A zero'd page is not clean. If we got a page not already
1233 * zero'd, then we have to zero it ourselves.
1235 pg->flags &= ~PG_CLEAN;
1236 if (zeroit)
1237 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1240 return(pg);
1242 fail:
1243 mutex_spin_exit(&uvm_fpageqlock);
1244 return (NULL);
1248 * uvm_pagereplace: replace a page with another
1250 * => object must be locked
1253 void
1254 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1256 struct uvm_object *uobj = oldpg->uobject;
1258 KASSERT((oldpg->flags & PG_TABLED) != 0);
1259 KASSERT(uobj != NULL);
1260 KASSERT((newpg->flags & PG_TABLED) == 0);
1261 KASSERT(newpg->uobject == NULL);
1262 KASSERT(mutex_owned(&uobj->vmobjlock));
1264 newpg->uobject = uobj;
1265 newpg->offset = oldpg->offset;
1267 uvm_pageremove_tree(uobj, oldpg);
1268 uvm_pageinsert_tree(uobj, newpg);
1269 uvm_pageinsert_list(uobj, newpg, oldpg);
1270 uvm_pageremove_list(uobj, oldpg);
1274 * uvm_pagerealloc: reallocate a page from one object to another
1276 * => both objects must be locked
1279 void
1280 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1283 * remove it from the old object
1286 if (pg->uobject) {
1287 uvm_pageremove(pg);
1291 * put it in the new object
1294 if (newobj) {
1295 pg->uobject = newobj;
1296 pg->offset = newoff;
1297 uvm_pageinsert(pg);
1301 #ifdef DEBUG
1303 * check if page is zero-filled
1305 * - called with free page queue lock held.
1307 void
1308 uvm_pagezerocheck(struct vm_page *pg)
1310 int *p, *ep;
1312 KASSERT(uvm_zerocheckkva != 0);
1313 KASSERT(mutex_owned(&uvm_fpageqlock));
1316 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1317 * uvm page allocator.
1319 * it might be better to have "CPU-local temporary map" pmap interface.
1321 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1322 p = (int *)uvm_zerocheckkva;
1323 ep = (int *)((char *)p + PAGE_SIZE);
1324 pmap_update(pmap_kernel());
1325 while (p < ep) {
1326 if (*p != 0)
1327 panic("PG_ZERO page isn't zero-filled");
1328 p++;
1330 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1332 * pmap_update() is not necessary here because no one except us
1333 * uses this VA.
1336 #endif /* DEBUG */
1339 * uvm_pagefree: free page
1341 * => erase page's identity (i.e. remove from object)
1342 * => put page on free list
1343 * => caller must lock owning object (either anon or uvm_object)
1344 * => caller must lock page queues
1345 * => assumes all valid mappings of pg are gone
1348 void
1349 uvm_pagefree(struct vm_page *pg)
1351 struct pgflist *pgfl;
1352 struct uvm_cpu *ucpu;
1353 int index, color, queue;
1354 bool iszero;
1356 #ifdef DEBUG
1357 if (pg->uobject == (void *)0xdeadbeef &&
1358 pg->uanon == (void *)0xdeadbeef) {
1359 panic("uvm_pagefree: freeing free page %p", pg);
1361 #endif /* DEBUG */
1363 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1364 KASSERT(!(pg->pqflags & PQ_FREE));
1365 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1366 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock));
1367 KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1368 mutex_owned(&pg->uanon->an_lock));
1371 * if the page is loaned, resolve the loan instead of freeing.
1374 if (pg->loan_count) {
1375 KASSERT(pg->wire_count == 0);
1378 * if the page is owned by an anon then we just want to
1379 * drop anon ownership. the kernel will free the page when
1380 * it is done with it. if the page is owned by an object,
1381 * remove it from the object and mark it dirty for the benefit
1382 * of possible anon owners.
1384 * regardless of previous ownership, wakeup any waiters,
1385 * unbusy the page, and we're done.
1388 if (pg->uobject != NULL) {
1389 uvm_pageremove(pg);
1390 pg->flags &= ~PG_CLEAN;
1391 } else if (pg->uanon != NULL) {
1392 if ((pg->pqflags & PQ_ANON) == 0) {
1393 pg->loan_count--;
1394 } else {
1395 pg->pqflags &= ~PQ_ANON;
1396 atomic_dec_uint(&uvmexp.anonpages);
1398 pg->uanon->an_page = NULL;
1399 pg->uanon = NULL;
1401 if (pg->flags & PG_WANTED) {
1402 wakeup(pg);
1404 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1405 #ifdef UVM_PAGE_TRKOWN
1406 pg->owner_tag = NULL;
1407 #endif
1408 if (pg->loan_count) {
1409 KASSERT(pg->uobject == NULL);
1410 if (pg->uanon == NULL) {
1411 uvm_pagedequeue(pg);
1413 return;
1418 * remove page from its object or anon.
1421 if (pg->uobject != NULL) {
1422 uvm_pageremove(pg);
1423 } else if (pg->uanon != NULL) {
1424 pg->uanon->an_page = NULL;
1425 atomic_dec_uint(&uvmexp.anonpages);
1429 * now remove the page from the queues.
1432 uvm_pagedequeue(pg);
1435 * if the page was wired, unwire it now.
1438 if (pg->wire_count) {
1439 pg->wire_count = 0;
1440 uvmexp.wired--;
1444 * and put on free queue
1447 iszero = (pg->flags & PG_ZERO);
1448 index = uvm_page_lookup_freelist(pg);
1449 color = VM_PGCOLOR_BUCKET(pg);
1450 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1452 #ifdef DEBUG
1453 pg->uobject = (void *)0xdeadbeef;
1454 pg->uanon = (void *)0xdeadbeef;
1455 #endif
1457 mutex_spin_enter(&uvm_fpageqlock);
1458 pg->pqflags = PQ_FREE;
1460 #ifdef DEBUG
1461 if (iszero)
1462 uvm_pagezerocheck(pg);
1463 #endif /* DEBUG */
1466 /* global list */
1467 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1468 LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1469 uvmexp.free++;
1470 if (iszero) {
1471 uvmexp.zeropages++;
1474 /* per-cpu list */
1475 ucpu = curcpu()->ci_data.cpu_uvm;
1476 pg->offset = (uintptr_t)ucpu;
1477 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1478 LIST_INSERT_HEAD(pgfl, pg, listq.list);
1479 ucpu->pages[queue]++;
1480 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1481 ucpu->page_idle_zero = vm_page_zero_enable;
1484 mutex_spin_exit(&uvm_fpageqlock);
1488 * uvm_page_unbusy: unbusy an array of pages.
1490 * => pages must either all belong to the same object, or all belong to anons.
1491 * => if pages are object-owned, object must be locked.
1492 * => if pages are anon-owned, anons must be locked.
1493 * => caller must lock page queues if pages may be released.
1494 * => caller must make sure that anon-owned pages are not PG_RELEASED.
1497 void
1498 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1500 struct vm_page *pg;
1501 int i;
1502 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1504 for (i = 0; i < npgs; i++) {
1505 pg = pgs[i];
1506 if (pg == NULL || pg == PGO_DONTCARE) {
1507 continue;
1510 KASSERT(pg->uobject == NULL ||
1511 mutex_owned(&pg->uobject->vmobjlock));
1512 KASSERT(pg->uobject != NULL ||
1513 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock)));
1515 KASSERT(pg->flags & PG_BUSY);
1516 KASSERT((pg->flags & PG_PAGEOUT) == 0);
1517 if (pg->flags & PG_WANTED) {
1518 wakeup(pg);
1520 if (pg->flags & PG_RELEASED) {
1521 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1522 KASSERT(pg->uobject != NULL ||
1523 (pg->uanon != NULL && pg->uanon->an_ref > 0));
1524 pg->flags &= ~PG_RELEASED;
1525 uvm_pagefree(pg);
1526 } else {
1527 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1528 KASSERT((pg->flags & PG_FAKE) == 0);
1529 pg->flags &= ~(PG_WANTED|PG_BUSY);
1530 UVM_PAGE_OWN(pg, NULL);
1535 #if defined(UVM_PAGE_TRKOWN)
1537 * uvm_page_own: set or release page ownership
1539 * => this is a debugging function that keeps track of who sets PG_BUSY
1540 * and where they do it. it can be used to track down problems
1541 * such a process setting "PG_BUSY" and never releasing it.
1542 * => page's object [if any] must be locked
1543 * => if "tag" is NULL then we are releasing page ownership
1545 void
1546 uvm_page_own(struct vm_page *pg, const char *tag)
1548 struct uvm_object *uobj;
1549 struct vm_anon *anon;
1551 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1553 uobj = pg->uobject;
1554 anon = pg->uanon;
1555 if (uobj != NULL) {
1556 KASSERT(mutex_owned(&uobj->vmobjlock));
1557 } else if (anon != NULL) {
1558 KASSERT(mutex_owned(&anon->an_lock));
1561 KASSERT((pg->flags & PG_WANTED) == 0);
1563 /* gain ownership? */
1564 if (tag) {
1565 KASSERT((pg->flags & PG_BUSY) != 0);
1566 if (pg->owner_tag) {
1567 printf("uvm_page_own: page %p already owned "
1568 "by proc %d [%s]\n", pg,
1569 pg->owner, pg->owner_tag);
1570 panic("uvm_page_own");
1572 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
1573 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
1574 pg->owner_tag = tag;
1575 return;
1578 /* drop ownership */
1579 KASSERT((pg->flags & PG_BUSY) == 0);
1580 if (pg->owner_tag == NULL) {
1581 printf("uvm_page_own: dropping ownership of an non-owned "
1582 "page (%p)\n", pg);
1583 panic("uvm_page_own");
1585 if (!uvmpdpol_pageisqueued_p(pg)) {
1586 KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1587 pg->wire_count > 0);
1588 } else {
1589 KASSERT(pg->wire_count == 0);
1591 pg->owner_tag = NULL;
1593 #endif
1596 * uvm_pageidlezero: zero free pages while the system is idle.
1598 * => try to complete one color bucket at a time, to reduce our impact
1599 * on the CPU cache.
1600 * => we loop until we either reach the target or there is a lwp ready
1601 * to run, or MD code detects a reason to break early.
1603 void
1604 uvm_pageidlezero(void)
1606 struct vm_page *pg;
1607 struct pgfreelist *pgfl, *gpgfl;
1608 struct uvm_cpu *ucpu;
1609 int free_list, firstbucket, nextbucket;
1611 ucpu = curcpu()->ci_data.cpu_uvm;
1612 if (!ucpu->page_idle_zero ||
1613 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1614 ucpu->page_idle_zero = false;
1615 return;
1617 mutex_enter(&uvm_fpageqlock);
1618 firstbucket = ucpu->page_free_nextcolor;
1619 nextbucket = firstbucket;
1620 do {
1621 for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1622 if (sched_curcpu_runnable_p()) {
1623 goto quit;
1625 pgfl = &ucpu->page_free[free_list];
1626 gpgfl = &uvm.page_free[free_list];
1627 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1628 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1629 if (sched_curcpu_runnable_p()) {
1630 goto quit;
1632 LIST_REMOVE(pg, pageq.list); /* global list */
1633 LIST_REMOVE(pg, listq.list); /* per-cpu list */
1634 ucpu->pages[PGFL_UNKNOWN]--;
1635 uvmexp.free--;
1636 KASSERT(pg->pqflags == PQ_FREE);
1637 pg->pqflags = 0;
1638 mutex_spin_exit(&uvm_fpageqlock);
1639 #ifdef PMAP_PAGEIDLEZERO
1640 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1643 * The machine-dependent code detected
1644 * some reason for us to abort zeroing
1645 * pages, probably because there is a
1646 * process now ready to run.
1649 mutex_spin_enter(&uvm_fpageqlock);
1650 pg->pqflags = PQ_FREE;
1651 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1652 nextbucket].pgfl_queues[
1653 PGFL_UNKNOWN], pg, pageq.list);
1654 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1655 nextbucket].pgfl_queues[
1656 PGFL_UNKNOWN], pg, listq.list);
1657 ucpu->pages[PGFL_UNKNOWN]++;
1658 uvmexp.free++;
1659 uvmexp.zeroaborts++;
1660 goto quit;
1662 #else
1663 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1664 #endif /* PMAP_PAGEIDLEZERO */
1665 pg->flags |= PG_ZERO;
1667 mutex_spin_enter(&uvm_fpageqlock);
1668 pg->pqflags = PQ_FREE;
1669 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1670 nextbucket].pgfl_queues[PGFL_ZEROS],
1671 pg, pageq.list);
1672 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1673 nextbucket].pgfl_queues[PGFL_ZEROS],
1674 pg, listq.list);
1675 ucpu->pages[PGFL_ZEROS]++;
1676 uvmexp.free++;
1677 uvmexp.zeropages++;
1680 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1681 break;
1683 nextbucket = (nextbucket + 1) & uvmexp.colormask;
1684 } while (nextbucket != firstbucket);
1685 ucpu->page_idle_zero = false;
1686 quit:
1687 mutex_spin_exit(&uvm_fpageqlock);
1691 * uvm_pagelookup: look up a page
1693 * => caller should lock object to keep someone from pulling the page
1694 * out from under it
1697 struct vm_page *
1698 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1700 struct vm_page *pg;
1702 KASSERT(mutex_owned(&obj->vmobjlock));
1704 pg = (struct vm_page *)rb_tree_find_node(&obj->rb_tree, &off);
1706 KASSERT(pg == NULL || obj->uo_npages != 0);
1707 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1708 (pg->flags & PG_BUSY) != 0);
1709 return(pg);
1713 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1715 * => caller must lock page queues
1718 void
1719 uvm_pagewire(struct vm_page *pg)
1721 KASSERT(mutex_owned(&uvm_pageqlock));
1722 #if defined(READAHEAD_STATS)
1723 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1724 uvm_ra_hit.ev_count++;
1725 pg->pqflags &= ~PQ_READAHEAD;
1727 #endif /* defined(READAHEAD_STATS) */
1728 if (pg->wire_count == 0) {
1729 uvm_pagedequeue(pg);
1730 uvmexp.wired++;
1732 pg->wire_count++;
1736 * uvm_pageunwire: unwire the page.
1738 * => activate if wire count goes to zero.
1739 * => caller must lock page queues
1742 void
1743 uvm_pageunwire(struct vm_page *pg)
1745 KASSERT(mutex_owned(&uvm_pageqlock));
1746 pg->wire_count--;
1747 if (pg->wire_count == 0) {
1748 uvm_pageactivate(pg);
1749 uvmexp.wired--;
1754 * uvm_pagedeactivate: deactivate page
1756 * => caller must lock page queues
1757 * => caller must check to make sure page is not wired
1758 * => object that page belongs to must be locked (so we can adjust pg->flags)
1759 * => caller must clear the reference on the page before calling
1762 void
1763 uvm_pagedeactivate(struct vm_page *pg)
1766 KASSERT(mutex_owned(&uvm_pageqlock));
1767 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1768 uvmpdpol_pagedeactivate(pg);
1772 * uvm_pageactivate: activate page
1774 * => caller must lock page queues
1777 void
1778 uvm_pageactivate(struct vm_page *pg)
1781 KASSERT(mutex_owned(&uvm_pageqlock));
1782 #if defined(READAHEAD_STATS)
1783 if ((pg->pqflags & PQ_READAHEAD) != 0) {
1784 uvm_ra_hit.ev_count++;
1785 pg->pqflags &= ~PQ_READAHEAD;
1787 #endif /* defined(READAHEAD_STATS) */
1788 if (pg->wire_count != 0) {
1789 return;
1791 uvmpdpol_pageactivate(pg);
1795 * uvm_pagedequeue: remove a page from any paging queue
1798 void
1799 uvm_pagedequeue(struct vm_page *pg)
1802 if (uvmpdpol_pageisqueued_p(pg)) {
1803 KASSERT(mutex_owned(&uvm_pageqlock));
1806 uvmpdpol_pagedequeue(pg);
1810 * uvm_pageenqueue: add a page to a paging queue without activating.
1811 * used where a page is not really demanded (yet). eg. read-ahead
1814 void
1815 uvm_pageenqueue(struct vm_page *pg)
1818 KASSERT(mutex_owned(&uvm_pageqlock));
1819 if (pg->wire_count != 0) {
1820 return;
1822 uvmpdpol_pageenqueue(pg);
1826 * uvm_pagezero: zero fill a page
1828 * => if page is part of an object then the object should be locked
1829 * to protect pg->flags.
1832 void
1833 uvm_pagezero(struct vm_page *pg)
1835 pg->flags &= ~PG_CLEAN;
1836 pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1840 * uvm_pagecopy: copy a page
1842 * => if page is part of an object then the object should be locked
1843 * to protect pg->flags.
1846 void
1847 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1850 dst->flags &= ~PG_CLEAN;
1851 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1855 * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1858 bool
1859 uvm_pageismanaged(paddr_t pa)
1862 return (vm_physseg_find(atop(pa), NULL) != -1);
1866 * uvm_page_lookup_freelist: look up the free list for the specified page
1870 uvm_page_lookup_freelist(struct vm_page *pg)
1872 int lcv;
1874 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1875 KASSERT(lcv != -1);
1876 return (vm_physmem[lcv].free_list);
1879 #if defined(DDB) || defined(DEBUGPRINT)
1882 * uvm_page_printit: actually print the page
1885 static const char page_flagbits[] = UVM_PGFLAGBITS;
1886 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1888 void
1889 uvm_page_printit(struct vm_page *pg, bool full,
1890 void (*pr)(const char *, ...))
1892 struct vm_page *tpg;
1893 struct uvm_object *uobj;
1894 struct pgflist *pgl;
1895 char pgbuf[128];
1896 char pqbuf[128];
1898 (*pr)("PAGE %p:\n", pg);
1899 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1900 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1901 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1902 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1903 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1904 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1905 #if defined(UVM_PAGE_TRKOWN)
1906 if (pg->flags & PG_BUSY)
1907 (*pr)(" owning process = %d, tag=%s\n",
1908 pg->owner, pg->owner_tag);
1909 else
1910 (*pr)(" page not busy, no owner\n");
1911 #else
1912 (*pr)(" [page ownership tracking disabled]\n");
1913 #endif
1915 if (!full)
1916 return;
1918 /* cross-verify object/anon */
1919 if ((pg->pqflags & PQ_FREE) == 0) {
1920 if (pg->pqflags & PQ_ANON) {
1921 if (pg->uanon == NULL || pg->uanon->an_page != pg)
1922 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1923 (pg->uanon) ? pg->uanon->an_page : NULL);
1924 else
1925 (*pr)(" anon backpointer is OK\n");
1926 } else {
1927 uobj = pg->uobject;
1928 if (uobj) {
1929 (*pr)(" checking object list\n");
1930 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1931 if (tpg == pg) {
1932 break;
1935 if (tpg)
1936 (*pr)(" page found on object list\n");
1937 else
1938 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1943 /* cross-verify page queue */
1944 if (pg->pqflags & PQ_FREE) {
1945 int fl = uvm_page_lookup_freelist(pg);
1946 int color = VM_PGCOLOR_BUCKET(pg);
1947 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1948 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1949 } else {
1950 pgl = NULL;
1953 if (pgl) {
1954 (*pr)(" checking pageq list\n");
1955 LIST_FOREACH(tpg, pgl, pageq.list) {
1956 if (tpg == pg) {
1957 break;
1960 if (tpg)
1961 (*pr)(" page found on pageq list\n");
1962 else
1963 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1968 * uvm_pages_printthem - print a summary of all managed pages
1971 void
1972 uvm_page_printall(void (*pr)(const char *, ...))
1974 unsigned i;
1975 struct vm_page *pg;
1977 (*pr)("%18s %4s %4s %18s %18s"
1978 #ifdef UVM_PAGE_TRKOWN
1979 " OWNER"
1980 #endif
1981 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1982 for (i = 0; i < vm_nphysseg; i++) {
1983 for (pg = vm_physmem[i].pgs; pg <= vm_physmem[i].lastpg; pg++) {
1984 (*pr)("%18p %04x %04x %18p %18p",
1985 pg, pg->flags, pg->pqflags, pg->uobject,
1986 pg->uanon);
1987 #ifdef UVM_PAGE_TRKOWN
1988 if (pg->flags & PG_BUSY)
1989 (*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1990 #endif
1991 (*pr)("\n");
1996 #endif /* DDB || DEBUGPRINT */