1 /* $NetBSD: refclock_wwv.c,v 1.5 2006/06/11 19:34:13 kardel Exp $ */
4 * refclock_wwv - clock driver for NIST WWV/H time/frequency station
10 #if defined(REFCLOCK) && defined(CLOCK_WWV)
14 #include "ntp_refclock.h"
15 #include "ntp_calendar.h"
16 #include "ntp_stdlib.h"
22 #ifdef HAVE_SYS_IOCTL_H
23 # include <sys/ioctl.h>
24 #endif /* HAVE_SYS_IOCTL_H */
33 * Audio WWV/H demodulator/decoder
35 * This driver synchronizes the computer time using data encoded in
36 * radio transmissions from NIST time/frequency stations WWV in Boulder,
37 * CO, and WWVH in Kauai, HI. Transmissions are made continuously on
38 * 2.5, 5, 10 and 15 MHz from WWV and WWVH, and 20 MHz from WWV. An
39 * ordinary AM shortwave receiver can be tuned manually to one of these
40 * frequencies or, in the case of ICOM receivers, the receiver can be
41 * tuned automatically using this program as propagation conditions
42 * change throughout the weasons, both day and night.
44 * The driver receives, demodulates and decodes the radio signals when
45 * connected to the audio codec of a workstation running Solaris, SunOS
46 * FreeBSD or Linux, and with a little help, other workstations with
47 * similar codecs or sound cards. In this implementation, only one audio
48 * driver and codec can be supported on a single machine.
50 * The demodulation and decoding algorithms used in this driver are
51 * based on those developed for the TAPR DSP93 development board and the
52 * TI 320C25 digital signal processor described in: Mills, D.L. A
53 * precision radio clock for WWV transmissions. Electrical Engineering
54 * Report 97-8-1, University of Delaware, August 1997, 25 pp., available
55 * from www.eecis.udel.edu/~mills/reports.html. The algorithms described
56 * in this report have been modified somewhat to improve performance
57 * under weak signal conditions and to provide an automatic station
58 * identification feature.
60 * The ICOM code is normally compiled in the driver. It isn't used,
61 * unless the mode keyword on the server configuration command specifies
62 * a nonzero ICOM ID select code. The C-IV trace is turned on if the
63 * debug level is greater than one.
67 * Fudge flag4 causes the dubugging output described above to be
68 * recorded in the clockstats file. Fudge flag2 selects the audio input
69 * port, where 0 is the mike port (default) and 1 is the line-in port.
70 * It does not seem useful to select the compact disc player port. Fudge
71 * flag3 enables audio monitoring of the input signal. For this purpose,
72 * the monitor gain is set to a default value.
75 * General definitions. These ordinarily do not need to be changed.
77 #define DEVICE_AUDIO "/dev/audio" /* audio device name */
78 #define AUDIO_BUFSIZ 320 /* audio buffer size (50 ms) */
79 #define PRECISION (-10) /* precision assumed (about 1 ms) */
80 #define DESCRIPTION "WWV/H Audio Demodulator/Decoder" /* WRU */
81 #define SECOND 8000 /* second epoch (sample rate) (Hz) */
82 #define MINUTE (SECOND * 60) /* minute epoch */
83 #define OFFSET 128 /* companded sample offset */
84 #define SIZE 256 /* decompanding table size */
85 #define MAXAMP 6000. /* max signal level reference */
86 #define MAXCLP 100 /* max clips above reference per s */
87 #define MAXSNR 40. /* max SNR reference */
88 #define MAXFREQ 1.5 /* max frequency tolerance (187 PPM) */
89 #define DATCYC 170 /* data filter cycles */
90 #define DATSIZ (DATCYC * MS) /* data filter size */
91 #define SYNCYC 800 /* minute filter cycles */
92 #define SYNSIZ (SYNCYC * MS) /* minute filter size */
93 #define TCKCYC 5 /* tick filter cycles */
94 #define TCKSIZ (TCKCYC * MS) /* tick filter size */
95 #define NCHAN 5 /* number of radio channels */
96 #define AUDIO_PHI 5e-6 /* dispersion growth factor */
99 * Tunable parameters. The DGAIN parameter can be changed to fit the
100 * audio response of the radio at 100 Hz. The WWV/WWVH data subcarrier
101 * is transmitted at about 20 percent percent modulation; the matched
102 * filter boosts it by a factor of 17 and the receiver response does
103 * what it does. The compromise value works for ICOM radios. If the
104 * radio is not tunable, the DCHAN parameter can be changed to fit the
105 * expected best propagation frequency: higher if further from the
106 * transmitter, lower if nearer. The compromise value works for the US
107 * right coast. The FREQ_OFFSET parameter can be used as a frequency
108 * vernier to correct codec requency if greater than MAXFREQ.
110 #define DCHAN 3 /* default radio channel (15 Mhz) */
111 #define DGAIN 5. /* subcarrier gain */
112 #define FREQ_OFFSET 0. /* codec frequency correction (PPM) */
115 * General purpose status bits (status)
117 * SELV and/or SELH are set when WWV or WWVH have been heard and cleared
118 * on signal loss. SSYNC is set when the second sync pulse has been
119 * acquired and cleared by signal loss. MSYNC is set when the minute
120 * sync pulse has been acquired. DSYNC is set when the units digit has
121 * has reached the threshold and INSYNC is set when all nine digits have
122 * reached the threshold. The MSYNC, DSYNC and INSYNC bits are cleared
123 * only by timeout, upon which the driver starts over from scratch.
125 * DGATE is lit if the data bit amplitude or SNR is below thresholds and
126 * BGATE is lit if the pulse width amplitude or SNR is below thresolds.
127 * LEPSEC is set during the last minute of the leap day. At the end of
128 * this minute the driver inserts second 60 in the seconds state machine
129 * and the minute sync slips a second.
131 #define MSYNC 0x0001 /* minute epoch sync */
132 #define SSYNC 0x0002 /* second epoch sync */
133 #define DSYNC 0x0004 /* minute units sync */
134 #define INSYNC 0x0008 /* clock synchronized */
135 #define FGATE 0x0010 /* frequency gate */
136 #define DGATE 0x0020 /* data pulse amplitude error */
137 #define BGATE 0x0040 /* data pulse width error */
138 #define LEPSEC 0x1000 /* leap minute */
141 * Station scoreboard bits
143 * These are used to establish the signal quality for each of the five
144 * frequencies and two stations.
146 #define SELV 0x0100 /* WWV station select */
147 #define SELH 0x0200 /* WWVH station select */
150 * Alarm status bits (alarm)
152 * These bits indicate various alarm conditions, which are decoded to
153 * form the quality character included in the timecode.
155 #define CMPERR 1 /* digit or misc bit compare error */
156 #define LOWERR 2 /* low bit or digit amplitude or SNR */
157 #define NINERR 4 /* less than nine digits in minute */
158 #define SYNERR 8 /* not tracking second sync */
161 * Watchcat timeouts (watch)
163 * If these timeouts expire, the status bits are mashed to zero and the
164 * driver starts from scratch. Suitably more refined procedures may be
165 * developed in future. All these are in minutes.
167 #define ACQSN 6 /* station acquisition timeout */
168 #define DATA 15 /* unit minutes timeout */
169 #define SYNCH 40 /* station sync timeout */
170 #define PANIC (2 * 1440) /* panic timeout */
173 * Thresholds. These establish the minimum signal level, minimum SNR and
174 * maximum jitter thresholds which establish the error and false alarm
175 * rates of the driver. The values defined here may be on the
176 * adventurous side in the interest of the highest sensitivity.
178 #define MTHR 13. /* minute sync gate (percent) */
179 #define TTHR 50. /* minute sync threshold (percent) */
180 #define AWND 20 /* minute sync jitter threshold (ms) */
181 #define ATHR 2500. /* QRZ minute sync threshold */
182 #define ASNR 20. /* QRZ minute sync SNR threshold (dB) */
183 #define QTHR 2500. /* QSY minute sync threshold */
184 #define QSNR 20. /* QSY minute sync SNR threshold (dB) */
185 #define STHR 2500. /* second sync threshold */
186 #define SSNR 15. /* second sync SNR threshold (dB) */
187 #define SCMP 10 /* second sync compare threshold */
188 #define DTHR 1000. /* bit threshold */
189 #define DSNR 10. /* bit SNR threshold (dB) */
190 #define AMIN 3 /* min bit count */
191 #define AMAX 6 /* max bit count */
192 #define BTHR 1000. /* digit threshold */
193 #define BSNR 3. /* digit likelihood threshold (dB) */
194 #define BCMP 3 /* digit compare threshold */
195 #define MAXERR 40 /* maximum error alarm */
198 * Tone frequency definitions. The increments are for 4.5-deg sine
201 #define MS (SECOND / 1000) /* samples per millisecond */
202 #define IN100 ((100 * 80) / SECOND) /* 100 Hz increment */
203 #define IN1000 ((1000 * 80) / SECOND) /* 1000 Hz increment */
204 #define IN1200 ((1200 * 80) / SECOND) /* 1200 Hz increment */
207 * Acquisition and tracking time constants
209 #define MINAVG 8 /* min averaging time */
210 #define MAXAVG 1024 /* max averaging time */
211 #define FCONST 3 /* frequency time constant */
212 #define TCONST 16 /* data bit/digit time constant */
215 * Miscellaneous status bits (misc)
217 * These bits correspond to designated bits in the WWV/H timecode. The
218 * bit probabilities are exponentially averaged over several minutes and
219 * processed by a integrator and threshold.
221 #define DUT1 0x01 /* 56 DUT .1 */
222 #define DUT2 0x02 /* 57 DUT .2 */
223 #define DUT4 0x04 /* 58 DUT .4 */
224 #define DUTS 0x08 /* 50 DUT sign */
225 #define DST1 0x10 /* 55 DST1 leap warning */
226 #define DST2 0x20 /* 2 DST2 DST1 delayed one day */
227 #define SECWAR 0x40 /* 3 leap second warning */
230 * The on-time synchronization point for the driver is the second epoch
231 * sync pulse produced by the FIR matched filters. As the 5-ms delay of
232 * these filters is compensated, the program delay is 1.1 ms due to the
233 * 600-Hz IIR bandpass filter. The measured receiver delay is 4.7 ms and
234 * the codec delay less than 0.2 ms. The additional propagation delay
235 * specific to each receiver location can be programmed in the fudge
236 * time1 and time2 values for WWV and WWVH, respectively.
238 #define PDELAY (.0011 + .0047 + .0002) /* net system delay (s) */
241 * Table of sine values at 4.5-degree increments. This is used by the
242 * synchronous matched filter demodulators.
245 0.000000e+00, 7.845910e-02, 1.564345e-01, 2.334454e-01, /* 0-3 */
246 3.090170e-01, 3.826834e-01, 4.539905e-01, 5.224986e-01, /* 4-7 */
247 5.877853e-01, 6.494480e-01, 7.071068e-01, 7.604060e-01, /* 8-11 */
248 8.090170e-01, 8.526402e-01, 8.910065e-01, 9.238795e-01, /* 12-15 */
249 9.510565e-01, 9.723699e-01, 9.876883e-01, 9.969173e-01, /* 16-19 */
250 1.000000e+00, 9.969173e-01, 9.876883e-01, 9.723699e-01, /* 20-23 */
251 9.510565e-01, 9.238795e-01, 8.910065e-01, 8.526402e-01, /* 24-27 */
252 8.090170e-01, 7.604060e-01, 7.071068e-01, 6.494480e-01, /* 28-31 */
253 5.877853e-01, 5.224986e-01, 4.539905e-01, 3.826834e-01, /* 32-35 */
254 3.090170e-01, 2.334454e-01, 1.564345e-01, 7.845910e-02, /* 36-39 */
255 -0.000000e+00, -7.845910e-02, -1.564345e-01, -2.334454e-01, /* 40-43 */
256 -3.090170e-01, -3.826834e-01, -4.539905e-01, -5.224986e-01, /* 44-47 */
257 -5.877853e-01, -6.494480e-01, -7.071068e-01, -7.604060e-01, /* 48-51 */
258 -8.090170e-01, -8.526402e-01, -8.910065e-01, -9.238795e-01, /* 52-55 */
259 -9.510565e-01, -9.723699e-01, -9.876883e-01, -9.969173e-01, /* 56-59 */
260 -1.000000e+00, -9.969173e-01, -9.876883e-01, -9.723699e-01, /* 60-63 */
261 -9.510565e-01, -9.238795e-01, -8.910065e-01, -8.526402e-01, /* 64-67 */
262 -8.090170e-01, -7.604060e-01, -7.071068e-01, -6.494480e-01, /* 68-71 */
263 -5.877853e-01, -5.224986e-01, -4.539905e-01, -3.826834e-01, /* 72-75 */
264 -3.090170e-01, -2.334454e-01, -1.564345e-01, -7.845910e-02, /* 76-79 */
265 0.000000e+00}; /* 80 */
268 * Decoder operations at the end of each second are driven by a state
269 * machine. The transition matrix consists of a dispatch table indexed
270 * by second number. Each entry in the table contains a case switch
271 * number and argument.
274 int sw
; /* case switch number */
275 int arg
; /* argument */
279 * Case switch numbers
281 #define IDLE 0 /* no operation */
282 #define COEF 1 /* BCD bit */
283 #define COEF1 2 /* BCD bit for minute unit */
284 #define COEF2 3 /* BCD bit not used */
285 #define DECIM9 4 /* BCD digit 0-9 */
286 #define DECIM6 5 /* BCD digit 0-6 */
287 #define DECIM3 6 /* BCD digit 0-3 */
288 #define DECIM2 7 /* BCD digit 0-2 */
289 #define MSCBIT 8 /* miscellaneous bit */
290 #define MSC20 9 /* miscellaneous bit */
291 #define MSC21 10 /* QSY probe channel */
292 #define MIN1 11 /* latch time */
293 #define MIN2 12 /* leap second */
294 #define SYNC2 13 /* latch minute sync pulse */
295 #define SYNC3 14 /* latch data pulse */
298 * Offsets in decoding matrix
300 #define MN 0 /* minute digits (2) */
301 #define HR 2 /* hour digits (2) */
302 #define DA 4 /* day digits (3) */
303 #define YR 7 /* year digits (2) */
305 struct progx progx
[] = {
306 {SYNC2
, 0}, /* 0 latch minute sync pulse */
307 {SYNC3
, 0}, /* 1 latch data pulse */
308 {MSCBIT
, DST2
}, /* 2 dst2 */
309 {MSCBIT
, SECWAR
}, /* 3 lw */
310 {COEF
, 0}, /* 4 1 year units */
314 {DECIM9
, YR
}, /* 8 */
315 {IDLE
, 0}, /* 9 p1 */
316 {COEF1
, 0}, /* 10 1 minute units */
317 {COEF1
, 1}, /* 11 2 */
318 {COEF1
, 2}, /* 12 4 */
319 {COEF1
, 3}, /* 13 8 */
320 {DECIM9
, MN
}, /* 14 */
321 {COEF
, 0}, /* 15 10 minute tens */
322 {COEF
, 1}, /* 16 20 */
323 {COEF
, 2}, /* 17 40 */
324 {COEF2
, 3}, /* 18 80 (not used) */
325 {DECIM6
, MN
+ 1}, /* 19 p2 */
326 {COEF
, 0}, /* 20 1 hour units */
327 {COEF
, 1}, /* 21 2 */
328 {COEF
, 2}, /* 22 4 */
329 {COEF
, 3}, /* 23 8 */
330 {DECIM9
, HR
}, /* 24 */
331 {COEF
, 0}, /* 25 10 hour tens */
332 {COEF
, 1}, /* 26 20 */
333 {COEF2
, 2}, /* 27 40 (not used) */
334 {COEF2
, 3}, /* 28 80 (not used) */
335 {DECIM2
, HR
+ 1}, /* 29 p3 */
336 {COEF
, 0}, /* 30 1 day units */
337 {COEF
, 1}, /* 31 2 */
338 {COEF
, 2}, /* 32 4 */
339 {COEF
, 3}, /* 33 8 */
340 {DECIM9
, DA
}, /* 34 */
341 {COEF
, 0}, /* 35 10 day tens */
342 {COEF
, 1}, /* 36 20 */
343 {COEF
, 2}, /* 37 40 */
344 {COEF
, 3}, /* 38 80 */
345 {DECIM9
, DA
+ 1}, /* 39 p4 */
346 {COEF
, 0}, /* 40 100 day hundreds */
347 {COEF
, 1}, /* 41 200 */
348 {COEF2
, 2}, /* 42 400 (not used) */
349 {COEF2
, 3}, /* 43 800 (not used) */
350 {DECIM3
, DA
+ 2}, /* 44 */
355 {IDLE
, 0}, /* 49 p5 */
356 {MSCBIT
, DUTS
}, /* 50 dut+- */
357 {COEF
, 0}, /* 51 10 year tens */
358 {COEF
, 1}, /* 52 20 */
359 {COEF
, 2}, /* 53 40 */
360 {COEF
, 3}, /* 54 80 */
361 {MSC20
, DST1
}, /* 55 dst1 */
362 {MSCBIT
, DUT1
}, /* 56 0.1 dut */
363 {MSCBIT
, DUT2
}, /* 57 0.2 */
364 {MSC21
, DUT4
}, /* 58 0.4 QSY probe channel */
365 {MIN1
, 0}, /* 59 p6 latch time */
366 {MIN2
, 0} /* 60 leap second */
370 * BCD coefficients for maximum likelihood digit decode
372 #define P15 1. /* max positive number */
373 #define N15 -1. /* max negative number */
378 #define P9 (P15 / 4) /* mark (+1) */
379 #define N9 (N15 / 4) /* space (-1) */
382 {N9
, N9
, N9
, N9
}, /* 0 */
383 {P9
, N9
, N9
, N9
}, /* 1 */
384 {N9
, P9
, N9
, N9
}, /* 2 */
385 {P9
, P9
, N9
, N9
}, /* 3 */
386 {N9
, N9
, P9
, N9
}, /* 4 */
387 {P9
, N9
, P9
, N9
}, /* 5 */
388 {N9
, P9
, P9
, N9
}, /* 6 */
389 {P9
, P9
, P9
, N9
}, /* 7 */
390 {N9
, N9
, N9
, P9
}, /* 8 */
391 {P9
, N9
, N9
, P9
}, /* 9 */
392 {0, 0, 0, 0} /* backstop */
396 * Digits 0-6 (minute tens)
398 #define P6 (P15 / 3) /* mark (+1) */
399 #define N6 (N15 / 3) /* space (-1) */
402 {N6
, N6
, N6
, 0}, /* 0 */
403 {P6
, N6
, N6
, 0}, /* 1 */
404 {N6
, P6
, N6
, 0}, /* 2 */
405 {P6
, P6
, N6
, 0}, /* 3 */
406 {N6
, N6
, P6
, 0}, /* 4 */
407 {P6
, N6
, P6
, 0}, /* 5 */
408 {N6
, P6
, P6
, 0}, /* 6 */
409 {0, 0, 0, 0} /* backstop */
413 * Digits 0-3 (day hundreds)
415 #define P3 (P15 / 2) /* mark (+1) */
416 #define N3 (N15 / 2) /* space (-1) */
419 {N3
, N3
, 0, 0}, /* 0 */
420 {P3
, N3
, 0, 0}, /* 1 */
421 {N3
, P3
, 0, 0}, /* 2 */
422 {P3
, P3
, 0, 0}, /* 3 */
423 {0, 0, 0, 0} /* backstop */
427 * Digits 0-2 (hour tens)
429 #define P2 (P15 / 2) /* mark (+1) */
430 #define N2 (N15 / 2) /* space (-1) */
433 {N2
, N2
, 0, 0}, /* 0 */
434 {P2
, N2
, 0, 0}, /* 1 */
435 {N2
, P2
, 0, 0}, /* 2 */
436 {0, 0, 0, 0} /* backstop */
440 * DST decode (DST2 DST1) for prettyprint
443 'S', /* 00 standard time */
444 'I', /* 01 set clock ahead at 0200 local */
445 'O', /* 10 set clock back at 0200 local */
446 'D' /* 11 daylight time */
450 * The decoding matrix consists of nine row vectors, one for each digit
451 * of the timecode. The digits are stored from least to most significant
452 * order. The maximum likelihood timecode is formed from the digits
453 * corresponding to the maximum likelihood values reading in the
454 * opposite order: yy ddd hh:mm.
457 int radix
; /* radix (3, 4, 6, 10) */
458 int digit
; /* current clock digit */
459 int mldigit
; /* maximum likelihood digit */
460 int count
; /* match count */
461 double digprb
; /* max digit probability */
462 double digsnr
; /* likelihood function (dB) */
463 double like
[10]; /* likelihood integrator 0-9 */
467 * The station structure (sp) is used to acquire the minute pulse from
468 * WWV and/or WWVH. These stations are distinguished by the frequency
469 * used for the second and minute sync pulses, 1000 Hz for WWV and 1200
470 * Hz for WWVH. Other than frequency, the format is the same.
473 double epoch
; /* accumulated epoch differences */
474 double maxeng
; /* sync max energy */
475 double noieng
; /* sync noise energy */
476 long pos
; /* max amplitude position */
477 long lastpos
; /* last max position */
478 long mepoch
; /* minute synch epoch */
480 double amp
; /* sync signal */
481 double syneng
; /* sync signal max */
482 double synmax
; /* sync signal max latched at 0 s */
483 double synsnr
; /* sync signal SNR */
484 double metric
; /* signal quality metric */
485 int reach
; /* reachability register */
486 int count
; /* bit counter */
487 int select
; /* select bits */
488 char refid
[5]; /* reference identifier */
492 * The channel structure (cp) is used to mitigate between channels.
495 int gain
; /* audio gain */
496 struct sync wwv
; /* wwv station */
497 struct sync wwvh
; /* wwvh station */
501 * WWV unit control structure (up)
504 l_fp timestamp
; /* audio sample timestamp */
505 l_fp tick
; /* audio sample increment */
506 double phase
, freq
; /* logical clock phase and frequency */
507 double monitor
; /* audio monitor point */
509 int fd_icom
; /* ICOM file descriptor */
511 int errflg
; /* error flags */
512 int watch
; /* watchcat */
515 * Audio codec variables
517 double comp
[SIZE
]; /* decompanding table */
518 int port
; /* codec port */
519 int gain
; /* codec gain */
520 int mongain
; /* codec monitor gain */
521 int clipcnt
; /* sample clipped count */
524 * Variables used to establish basic system timing
526 int avgint
; /* master time constant */
527 int yepoch
; /* sync epoch */
528 int repoch
; /* buffered sync epoch */
529 double epomax
; /* second sync amplitude */
530 double eposnr
; /* second sync SNR */
531 double irig
; /* data I channel amplitude */
532 double qrig
; /* data Q channel amplitude */
533 int datapt
; /* 100 Hz ramp */
534 double datpha
; /* 100 Hz VFO control */
535 int rphase
; /* second sample counter */
536 long mphase
; /* minute sample counter */
539 * Variables used to mitigate which channel to use
541 struct chan mitig
[NCHAN
]; /* channel data */
542 struct sync
*sptr
; /* station pointer */
543 int dchan
; /* data channel */
544 int schan
; /* probe channel */
545 int achan
; /* active channel */
548 * Variables used by the clock state machine
550 struct decvec decvec
[9]; /* decoding matrix */
551 int rsec
; /* seconds counter */
552 int digcnt
; /* count of digits synchronized */
555 * Variables used to estimate signal levels and bit/digit
558 double datsig
; /* data signal max */
559 double datsnr
; /* data signal SNR (dB) */
562 * Variables used to establish status and alarm conditions
564 int status
; /* status bits */
565 int alarm
; /* alarm flashers */
566 int misc
; /* miscellaneous timecode bits */
567 int errcnt
; /* data bit error counter */
571 * Function prototypes
573 static int wwv_start
P((int, struct peer
*));
574 static void wwv_shutdown
P((int, struct peer
*));
575 static void wwv_receive
P((struct recvbuf
*));
576 static void wwv_poll
P((int, struct peer
*));
579 * More function prototypes
581 static void wwv_epoch
P((struct peer
*));
582 static void wwv_rf
P((struct peer
*, double));
583 static void wwv_endpoc
P((struct peer
*, int));
584 static void wwv_rsec
P((struct peer
*, double));
585 static void wwv_qrz
P((struct peer
*, struct sync
*, int));
586 static void wwv_corr4
P((struct peer
*, struct decvec
*,
587 double [], double [][4]));
588 static void wwv_gain
P((struct peer
*));
589 static void wwv_tsec
P((struct peer
*));
590 static int timecode
P((struct wwvunit
*, char *));
591 static double wwv_snr
P((double, double));
592 static int carry
P((struct decvec
*));
593 static int wwv_newchan
P((struct peer
*));
594 static void wwv_newgame
P((struct peer
*));
595 static double wwv_metric
P((struct sync
*));
596 static void wwv_clock
P((struct peer
*));
598 static int wwv_qsy
P((struct peer
*, int));
601 static double qsy
[NCHAN
] = {2.5, 5, 10, 15, 20}; /* frequencies (MHz) */
606 struct refclock refclock_wwv
= {
607 wwv_start
, /* start up driver */
608 wwv_shutdown
, /* shut down driver */
609 wwv_poll
, /* transmit poll message */
610 noentry
, /* not used (old wwv_control) */
611 noentry
, /* initialize driver (not used) */
612 noentry
, /* not used (old wwv_buginfo) */
613 NOFLAGS
/* not used */
618 * wwv_start - open the devices and initialize data for processing
622 int unit
, /* instance number (used by PCM) */
623 struct peer
*peer
/* peer structure pointer */
626 struct refclockproc
*pp
;
635 int fd
; /* file descriptor */
637 double step
; /* codec adjustment */
642 fd
= audio_init(DEVICE_AUDIO
, AUDIO_BUFSIZ
, unit
);
651 * Allocate and initialize unit structure
653 if (!(up
= (struct wwvunit
*)emalloc(sizeof(struct wwvunit
)))) {
657 memset(up
, 0, sizeof(struct wwvunit
));
659 pp
->unitptr
= (caddr_t
)up
;
660 pp
->io
.clock_recv
= wwv_receive
;
661 pp
->io
.srcclock
= (caddr_t
)peer
;
664 if (!io_addclock(&pp
->io
)) {
671 * Initialize miscellaneous variables
673 peer
->precision
= PRECISION
;
674 pp
->clockdesc
= DESCRIPTION
;
677 * The companded samples are encoded sign-magnitude. The table
678 * contains all the 256 values in the interest of speed.
680 up
->comp
[0] = up
->comp
[OFFSET
] = 0.;
681 up
->comp
[1] = 1.; up
->comp
[OFFSET
+ 1] = -1.;
682 up
->comp
[2] = 3.; up
->comp
[OFFSET
+ 2] = -3.;
684 for (i
= 3; i
< OFFSET
; i
++) {
685 up
->comp
[i
] = up
->comp
[i
- 1] + step
;
686 up
->comp
[OFFSET
+ i
] = -up
->comp
[i
];
690 DTOLFP(1. / SECOND
, &up
->tick
);
693 * Initialize the decoding matrix with the radix for each digit
696 up
->decvec
[MN
].radix
= 10; /* minutes */
697 up
->decvec
[MN
+ 1].radix
= 6;
698 up
->decvec
[HR
].radix
= 10; /* hours */
699 up
->decvec
[HR
+ 1].radix
= 3;
700 up
->decvec
[DA
].radix
= 10; /* days */
701 up
->decvec
[DA
+ 1].radix
= 10;
702 up
->decvec
[DA
+ 2].radix
= 4;
703 up
->decvec
[YR
].radix
= 10; /* years */
704 up
->decvec
[YR
+ 1].radix
= 10;
708 * Initialize autotune if available. Note that the ICOM select
709 * code must be less than 128, so the high order bit can be used
710 * to select the line speed 0 (9600 bps) or 1 (1200 bps).
717 if (peer
->ttl
!= 0) {
718 if (peer
->ttl
& 0x80)
719 up
->fd_icom
= icom_init("/dev/icom", B1200
,
722 up
->fd_icom
= icom_init("/dev/icom", B9600
,
724 if (up
->fd_icom
< 0) {
725 NLOG(NLOG_SYNCEVENT
| NLOG_SYSEVENT
)
728 up
->errflg
= CEVNT_FAULT
;
731 if (up
->fd_icom
> 0) {
732 if (wwv_qsy(peer
, DCHAN
) != 0) {
733 NLOG(NLOG_SYNCEVENT
| NLOG_SYSEVENT
)
735 "icom: radio not found");
736 up
->errflg
= CEVNT_FAULT
;
740 NLOG(NLOG_SYNCEVENT
| NLOG_SYSEVENT
)
742 "icom: autotune enabled");
748 * Let the games begin.
756 * wwv_shutdown - shut down the clock
760 int unit
, /* instance number (not used) */
761 struct peer
*peer
/* peer structure pointer */
764 struct refclockproc
*pp
;
768 up
= (struct wwvunit
*)pp
->unitptr
;
772 io_closeclock(&pp
->io
);
782 * wwv_receive - receive data from the audio device
784 * This routine reads input samples and adjusts the logical clock to
785 * track the A/D sample clock by dropping or duplicating codec samples.
786 * It also controls the A/D signal level with an AGC loop to mimimize
787 * quantization noise and avoid overload.
791 struct recvbuf
*rbufp
/* receive buffer structure pointer */
795 struct refclockproc
*pp
;
801 double sample
; /* codec sample */
802 u_char
*dpt
; /* buffer pointer */
803 int bufcnt
; /* buffer counter */
806 peer
= (struct peer
*)rbufp
->recv_srcclock
;
808 up
= (struct wwvunit
*)pp
->unitptr
;
811 * Main loop - read until there ain't no more. Note codec
812 * samples are bit-inverted.
814 DTOLFP((double)rbufp
->recv_length
/ SECOND
, <emp
);
815 L_SUB(&rbufp
->recv_time
, <emp
);
816 up
->timestamp
= rbufp
->recv_time
;
817 dpt
= rbufp
->recv_buffer
;
818 for (bufcnt
= 0; bufcnt
< rbufp
->recv_length
; bufcnt
++) {
819 sample
= up
->comp
[~*dpt
++ & 0xff];
822 * Clip noise spikes greater than MAXAMP (6000) and
823 * record the number of clips to be used later by the
826 if (sample
> MAXAMP
) {
829 } else if (sample
< -MAXAMP
) {
835 * Variable frequency oscillator. The codec oscillator
836 * runs at the nominal rate of 8000 samples per second,
837 * or 125 us per sample. A frequency change of one unit
838 * results in either duplicating or deleting one sample
839 * per second, which results in a frequency change of
842 up
->phase
+= up
->freq
/ SECOND
;
843 up
->phase
+= FREQ_OFFSET
/ 1e6
;
844 if (up
->phase
>= .5) {
846 } else if (up
->phase
< -.5) {
848 wwv_rf(peer
, sample
);
849 wwv_rf(peer
, sample
);
851 wwv_rf(peer
, sample
);
853 L_ADD(&up
->timestamp
, &up
->tick
);
857 * Set the input port and monitor gain for the next buffer.
859 if (pp
->sloppyclockflag
& CLK_FLAG2
)
863 if (pp
->sloppyclockflag
& CLK_FLAG3
)
864 up
->mongain
= MONGAIN
;
871 * wwv_poll - called by the transmit procedure
873 * This routine keeps track of status. If no offset samples have been
874 * processed during a poll interval, a timeout event is declared. If
875 * errors have have occurred during the interval, they are reported as
880 int unit
, /* instance number (not used) */
881 struct peer
*peer
/* peer structure pointer */
884 struct refclockproc
*pp
;
888 up
= (struct wwvunit
*)pp
->unitptr
;
889 if (pp
->coderecv
== pp
->codeproc
)
890 up
->errflg
= CEVNT_TIMEOUT
;
892 refclock_report(peer
, up
->errflg
);
899 * wwv_rf - process signals and demodulate to baseband
901 * This routine grooms and filters decompanded raw audio samples. The
902 * output signal is the 100-Hz filtered baseband data signal in
903 * quadrature phase. The routine also determines the minute synch epoch,
904 * as well as certain signal maxima, minima and related values.
906 * There are two 1-s ramps used by this program. Both count the 8000
907 * logical clock samples spanning exactly one second. The epoch ramp
908 * counts the samples starting at an arbitrary time. The rphase ramp
909 * counts the samples starting at the 5-ms second sync pulse found
910 * during the epoch ramp.
912 * There are two 1-m ramps used by this program. The mphase ramp counts
913 * the 480,000 logical clock samples spanning exactly one minute and
914 * starting at an arbitrary time. The rsec ramp counts the 60 seconds of
915 * the minute starting at the 800-ms minute sync pulse found during the
916 * mphase ramp. The rsec ramp drives the seconds state machine to
917 * determine the bits and digits of the timecode.
919 * Demodulation operations are based on three synthesized quadrature
920 * sinusoids: 100 Hz for the data signal, 1000 Hz for the WWV sync
921 * signal and 1200 Hz for the WWVH sync signal. These drive synchronous
922 * matched filters for the data signal (170 ms at 100 Hz), WWV minute
923 * sync signal (800 ms at 1000 Hz) and WWVH minute sync signal (800 ms
924 * at 1200 Hz). Two additional matched filters are switched in
925 * as required for the WWV second sync signal (5 cycles at 1000 Hz) and
926 * WWVH second sync signal (6 cycles at 1200 Hz).
930 struct peer
*peer
, /* peerstructure pointer */
931 double isig
/* input signal */
934 struct refclockproc
*pp
;
936 struct sync
*sp
, *rp
;
938 static double lpf
[5]; /* 150-Hz lpf delay line */
939 double data
; /* lpf output */
940 static double bpf
[9]; /* 1000/1200-Hz bpf delay line */
941 double syncx
; /* bpf output */
942 static double mf
[41]; /* 1000/1200-Hz mf delay line */
943 double mfsync
; /* mf output */
945 static int iptr
; /* data channel pointer */
946 static double ibuf
[DATSIZ
]; /* data I channel delay line */
947 static double qbuf
[DATSIZ
]; /* data Q channel delay line */
949 static int jptr
; /* sync channel pointer */
950 static int kptr
; /* tick channel pointer */
952 static int csinptr
; /* wwv channel phase */
953 static double cibuf
[SYNSIZ
]; /* wwv I channel delay line */
954 static double cqbuf
[SYNSIZ
]; /* wwv Q channel delay line */
955 static double ciamp
; /* wwv I channel amplitude */
956 static double cqamp
; /* wwv Q channel amplitude */
958 static double csibuf
[TCKSIZ
]; /* wwv I tick delay line */
959 static double csqbuf
[TCKSIZ
]; /* wwv Q tick delay line */
960 static double csiamp
; /* wwv I tick amplitude */
961 static double csqamp
; /* wwv Q tick amplitude */
963 static int hsinptr
; /* wwvh channel phase */
964 static double hibuf
[SYNSIZ
]; /* wwvh I channel delay line */
965 static double hqbuf
[SYNSIZ
]; /* wwvh Q channel delay line */
966 static double hiamp
; /* wwvh I channel amplitude */
967 static double hqamp
; /* wwvh Q channel amplitude */
969 static double hsibuf
[TCKSIZ
]; /* wwvh I tick delay line */
970 static double hsqbuf
[TCKSIZ
]; /* wwvh Q tick delay line */
971 static double hsiamp
; /* wwvh I tick amplitude */
972 static double hsqamp
; /* wwvh Q tick amplitude */
974 static double epobuf
[SECOND
]; /* second sync comb filter */
975 static double epomax
, nxtmax
; /* second sync amplitude buffer */
976 static int epopos
; /* epoch second sync position buffer */
978 static int iniflg
; /* initialization flag */
979 int pdelay
; /* propagation delay (samples) */
980 int epoch
; /* comb filter index */
985 up
= (struct wwvunit
*)pp
->unitptr
;
989 memset((char *)lpf
, 0, sizeof(lpf
));
990 memset((char *)bpf
, 0, sizeof(bpf
));
991 memset((char *)mf
, 0, sizeof(mf
));
992 memset((char *)ibuf
, 0, sizeof(ibuf
));
993 memset((char *)qbuf
, 0, sizeof(qbuf
));
994 memset((char *)cibuf
, 0, sizeof(cibuf
));
995 memset((char *)cqbuf
, 0, sizeof(cqbuf
));
996 memset((char *)csibuf
, 0, sizeof(csibuf
));
997 memset((char *)csqbuf
, 0, sizeof(csqbuf
));
998 memset((char *)hibuf
, 0, sizeof(hibuf
));
999 memset((char *)hqbuf
, 0, sizeof(hqbuf
));
1000 memset((char *)hsibuf
, 0, sizeof(hsibuf
));
1001 memset((char *)hsqbuf
, 0, sizeof(hsqbuf
));
1002 memset((char *)epobuf
, 0, sizeof(epobuf
));
1006 * Baseband data demodulation. The 100-Hz subcarrier is
1007 * extracted using a 150-Hz IIR lowpass filter. This attenuates
1008 * the 1000/1200-Hz sync signals, as well as the 440-Hz and
1009 * 600-Hz tones and most of the noise and voice modulation
1012 * The subcarrier is transmitted 10 dB down from the carrier.
1013 * The DGAIN parameter can be adjusted for this and to
1014 * compensate for the radio audio response at 100 Hz.
1016 * Matlab IIR 4th-order IIR elliptic, 150 Hz lowpass, 0.2 dB
1017 * passband ripple, -50 dB stopband ripple.
1019 data
= (lpf
[4] = lpf
[3]) * 8.360961e-01;
1020 data
+= (lpf
[3] = lpf
[2]) * -3.481740e+00;
1021 data
+= (lpf
[2] = lpf
[1]) * 5.452988e+00;
1022 data
+= (lpf
[1] = lpf
[0]) * -3.807229e+00;
1023 lpf
[0] = isig
* DGAIN
- data
;
1024 data
= lpf
[0] * 3.281435e-03
1025 + lpf
[1] * -1.149947e-02
1026 + lpf
[2] * 1.654858e-02
1027 + lpf
[3] * -1.149947e-02
1028 + lpf
[4] * 3.281435e-03;
1031 * The 100-Hz data signal is demodulated using a pair of
1032 * quadrature multipliers, matched filters and a phase lock
1033 * loop. The I and Q quadrature data signals are produced by
1034 * multiplying the filtered signal by 100-Hz sine and cosine
1035 * signals, respectively. The signals are processed by 170-ms
1036 * synchronous matched filters to produce the amplitude and
1037 * phase signals used by the demodulator. The signals are scaled
1038 * to produce unit energy at the maximum value.
1041 up
->datapt
= (up
->datapt
+ IN100
) % 80;
1042 dtemp
= sintab
[i
] * data
/ (MS
/ 2. * DATCYC
);
1043 up
->irig
-= ibuf
[iptr
];
1048 dtemp
= sintab
[i
] * data
/ (MS
/ 2. * DATCYC
);
1049 up
->qrig
-= qbuf
[iptr
];
1052 iptr
= (iptr
+ 1) % DATSIZ
;
1055 * Baseband sync demodulation. The 1000/1200 sync signals are
1056 * extracted using a 600-Hz IIR bandpass filter. This removes
1057 * the 100-Hz data subcarrier, as well as the 440-Hz and 600-Hz
1058 * tones and most of the noise and voice modulation components.
1060 * Matlab 4th-order IIR elliptic, 800-1400 Hz bandpass, 0.2 dB
1061 * passband ripple, -50 dB stopband ripple.
1063 syncx
= (bpf
[8] = bpf
[7]) * 4.897278e-01;
1064 syncx
+= (bpf
[7] = bpf
[6]) * -2.765914e+00;
1065 syncx
+= (bpf
[6] = bpf
[5]) * 8.110921e+00;
1066 syncx
+= (bpf
[5] = bpf
[4]) * -1.517732e+01;
1067 syncx
+= (bpf
[4] = bpf
[3]) * 1.975197e+01;
1068 syncx
+= (bpf
[3] = bpf
[2]) * -1.814365e+01;
1069 syncx
+= (bpf
[2] = bpf
[1]) * 1.159783e+01;
1070 syncx
+= (bpf
[1] = bpf
[0]) * -4.735040e+00;
1071 bpf
[0] = isig
- syncx
;
1072 syncx
= bpf
[0] * 8.203628e-03
1073 + bpf
[1] * -2.375732e-02
1074 + bpf
[2] * 3.353214e-02
1075 + bpf
[3] * -4.080258e-02
1076 + bpf
[4] * 4.605479e-02
1077 + bpf
[5] * -4.080258e-02
1078 + bpf
[6] * 3.353214e-02
1079 + bpf
[7] * -2.375732e-02
1080 + bpf
[8] * 8.203628e-03;
1083 * The 1000/1200 sync signals are demodulated using a pair of
1084 * quadrature multipliers and matched filters. However,
1085 * synchronous demodulation at these frequencies is impractical,
1086 * so only the signal amplitude is used. The I and Q quadrature
1087 * sync signals are produced by multiplying the filtered signal
1088 * by 1000-Hz (WWV) and 1200-Hz (WWVH) sine and cosine signals,
1089 * respectively. The WWV and WWVH signals are processed by 800-
1090 * ms synchronous matched filters and combined to produce the
1091 * minute sync signal and detect which one (or both) the WWV or
1092 * WWVH signal is present. The WWV and WWVH signals are also
1093 * processed by 5-ms synchronous matched filters and combined to
1094 * produce the second sync signal. The signals are scaled to
1095 * produce unit energy at the maximum value.
1097 * Note the master timing ramps, which run continuously. The
1098 * minute counter (mphase) counts the samples in the minute,
1099 * while the second counter (epoch) counts the samples in the
1102 up
->mphase
= (up
->mphase
+ 1) % MINUTE
;
1103 epoch
= up
->mphase
% SECOND
;
1109 csinptr
= (csinptr
+ IN1000
) % 80;
1111 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1112 ciamp
-= cibuf
[jptr
];
1113 cibuf
[jptr
] = dtemp
;
1115 csiamp
-= csibuf
[kptr
];
1116 csibuf
[kptr
] = dtemp
;
1120 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1121 cqamp
-= cqbuf
[jptr
];
1122 cqbuf
[jptr
] = dtemp
;
1124 csqamp
-= csqbuf
[kptr
];
1125 csqbuf
[kptr
] = dtemp
;
1128 sp
= &up
->mitig
[up
->achan
].wwv
;
1129 sp
->amp
= sqrt(ciamp
* ciamp
+ cqamp
* cqamp
) / SYNCYC
;
1130 if (!(up
->status
& MSYNC
))
1131 wwv_qrz(peer
, sp
, (int)(pp
->fudgetime1
* SECOND
));
1137 hsinptr
= (hsinptr
+ IN1200
) % 80;
1139 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1140 hiamp
-= hibuf
[jptr
];
1141 hibuf
[jptr
] = dtemp
;
1143 hsiamp
-= hsibuf
[kptr
];
1144 hsibuf
[kptr
] = dtemp
;
1148 dtemp
= sintab
[i
] * syncx
/ (MS
/ 2.);
1149 hqamp
-= hqbuf
[jptr
];
1150 hqbuf
[jptr
] = dtemp
;
1152 hsqamp
-= hsqbuf
[kptr
];
1153 hsqbuf
[kptr
] = dtemp
;
1156 rp
= &up
->mitig
[up
->achan
].wwvh
;
1157 rp
->amp
= sqrt(hiamp
* hiamp
+ hqamp
* hqamp
) / SYNCYC
;
1158 if (!(up
->status
& MSYNC
))
1159 wwv_qrz(peer
, rp
, (int)(pp
->fudgetime2
* SECOND
));
1160 jptr
= (jptr
+ 1) % SYNSIZ
;
1161 kptr
= (kptr
+ 1) % TCKSIZ
;
1164 * The following section is called once per minute. It does
1165 * housekeeping and timeout functions and empties the dustbins.
1167 if (up
->mphase
== 0) {
1169 if (!(up
->status
& MSYNC
)) {
1172 * If minute sync has not been acquired before
1173 * ACQSN timeout (6 min), or if no signal is
1174 * heard, the program cycles to the next
1175 * frequency and tries again.
1177 if (!wwv_newchan(peer
))
1180 if (up
->fd_icom
> 0)
1181 wwv_qsy(peer
, up
->dchan
);
1186 * If the leap bit is set, set the minute epoch
1187 * back one second so the station processes
1188 * don't miss a beat.
1190 if (up
->status
& LEPSEC
) {
1191 up
->mphase
-= SECOND
;
1193 up
->mphase
+= MINUTE
;
1199 * When the channel metric reaches threshold and the second
1200 * counter matches the minute epoch within the second, the
1201 * driver has synchronized to the station. The second number is
1202 * the remaining seconds until the next minute epoch, while the
1203 * sync epoch is zero. Watch out for the first second; if
1204 * already synchronized to the second, the buffered sync epoch
1207 * Note the guard interval is 200 ms; if for some reason the
1208 * clock drifts more than that, it might wind up in the wrong
1209 * second. If the maximum frequency error is not more than about
1210 * 1 PPM, the clock can go as much as two days while still in
1213 if (up
->status
& MSYNC
) {
1215 } else if (up
->sptr
!= NULL
) {
1217 if (sp
->metric
>= TTHR
&& epoch
== sp
->mepoch
% SECOND
) {
1218 up
->rsec
= (60 - sp
->mepoch
/ SECOND
) % 60;
1220 up
->status
|= MSYNC
;
1222 if (!(up
->status
& SSYNC
))
1223 up
->repoch
= up
->yepoch
= epoch
;
1225 up
->repoch
= up
->yepoch
;
1231 * The second sync pulse is extracted using 5-ms (40 sample) FIR
1232 * matched filters at 1000 Hz for WWV or 1200 Hz for WWVH. This
1233 * pulse is used for the most precise synchronization, since if
1234 * provides a resolution of one sample (125 us). The filters run
1235 * only if the station has been reliably determined.
1237 if (up
->status
& SELV
) {
1238 pdelay
= (int)(pp
->fudgetime1
* SECOND
);
1239 mfsync
= sqrt(csiamp
* csiamp
+ csqamp
* csqamp
) /
1241 } else if (up
->status
& SELH
) {
1242 pdelay
= (int)(pp
->fudgetime2
* SECOND
);
1243 mfsync
= sqrt(hsiamp
* hsiamp
+ hsqamp
* hsqamp
) /
1251 * Enhance the seconds sync pulse using a 1-s (8000-sample) comb
1252 * filter. Correct for the FIR matched filter delay, which is 5
1253 * ms for both the WWV and WWVH filters, and also for the
1254 * propagation delay. Once each second look for second sync. If
1255 * not in minute sync, fiddle the codec gain. Note the SNR is
1256 * computed from the maximum sample and the envelope of the
1257 * sample 6 ms before it, so if we slip more than a cycle the
1258 * SNR should plummet. The signal is scaled to produce unit
1259 * energy at the maximum value.
1261 dtemp
= (epobuf
[epoch
] += (mfsync
- epobuf
[epoch
]) /
1263 if (dtemp
> epomax
) {
1271 nxtmax
= fabs(epobuf
[j
]);
1274 up
->epomax
= epomax
;
1275 up
->eposnr
= wwv_snr(epomax
, nxtmax
);
1276 epopos
-= pdelay
+ TCKCYC
* MS
;
1279 wwv_endpoc(peer
, epopos
);
1280 if (!(up
->status
& SSYNC
))
1281 up
->alarm
|= SYNERR
;
1283 if (!(up
->status
& MSYNC
))
1290 * wwv_qrz - identify and acquire WWV/WWVH minute sync pulse
1292 * This routine implements a virtual station process used to acquire
1293 * minute sync and to mitigate among the ten frequency and station
1294 * combinations. During minute sync acquisition the process probes each
1295 * frequency and station in turn for the minute pulse, which
1296 * involves searching through the entire 480,000-sample minute. The
1297 * process finds the maximum signal and RMS noise plus signal. Then, the
1298 * actual noise is determined by subtracting the energy of the matched
1301 * Students of radar receiver technology will discover this algorithm
1302 * amounts to a range-gate discriminator. A valid pulse must have peak
1303 * amplitude at least QTHR (2500) and SNR at least QSNR (20) dB and the
1304 * difference between the current and previous epoch must be less than
1305 * AWND (20 ms). Note that the discriminator peak occurs about 800 ms
1306 * into the second, so the timing is retarded to the previous second
1311 struct peer
*peer
, /* peer structure pointer */
1312 struct sync
*sp
, /* sync channel structure */
1313 int pdelay
/* propagation delay (samples) */
1316 struct refclockproc
*pp
;
1318 char tbuf
[80]; /* monitor buffer */
1322 up
= (struct wwvunit
*)pp
->unitptr
;
1325 * Find the sample with peak amplitude, which defines the minute
1326 * epoch. Accumulate all samples to determine the total noise
1329 epoch
= up
->mphase
- pdelay
- SYNSIZ
;
1332 if (sp
->amp
> sp
->maxeng
) {
1333 sp
->maxeng
= sp
->amp
;
1336 sp
->noieng
+= sp
->amp
;
1339 * At the end of the minute, determine the epoch of the minute
1340 * sync pulse, as well as the difference between the current and
1341 * previous epoches due to the intrinsic frequency error plus
1342 * jitter. When calculating the SNR, subtract the pulse energy
1343 * from the total noise energy and then normalize.
1345 if (up
->mphase
== 0) {
1346 sp
->synmax
= sp
->maxeng
;
1347 sp
->synsnr
= wwv_snr(sp
->synmax
, (sp
->noieng
-
1348 sp
->synmax
) / MINUTE
);
1350 sp
->lastpos
= sp
->pos
;
1351 epoch
= (sp
->pos
- sp
->lastpos
) % MINUTE
;
1353 if (sp
->reach
& (1 << AMAX
))
1355 if (sp
->synmax
> ATHR
&& sp
->synsnr
> ASNR
) {
1356 if (abs(epoch
) < AWND
* MS
) {
1359 sp
->mepoch
= sp
->lastpos
= sp
->pos
;
1360 } else if (sp
->count
== 1) {
1361 sp
->lastpos
= sp
->pos
;
1364 if (up
->watch
> ACQSN
)
1367 sp
->metric
= wwv_metric(sp
);
1368 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1370 "wwv8 %04x %3d %s %04x %.0f %.0f/%.1f %4ld %4ld",
1371 up
->status
, up
->gain
, sp
->refid
,
1372 sp
->reach
& 0xffff, sp
->metric
, sp
->synmax
,
1373 sp
->synsnr
, sp
->pos
% SECOND
, epoch
);
1374 record_clock_stats(&peer
->srcadr
, tbuf
);
1377 printf("%s\n", tbuf
);
1380 sp
->maxeng
= sp
->noieng
= 0;
1386 * wwv_endpoc - identify and acquire second sync pulse
1388 * This routine is called at the end of the second sync interval. It
1389 * determines the second sync epoch position within the second and
1390 * disciplines the sample clock using a frequency-lock loop (FLL).
1392 * Second sync is determined in the RF input routine as the maximum
1393 * over all 8000 samples in the second comb filter. To assure accurate
1394 * and reliable time and frequency discipline, this routine performs a
1395 * great deal of heavy-handed heuristic data filtering and grooming.
1399 struct peer
*peer
, /* peer structure pointer */
1400 int epopos
/* epoch max position */
1403 struct refclockproc
*pp
;
1405 static int epoch_mf
[3]; /* epoch median filter */
1406 static int tepoch
; /* current second epoch */
1407 static int xepoch
; /* last second epoch */
1408 static int zepoch
; /* last run epoch */
1409 static int zcount
; /* last run end time */
1410 static int scount
; /* seconds counter */
1411 static int syncnt
; /* run length counter */
1412 static int maxrun
; /* longest run length */
1413 static int mepoch
; /* longest run end epoch */
1414 static int mcount
; /* longest run end time */
1415 static int avgcnt
; /* averaging interval counter */
1416 static int avginc
; /* averaging ratchet */
1417 static int iniflg
; /* initialization flag */
1418 char tbuf
[80]; /* monitor buffer */
1423 up
= (struct wwvunit
*)pp
->unitptr
;
1426 memset((char *)epoch_mf
, 0, sizeof(epoch_mf
));
1430 * If the signal amplitude or SNR fall below thresholds, dim the
1431 * second sync lamp and wait for hotter ions. If no stations are
1432 * heard, we are either in a probe cycle or the ions are really
1436 if (up
->epomax
< STHR
|| up
->eposnr
< SSNR
) {
1437 up
->status
&= ~(SSYNC
| FGATE
);
1438 avgcnt
= syncnt
= maxrun
= 0;
1441 if (!(up
->status
& (SELV
| SELH
)))
1445 * A three-stage median filter is used to help denoise the
1446 * second sync pulse. The median sample becomes the candidate
1449 epoch_mf
[2] = epoch_mf
[1];
1450 epoch_mf
[1] = epoch_mf
[0];
1451 epoch_mf
[0] = epopos
;
1452 if (epoch_mf
[0] > epoch_mf
[1]) {
1453 if (epoch_mf
[1] > epoch_mf
[2])
1454 tepoch
= epoch_mf
[1]; /* 0 1 2 */
1455 else if (epoch_mf
[2] > epoch_mf
[0])
1456 tepoch
= epoch_mf
[0]; /* 2 0 1 */
1458 tepoch
= epoch_mf
[2]; /* 0 2 1 */
1460 if (epoch_mf
[1] < epoch_mf
[2])
1461 tepoch
= epoch_mf
[1]; /* 2 1 0 */
1462 else if (epoch_mf
[2] < epoch_mf
[0])
1463 tepoch
= epoch_mf
[0]; /* 1 0 2 */
1465 tepoch
= epoch_mf
[2]; /* 1 2 0 */
1470 * If the epoch candidate is the same as the last one, increment
1471 * the run counter. If not, save the length, epoch and end
1472 * time of the current run for use later and reset the counter.
1473 * The epoch is considered valid if the run is at least SCMP
1474 * (10) s, the minute is synchronized and the interval since the
1475 * last epoch is not greater than the averaging interval. Thus,
1476 * after a long absence, the program will wait a full averaging
1477 * interval while the comb filter charges up and noise
1480 tmp2
= (tepoch
- xepoch
) % SECOND
;
1483 if (syncnt
> SCMP
&& up
->status
& MSYNC
&& (up
->status
&
1484 FGATE
|| scount
- zcount
<= up
->avgint
)) {
1485 up
->status
|= SSYNC
;
1486 up
->yepoch
= tepoch
;
1488 } else if (syncnt
>= maxrun
) {
1494 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
& MSYNC
))
1497 "wwv1 %04x %3d %4d %5.0f %5.1f %5d %4d %4d %4d",
1498 up
->status
, up
->gain
, tepoch
, up
->epomax
,
1499 up
->eposnr
, tmp2
, avgcnt
, syncnt
,
1501 record_clock_stats(&peer
->srcadr
, tbuf
);
1504 printf("%s\n", tbuf
);
1508 if (avgcnt
< up
->avgint
) {
1514 * The sample clock frequency is disciplined using a first-order
1515 * feedback loop with time constant consistent with the Allan
1516 * intercept of typical computer clocks. During each averaging
1517 * interval the candidate epoch at the end of the longest run is
1518 * determined. If the longest run is zero, all epoches in the
1519 * interval are different, so the candidate epoch is the current
1520 * epoch. The frequency update is computed from the candidate
1521 * epoch difference (125-us units) and time difference (seconds)
1524 if (syncnt
>= maxrun
) {
1536 * The master clock runs at the codec sample frequency of 8000
1537 * Hz, so the intrinsic time resolution is 125 us. The frequency
1538 * resolution ranges from 18 PPM at the minimum averaging
1539 * interval of 8 s to 0.12 PPM at the maximum interval of 1024
1540 * s. An offset update is determined at the end of the longest
1541 * run in each averaging interval. The frequency adjustment is
1542 * computed from the difference between offset updates and the
1543 * interval between them.
1545 * The maximum frequency adjustment ranges from 187 PPM at the
1546 * minimum interval to 1.5 PPM at the maximum. If the adjustment
1547 * exceeds the maximum, the update is discarded and the
1548 * hysteresis counter is decremented. Otherwise, the frequency
1549 * is incremented by the adjustment, but clamped to the maximum
1550 * 187.5 PPM. If the update is less than half the maximum, the
1551 * hysteresis counter is incremented. If the counter increments
1552 * to +3, the averaging interval is doubled and the counter set
1553 * to zero; if it decrements to -3, the interval is halved and
1554 * the counter set to zero.
1556 dtemp
= (mepoch
- zepoch
) % SECOND
;
1557 if (up
->status
& FGATE
) {
1558 if (abs(dtemp
) < MAXFREQ
* MINAVG
) {
1559 up
->freq
+= (dtemp
/ 2.) / ((mcount
- zcount
) *
1561 if (up
->freq
> MAXFREQ
)
1563 else if (up
->freq
< -MAXFREQ
)
1564 up
->freq
= -MAXFREQ
;
1565 if (abs(dtemp
) < MAXFREQ
* MINAVG
/ 2.) {
1569 if (up
->avgint
< MAXAVG
) {
1579 if (up
->avgint
> MINAVG
) {
1586 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1588 "wwv2 %04x %5.0f %5.1f %5d %4d %4d %4d %4.0f %7.2f",
1589 up
->status
, up
->epomax
, up
->eposnr
, mepoch
,
1590 up
->avgint
, maxrun
, mcount
- zcount
, dtemp
,
1591 up
->freq
* 1e6
/ SECOND
);
1592 record_clock_stats(&peer
->srcadr
, tbuf
);
1595 printf("%s\n", tbuf
);
1600 * This is a valid update; set up for the next interval.
1602 up
->status
|= FGATE
;
1605 avgcnt
= syncnt
= maxrun
= 0;
1610 * wwv_epoch - epoch scanner
1612 * This routine extracts data signals from the 100-Hz subcarrier. It
1613 * scans the receiver second epoch to determine the signal amplitudes
1614 * and pulse timings. Receiver synchronization is determined by the
1615 * minute sync pulse detected in the wwv_rf() routine and the second
1616 * sync pulse detected in the wwv_epoch() routine. The transmitted
1617 * signals are delayed by the propagation delay, receiver delay and
1618 * filter delay of this program. Delay corrections are introduced
1619 * separately for WWV and WWVH.
1621 * Most communications radios use a highpass filter in the audio stages,
1622 * which can do nasty things to the subcarrier phase relative to the
1623 * sync pulses. Therefore, the data subcarrier reference phase is
1624 * disciplined using the hardlimited quadrature-phase signal sampled at
1625 * the same time as the in-phase signal. The phase tracking loop uses
1626 * phase adjustments of plus-minus one sample (125 us).
1630 struct peer
*peer
/* peer structure pointer */
1633 struct refclockproc
*pp
;
1636 static double sigmin
, sigzer
, sigone
, engmax
, engmin
;
1639 up
= (struct wwvunit
*)pp
->unitptr
;
1642 * Find the maximum minute sync pulse energy for both the
1643 * WWV and WWVH stations. This will be used later for channel
1644 * and station mitigation. Also set the seconds epoch at 800 ms
1645 * well before the end of the second to make sure we never set
1646 * the epoch backwards.
1648 cp
= &up
->mitig
[up
->achan
];
1649 if (cp
->wwv
.amp
> cp
->wwv
.syneng
)
1650 cp
->wwv
.syneng
= cp
->wwv
.amp
;
1651 if (cp
->wwvh
.amp
> cp
->wwvh
.syneng
)
1652 cp
->wwvh
.syneng
= cp
->wwvh
.amp
;
1653 if (up
->rphase
== 800 * MS
)
1654 up
->repoch
= up
->yepoch
;
1657 * Use the signal amplitude at epoch 15 ms as the noise floor.
1658 * This gives a guard time of +-15 ms from the beginning of the
1659 * second until the second pulse rises at 30 ms. There is a
1660 * compromise here; we want to delay the sample as long as
1661 * possible to give the radio time to change frequency and the
1662 * AGC to stabilize, but as early as possible if the second
1663 * epoch is not exact.
1665 if (up
->rphase
== 15 * MS
)
1666 sigmin
= sigzer
= sigone
= up
->irig
;
1669 * Latch the data signal at 200 ms. Keep this around until the
1670 * end of the second. Use the signal energy as the peak to
1671 * compute the SNR. Use the Q sample to adjust the 100-Hz
1672 * reference oscillator phase.
1674 if (up
->rphase
== 200 * MS
) {
1676 engmax
= sqrt(up
->irig
* up
->irig
+ up
->qrig
*
1678 up
->datpha
= up
->qrig
/ up
->avgint
;
1679 if (up
->datpha
>= 0) {
1681 if (up
->datapt
>= 80)
1692 * Latch the data signal at 500 ms. Keep this around until the
1693 * end of the second.
1695 else if (up
->rphase
== 500 * MS
)
1699 * At the end of the second crank the clock state machine and
1700 * adjust the codec gain. Note the epoch is buffered from the
1701 * center of the second in order to avoid jitter while the
1702 * seconds synch is diddling the epoch. Then, determine the true
1703 * offset and update the median filter in the driver interface.
1705 * Use the energy at the end of the second as the noise to
1706 * compute the SNR for the data pulse. This gives a better
1707 * measurement than the beginning of the second, especially when
1708 * returning from the probe channel. This gives a guard time of
1709 * 30 ms from the decay of the longest pulse to the rise of the
1713 if (up
->mphase
% SECOND
== up
->repoch
) {
1714 up
->status
&= ~(DGATE
| BGATE
);
1715 engmin
= sqrt(up
->irig
* up
->irig
+ up
->qrig
*
1717 up
->datsig
= engmax
;
1718 up
->datsnr
= wwv_snr(engmax
, engmin
);
1721 * If the amplitude or SNR is below threshold, average a
1722 * 0 in the the integrators; otherwise, average the
1723 * bipolar signal. This is done to avoid noise polution.
1725 if (engmax
< DTHR
|| up
->datsnr
< DSNR
) {
1726 up
->status
|= DGATE
;
1731 wwv_rsec(peer
, sigone
- sigzer
);
1733 if (up
->status
& (DGATE
| BGATE
))
1735 if (up
->errcnt
> MAXERR
)
1736 up
->alarm
|= LOWERR
;
1738 cp
= &up
->mitig
[up
->achan
];
1740 cp
->wwvh
.syneng
= 0;
1747 * wwv_rsec - process receiver second
1749 * This routine is called at the end of each receiver second to
1750 * implement the per-second state machine. The machine assembles BCD
1751 * digit bits, decodes miscellaneous bits and dances the leap seconds.
1753 * Normally, the minute has 60 seconds numbered 0-59. If the leap
1754 * warning bit is set, the last minute (1439) of 30 June (day 181 or 182
1755 * for leap years) or 31 December (day 365 or 366 for leap years) is
1756 * augmented by one second numbered 60. This is accomplished by
1757 * extending the minute interval by one second and teaching the state
1758 * machine to ignore it.
1762 struct peer
*peer
, /* peer structure pointer */
1766 static int iniflg
; /* initialization flag */
1767 static double bcddld
[4]; /* BCD data bits */
1768 static double bitvec
[61]; /* bit integrator for misc bits */
1769 struct refclockproc
*pp
;
1772 struct sync
*sp
, *rp
;
1773 char tbuf
[80]; /* monitor buffer */
1777 up
= (struct wwvunit
*)pp
->unitptr
;
1780 memset((char *)bitvec
, 0, sizeof(bitvec
));
1784 * The bit represents the probability of a hit on zero (negative
1785 * values), a hit on one (positive values) or a miss (zero
1786 * value). The likelihood vector is the exponential average of
1787 * these probabilities. Only the bits of this vector
1788 * corresponding to the miscellaneous bits of the timecode are
1789 * used, but it's easier to do them all. After that, crank the
1790 * seconds state machine.
1794 bitvec
[nsec
] += (bit
- bitvec
[nsec
]) / TCONST
;
1795 sw
= progx
[nsec
].sw
;
1796 arg
= progx
[nsec
].arg
;
1799 * The minute state machine. Fly off to a particular section as
1800 * directed by the transition matrix and second number.
1805 * Ignore this second.
1807 case IDLE
: /* 9, 45-49 */
1811 * Probe channel stuff
1813 * The WWV/H format contains data pulses in second 59 (position
1814 * identifier) and second 1, but not in second 0. The minute
1815 * sync pulse is contained in second 0. At the end of second 58
1816 * QSY to the probe channel, which rotates in turn over all
1817 * WWV/H frequencies. At the end of second 0 measure the minute
1818 * sync pulse. At the end of second 1 measure the data pulse and
1819 * QSY back to the data channel. Note that the actions commented
1820 * here happen at the end of the second numbered as shown.
1822 * At the end of second 0 save the minute sync amplitude latched
1823 * at 800 ms as the signal later used to calculate the SNR.
1826 cp
= &up
->mitig
[up
->achan
];
1827 cp
->wwv
.synmax
= cp
->wwv
.syneng
;
1828 cp
->wwvh
.synmax
= cp
->wwvh
.syneng
;
1832 * At the end of second 1 use the minute sync amplitude latched
1833 * at 800 ms as the noise to calculate the SNR. If the minute
1834 * sync pulse and SNR are above thresholds and the data pulse
1835 * amplitude and SNR are above thresolds, shift a 1 into the
1836 * station reachability register; otherwise, shift a 0. The
1837 * number of 1 bits in the last six intervals is a component of
1838 * the channel metric computed by the wwv_metric() routine.
1839 * Finally, QSY back to the data channel.
1842 cp
= &up
->mitig
[up
->achan
];
1848 sp
->synsnr
= wwv_snr(sp
->synmax
, sp
->amp
);
1850 if (sp
->reach
& (1 << AMAX
))
1852 if (sp
->synmax
>= QTHR
&& sp
->synsnr
>= QSNR
&&
1853 !(up
->status
& (DGATE
| BGATE
))) {
1857 sp
->metric
= wwv_metric(sp
);
1863 rp
->synsnr
= wwv_snr(rp
->synmax
, rp
->amp
);
1865 if (rp
->reach
& (1 << AMAX
))
1867 if (rp
->synmax
>= QTHR
&& rp
->synsnr
>= QSNR
&&
1868 !(up
->status
& (DGATE
| BGATE
))) {
1872 rp
->metric
= wwv_metric(rp
);
1873 if (pp
->sloppyclockflag
& CLK_FLAG4
) {
1875 "wwv5 %04x %3d %4d %.0f/%.1f %.0f/%.1f %s %04x %.0f %.0f/%.1f %s %04x %.0f %.0f/%.1f",
1876 up
->status
, up
->gain
, up
->yepoch
,
1877 up
->epomax
, up
->eposnr
, up
->datsig
,
1879 sp
->refid
, sp
->reach
& 0xffff,
1880 sp
->metric
, sp
->synmax
, sp
->synsnr
,
1881 rp
->refid
, rp
->reach
& 0xffff,
1882 rp
->metric
, rp
->synmax
, rp
->synsnr
);
1883 record_clock_stats(&peer
->srcadr
, tbuf
);
1886 printf("%s\n", tbuf
);
1889 up
->errcnt
= up
->digcnt
= up
->alarm
= 0;
1892 * We now begin the minute scan. If not yet synchronized
1893 * to a station, restart if the units digit has not been
1894 * found within the DATA timeout (15 m) or if not
1895 * synchronized within the SYNCH timeout (40 m). After
1896 * synchronizing to a station, restart if no stations
1897 * are found within the PANIC timeout (2 days).
1899 if (up
->status
& INSYNC
) {
1900 if (up
->watch
> PANIC
) {
1905 if (!(up
->status
& DSYNC
)) {
1906 if (up
->watch
> DATA
) {
1911 if (up
->watch
> SYNCH
) {
1918 if (up
->fd_icom
> 0)
1919 wwv_qsy(peer
, up
->dchan
);
1924 * Save the bit probability in the BCD data vector at the index
1925 * given by the argument. Bits not used in the digit are forced
1928 case COEF1
: /* 4-7 */
1932 case COEF
: /* 10-13, 15-17, 20-23, 25-26,
1933 30-33, 35-38, 40-41, 51-54 */
1934 if (up
->status
& DSYNC
)
1940 case COEF2
: /* 18, 27-28, 42-43 */
1945 * Correlate coefficient vector with each valid digit vector and
1946 * save in decoding matrix. We step through the decoding matrix
1947 * digits correlating each with the coefficients and saving the
1948 * greatest and the next lower for later SNR calculation.
1950 case DECIM2
: /* 29 */
1951 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd2
);
1954 case DECIM3
: /* 44 */
1955 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd3
);
1958 case DECIM6
: /* 19 */
1959 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd6
);
1962 case DECIM9
: /* 8, 14, 24, 34, 39 */
1963 wwv_corr4(peer
, &up
->decvec
[arg
], bcddld
, bcd9
);
1967 * Miscellaneous bits. If above the positive threshold, declare
1968 * 1; if below the negative threshold, declare 0; otherwise
1969 * raise the BGATE bit. The design is intended to avoid
1970 * integrating noise under low SNR conditions.
1972 case MSC20
: /* 55 */
1973 wwv_corr4(peer
, &up
->decvec
[YR
+ 1], bcddld
, bcd9
);
1976 case MSCBIT
: /* 2-3, 50, 56-57 */
1977 if (bitvec
[nsec
] > BTHR
) {
1978 if (!(up
->misc
& arg
))
1979 up
->alarm
|= CMPERR
;
1981 } else if (bitvec
[nsec
] < -BTHR
) {
1983 up
->alarm
|= CMPERR
;
1986 up
->status
|= BGATE
;
1991 * Save the data channel gain, then QSY to the probe channel and
1992 * dim the seconds comb filters. The newchan() routine will
1993 * light them back up.
1995 case MSC21
: /* 58 */
1996 if (bitvec
[nsec
] > BTHR
) {
1997 if (!(up
->misc
& arg
))
1998 up
->alarm
|= CMPERR
;
2000 } else if (bitvec
[nsec
] < -BTHR
) {
2002 up
->alarm
|= CMPERR
;
2005 up
->status
|= BGATE
;
2007 up
->status
&= ~(SELV
| SELH
);
2009 if (up
->fd_icom
> 0) {
2010 up
->schan
= (up
->schan
+ 1) % NCHAN
;
2011 wwv_qsy(peer
, up
->schan
);
2013 up
->mitig
[up
->achan
].gain
= up
->gain
;
2016 up
->mitig
[up
->achan
].gain
= up
->gain
;
2023 * During second 59 the receiver and codec AGC are settling
2024 * down, so the data pulse is unusable as quality metric. If
2025 * LEPSEC is set on the last minute of 30 June or 31 December,
2026 * the transmitter and receiver insert an extra second (60) in
2027 * the timescale and the minute sync repeats the second. Once
2028 * leaps occurred at intervals of about 18 months, but the last
2029 * leap before the most recent leap in 1995 was in 1998.
2032 if (up
->status
& LEPSEC
)
2038 up
->status
&= ~LEPSEC
;
2044 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
&
2047 "wwv3 %2d %04x %3d %4d %5.0f %5.1f %5.0f %5.1f %5.0f",
2048 nsec
, up
->status
, up
->gain
, up
->yepoch
, up
->epomax
,
2049 up
->eposnr
, up
->datsig
, up
->datsnr
, bit
);
2050 record_clock_stats(&peer
->srcadr
, tbuf
);
2053 printf("%s\n", tbuf
);
2056 pp
->disp
+= AUDIO_PHI
;
2060 * The radio clock is set if the alarm bits are all zero. After that,
2061 * the time is considered valid if the second sync bit is lit. It should
2062 * not be a surprise, especially if the radio is not tunable, that
2063 * sometimes no stations are above the noise and the integrators
2064 * discharge below the thresholds. We assume that, after a day of signal
2065 * loss, the minute sync epoch will be in the same second. This requires
2066 * the codec frequency be accurate within 6 PPM. Practical experience
2067 * shows the frequency typically within 0.1 PPM, so after a day of
2068 * signal loss, the time should be within 8.6 ms..
2072 struct peer
*peer
/* peer unit pointer */
2075 struct refclockproc
*pp
;
2077 l_fp offset
; /* offset in NTP seconds */
2080 up
= (struct wwvunit
*)pp
->unitptr
;
2081 if (!(up
->status
& SSYNC
))
2082 up
->alarm
|= SYNERR
;
2084 up
->alarm
|= NINERR
;
2086 up
->status
|= INSYNC
;
2087 if (up
->status
& INSYNC
&& up
->status
& SSYNC
) {
2088 if (up
->misc
& SECWAR
)
2089 pp
->leap
= LEAP_ADDSECOND
;
2091 pp
->leap
= LEAP_NOWARNING
;
2092 pp
->second
= up
->rsec
;
2093 pp
->minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+
2095 pp
->hour
= up
->decvec
[HR
].digit
+ up
->decvec
[HR
+
2097 pp
->day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+
2098 1].digit
* 10 + up
->decvec
[DA
+ 2].digit
* 100;
2099 pp
->year
= up
->decvec
[YR
].digit
+ up
->decvec
[YR
+
2103 if (!clocktime(pp
->day
, pp
->hour
, pp
->minute
,
2104 pp
->second
, GMT
, up
->timestamp
.l_ui
,
2105 &pp
->yearstart
, &offset
.l_ui
)) {
2106 up
->errflg
= CEVNT_BADTIME
;
2110 pp
->lastref
= up
->timestamp
;
2111 refclock_process_offset(pp
, offset
,
2112 up
->timestamp
, PDELAY
);
2113 refclock_receive(peer
);
2116 pp
->lencode
= timecode(up
, pp
->a_lastcode
);
2117 record_clock_stats(&peer
->srcadr
, pp
->a_lastcode
);
2120 printf("wwv: timecode %d %s\n", pp
->lencode
,
2127 * wwv_corr4 - determine maximum likelihood digit
2129 * This routine correlates the received digit vector with the BCD
2130 * coefficient vectors corresponding to all valid digits at the given
2131 * position in the decoding matrix. The maximum value corresponds to the
2132 * maximum likelihood digit, while the ratio of this value to the next
2133 * lower value determines the likelihood function. Note that, if the
2134 * digit is invalid, the likelihood vector is averaged toward a miss.
2138 struct peer
*peer
, /* peer unit pointer */
2139 struct decvec
*vp
, /* decoding table pointer */
2140 double data
[], /* received data vector */
2141 double tab
[][4] /* correlation vector array */
2144 struct refclockproc
*pp
;
2146 double topmax
, nxtmax
; /* metrics */
2147 double acc
; /* accumulator */
2148 char tbuf
[80]; /* monitor buffer */
2149 int mldigit
; /* max likelihood digit */
2153 up
= (struct wwvunit
*)pp
->unitptr
;
2156 * Correlate digit vector with each BCD coefficient vector. If
2157 * any BCD digit bit is bad, consider all bits a miss. Until the
2158 * minute units digit has been resolved, don't to anything else.
2159 * Note the SNR is calculated as the ratio of the largest
2160 * likelihood value to the next largest likelihood value.
2163 topmax
= nxtmax
= -MAXAMP
;
2164 for (i
= 0; tab
[i
][0] != 0; i
++) {
2166 for (j
= 0; j
< 4; j
++)
2167 acc
+= data
[j
] * tab
[i
][j
];
2168 acc
= (vp
->like
[i
] += (acc
- vp
->like
[i
]) / TCONST
);
2173 } else if (acc
> nxtmax
) {
2177 vp
->digprb
= topmax
;
2178 vp
->digsnr
= wwv_snr(topmax
, nxtmax
);
2181 * The current maximum likelihood digit is compared to the last
2182 * maximum likelihood digit. If different, the compare counter
2183 * and maximum likelihood digit are reset. When the compare
2184 * counter reaches the BCMP threshold (3), the digit is assumed
2185 * correct. When the compare counter of all nine digits have
2186 * reached threshold, the clock is assumed correct.
2188 * Note that the clock display digit is set before the compare
2189 * counter has reached threshold; however, the clock display is
2190 * not considered correct until all nine clock digits have
2191 * reached threshold. This is intended as eye candy, but avoids
2192 * mistakes when the signal is low and the SNR is very marginal.
2193 * once correctly set, the maximum likelihood digit is ignored
2194 * on the assumption the clock will always be correct unless for
2195 * some reason it drifts to a different second.
2197 vp
->mldigit
= mldigit
;
2198 if (vp
->digprb
< BTHR
|| vp
->digsnr
< BSNR
) {
2200 up
->status
|= BGATE
;
2202 up
->status
|= DSYNC
;
2203 if (vp
->digit
!= mldigit
) {
2205 up
->alarm
|= CMPERR
;
2206 if (!(up
->status
& INSYNC
))
2207 vp
->digit
= mldigit
;
2209 if (vp
->count
< BCMP
)
2215 if ((pp
->sloppyclockflag
& CLK_FLAG4
) && !(up
->status
&
2218 "wwv4 %2d %04x %3d %4d %5.0f %2d %d %d %d %5.0f %5.1f",
2219 up
->rsec
- 1, up
->status
, up
->gain
, up
->yepoch
,
2220 up
->epomax
, vp
->radix
, vp
->digit
, vp
->mldigit
,
2221 vp
->count
, vp
->digprb
, vp
->digsnr
);
2222 record_clock_stats(&peer
->srcadr
, tbuf
);
2225 printf("%s\n", tbuf
);
2232 * wwv_tsec - transmitter minute processing
2234 * This routine is called at the end of the transmitter minute. It
2235 * implements a state machine that advances the logical clock subject to
2236 * the funny rules that govern the conventional clock and calendar.
2240 struct peer
*peer
/* driver structure pointer */
2243 struct refclockproc
*pp
;
2245 int minute
, day
, isleap
;
2249 up
= (struct wwvunit
*)pp
->unitptr
;
2252 * Advance minute unit of the day. Don't propagate carries until
2253 * the unit minute digit has been found.
2255 temp
= carry(&up
->decvec
[MN
]); /* minute units */
2256 if (!(up
->status
& DSYNC
))
2260 * Propagate carries through the day.
2262 if (temp
== 0) /* carry minutes */
2263 temp
= carry(&up
->decvec
[MN
+ 1]);
2264 if (temp
== 0) /* carry hours */
2265 temp
= carry(&up
->decvec
[HR
]);
2267 temp
= carry(&up
->decvec
[HR
+ 1]);
2270 * Decode the current minute and day. Set leap day if the
2271 * timecode leap bit is set on 30 June or 31 December. Set leap
2272 * minute if the last minute on leap day, but only if the clock
2273 * is syncrhronized. This code fails in 2400 AD.
2275 minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+ 1].digit
*
2276 10 + up
->decvec
[HR
].digit
* 60 + up
->decvec
[HR
+
2278 day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+ 1].digit
* 10 +
2279 up
->decvec
[DA
+ 2].digit
* 100;
2282 * Set the leap bit on the last minute of the leap day.
2284 isleap
= up
->decvec
[YR
].digit
& 0x3;
2285 if (up
->misc
& SECWAR
&& up
->status
& INSYNC
) {
2286 if ((day
== (isleap
? 182 : 183) || day
== (isleap
?
2287 365 : 366)) && minute
== 1439)
2288 up
->status
|= LEPSEC
;
2292 * Roll the day if this the first minute and propagate carries
2299 while (carry(&up
->decvec
[HR
]) != 0); /* advance to minute 0 */
2300 while (carry(&up
->decvec
[HR
+ 1]) != 0);
2302 temp
= carry(&up
->decvec
[DA
]); /* carry days */
2304 temp
= carry(&up
->decvec
[DA
+ 1]);
2306 temp
= carry(&up
->decvec
[DA
+ 2]);
2309 * Roll the year if this the first day and propagate carries
2310 * through the century.
2312 if (day
!= (isleap
? 365 : 366))
2316 while (carry(&up
->decvec
[DA
]) != 1); /* advance to day 1 */
2317 while (carry(&up
->decvec
[DA
+ 1]) != 0);
2318 while (carry(&up
->decvec
[DA
+ 2]) != 0);
2319 temp
= carry(&up
->decvec
[YR
]); /* carry years */
2321 carry(&up
->decvec
[YR
+ 1]);
2326 * carry - process digit
2328 * This routine rotates a likelihood vector one position and increments
2329 * the clock digit modulo the radix. It returns the new clock digit or
2330 * zero if a carry occurred. Once synchronized, the clock digit will
2331 * match the maximum likelihood digit corresponding to that position.
2335 struct decvec
*dp
/* decoding table pointer */
2342 if (dp
->digit
== dp
->radix
)
2344 temp
= dp
->like
[dp
->radix
- 1];
2345 for (j
= dp
->radix
- 1; j
> 0; j
--)
2346 dp
->like
[j
] = dp
->like
[j
- 1];
2353 * wwv_snr - compute SNR or likelihood function
2357 double signal
, /* signal */
2358 double noise
/* noise */
2364 * This is a little tricky. Due to the way things are measured,
2365 * either or both the signal or noise amplitude can be negative
2366 * or zero. The intent is that, if the signal is negative or
2367 * zero, the SNR must always be zero. This can happen with the
2368 * subcarrier SNR before the phase has been aligned. On the
2369 * other hand, in the likelihood function the "noise" is the
2370 * next maximum down from the peak and this could be negative.
2371 * However, in this case the SNR is truly stupendous, so we
2372 * simply cap at MAXSNR dB (40).
2376 } else if (noise
<= 0) {
2379 rval
= 20. * log10(signal
/ noise
);
2388 * wwv_newchan - change to new data channel
2390 * The radio actually appears to have ten channels, one channel for each
2391 * of five frequencies and each of two stations (WWV and WWVH), although
2392 * if not tunable only the DCHAN channel appears live. While the radio
2393 * is tuned to the working data channel frequency and station for most
2394 * of the minute, during seconds 59, 0 and 1 the radio is tuned to a
2395 * probe frequency in order to search for minute sync pulse and data
2396 * subcarrier from other transmitters.
2398 * The search for WWV and WWVH operates simultaneously, with WWV minute
2399 * sync pulse at 1000 Hz and WWVH at 1200 Hz. The probe frequency
2400 * rotates each minute over 2.5, 5, 10, 15 and 20 MHz in order and yes,
2401 * we all know WWVH is dark on 20 MHz, but few remember when WWV was lit
2404 * This routine selects the best channel using a metric computed from
2405 * the reachability register and minute pulse amplitude. Normally, the
2406 * award goes to the the channel with the highest metric; but, in case
2407 * of ties, the award goes to the channel with the highest minute sync
2408 * pulse amplitude and then to the highest frequency.
2410 * The routine performs an important squelch function to keep dirty data
2411 * from polluting the integrators. In order to consider a station valid,
2412 * the metric must be at least MTHR (13); otherwise, the station select
2413 * bits are cleared so the second sync is disabled and the data bit
2414 * integrators averaged to a miss.
2418 struct peer
*peer
/* peer structure pointer */
2421 struct refclockproc
*pp
;
2423 struct sync
*sp
, *rp
;
2428 up
= (struct wwvunit
*)pp
->unitptr
;
2431 * Search all five station pairs looking for the channel with
2432 * maximum metric. If no station is found above thresholds, tune
2433 * to WWV on 15 MHz, set the reference ID to NONE and wait for
2439 for (i
= 0; i
< NCHAN
; i
++) {
2440 rp
= &up
->mitig
[i
].wwvh
;
2442 if (dtemp
>= rank
) {
2447 rp
= &up
->mitig
[i
].wwv
;
2449 if (dtemp
>= rank
) {
2457 * If the strongest signal is less than the MTHR threshold (13),
2458 * we are beneath the waves, so squelch the second sync. If the
2459 * strongest signal is greater than the threshold, tune to that
2460 * frequency and transmitter QTH.
2463 up
->dchan
= (up
->dchan
+ 1) % NCHAN
;
2464 up
->status
&= ~(SELV
| SELH
);
2468 up
->status
|= SELV
| SELH
;
2470 memcpy(&pp
->refid
, sp
->refid
, 4);
2471 peer
->refid
= pp
->refid
;
2477 * wwv_newgame - reset and start over
2479 * There are four conditions resulting in a new game:
2481 * 1 During initial acquisition (MSYNC dark) going 6 minutes (ACQSN)
2482 * without reliably finding the minute pulse (MSYNC lit).
2484 * 2 After finding the minute pulse (MSYNC lit), going 15 minutes
2485 * (DATA) without finding the unit seconds digit.
2487 * 3 After finding good data (DATA lit), going more than 40 minutes
2488 * (SYNCH) without finding station sync (INSYNC lit).
2490 * 4 After finding station sync (INSYNC lit), going more than 2 days
2491 * (PANIC) without finding any station.
2495 struct peer
*peer
/* peer structure pointer */
2498 struct refclockproc
*pp
;
2504 up
= (struct wwvunit
*)pp
->unitptr
;
2507 * Initialize strategic values. Note we set the leap bits
2508 * NOTINSYNC and the refid "NONE".
2510 peer
->leap
= LEAP_NOTINSYNC
;
2511 up
->watch
= up
->status
= up
->alarm
= 0;
2512 up
->avgint
= MINAVG
;
2514 up
->gain
= MAXGAIN
/ 2;
2517 * Initialize the station processes for audio gain, select bit,
2518 * station/frequency identifier and reference identifier. Start
2519 * probing at the next channel after the data channel.
2521 memset(up
->mitig
, 0, sizeof(up
->mitig
));
2522 for (i
= 0; i
< NCHAN
; i
++) {
2524 cp
->gain
= up
->gain
;
2525 cp
->wwv
.select
= SELV
;
2526 sprintf(cp
->wwv
.refid
, "WV%.0f", floor(qsy
[i
]));
2527 cp
->wwvh
.select
= SELH
;
2528 sprintf(cp
->wwvh
.refid
, "WH%.0f", floor(qsy
[i
]));
2530 up
->dchan
= (DCHAN
+ NCHAN
- 1) % NCHAN
;;
2532 up
->achan
= up
->schan
= up
->dchan
;
2534 if (up
->fd_icom
> 0)
2535 wwv_qsy(peer
, up
->dchan
);
2540 * wwv_metric - compute station metric
2542 * The most significant bits represent the number of ones in the
2543 * station reachability register. The least significant bits represent
2544 * the minute sync pulse amplitude. The combined value is scaled 0-100.
2548 struct sync
*sp
/* station pointer */
2553 dtemp
= sp
->count
* MAXAMP
;
2554 if (sp
->synmax
< MAXAMP
)
2555 dtemp
+= sp
->synmax
;
2557 dtemp
+= MAXAMP
- 1;
2558 dtemp
/= (AMAX
+ 1) * MAXAMP
;
2559 return (dtemp
* 100.);
2565 * wwv_qsy - Tune ICOM receiver
2567 * This routine saves the AGC for the current channel, switches to a new
2568 * channel and restores the AGC for that channel. If a tunable receiver
2569 * is not available, just fake it.
2573 struct peer
*peer
, /* peer structure pointer */
2574 int chan
/* channel */
2578 struct refclockproc
*pp
;
2582 up
= (struct wwvunit
*)pp
->unitptr
;
2583 if (up
->fd_icom
> 0) {
2584 up
->mitig
[up
->achan
].gain
= up
->gain
;
2585 rval
= icom_freq(up
->fd_icom
, peer
->ttl
& 0x7f,
2588 up
->gain
= up
->mitig
[up
->achan
].gain
;
2596 * timecode - assemble timecode string and length
2598 * Prettytime format - similar to Spectracom
2600 * sq yy ddd hh:mm:ss ld dut lset agc iden sig errs freq avgt
2602 * s sync indicator ('?' or ' ')
2603 * q error bits (hex 0-F)
2604 * yyyy year of century
2608 * ss second of minute)
2609 * l leap second warning (' ' or 'L')
2610 * d DST state ('S', 'D', 'I', or 'O')
2611 * dut DUT sign and magnitude (0.1 s)
2612 * lset minutes since last clock update
2613 * agc audio gain (0-255)
2614 * iden reference identifier (station and frequency)
2615 * sig signal quality (0-100)
2616 * errs bit errors in last minute
2617 * freq frequency offset (PPM)
2618 * avgt averaging time (s)
2622 struct wwvunit
*up
, /* driver structure pointer */
2623 char *ptr
/* target string */
2627 int year
, day
, hour
, minute
, second
, dut
;
2628 char synchar
, leapchar
, dst
;
2633 * Common fixed-format fields
2635 synchar
= (up
->status
& INSYNC
) ? ' ' : '?';
2636 year
= up
->decvec
[YR
].digit
+ up
->decvec
[YR
+ 1].digit
* 10 +
2638 day
= up
->decvec
[DA
].digit
+ up
->decvec
[DA
+ 1].digit
* 10 +
2639 up
->decvec
[DA
+ 2].digit
* 100;
2640 hour
= up
->decvec
[HR
].digit
+ up
->decvec
[HR
+ 1].digit
* 10;
2641 minute
= up
->decvec
[MN
].digit
+ up
->decvec
[MN
+ 1].digit
* 10;
2643 leapchar
= (up
->misc
& SECWAR
) ? 'L' : ' ';
2644 dst
= dstcod
[(up
->misc
>> 4) & 0x3];
2645 dut
= up
->misc
& 0x7;
2646 if (!(up
->misc
& DUTS
))
2648 sprintf(ptr
, "%c%1X", synchar
, up
->alarm
);
2649 sprintf(cptr
, " %4d %03d %02d:%02d:%02d %c%c %+d",
2650 year
, day
, hour
, minute
, second
, leapchar
, dst
, dut
);
2654 * Specific variable-format fields
2657 sprintf(cptr
, " %d %d %s %.0f %d %.1f %d", up
->watch
,
2658 up
->mitig
[up
->dchan
].gain
, sp
->refid
, sp
->metric
,
2659 up
->errcnt
, up
->freq
/ SECOND
* 1e6
, up
->avgint
);
2661 return (strlen(ptr
));
2666 * wwv_gain - adjust codec gain
2668 * This routine is called at the end of each second. During the second
2669 * the number of signal clips above the MAXAMP threshold (6000). If
2670 * there are no clips, the gain is bumped up; if there are more than
2671 * MAXCLP clips (100), it is bumped down. The decoder is relatively
2672 * insensitive to amplitude, so this crudity works just peachy. The
2673 * input port is set and the error flag is cleared, mostly to be ornery.
2677 struct peer
*peer
/* peer structure pointer */
2680 struct refclockproc
*pp
;
2684 up
= (struct wwvunit
*)pp
->unitptr
;
2687 * Apparently, the codec uses only the high order bits of the
2688 * gain control field. Thus, it may take awhile for changes to
2689 * wiggle the hardware bits.
2691 if (up
->clipcnt
== 0) {
2693 if (up
->gain
> MAXGAIN
)
2695 } else if (up
->clipcnt
> MAXCLP
) {
2700 audio_gain(up
->gain
, up
->mongain
, up
->port
);
2710 int refclock_wwv_bs
;
2711 #endif /* REFCLOCK */