4 * - AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
5 * - One-Key CBC MAC (OMAC1, i.e., CMAC) hash with AES-128
6 * - AES-128 CTR mode encryption
7 * - AES-128 EAX mode encryption/decryption
10 * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * Alternatively, this software may be distributed under the terms of BSD
19 * See README and COPYING for more details.
28 #ifndef CONFIG_NO_AES_WRAP
31 * aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
32 * @kek: 16-octet Key encryption key (KEK)
33 * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
35 * @plain: Plaintext key to be wrapped, n * 64 bits
36 * @cipher: Wrapped key, (n + 1) * 64 bits
37 * Returns: 0 on success, -1 on failure
39 int aes_wrap(const u8
*kek
, int n
, const u8
*plain
, u8
*cipher
)
48 /* 1) Initialize variables. */
49 os_memset(a
, 0xa6, 8);
50 os_memcpy(r
, plain
, 8 * n
);
52 ctx
= aes_encrypt_init(kek
, 16);
56 /* 2) Calculate intermediate values.
59 * B = AES(K, A | R[i])
60 * A = MSB(64, B) ^ t where t = (n*j)+i
63 for (j
= 0; j
<= 5; j
++) {
65 for (i
= 1; i
<= n
; i
++) {
67 os_memcpy(b
+ 8, r
, 8);
68 aes_encrypt(ctx
, b
, b
);
71 os_memcpy(r
, b
+ 8, 8);
75 aes_encrypt_deinit(ctx
);
77 /* 3) Output the results.
79 * These are already in @cipher due to the location of temporary
86 #endif /* CONFIG_NO_AES_WRAP */
90 * aes_unwrap - Unwrap key with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
91 * @kek: Key encryption key (KEK)
92 * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
94 * @cipher: Wrapped key to be unwrapped, (n + 1) * 64 bits
95 * @plain: Plaintext key, n * 64 bits
96 * Returns: 0 on success, -1 on failure (e.g., integrity verification failed)
98 int aes_unwrap(const u8
*kek
, int n
, const u8
*cipher
, u8
*plain
)
104 /* 1) Initialize variables. */
105 os_memcpy(a
, cipher
, 8);
107 os_memcpy(r
, cipher
+ 8, 8 * n
);
109 ctx
= aes_decrypt_init(kek
, 16);
113 /* 2) Compute intermediate values.
116 * B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
120 for (j
= 5; j
>= 0; j
--) {
121 r
= plain
+ (n
- 1) * 8;
122 for (i
= n
; i
>= 1; i
--) {
126 os_memcpy(b
+ 8, r
, 8);
127 aes_decrypt(ctx
, b
, b
);
129 os_memcpy(r
, b
+ 8, 8);
133 aes_decrypt_deinit(ctx
);
135 /* 3) Output results.
137 * These are already in @plain due to the location of temporary
138 * variables. Just verify that the IV matches with the expected value.
140 for (i
= 0; i
< 8; i
++) {
149 #define BLOCK_SIZE 16
151 #ifndef CONFIG_NO_AES_OMAC1
153 static void gf_mulx(u8
*pad
)
157 carry
= pad
[0] & 0x80;
158 for (i
= 0; i
< BLOCK_SIZE
- 1; i
++)
159 pad
[i
] = (pad
[i
] << 1) | (pad
[i
+ 1] >> 7);
160 pad
[BLOCK_SIZE
- 1] <<= 1;
162 pad
[BLOCK_SIZE
- 1] ^= 0x87;
167 * omac1_aes_128_vector - One-Key CBC MAC (OMAC1) hash with AES-128
168 * @key: 128-bit key for the hash operation
169 * @num_elem: Number of elements in the data vector
170 * @addr: Pointers to the data areas
171 * @len: Lengths of the data blocks
172 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
173 * Returns: 0 on success, -1 on failure
175 * This is a mode for using block cipher (AES in this case) for authentication.
176 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
179 int omac1_aes_128_vector(const u8
*key
, size_t num_elem
,
180 const u8
*addr
[], const size_t *len
, u8
*mac
)
183 u8 cbc
[BLOCK_SIZE
], pad
[BLOCK_SIZE
];
185 size_t i
, e
, left
, total_len
;
187 ctx
= aes_encrypt_init(key
, 16);
190 os_memset(cbc
, 0, BLOCK_SIZE
);
193 for (e
= 0; e
< num_elem
; e
++)
201 while (left
>= BLOCK_SIZE
) {
202 for (i
= 0; i
< BLOCK_SIZE
; i
++) {
210 if (left
> BLOCK_SIZE
)
211 aes_encrypt(ctx
, cbc
, cbc
);
215 os_memset(pad
, 0, BLOCK_SIZE
);
216 aes_encrypt(ctx
, pad
, pad
);
219 if (left
|| total_len
== 0) {
220 for (i
= 0; i
< left
; i
++) {
232 for (i
= 0; i
< BLOCK_SIZE
; i
++)
234 aes_encrypt(ctx
, pad
, mac
);
235 aes_encrypt_deinit(ctx
);
241 * omac1_aes_128 - One-Key CBC MAC (OMAC1) hash with AES-128 (aka AES-CMAC)
242 * @key: 128-bit key for the hash operation
243 * @data: Data buffer for which a MAC is determined
244 * @data_len: Length of data buffer in bytes
245 * @mac: Buffer for MAC (128 bits, i.e., 16 bytes)
246 * Returns: 0 on success, -1 on failure
248 * This is a mode for using block cipher (AES in this case) for authentication.
249 * OMAC1 was standardized with the name CMAC by NIST in a Special Publication
252 int omac1_aes_128(const u8
*key
, const u8
*data
, size_t data_len
, u8
*mac
)
254 return omac1_aes_128_vector(key
, 1, &data
, &data_len
, mac
);
257 #endif /* CONFIG_NO_AES_OMAC1 */
260 #ifndef CONFIG_NO_AES_ENCRYPT_BLOCK
262 * aes_128_encrypt_block - Perform one AES 128-bit block operation
264 * @in: Input data (16 bytes)
265 * @out: Output of the AES block operation (16 bytes)
266 * Returns: 0 on success, -1 on failure
268 int aes_128_encrypt_block(const u8
*key
, const u8
*in
, u8
*out
)
271 ctx
= aes_encrypt_init(key
, 16);
274 aes_encrypt(ctx
, in
, out
);
275 aes_encrypt_deinit(ctx
);
278 #endif /* CONFIG_NO_AES_ENCRYPT_BLOCK */
281 #ifndef CONFIG_NO_AES_CTR
284 * aes_128_ctr_encrypt - AES-128 CTR mode encryption
285 * @key: Key for encryption (16 bytes)
286 * @nonce: Nonce for counter mode (16 bytes)
287 * @data: Data to encrypt in-place
288 * @data_len: Length of data in bytes
289 * Returns: 0 on success, -1 on failure
291 int aes_128_ctr_encrypt(const u8
*key
, const u8
*nonce
,
292 u8
*data
, size_t data_len
)
295 size_t j
, len
, left
= data_len
;
298 u8 counter
[BLOCK_SIZE
], buf
[BLOCK_SIZE
];
300 ctx
= aes_encrypt_init(key
, 16);
303 os_memcpy(counter
, nonce
, BLOCK_SIZE
);
306 aes_encrypt(ctx
, counter
, buf
);
308 len
= (left
< BLOCK_SIZE
) ? left
: BLOCK_SIZE
;
309 for (j
= 0; j
< len
; j
++)
314 for (i
= BLOCK_SIZE
- 1; i
>= 0; i
--) {
320 aes_encrypt_deinit(ctx
);
324 #endif /* CONFIG_NO_AES_CTR */
327 #ifndef CONFIG_NO_AES_EAX
330 * aes_128_eax_encrypt - AES-128 EAX mode encryption
331 * @key: Key for encryption (16 bytes)
332 * @nonce: Nonce for counter mode
333 * @nonce_len: Nonce length in bytes
334 * @hdr: Header data to be authenticity protected
335 * @hdr_len: Length of the header data bytes
336 * @data: Data to encrypt in-place
337 * @data_len: Length of data in bytes
338 * @tag: 16-byte tag value
339 * Returns: 0 on success, -1 on failure
341 int aes_128_eax_encrypt(const u8
*key
, const u8
*nonce
, size_t nonce_len
,
342 const u8
*hdr
, size_t hdr_len
,
343 u8
*data
, size_t data_len
, u8
*tag
)
347 u8 nonce_mac
[BLOCK_SIZE
], hdr_mac
[BLOCK_SIZE
], data_mac
[BLOCK_SIZE
];
350 if (nonce_len
> data_len
)
354 if (hdr_len
> buf_len
)
358 buf
= os_malloc(buf_len
);
362 os_memset(buf
, 0, 15);
365 os_memcpy(buf
+ 16, nonce
, nonce_len
);
366 if (omac1_aes_128(key
, buf
, 16 + nonce_len
, nonce_mac
))
370 os_memcpy(buf
+ 16, hdr
, hdr_len
);
371 if (omac1_aes_128(key
, buf
, 16 + hdr_len
, hdr_mac
))
374 if (aes_128_ctr_encrypt(key
, nonce_mac
, data
, data_len
))
377 os_memcpy(buf
+ 16, data
, data_len
);
378 if (omac1_aes_128(key
, buf
, 16 + data_len
, data_mac
))
381 for (i
= 0; i
< BLOCK_SIZE
; i
++)
382 tag
[i
] = nonce_mac
[i
] ^ data_mac
[i
] ^ hdr_mac
[i
];
393 * aes_128_eax_decrypt - AES-128 EAX mode decryption
394 * @key: Key for decryption (16 bytes)
395 * @nonce: Nonce for counter mode
396 * @nonce_len: Nonce length in bytes
397 * @hdr: Header data to be authenticity protected
398 * @hdr_len: Length of the header data bytes
399 * @data: Data to encrypt in-place
400 * @data_len: Length of data in bytes
401 * @tag: 16-byte tag value
402 * Returns: 0 on success, -1 on failure, -2 if tag does not match
404 int aes_128_eax_decrypt(const u8
*key
, const u8
*nonce
, size_t nonce_len
,
405 const u8
*hdr
, size_t hdr_len
,
406 u8
*data
, size_t data_len
, const u8
*tag
)
410 u8 nonce_mac
[BLOCK_SIZE
], hdr_mac
[BLOCK_SIZE
], data_mac
[BLOCK_SIZE
];
413 if (nonce_len
> data_len
)
417 if (hdr_len
> buf_len
)
421 buf
= os_malloc(buf_len
);
425 os_memset(buf
, 0, 15);
428 os_memcpy(buf
+ 16, nonce
, nonce_len
);
429 if (omac1_aes_128(key
, buf
, 16 + nonce_len
, nonce_mac
)) {
435 os_memcpy(buf
+ 16, hdr
, hdr_len
);
436 if (omac1_aes_128(key
, buf
, 16 + hdr_len
, hdr_mac
)) {
442 os_memcpy(buf
+ 16, data
, data_len
);
443 if (omac1_aes_128(key
, buf
, 16 + data_len
, data_mac
)) {
450 for (i
= 0; i
< BLOCK_SIZE
; i
++) {
451 if (tag
[i
] != (nonce_mac
[i
] ^ data_mac
[i
] ^ hdr_mac
[i
]))
455 return aes_128_ctr_encrypt(key
, nonce_mac
, data
, data_len
);
458 #endif /* CONFIG_NO_AES_EAX */
461 #ifndef CONFIG_NO_AES_CBC
464 * aes_128_cbc_encrypt - AES-128 CBC encryption
465 * @key: Encryption key
466 * @iv: Encryption IV for CBC mode (16 bytes)
467 * @data: Data to encrypt in-place
468 * @data_len: Length of data in bytes (must be divisible by 16)
469 * Returns: 0 on success, -1 on failure
471 int aes_128_cbc_encrypt(const u8
*key
, const u8
*iv
, u8
*data
, size_t data_len
)
478 ctx
= aes_encrypt_init(key
, 16);
481 os_memcpy(cbc
, iv
, BLOCK_SIZE
);
483 blocks
= data_len
/ BLOCK_SIZE
;
484 for (i
= 0; i
< blocks
; i
++) {
485 for (j
= 0; j
< BLOCK_SIZE
; j
++)
487 aes_encrypt(ctx
, cbc
, cbc
);
488 os_memcpy(pos
, cbc
, BLOCK_SIZE
);
491 aes_encrypt_deinit(ctx
);
497 * aes_128_cbc_decrypt - AES-128 CBC decryption
498 * @key: Decryption key
499 * @iv: Decryption IV for CBC mode (16 bytes)
500 * @data: Data to decrypt in-place
501 * @data_len: Length of data in bytes (must be divisible by 16)
502 * Returns: 0 on success, -1 on failure
504 int aes_128_cbc_decrypt(const u8
*key
, const u8
*iv
, u8
*data
, size_t data_len
)
507 u8 cbc
[BLOCK_SIZE
], tmp
[BLOCK_SIZE
];
511 ctx
= aes_decrypt_init(key
, 16);
514 os_memcpy(cbc
, iv
, BLOCK_SIZE
);
516 blocks
= data_len
/ BLOCK_SIZE
;
517 for (i
= 0; i
< blocks
; i
++) {
518 os_memcpy(tmp
, pos
, BLOCK_SIZE
);
519 aes_decrypt(ctx
, pos
, pos
);
520 for (j
= 0; j
< BLOCK_SIZE
; j
++)
522 os_memcpy(cbc
, tmp
, BLOCK_SIZE
);
525 aes_decrypt_deinit(ctx
);
529 #endif /* CONFIG_NO_AES_CBC */