Expand PMF_FN_* macros.
[netbsd-mini2440.git] / dist / ipf / radix.c
blob67fbd3608aefd00d839b37f71ebba56eea756a1d
1 /* $NetBSD: radix.c,v 1.4 2006/04/04 16:17:18 martti Exp $ */
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
28 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 * Routines to build and maintain radix trees for routing lookups.
34 #if defined(KERNEL) || defined(_KERNEL)
35 # undef KERNEL
36 # undef _KERNEL
37 # define KERNEL 1
38 # define _KERNEL 1
39 #endif
40 #define __SYS_ATOMIC_OPS_H__
41 #if !defined(__svr4__) && !defined(__SVR4) && !defined(__osf__) && \
42 !defined(__hpux) && !defined(__sgi)
43 #include <sys/cdefs.h>
44 #endif
45 #ifndef __P
46 # ifdef __STDC__
47 # define __P(x) x
48 # else
49 # define __P(x) ()
50 # endif
51 #endif
52 #ifdef __osf__
53 # define CONST
54 # define _IPV6_SWTAB_H
55 # define _PROTO_NET_H_
56 # define _PROTO_IPV6_H
57 # include <sys/malloc.h>
58 #endif
60 #include <sys/param.h>
61 #ifdef _KERNEL
62 #include <sys/systm.h>
63 #else
64 void panic __P((char *str));
65 #include <stdlib.h>
66 #include <stdio.h>
67 #include <stdarg.h>
68 #include <string.h>
69 #endif
70 #ifdef __hpux
71 #include <syslog.h>
72 #else
73 #include <sys/syslog.h>
74 #endif
75 #include <sys/time.h>
76 #include <netinet/in.h>
77 #include <sys/socket.h>
78 #include <net/if.h>
79 #ifdef SOLARIS2
80 # define _RADIX_H_
81 #endif
82 #include "netinet/ip_compat.h"
83 #include "netinet/ip_fil.h"
84 #ifdef SOLARIS2
85 # undef _RADIX_H_
86 #endif
87 /* END OF INCLUDES */
88 #include "radix_ipf.h"
89 #ifndef min
90 # define min MIN
91 #endif
92 #ifndef max
93 # define max MAX
94 #endif
96 int max_keylen = 16;
97 static struct radix_mask *rn_mkfreelist;
98 static struct radix_node_head *mask_rnhead;
99 static char *addmask_key;
100 static u_char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
101 static char *rn_zeros = NULL, *rn_ones = NULL;
103 #define rn_masktop (mask_rnhead->rnh_treetop)
104 #undef Bcmp
105 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
107 static int rn_satisfies_leaf __P((char *, struct radix_node *, int));
108 static int rn_lexobetter __P((void *, void *));
109 static struct radix_mask *rn_new_radix_mask __P((struct radix_node *,
110 struct radix_mask *));
111 static int rn_freenode __P((struct radix_node *, void *));
112 #if defined(AIX) && !defined(_KERNEL)
113 struct radix_node *rn_match __P((void *, struct radix_node_head *));
114 struct radix_node *rn_addmask __P((int, int, void *));
115 #define FreeS(x, y) KFREES(x, y)
116 #define Bcopy(x, y, z) bcopy(x, y, z)
117 #endif
120 * The data structure for the keys is a radix tree with one way
121 * branching removed. The index rn_b at an internal node n represents a bit
122 * position to be tested. The tree is arranged so that all descendants
123 * of a node n have keys whose bits all agree up to position rn_b - 1.
124 * (We say the index of n is rn_b.)
126 * There is at least one descendant which has a one bit at position rn_b,
127 * and at least one with a zero there.
129 * A route is determined by a pair of key and mask. We require that the
130 * bit-wise logical and of the key and mask to be the key.
131 * We define the index of a route to associated with the mask to be
132 * the first bit number in the mask where 0 occurs (with bit number 0
133 * representing the highest order bit).
135 * We say a mask is normal if every bit is 0, past the index of the mask.
136 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
137 * and m is a normal mask, then the route applies to every descendant of n.
138 * If the index(m) < rn_b, this implies the trailing last few bits of k
139 * before bit b are all 0, (and hence consequently true of every descendant
140 * of n), so the route applies to all descendants of the node as well.
142 * Similar logic shows that a non-normal mask m such that
143 * index(m) <= index(n) could potentially apply to many children of n.
144 * Thus, for each non-host route, we attach its mask to a list at an internal
145 * node as high in the tree as we can go.
147 * The present version of the code makes use of normal routes in short-
148 * circuiting an explicit mask and compare operation when testing whether
149 * a key satisfies a normal route, and also in remembering the unique leaf
150 * that governs a subtree.
153 struct radix_node *
154 rn_search(v_arg, head)
155 void *v_arg;
156 struct radix_node *head;
158 struct radix_node *x;
159 caddr_t v;
161 for (x = head, v = v_arg; x->rn_b >= 0;) {
162 if (x->rn_bmask & v[x->rn_off])
163 x = x->rn_r;
164 else
165 x = x->rn_l;
167 return (x);
170 struct radix_node *
171 rn_search_m(v_arg, head, m_arg)
172 struct radix_node *head;
173 void *v_arg, *m_arg;
175 struct radix_node *x;
176 caddr_t v = v_arg, m = m_arg;
178 for (x = head; x->rn_b >= 0;) {
179 if ((x->rn_bmask & m[x->rn_off]) &&
180 (x->rn_bmask & v[x->rn_off]))
181 x = x->rn_r;
182 else
183 x = x->rn_l;
185 return x;
189 rn_refines(m_arg, n_arg)
190 void *m_arg, *n_arg;
192 caddr_t m = m_arg, n = n_arg;
193 caddr_t lim, lim2 = lim = n + *(u_char *)n;
194 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
195 int masks_are_equal = 1;
197 if (longer > 0)
198 lim -= longer;
199 while (n < lim) {
200 if (*n & ~(*m))
201 return 0;
202 if (*n++ != *m++)
203 masks_are_equal = 0;
205 while (n < lim2)
206 if (*n++)
207 return 0;
208 if (masks_are_equal && (longer < 0))
209 for (lim2 = m - longer; m < lim2; )
210 if (*m++)
211 return 1;
212 return (!masks_are_equal);
215 struct radix_node *
216 rn_lookup(v_arg, m_arg, head)
217 void *v_arg, *m_arg;
218 struct radix_node_head *head;
220 struct radix_node *x;
221 caddr_t netmask = 0;
223 if (m_arg) {
224 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
225 return (0);
226 netmask = x->rn_key;
228 x = rn_match(v_arg, head);
229 if (x && netmask) {
230 while (x && x->rn_mask != netmask)
231 x = x->rn_dupedkey;
233 return x;
236 static int
237 rn_satisfies_leaf(trial, leaf, skip)
238 char *trial;
239 struct radix_node *leaf;
240 int skip;
242 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
243 char *cplim;
244 int length = min(*(u_char *)cp, *(u_char *)cp2);
246 if (cp3 == 0)
247 cp3 = rn_ones;
248 else
249 length = min(length, *(u_char *)cp3);
250 cplim = cp + length;
251 cp3 += skip;
252 cp2 += skip;
253 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
254 if ((*cp ^ *cp2) & *cp3)
255 return 0;
256 return 1;
259 struct radix_node *
260 rn_match(v_arg, head)
261 void *v_arg;
262 struct radix_node_head *head;
264 caddr_t v = v_arg;
265 struct radix_node *t = head->rnh_treetop, *x;
266 caddr_t cp = v, cp2;
267 caddr_t cplim;
268 struct radix_node *saved_t, *top = t;
269 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
270 int test, b, rn_b;
273 * Open code rn_search(v, top) to avoid overhead of extra
274 * subroutine call.
276 for (; t->rn_b >= 0; ) {
277 if (t->rn_bmask & cp[t->rn_off])
278 t = t->rn_r;
279 else
280 t = t->rn_l;
283 * See if we match exactly as a host destination
284 * or at least learn how many bits match, for normal mask finesse.
286 * It doesn't hurt us to limit how many bytes to check
287 * to the length of the mask, since if it matches we had a genuine
288 * match and the leaf we have is the most specific one anyway;
289 * if it didn't match with a shorter length it would fail
290 * with a long one. This wins big for class B&C netmasks which
291 * are probably the most common case...
293 if (t->rn_mask)
294 vlen = *(u_char *)t->rn_mask;
295 cp += off;
296 cp2 = t->rn_key + off;
297 cplim = v + vlen;
298 for (; cp < cplim; cp++, cp2++)
299 if (*cp != *cp2)
300 goto on1;
302 * This extra grot is in case we are explicitly asked
303 * to look up the default. Ugh!
305 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
306 t = t->rn_dupedkey;
307 return t;
308 on1:
309 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
310 for (b = 7; (test >>= 1) > 0;)
311 b--;
312 matched_off = cp - v;
313 b += matched_off << 3;
314 rn_b = -1 - b;
316 * If there is a host route in a duped-key chain, it will be first.
318 if ((saved_t = t)->rn_mask == 0)
319 t = t->rn_dupedkey;
320 for (; t; t = t->rn_dupedkey)
322 * Even if we don't match exactly as a host,
323 * we may match if the leaf we wound up at is
324 * a route to a net.
326 if (t->rn_flags & RNF_NORMAL) {
327 if (rn_b <= t->rn_b)
328 return t;
329 } else if (rn_satisfies_leaf(v, t, matched_off))
330 return t;
331 t = saved_t;
332 /* start searching up the tree */
333 do {
334 struct radix_mask *m;
335 t = t->rn_p;
336 m = t->rn_mklist;
337 if (m) {
339 * If non-contiguous masks ever become important
340 * we can restore the masking and open coding of
341 * the search and satisfaction test and put the
342 * calculation of "off" back before the "do".
344 do {
345 if (m->rm_flags & RNF_NORMAL) {
346 if (rn_b <= m->rm_b)
347 return (m->rm_leaf);
348 } else {
349 off = min(t->rn_off, matched_off);
350 x = rn_search_m(v, t, m->rm_mask);
351 while (x && x->rn_mask != m->rm_mask)
352 x = x->rn_dupedkey;
353 if (x && rn_satisfies_leaf(v, x, off))
354 return x;
356 m = m->rm_mklist;
357 } while (m);
359 } while (t != top);
360 return 0;
363 #ifdef RN_DEBUG
364 int rn_nodenum;
365 struct radix_node *rn_clist;
366 int rn_saveinfo;
367 int rn_debug = 1;
368 #endif
370 struct radix_node *
371 rn_newpair(v, b, nodes)
372 void *v;
373 int b;
374 struct radix_node nodes[2];
376 struct radix_node *tt = nodes, *t = tt + 1;
377 t->rn_b = b;
378 t->rn_bmask = 0x80 >> (b & 7);
379 t->rn_l = tt;
380 t->rn_off = b >> 3;
381 tt->rn_b = -1;
382 tt->rn_key = (caddr_t)v;
383 tt->rn_p = t;
384 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
385 #ifdef RN_DEBUG
386 tt->rn_info = rn_nodenum++;
387 t->rn_info = rn_nodenum++;
388 tt->rn_twin = t;
389 tt->rn_ybro = rn_clist;
390 rn_clist = tt;
391 #endif
392 return t;
395 struct radix_node *
396 rn_insert(v_arg, head, dupentry, nodes)
397 void *v_arg;
398 struct radix_node_head *head;
399 int *dupentry;
400 struct radix_node nodes[2];
402 caddr_t v = v_arg;
403 struct radix_node *top = head->rnh_treetop;
404 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
405 struct radix_node *t = rn_search(v_arg, top);
406 caddr_t cp = v + head_off;
407 int b;
408 struct radix_node *tt;
410 #ifdef RN_DEBUG
411 if (rn_debug)
412 log(LOG_DEBUG, "rn_insert(%p,%p,%p,%p)\n", v_arg, head, dupentry, nodes);
413 #endif
415 * Find first bit at which v and t->rn_key differ
418 caddr_t cp2 = t->rn_key + head_off;
419 int cmp_res;
420 caddr_t cplim = v + vlen;
422 while (cp < cplim)
423 if (*cp2++ != *cp++)
424 goto on1;
425 *dupentry = 1;
426 return t;
427 on1:
428 *dupentry = 0;
429 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
430 for (b = (cp - v) << 3; cmp_res; b--)
431 cmp_res >>= 1;
434 struct radix_node *p, *x = top;
435 cp = v;
436 do {
437 p = x;
438 if (cp[x->rn_off] & x->rn_bmask)
439 x = x->rn_r;
440 else
441 x = x->rn_l;
442 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
443 #ifdef RN_DEBUG
444 if (rn_debug)
445 log(LOG_DEBUG, "rn_insert: Going In:\n"); // traverse(p);
446 #endif
447 t = rn_newpair(v_arg, b, nodes);
448 tt = t->rn_l;
449 if ((cp[p->rn_off] & p->rn_bmask) == 0)
450 p->rn_l = t;
451 else
452 p->rn_r = t;
453 x->rn_p = t;
454 t->rn_p = p; /* frees x, p as temp vars below */
455 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
456 t->rn_r = x;
457 } else {
458 t->rn_r = tt;
459 t->rn_l = x;
461 #ifdef RN_DEBUG
462 if (rn_debug)
463 log(LOG_DEBUG, "rn_insert: Coming Out:\n"); // traverse(p);
464 #endif
466 return (tt);
469 struct radix_node *
470 rn_addmask(n_arg, search, skip)
471 int search, skip;
472 void *n_arg;
474 caddr_t netmask = (caddr_t)n_arg;
475 struct radix_node *x;
476 caddr_t cp, cplim;
477 int b = 0, mlen, j;
478 int maskduplicated, m0, isnormal;
479 struct radix_node *saved_x;
480 static int last_zeroed = 0;
482 #ifdef RN_DEBUG
483 if (rn_debug)
484 log(LOG_DEBUG, "rn_addmask(%p,%d,%d)\n", n_arg, search, skip);
485 #endif
486 mlen = *(u_char *)netmask;
487 if ((mlen = *(u_char *)netmask) > max_keylen)
488 mlen = max_keylen;
489 if (skip == 0)
490 skip = 1;
491 if (mlen <= skip)
492 return (mask_rnhead->rnh_nodes);
493 if (skip > 1)
494 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
495 if ((m0 = mlen) > skip)
496 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
498 * Trim trailing zeroes.
500 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
501 cp--;
502 mlen = cp - addmask_key;
503 if (mlen <= skip) {
504 if (m0 >= last_zeroed)
505 last_zeroed = mlen;
506 return (mask_rnhead->rnh_nodes);
508 if (m0 < last_zeroed)
509 Bzero(addmask_key + m0, last_zeroed - m0);
510 *addmask_key = last_zeroed = mlen;
511 x = rn_search(addmask_key, rn_masktop);
512 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
513 x = 0;
514 if (x || search)
515 return (x);
516 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
517 if ((saved_x = x) == 0)
518 return (0);
519 Bzero(x, max_keylen + 2 * sizeof (*x));
520 netmask = cp = (caddr_t)(x + 2);
521 Bcopy(addmask_key, cp, mlen);
522 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
523 if (maskduplicated) {
524 #if 0
525 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
526 #endif
527 Free(saved_x);
528 return (x);
531 * Calculate index of mask, and check for normalcy.
533 cplim = netmask + mlen;
534 isnormal = 1;
535 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
536 cp++;
537 if (cp != cplim) {
538 for (j = 0x80; (j & *cp) != 0; j >>= 1)
539 b++;
540 if (*cp != normal_chars[b] || cp != (cplim - 1))
541 isnormal = 0;
543 b += (cp - netmask) << 3;
544 x->rn_b = -1 - b;
545 if (isnormal)
546 x->rn_flags |= RNF_NORMAL;
547 return (x);
550 static int /* XXX: arbitrary ordering for non-contiguous masks */
551 rn_lexobetter(m_arg, n_arg)
552 void *m_arg, *n_arg;
554 u_char *mp = m_arg, *np = n_arg, *lim;
556 if (*mp > *np)
557 return 1; /* not really, but need to check longer one first */
558 if (*mp == *np)
559 for (lim = mp + *mp; mp < lim;)
560 if (*mp++ > *np++)
561 return 1;
562 return 0;
565 static struct radix_mask *
566 rn_new_radix_mask(tt, next)
567 struct radix_node *tt;
568 struct radix_mask *next;
570 struct radix_mask *m;
572 MKGet(m);
573 if (m == 0) {
574 #if 0
575 log(LOG_ERR, "Mask for route not entered\n");
576 #endif
577 return (0);
579 Bzero(m, sizeof *m);
580 m->rm_b = tt->rn_b;
581 m->rm_flags = tt->rn_flags;
582 if (tt->rn_flags & RNF_NORMAL)
583 m->rm_leaf = tt;
584 else
585 m->rm_mask = tt->rn_mask;
586 m->rm_mklist = next;
587 tt->rn_mklist = m;
588 return m;
591 struct radix_node *
592 rn_addroute(v_arg, n_arg, head, treenodes)
593 void *v_arg, *n_arg;
594 struct radix_node_head *head;
595 struct radix_node treenodes[2];
597 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
598 struct radix_node *t, *x = NULL, *tt;
599 struct radix_node *saved_tt, *top = head->rnh_treetop;
600 short b = 0, b_leaf = 0;
601 int keyduplicated;
602 caddr_t mmask;
603 struct radix_mask *m, **mp;
605 #ifdef RN_DEBUG
606 if (rn_debug)
607 log(LOG_DEBUG, "rn_addroute(%p,%p,%p,%p)\n", v_arg, n_arg, head, treenodes);
608 #endif
610 * In dealing with non-contiguous masks, there may be
611 * many different routes which have the same mask.
612 * We will find it useful to have a unique pointer to
613 * the mask to speed avoiding duplicate references at
614 * nodes and possibly save time in calculating indices.
616 if (netmask) {
617 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
618 return (0);
619 b_leaf = x->rn_b;
620 b = -1 - x->rn_b;
621 netmask = x->rn_key;
624 * Deal with duplicated keys: attach node to previous instance
626 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
627 if (keyduplicated) {
628 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
629 if (tt->rn_mask == netmask)
630 return (0);
631 if (netmask == 0 ||
632 (tt->rn_mask &&
633 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
634 rn_refines(netmask, tt->rn_mask) ||
635 rn_lexobetter(netmask, tt->rn_mask))))
636 break;
639 * If the mask is not duplicated, we wouldn't
640 * find it among possible duplicate key entries
641 * anyway, so the above test doesn't hurt.
643 * We sort the masks for a duplicated key the same way as
644 * in a masklist -- most specific to least specific.
645 * This may require the unfortunate nuisance of relocating
646 * the head of the list.
648 * We also reverse, or doubly link the list through the
649 * parent pointer.
651 if (tt == saved_tt) {
652 struct radix_node *xx = x;
653 /* link in at head of list */
654 (tt = treenodes)->rn_dupedkey = t;
655 tt->rn_flags = t->rn_flags;
656 tt->rn_p = x = t->rn_p;
657 t->rn_p = tt;
658 if (x->rn_l == t)
659 x->rn_l = tt;
660 else
661 x->rn_r = tt;
662 saved_tt = tt;
663 x = xx;
664 } else {
665 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
666 t->rn_dupedkey = tt;
667 tt->rn_p = t;
668 if (tt->rn_dupedkey)
669 tt->rn_dupedkey->rn_p = tt;
671 #ifdef RN_DEBUG
672 t=tt+1;
673 tt->rn_info = rn_nodenum++;
674 t->rn_info = rn_nodenum++;
675 tt->rn_twin = t;
676 tt->rn_ybro = rn_clist;
677 rn_clist = tt;
678 #endif
679 tt->rn_key = (caddr_t) v;
680 tt->rn_b = -1;
681 tt->rn_flags = RNF_ACTIVE;
684 * Put mask in tree.
686 if (netmask) {
687 tt->rn_mask = netmask;
688 tt->rn_b = x->rn_b;
689 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
691 t = saved_tt->rn_p;
692 if (keyduplicated)
693 goto on2;
694 b_leaf = -1 - t->rn_b;
695 if (t->rn_r == saved_tt)
696 x = t->rn_l;
697 else
698 x = t->rn_r;
699 /* Promote general routes from below */
700 if (x->rn_b < 0) {
701 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
702 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
703 *mp = m = rn_new_radix_mask(x, 0);
704 if (m)
705 mp = &m->rm_mklist;
707 } else if (x->rn_mklist) {
709 * Skip over masks whose index is > that of new node
711 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
712 if (m->rm_b >= b_leaf)
713 break;
714 t->rn_mklist = m;
715 *mp = 0;
717 on2:
718 /* Add new route to highest possible ancestor's list */
719 if ((netmask == 0) || (b > t->rn_b ))
720 return tt; /* can't lift at all */
721 b_leaf = tt->rn_b;
722 do {
723 x = t;
724 t = t->rn_p;
725 } while (b <= t->rn_b && x != top);
727 * Search through routes associated with node to
728 * insert new route according to index.
729 * Need same criteria as when sorting dupedkeys to avoid
730 * double loop on deletion.
732 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
733 if (m->rm_b < b_leaf)
734 continue;
735 if (m->rm_b > b_leaf)
736 break;
737 if (m->rm_flags & RNF_NORMAL) {
738 mmask = m->rm_leaf->rn_mask;
739 if (tt->rn_flags & RNF_NORMAL) {
740 #if 0
741 log(LOG_ERR, "Non-unique normal route,"
742 " mask not entered\n");
743 #endif
744 return tt;
746 } else
747 mmask = m->rm_mask;
748 if (mmask == netmask) {
749 m->rm_refs++;
750 tt->rn_mklist = m;
751 return tt;
753 if (rn_refines(netmask, mmask)
754 || rn_lexobetter(netmask, mmask))
755 break;
757 *mp = rn_new_radix_mask(tt, *mp);
758 return tt;
761 struct radix_node *
762 rn_delete(v_arg, netmask_arg, head)
763 void *v_arg, *netmask_arg;
764 struct radix_node_head *head;
766 struct radix_node *t, *p, *x, *tt;
767 struct radix_mask *m, *saved_m, **mp;
768 struct radix_node *dupedkey, *saved_tt, *top;
769 caddr_t v, netmask;
770 int b, head_off, vlen;
772 v = v_arg;
773 netmask = netmask_arg;
774 x = head->rnh_treetop;
775 tt = rn_search(v, x);
776 head_off = x->rn_off;
777 vlen = *(u_char *)v;
778 saved_tt = tt;
779 top = x;
780 if (tt == 0 ||
781 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
782 return (0);
784 * Delete our route from mask lists.
786 if (netmask) {
787 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
788 return (0);
789 netmask = x->rn_key;
790 while (tt->rn_mask != netmask)
791 if ((tt = tt->rn_dupedkey) == 0)
792 return (0);
794 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
795 goto on1;
796 if (tt->rn_flags & RNF_NORMAL) {
797 if (m->rm_leaf != tt || m->rm_refs > 0) {
798 #if 0
799 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
800 #endif
801 return 0; /* dangling ref could cause disaster */
803 } else {
804 if (m->rm_mask != tt->rn_mask) {
805 #if 0
806 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
807 #endif
808 goto on1;
810 if (--m->rm_refs >= 0)
811 goto on1;
813 b = -1 - tt->rn_b;
814 t = saved_tt->rn_p;
815 if (b > t->rn_b)
816 goto on1; /* Wasn't lifted at all */
817 do {
818 x = t;
819 t = t->rn_p;
820 } while (b <= t->rn_b && x != top);
821 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
822 if (m == saved_m) {
823 *mp = m->rm_mklist;
824 MKFree(m);
825 break;
827 if (m == 0) {
828 #if 0
829 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
830 #endif
831 if (tt->rn_flags & RNF_NORMAL)
832 return (0); /* Dangling ref to us */
834 on1:
836 * Eliminate us from tree
838 if (tt->rn_flags & RNF_ROOT)
839 return (0);
840 #ifdef RN_DEBUG
841 /* Get us out of the creation list */
842 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro)
844 if (t) t->rn_ybro = tt->rn_ybro;
845 #endif
846 t = tt->rn_p;
847 dupedkey = saved_tt->rn_dupedkey;
848 if (dupedkey) {
850 * Here, tt is the deletion target and
851 * saved_tt is the head of the dupedkey chain.
853 if (tt == saved_tt) {
854 x = dupedkey;
855 x->rn_p = t;
856 if (t->rn_l == tt)
857 t->rn_l = x;
858 else
859 t->rn_r = x;
860 } else {
861 /* find node in front of tt on the chain */
862 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
863 p = p->rn_dupedkey;
864 if (p) {
865 p->rn_dupedkey = tt->rn_dupedkey;
866 if (tt->rn_dupedkey)
867 tt->rn_dupedkey->rn_p = p;
869 #if 0
870 else
871 log(LOG_ERR, "rn_delete: couldn't find us\n");
872 #endif
874 t = tt + 1;
875 if (t->rn_flags & RNF_ACTIVE) {
876 #ifndef RN_DEBUG
877 *++x = *t;
878 p = t->rn_p;
879 #else
880 b = t->rn_info;
881 *++x = *t;
882 t->rn_info = b;
883 p = t->rn_p;
884 #endif
885 if (p->rn_l == t)
886 p->rn_l = x;
887 else
888 p->rn_r = x;
889 x->rn_l->rn_p = x;
890 x->rn_r->rn_p = x;
892 goto out;
894 if (t->rn_l == tt)
895 x = t->rn_r;
896 else
897 x = t->rn_l;
898 p = t->rn_p;
899 if (p->rn_r == t)
900 p->rn_r = x;
901 else
902 p->rn_l = x;
903 x->rn_p = p;
905 * Demote routes attached to us.
907 if (t->rn_mklist) {
908 if (x->rn_b >= 0) {
909 for (mp = &x->rn_mklist; (m = *mp) != NULL;)
910 mp = &m->rm_mklist;
911 *mp = t->rn_mklist;
912 } else {
913 /* If there are any key,mask pairs in a sibling
914 duped-key chain, some subset will appear sorted
915 in the same order attached to our mklist */
916 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
917 if (m == x->rn_mklist) {
918 struct radix_mask *mm = m->rm_mklist;
919 x->rn_mklist = 0;
920 if (--(m->rm_refs) < 0)
921 MKFree(m);
922 m = mm;
924 #if 0
925 if (m)
926 log(LOG_ERR, "%s %p at %p\n",
927 "rn_delete: Orphaned Mask", m, x);
928 #endif
932 * We may be holding an active internal node in the tree.
934 x = tt + 1;
935 if (t != x) {
936 #ifndef RN_DEBUG
937 *t = *x;
938 #else
939 b = t->rn_info;
940 *t = *x;
941 t->rn_info = b;
942 #endif
943 t->rn_l->rn_p = t;
944 t->rn_r->rn_p = t;
945 p = x->rn_p;
946 if (p->rn_l == x)
947 p->rn_l = t;
948 else
949 p->rn_r = t;
951 out:
952 tt->rn_flags &= ~RNF_ACTIVE;
953 tt[1].rn_flags &= ~RNF_ACTIVE;
954 return (tt);
958 rn_walktree(h, f, w)
959 struct radix_node_head *h;
960 int (*f) __P((struct radix_node *, void *));
961 void *w;
963 int error;
964 struct radix_node *base, *next;
965 struct radix_node *rn = h->rnh_treetop;
967 * This gets complicated because we may delete the node
968 * while applying the function f to it, so we need to calculate
969 * the successor node in advance.
971 /* First time through node, go left */
972 while (rn->rn_b >= 0)
973 rn = rn->rn_l;
974 for (;;) {
975 base = rn;
976 /* If at right child go back up, otherwise, go right */
977 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
978 rn = rn->rn_p;
979 /* Find the next *leaf* since next node might vanish, too */
980 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
981 rn = rn->rn_l;
982 next = rn;
983 /* Process leaves */
984 while ((rn = base) != NULL) {
985 base = rn->rn_dupedkey;
986 if (!(rn->rn_flags & RNF_ROOT)
987 && (error = (*f)(rn, w)))
988 return (error);
990 rn = next;
991 if (rn->rn_flags & RNF_ROOT)
992 return (0);
994 /* NOTREACHED */
998 rn_inithead(head, off)
999 void **head;
1000 int off;
1002 struct radix_node_head *rnh;
1004 if (*head)
1005 return (1);
1006 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1007 if (rnh == 0)
1008 return (0);
1009 *head = rnh;
1010 return rn_inithead0(rnh, off);
1014 rn_inithead0(rnh, off)
1015 struct radix_node_head *rnh;
1016 int off;
1018 struct radix_node *t, *tt, *ttt;
1020 Bzero(rnh, sizeof (*rnh));
1021 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1022 ttt = rnh->rnh_nodes + 2;
1023 t->rn_r = ttt;
1024 t->rn_p = t;
1025 tt = t->rn_l;
1026 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1027 tt->rn_b = -1 - off;
1028 *ttt = *tt;
1029 ttt->rn_key = rn_ones;
1030 rnh->rnh_addaddr = rn_addroute;
1031 rnh->rnh_deladdr = rn_delete;
1032 rnh->rnh_matchaddr = rn_match;
1033 rnh->rnh_lookup = rn_lookup;
1034 rnh->rnh_walktree = rn_walktree;
1035 rnh->rnh_treetop = t;
1036 return (1);
1039 void
1040 rn_init()
1042 char *cp, *cplim;
1044 if (max_keylen == 0) {
1045 #if 0
1046 log(LOG_ERR,
1047 "rn_init: radix functions require max_keylen be set\n");
1048 #endif
1049 return;
1051 if (rn_zeros == NULL) {
1052 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1054 if (rn_zeros == NULL)
1055 panic("rn_init");
1056 Bzero(rn_zeros, 3 * max_keylen);
1057 rn_ones = cp = rn_zeros + max_keylen;
1058 addmask_key = cplim = rn_ones + max_keylen;
1059 while (cp < cplim)
1060 *cp++ = -1;
1061 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1062 panic("rn_init 2");
1066 static int
1067 rn_freenode(struct radix_node *n, void *p)
1069 struct radix_node_head *rnh = p;
1070 struct radix_node *d;
1072 d = rnh->rnh_deladdr(n->rn_key, NULL, rnh);
1073 if (d != NULL) {
1074 FreeS(d, max_keylen + 2 * sizeof (*d));
1076 return 0;
1080 void
1081 rn_freehead(rnh)
1082 struct radix_node_head *rnh;
1085 (void)rn_walktree(rnh, rn_freenode, rnh);
1087 rnh->rnh_addaddr = NULL;
1088 rnh->rnh_deladdr = NULL;
1089 rnh->rnh_matchaddr = NULL;
1090 rnh->rnh_lookup = NULL;
1091 rnh->rnh_walktree = NULL;
1093 Free(rnh);
1097 void
1098 rn_fini()
1100 struct radix_mask *m;
1102 if (rn_zeros != NULL) {
1103 FreeS(rn_zeros, 3 * max_keylen);
1104 rn_zeros = NULL;
1107 if (mask_rnhead != NULL) {
1108 rn_freehead(mask_rnhead);
1109 mask_rnhead = NULL;
1112 while ((m = rn_mkfreelist) != NULL) {
1113 rn_mkfreelist = m->rm_mklist;
1114 KFREE(m);
1119 #ifdef USE_MAIN
1121 typedef struct myst {
1122 addrfamily_t dst;
1123 addrfamily_t mask;
1124 struct radix_node nodes[2];
1125 } myst_t;
1128 main(int argc, char *argv[])
1130 struct radix_node_head *rnh;
1131 struct radix_node *rn;
1132 addrfamily_t af, mf;
1133 myst_t st1, st2, *stp;
1135 memset(&st1, 0, sizeof(st1));
1136 memset(&st2, 0, sizeof(st2));
1137 memset(&af, 0, sizeof(af));
1139 rn_init();
1141 rnh = NULL;
1142 rn_inithead(&rnh, offsetof(addrfamily_t, adf_addr) << 3);
1144 st1.dst.adf_len = sizeof(st1);
1145 st1.mask.adf_len = sizeof(st1);
1146 st1.dst.adf_addr.in4.s_addr = inet_addr("127.0.0.0");
1147 st1.mask.adf_addr.in4.s_addr = inet_addr("255.0.0.0");
1148 rn = rnh->rnh_addaddr(&st1.dst, &st1.mask, rnh, st1.nodes);
1149 printf("add.1 %p\n", rn);
1151 st2.dst.adf_len = sizeof(st2);
1152 st2.mask.adf_len = sizeof(st2);
1153 st2.dst.adf_addr.in4.s_addr = inet_addr("127.0.1.0");
1154 st2.mask.adf_addr.in4.s_addr = inet_addr("255.255.255.0");
1155 rn = rnh->rnh_addaddr(&st2.dst, &st2.mask, rnh, st2.nodes);
1156 printf("add.2 %p\n", rn);
1158 af.adf_len = sizeof(af);
1159 af.adf_addr.in4.s_addr = inet_addr("127.0.1.0");
1160 rn = rnh->rnh_matchaddr(&af, rnh);
1161 if (rn != NULL) {
1162 printf("1.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
1163 stp = rn->rn_key;
1164 printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
1165 stp = rn->rn_mask;
1166 printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
1169 mf.adf_len = sizeof(mf);
1170 mf.adf_addr.in4.s_addr = inet_addr("255.255.255.0");
1171 rn = rnh->rnh_lookup(&af, &mf, rnh);
1172 if (rn != NULL) {
1173 printf("2.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
1174 stp = rn->rn_key;
1175 printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
1176 stp = rn->rn_mask;
1177 printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
1180 af.adf_len = sizeof(af);
1181 af.adf_addr.in4.s_addr = inet_addr("126.0.0.1");
1182 rn = rnh->rnh_matchaddr(&af, rnh);
1183 if (rn != NULL) {
1184 printf("3.lookup = %p key %p mask %p\n", rn, rn->rn_key, rn->rn_mask);
1185 stp = rn->rn_key;
1186 printf("%s/", inet_ntoa(stp->dst.adf_addr.in4));
1187 stp = rn->rn_mask;
1188 printf("%s\n", inet_ntoa(stp->dst.adf_addr.in4));
1191 return 0;
1195 void
1196 log(int level, char *format, ...)
1198 va_list ap;
1200 va_start(ap, format);
1201 vfprintf(stderr, format, ap);
1202 va_end(ap);
1204 #endif
1207 #ifndef _KERNEL
1208 void
1209 panic(char *str)
1211 fputs(str, stderr);
1212 abort();
1214 #endif