2 * Minimal code for RSA support from LibTomMath 0.41
4 * http://libtom.org/files/ltm-0.41.tar.bz2
5 * This library was released in public domain by Tom St Denis.
7 * The combination in this file may not use all of the optimized algorithms
8 * from LibTomMath and may be considerable slower than the LibTomMath with its
9 * default settings. The main purpose of having this version here is to make it
10 * easier to build bignum.c wrapper without having to install and build an
13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14 * libtommath.c file instead of using the external LibTomMath library.
21 #define BN_MP_INVMOD_C
22 #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23 * require BN_MP_EXPTMOD_FAST_C instead */
24 #define BN_S_MP_MUL_DIGS_C
25 #define BN_MP_INVMOD_SLOW_C
27 #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28 * would require other than mp_reduce */
32 /* Use faster div at the cost of about 1 kB */
35 /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36 #define BN_MP_EXPTMOD_FAST_C
37 #define BN_MP_MONTGOMERY_SETUP_C
38 #define BN_FAST_MP_MONTGOMERY_REDUCE_C
39 #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
42 /* Include faster sqr at the cost of about 0.5 kB in code */
43 #define BN_FAST_S_MP_SQR_C
47 #define BN_MP_DIV_SMALL
48 #define BN_MP_INIT_MULTI_C
49 #define BN_MP_CLEAR_MULTI_C
53 /* Current uses do not require support for negative exponent in exptmod, so we
54 * can save about 1.5 kB in leaving out invmod. */
55 #define LTM_NO_NEG_EXP
60 #define MIN(x,y) ((x)<(y)?(x):(y))
64 #define MAX(x,y) ((x)>(y)?(x):(y))
69 typedef unsigned long mp_digit
;
76 #define XMALLOC os_malloc
78 #define XREALLOC os_realloc
81 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
83 #define MP_LT -1 /* less than */
84 #define MP_EQ 0 /* equal to */
85 #define MP_GT 1 /* greater than */
87 #define MP_ZPOS 0 /* positive integer */
88 #define MP_NEG 1 /* negative */
90 #define MP_OKAY 0 /* ok result */
91 #define MP_MEM -2 /* out of mem */
92 #define MP_VAL -3 /* invalid input */
94 #define MP_YES 1 /* yes response */
95 #define MP_NO 0 /* no response */
99 /* define this to use lower memory usage routines (exptmods mostly) */
102 /* default precision */
105 #define MP_PREC 32 /* default digits of precision */
107 #define MP_PREC 8 /* default digits of precision */
111 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
112 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
114 /* the infamous mp_int structure */
116 int used
, alloc
, sign
;
121 /* ---> Basic Manipulations <--- */
122 #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
123 #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
124 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
127 /* prototypes for copied functions */
128 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
129 static int s_mp_exptmod(mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
);
130 static int s_mp_mul_digs (mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
);
131 static int s_mp_sqr(mp_int
* a
, mp_int
* b
);
132 static int s_mp_mul_high_digs(mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
);
134 static int fast_s_mp_mul_digs (mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
);
136 #ifdef BN_MP_INIT_MULTI_C
137 static int mp_init_multi(mp_int
*mp
, ...);
139 #ifdef BN_MP_CLEAR_MULTI_C
140 static void mp_clear_multi(mp_int
*mp
, ...);
142 static int mp_lshd(mp_int
* a
, int b
);
143 static void mp_set(mp_int
* a
, mp_digit b
);
144 static void mp_clamp(mp_int
* a
);
145 static void mp_exch(mp_int
* a
, mp_int
* b
);
146 static void mp_rshd(mp_int
* a
, int b
);
147 static void mp_zero(mp_int
* a
);
148 static int mp_mod_2d(mp_int
* a
, int b
, mp_int
* c
);
149 static int mp_div_2d(mp_int
* a
, int b
, mp_int
* c
, mp_int
* d
);
150 static int mp_init_copy(mp_int
* a
, mp_int
* b
);
151 static int mp_mul_2d(mp_int
* a
, int b
, mp_int
* c
);
152 #ifndef LTM_NO_NEG_EXP
153 static int mp_div_2(mp_int
* a
, mp_int
* b
);
154 static int mp_invmod(mp_int
* a
, mp_int
* b
, mp_int
* c
);
155 static int mp_invmod_slow(mp_int
* a
, mp_int
* b
, mp_int
* c
);
156 #endif /* LTM_NO_NEG_EXP */
157 static int mp_copy(mp_int
* a
, mp_int
* b
);
158 static int mp_count_bits(mp_int
* a
);
159 static int mp_div(mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
);
160 static int mp_mod(mp_int
* a
, mp_int
* b
, mp_int
* c
);
161 static int mp_grow(mp_int
* a
, int size
);
162 static int mp_cmp_mag(mp_int
* a
, mp_int
* b
);
164 static int mp_abs(mp_int
* a
, mp_int
* b
);
166 static int mp_sqr(mp_int
* a
, mp_int
* b
);
167 static int mp_reduce_2k_l(mp_int
*a
, mp_int
*n
, mp_int
*d
);
168 static int mp_reduce_2k_setup_l(mp_int
*a
, mp_int
*d
);
169 static int mp_2expt(mp_int
* a
, int b
);
170 static int mp_reduce_setup(mp_int
* a
, mp_int
* b
);
171 static int mp_reduce(mp_int
* x
, mp_int
* m
, mp_int
* mu
);
172 static int mp_init_size(mp_int
* a
, int size
);
173 #ifdef BN_MP_EXPTMOD_FAST_C
174 static int mp_exptmod_fast (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
);
175 #endif /* BN_MP_EXPTMOD_FAST_C */
176 #ifdef BN_FAST_S_MP_SQR_C
177 static int fast_s_mp_sqr (mp_int
* a
, mp_int
* b
);
178 #endif /* BN_FAST_S_MP_SQR_C */
180 static int mp_mul_d (mp_int
* a
, mp_digit b
, mp_int
* c
);
181 #endif /* BN_MP_MUL_D_C */
185 /* functions from bn_<func name>.c */
188 /* reverse an array, used for radix code */
189 static void bn_reverse (unsigned char *s
, int len
)
206 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
207 static int s_mp_add (mp_int
* a
, mp_int
* b
, mp_int
* c
)
210 int olduse
, res
, min
, max
;
212 /* find sizes, we let |a| <= |b| which means we have to sort
213 * them. "x" will point to the input with the most digits
215 if (a
->used
> b
->used
) {
226 if (c
->alloc
< max
+ 1) {
227 if ((res
= mp_grow (c
, max
+ 1)) != MP_OKAY
) {
232 /* get old used digit count and set new one */
237 register mp_digit u
, *tmpa
, *tmpb
, *tmpc
;
240 /* alias for digit pointers */
253 for (i
= 0; i
< min
; i
++) {
254 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
255 *tmpc
= *tmpa
++ + *tmpb
++ + u
;
257 /* U = carry bit of T[i] */
258 u
= *tmpc
>> ((mp_digit
)DIGIT_BIT
);
260 /* take away carry bit from T[i] */
264 /* now copy higher words if any, that is in A+B
265 * if A or B has more digits add those in
268 for (; i
< max
; i
++) {
269 /* T[i] = X[i] + U */
270 *tmpc
= x
->dp
[i
] + u
;
272 /* U = carry bit of T[i] */
273 u
= *tmpc
>> ((mp_digit
)DIGIT_BIT
);
275 /* take away carry bit from T[i] */
283 /* clear digits above oldused */
284 for (i
= c
->used
; i
< olduse
; i
++) {
294 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
295 static int s_mp_sub (mp_int
* a
, mp_int
* b
, mp_int
* c
)
297 int olduse
, res
, min
, max
;
304 if (c
->alloc
< max
) {
305 if ((res
= mp_grow (c
, max
)) != MP_OKAY
) {
313 register mp_digit u
, *tmpa
, *tmpb
, *tmpc
;
316 /* alias for digit pointers */
321 /* set carry to zero */
323 for (i
= 0; i
< min
; i
++) {
324 /* T[i] = A[i] - B[i] - U */
325 *tmpc
= *tmpa
++ - *tmpb
++ - u
;
327 /* U = carry bit of T[i]
328 * Note this saves performing an AND operation since
329 * if a carry does occur it will propagate all the way to the
330 * MSB. As a result a single shift is enough to get the carry
332 u
= *tmpc
>> ((mp_digit
)(CHAR_BIT
* sizeof (mp_digit
) - 1));
334 /* Clear carry from T[i] */
338 /* now copy higher words if any, e.g. if A has more digits than B */
339 for (; i
< max
; i
++) {
340 /* T[i] = A[i] - U */
343 /* U = carry bit of T[i] */
344 u
= *tmpc
>> ((mp_digit
)(CHAR_BIT
* sizeof (mp_digit
) - 1));
346 /* Clear carry from T[i] */
350 /* clear digits above used (since we may not have grown result above) */
351 for (i
= c
->used
; i
< olduse
; i
++) {
361 /* init a new mp_int */
362 static int mp_init (mp_int
* a
)
366 /* allocate memory required and clear it */
367 a
->dp
= OPT_CAST(mp_digit
) XMALLOC (sizeof (mp_digit
) * MP_PREC
);
372 /* set the digits to zero */
373 for (i
= 0; i
< MP_PREC
; i
++) {
377 /* set the used to zero, allocated digits to the default precision
378 * and sign to positive */
387 /* clear one (frees) */
388 static void mp_clear (mp_int
* a
)
392 /* only do anything if a hasn't been freed previously */
394 /* first zero the digits */
395 for (i
= 0; i
< a
->used
; i
++) {
402 /* reset members to make debugging easier */
404 a
->alloc
= a
->used
= 0;
410 /* high level addition (handles signs) */
411 static int mp_add (mp_int
* a
, mp_int
* b
, mp_int
* c
)
415 /* get sign of both inputs */
419 /* handle two cases, not four */
421 /* both positive or both negative */
422 /* add their magnitudes, copy the sign */
424 res
= s_mp_add (a
, b
, c
);
426 /* one positive, the other negative */
427 /* subtract the one with the greater magnitude from */
428 /* the one of the lesser magnitude. The result gets */
429 /* the sign of the one with the greater magnitude. */
430 if (mp_cmp_mag (a
, b
) == MP_LT
) {
432 res
= s_mp_sub (b
, a
, c
);
435 res
= s_mp_sub (a
, b
, c
);
442 /* high level subtraction (handles signs) */
443 static int mp_sub (mp_int
* a
, mp_int
* b
, mp_int
* c
)
451 /* subtract a negative from a positive, OR */
452 /* subtract a positive from a negative. */
453 /* In either case, ADD their magnitudes, */
454 /* and use the sign of the first number. */
456 res
= s_mp_add (a
, b
, c
);
458 /* subtract a positive from a positive, OR */
459 /* subtract a negative from a negative. */
460 /* First, take the difference between their */
461 /* magnitudes, then... */
462 if (mp_cmp_mag (a
, b
) != MP_LT
) {
463 /* Copy the sign from the first */
465 /* The first has a larger or equal magnitude */
466 res
= s_mp_sub (a
, b
, c
);
468 /* The result has the *opposite* sign from */
469 /* the first number. */
470 c
->sign
= (sa
== MP_ZPOS
) ? MP_NEG
: MP_ZPOS
;
471 /* The second has a larger magnitude */
472 res
= s_mp_sub (b
, a
, c
);
479 /* high level multiplication (handles sign) */
480 static int mp_mul (mp_int
* a
, mp_int
* b
, mp_int
* c
)
483 neg
= (a
->sign
== b
->sign
) ? MP_ZPOS
: MP_NEG
;
486 #ifdef BN_MP_TOOM_MUL_C
487 if (MIN (a
->used
, b
->used
) >= TOOM_MUL_CUTOFF
) {
488 res
= mp_toom_mul(a
, b
, c
);
491 #ifdef BN_MP_KARATSUBA_MUL_C
493 if (MIN (a
->used
, b
->used
) >= KARATSUBA_MUL_CUTOFF
) {
494 res
= mp_karatsuba_mul (a
, b
, c
);
498 /* can we use the fast multiplier?
500 * The fast multiplier can be used if the output will
501 * have less than MP_WARRAY digits and the number of
502 * digits won't affect carry propagation
504 #ifdef BN_FAST_S_MP_MUL_DIGS_C
505 int digs
= a
->used
+ b
->used
+ 1;
507 if ((digs
< MP_WARRAY
) &&
508 MIN(a
->used
, b
->used
) <=
509 (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
510 res
= fast_s_mp_mul_digs (a
, b
, c
, digs
);
513 #ifdef BN_S_MP_MUL_DIGS_C
514 res
= s_mp_mul (a
, b
, c
); /* uses s_mp_mul_digs */
516 #error mp_mul could fail
521 c
->sign
= (c
->used
> 0) ? neg
: MP_ZPOS
;
526 /* d = a * b (mod c) */
527 static int mp_mulmod (mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
)
532 if ((res
= mp_init (&t
)) != MP_OKAY
) {
536 if ((res
= mp_mul (a
, b
, &t
)) != MP_OKAY
) {
540 res
= mp_mod (&t
, c
, d
);
546 /* c = a mod b, 0 <= c < b */
547 static int mp_mod (mp_int
* a
, mp_int
* b
, mp_int
* c
)
552 if ((res
= mp_init (&t
)) != MP_OKAY
) {
556 if ((res
= mp_div (a
, b
, NULL
, &t
)) != MP_OKAY
) {
561 if (t
.sign
!= b
->sign
) {
562 res
= mp_add (b
, &t
, c
);
573 /* this is a shell function that calls either the normal or Montgomery
574 * exptmod functions. Originally the call to the montgomery code was
575 * embedded in the normal function but that wasted alot of stack space
576 * for nothing (since 99% of the time the Montgomery code would be called)
578 static int mp_exptmod (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
)
582 /* modulus P must be positive */
583 if (P
->sign
== MP_NEG
) {
587 /* if exponent X is negative we have to recurse */
588 if (X
->sign
== MP_NEG
) {
589 #ifdef LTM_NO_NEG_EXP
591 #else /* LTM_NO_NEG_EXP */
592 #ifdef BN_MP_INVMOD_C
596 /* first compute 1/G mod P */
597 if ((err
= mp_init(&tmpG
)) != MP_OKAY
) {
600 if ((err
= mp_invmod(G
, P
, &tmpG
)) != MP_OKAY
) {
606 if ((err
= mp_init(&tmpX
)) != MP_OKAY
) {
610 if ((err
= mp_abs(X
, &tmpX
)) != MP_OKAY
) {
611 mp_clear_multi(&tmpG
, &tmpX
, NULL
);
615 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
616 err
= mp_exptmod(&tmpG
, &tmpX
, P
, Y
);
617 mp_clear_multi(&tmpG
, &tmpX
, NULL
);
620 #error mp_exptmod would always fail
624 #endif /* LTM_NO_NEG_EXP */
627 /* modified diminished radix reduction */
628 #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
629 if (mp_reduce_is_2k_l(P
) == MP_YES
) {
630 return s_mp_exptmod(G
, X
, P
, Y
, 1);
634 #ifdef BN_MP_DR_IS_MODULUS_C
635 /* is it a DR modulus? */
636 dr
= mp_dr_is_modulus(P
);
642 #ifdef BN_MP_REDUCE_IS_2K_C
643 /* if not, is it a unrestricted DR modulus? */
645 dr
= mp_reduce_is_2k(P
) << 1;
649 /* if the modulus is odd or dr != 0 use the montgomery method */
650 #ifdef BN_MP_EXPTMOD_FAST_C
651 if (mp_isodd (P
) == 1 || dr
!= 0) {
652 return mp_exptmod_fast (G
, X
, P
, Y
, dr
);
655 #ifdef BN_S_MP_EXPTMOD_C
656 /* otherwise use the generic Barrett reduction technique */
657 return s_mp_exptmod (G
, X
, P
, Y
, 0);
659 #error mp_exptmod could fail
660 /* no exptmod for evens */
663 #ifdef BN_MP_EXPTMOD_FAST_C
669 /* compare two ints (signed)*/
670 static int mp_cmp (mp_int
* a
, mp_int
* b
)
672 /* compare based on sign */
673 if (a
->sign
!= b
->sign
) {
674 if (a
->sign
== MP_NEG
) {
682 if (a
->sign
== MP_NEG
) {
683 /* if negative compare opposite direction */
684 return mp_cmp_mag(b
, a
);
686 return mp_cmp_mag(a
, b
);
691 /* compare a digit */
692 static int mp_cmp_d(mp_int
* a
, mp_digit b
)
694 /* compare based on sign */
695 if (a
->sign
== MP_NEG
) {
699 /* compare based on magnitude */
704 /* compare the only digit of a to b */
707 } else if (a
->dp
[0] < b
) {
715 #ifndef LTM_NO_NEG_EXP
716 /* hac 14.61, pp608 */
717 static int mp_invmod (mp_int
* a
, mp_int
* b
, mp_int
* c
)
719 /* b cannot be negative */
720 if (b
->sign
== MP_NEG
|| mp_iszero(b
) == 1) {
724 #ifdef BN_FAST_MP_INVMOD_C
725 /* if the modulus is odd we can use a faster routine instead */
726 if (mp_isodd (b
) == 1) {
727 return fast_mp_invmod (a
, b
, c
);
731 #ifdef BN_MP_INVMOD_SLOW_C
732 return mp_invmod_slow(a
, b
, c
);
735 #ifndef BN_FAST_MP_INVMOD_C
736 #ifndef BN_MP_INVMOD_SLOW_C
737 #error mp_invmod would always fail
742 #endif /* LTM_NO_NEG_EXP */
745 /* get the size for an unsigned equivalent */
746 static int mp_unsigned_bin_size (mp_int
* a
)
748 int size
= mp_count_bits (a
);
749 return (size
/ 8 + ((size
& 7) != 0 ? 1 : 0));
753 #ifndef LTM_NO_NEG_EXP
754 /* hac 14.61, pp608 */
755 static int mp_invmod_slow (mp_int
* a
, mp_int
* b
, mp_int
* c
)
757 mp_int x
, y
, u
, v
, A
, B
, C
, D
;
760 /* b cannot be negative */
761 if (b
->sign
== MP_NEG
|| mp_iszero(b
) == 1) {
766 if ((res
= mp_init_multi(&x
, &y
, &u
, &v
,
767 &A
, &B
, &C
, &D
, NULL
)) != MP_OKAY
) {
772 if ((res
= mp_mod(a
, b
, &x
)) != MP_OKAY
) {
775 if ((res
= mp_copy (b
, &y
)) != MP_OKAY
) {
779 /* 2. [modified] if x,y are both even then return an error! */
780 if (mp_iseven (&x
) == 1 && mp_iseven (&y
) == 1) {
785 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
786 if ((res
= mp_copy (&x
, &u
)) != MP_OKAY
) {
789 if ((res
= mp_copy (&y
, &v
)) != MP_OKAY
) {
796 /* 4. while u is even do */
797 while (mp_iseven (&u
) == 1) {
799 if ((res
= mp_div_2 (&u
, &u
)) != MP_OKAY
) {
802 /* 4.2 if A or B is odd then */
803 if (mp_isodd (&A
) == 1 || mp_isodd (&B
) == 1) {
804 /* A = (A+y)/2, B = (B-x)/2 */
805 if ((res
= mp_add (&A
, &y
, &A
)) != MP_OKAY
) {
808 if ((res
= mp_sub (&B
, &x
, &B
)) != MP_OKAY
) {
812 /* A = A/2, B = B/2 */
813 if ((res
= mp_div_2 (&A
, &A
)) != MP_OKAY
) {
816 if ((res
= mp_div_2 (&B
, &B
)) != MP_OKAY
) {
821 /* 5. while v is even do */
822 while (mp_iseven (&v
) == 1) {
824 if ((res
= mp_div_2 (&v
, &v
)) != MP_OKAY
) {
827 /* 5.2 if C or D is odd then */
828 if (mp_isodd (&C
) == 1 || mp_isodd (&D
) == 1) {
829 /* C = (C+y)/2, D = (D-x)/2 */
830 if ((res
= mp_add (&C
, &y
, &C
)) != MP_OKAY
) {
833 if ((res
= mp_sub (&D
, &x
, &D
)) != MP_OKAY
) {
837 /* C = C/2, D = D/2 */
838 if ((res
= mp_div_2 (&C
, &C
)) != MP_OKAY
) {
841 if ((res
= mp_div_2 (&D
, &D
)) != MP_OKAY
) {
846 /* 6. if u >= v then */
847 if (mp_cmp (&u
, &v
) != MP_LT
) {
848 /* u = u - v, A = A - C, B = B - D */
849 if ((res
= mp_sub (&u
, &v
, &u
)) != MP_OKAY
) {
853 if ((res
= mp_sub (&A
, &C
, &A
)) != MP_OKAY
) {
857 if ((res
= mp_sub (&B
, &D
, &B
)) != MP_OKAY
) {
861 /* v - v - u, C = C - A, D = D - B */
862 if ((res
= mp_sub (&v
, &u
, &v
)) != MP_OKAY
) {
866 if ((res
= mp_sub (&C
, &A
, &C
)) != MP_OKAY
) {
870 if ((res
= mp_sub (&D
, &B
, &D
)) != MP_OKAY
) {
875 /* if not zero goto step 4 */
876 if (mp_iszero (&u
) == 0)
879 /* now a = C, b = D, gcd == g*v */
881 /* if v != 1 then there is no inverse */
882 if (mp_cmp_d (&v
, 1) != MP_EQ
) {
888 while (mp_cmp_d(&C
, 0) == MP_LT
) {
889 if ((res
= mp_add(&C
, b
, &C
)) != MP_OKAY
) {
895 while (mp_cmp_mag(&C
, b
) != MP_LT
) {
896 if ((res
= mp_sub(&C
, b
, &C
)) != MP_OKAY
) {
901 /* C is now the inverse */
904 LBL_ERR
:mp_clear_multi (&x
, &y
, &u
, &v
, &A
, &B
, &C
, &D
, NULL
);
907 #endif /* LTM_NO_NEG_EXP */
910 /* compare maginitude of two ints (unsigned) */
911 static int mp_cmp_mag (mp_int
* a
, mp_int
* b
)
914 mp_digit
*tmpa
, *tmpb
;
916 /* compare based on # of non-zero digits */
917 if (a
->used
> b
->used
) {
921 if (a
->used
< b
->used
) {
926 tmpa
= a
->dp
+ (a
->used
- 1);
929 tmpb
= b
->dp
+ (a
->used
- 1);
931 /* compare based on digits */
932 for (n
= 0; n
< a
->used
; ++n
, --tmpa
, --tmpb
) {
945 /* reads a unsigned char array, assumes the msb is stored first [big endian] */
946 static int mp_read_unsigned_bin (mp_int
* a
, const unsigned char *b
, int c
)
950 /* make sure there are at least two digits */
952 if ((res
= mp_grow(a
, 2)) != MP_OKAY
) {
960 /* read the bytes in */
962 if ((res
= mp_mul_2d (a
, 8, a
)) != MP_OKAY
) {
970 a
->dp
[0] = (*b
& MP_MASK
);
971 a
->dp
[1] |= ((*b
++ >> 7U) & 1);
980 /* store in unsigned [big endian] format */
981 static int mp_to_unsigned_bin (mp_int
* a
, unsigned char *b
)
986 if ((res
= mp_init_copy (&t
, a
)) != MP_OKAY
) {
991 while (mp_iszero (&t
) == 0) {
993 b
[x
++] = (unsigned char) (t
.dp
[0] & 255);
995 b
[x
++] = (unsigned char) (t
.dp
[0] | ((t
.dp
[1] & 0x01) << 7));
997 if ((res
= mp_div_2d (&t
, 8, &t
, NULL
)) != MP_OKAY
) {
1008 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1009 static int mp_div_2d (mp_int
* a
, int b
, mp_int
* c
, mp_int
* d
)
1016 /* if the shift count is <= 0 then we do no work */
1018 res
= mp_copy (a
, c
);
1025 if ((res
= mp_init (&t
)) != MP_OKAY
) {
1029 /* get the remainder */
1031 if ((res
= mp_mod_2d (a
, b
, &t
)) != MP_OKAY
) {
1038 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1043 /* shift by as many digits in the bit count */
1044 if (b
>= (int)DIGIT_BIT
) {
1045 mp_rshd (c
, b
/ DIGIT_BIT
);
1048 /* shift any bit count < DIGIT_BIT */
1049 D
= (mp_digit
) (b
% DIGIT_BIT
);
1051 register mp_digit
*tmpc
, mask
, shift
;
1054 mask
= (((mp_digit
)1) << D
) - 1;
1057 shift
= DIGIT_BIT
- D
;
1060 tmpc
= c
->dp
+ (c
->used
- 1);
1064 for (x
= c
->used
- 1; x
>= 0; x
--) {
1065 /* get the lower bits of this word in a temp */
1068 /* shift the current word and mix in the carry bits from the previous word */
1069 *tmpc
= (*tmpc
>> D
) | (r
<< shift
);
1072 /* set the carry to the carry bits of the current word found above */
1085 static int mp_init_copy (mp_int
* a
, mp_int
* b
)
1089 if ((res
= mp_init (a
)) != MP_OKAY
) {
1092 return mp_copy (b
, a
);
1097 static void mp_zero (mp_int
* a
)
1106 for (n
= 0; n
< a
->alloc
; n
++) {
1113 static int mp_copy (mp_int
* a
, mp_int
* b
)
1117 /* if dst == src do nothing */
1123 if (b
->alloc
< a
->used
) {
1124 if ((res
= mp_grow (b
, a
->used
)) != MP_OKAY
) {
1129 /* zero b and copy the parameters over */
1131 register mp_digit
*tmpa
, *tmpb
;
1133 /* pointer aliases */
1141 /* copy all the digits */
1142 for (n
= 0; n
< a
->used
; n
++) {
1146 /* clear high digits */
1147 for (; n
< b
->used
; n
++) {
1152 /* copy used count and sign */
1159 /* shift right a certain amount of digits */
1160 static void mp_rshd (mp_int
* a
, int b
)
1164 /* if b <= 0 then ignore it */
1169 /* if b > used then simply zero it and return */
1176 register mp_digit
*bottom
, *top
;
1178 /* shift the digits down */
1183 /* top [offset into digits] */
1186 /* this is implemented as a sliding window where
1187 * the window is b-digits long and digits from
1188 * the top of the window are copied to the bottom
1192 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1194 \-------------------/ ---->
1196 for (x
= 0; x
< (a
->used
- b
); x
++) {
1200 /* zero the top digits */
1201 for (; x
< a
->used
; x
++) {
1206 /* remove excess digits */
1211 /* swap the elements of two integers, for cases where you can't simply swap the
1212 * mp_int pointers around
1214 static void mp_exch (mp_int
* a
, mp_int
* b
)
1224 /* trim unused digits
1226 * This is used to ensure that leading zero digits are
1227 * trimed and the leading "used" digit will be non-zero
1228 * Typically very fast. Also fixes the sign if there
1229 * are no more leading digits
1231 static void mp_clamp (mp_int
* a
)
1233 /* decrease used while the most significant digit is
1236 while (a
->used
> 0 && a
->dp
[a
->used
- 1] == 0) {
1240 /* reset the sign flag if used == 0 */
1247 /* grow as required */
1248 static int mp_grow (mp_int
* a
, int size
)
1253 /* if the alloc size is smaller alloc more ram */
1254 if (a
->alloc
< size
) {
1255 /* ensure there are always at least MP_PREC digits extra on top */
1256 size
+= (MP_PREC
* 2) - (size
% MP_PREC
);
1258 /* reallocate the array a->dp
1260 * We store the return in a temporary variable
1261 * in case the operation failed we don't want
1262 * to overwrite the dp member of a.
1264 tmp
= OPT_CAST(mp_digit
) XREALLOC (a
->dp
, sizeof (mp_digit
) * size
);
1266 /* reallocation failed but "a" is still valid [can be freed] */
1270 /* reallocation succeeded so set a->dp */
1273 /* zero excess digits */
1276 for (; i
< a
->alloc
; i
++) {
1287 * Simple function copies the input and fixes the sign to positive
1289 static int mp_abs (mp_int
* a
, mp_int
* b
)
1295 if ((res
= mp_copy (a
, b
)) != MP_OKAY
) {
1300 /* force the sign of b to positive */
1308 /* set to a digit */
1309 static void mp_set (mp_int
* a
, mp_digit b
)
1312 a
->dp
[0] = b
& MP_MASK
;
1313 a
->used
= (a
->dp
[0] != 0) ? 1 : 0;
1317 #ifndef LTM_NO_NEG_EXP
1319 static int mp_div_2(mp_int
* a
, mp_int
* b
)
1321 int x
, res
, oldused
;
1324 if (b
->alloc
< a
->used
) {
1325 if ((res
= mp_grow (b
, a
->used
)) != MP_OKAY
) {
1333 register mp_digit r
, rr
, *tmpa
, *tmpb
;
1336 tmpa
= a
->dp
+ b
->used
- 1;
1339 tmpb
= b
->dp
+ b
->used
- 1;
1343 for (x
= b
->used
- 1; x
>= 0; x
--) {
1344 /* get the carry for the next iteration */
1347 /* shift the current digit, add in carry and store */
1348 *tmpb
-- = (*tmpa
-- >> 1) | (r
<< (DIGIT_BIT
- 1));
1350 /* forward carry to next iteration */
1354 /* zero excess digits */
1355 tmpb
= b
->dp
+ b
->used
;
1356 for (x
= b
->used
; x
< oldused
; x
++) {
1364 #endif /* LTM_NO_NEG_EXP */
1367 /* shift left by a certain bit count */
1368 static int mp_mul_2d (mp_int
* a
, int b
, mp_int
* c
)
1375 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1380 if (c
->alloc
< (int)(c
->used
+ b
/DIGIT_BIT
+ 1)) {
1381 if ((res
= mp_grow (c
, c
->used
+ b
/ DIGIT_BIT
+ 1)) != MP_OKAY
) {
1386 /* shift by as many digits in the bit count */
1387 if (b
>= (int)DIGIT_BIT
) {
1388 if ((res
= mp_lshd (c
, b
/ DIGIT_BIT
)) != MP_OKAY
) {
1393 /* shift any bit count < DIGIT_BIT */
1394 d
= (mp_digit
) (b
% DIGIT_BIT
);
1396 register mp_digit
*tmpc
, shift
, mask
, r
, rr
;
1399 /* bitmask for carries */
1400 mask
= (((mp_digit
)1) << d
) - 1;
1402 /* shift for msbs */
1403 shift
= DIGIT_BIT
- d
;
1410 for (x
= 0; x
< c
->used
; x
++) {
1411 /* get the higher bits of the current word */
1412 rr
= (*tmpc
>> shift
) & mask
;
1414 /* shift the current word and OR in the carry */
1415 *tmpc
= ((*tmpc
<< d
) | r
) & MP_MASK
;
1418 /* set the carry to the carry bits of the current word */
1422 /* set final carry */
1424 c
->dp
[(c
->used
)++] = r
;
1432 #ifdef BN_MP_INIT_MULTI_C
1433 static int mp_init_multi(mp_int
*mp
, ...)
1435 mp_err res
= MP_OKAY
; /* Assume ok until proven otherwise */
1436 int n
= 0; /* Number of ok inits */
1437 mp_int
* cur_arg
= mp
;
1440 va_start(args
, mp
); /* init args to next argument from caller */
1441 while (cur_arg
!= NULL
) {
1442 if (mp_init(cur_arg
) != MP_OKAY
) {
1443 /* Oops - error! Back-track and mp_clear what we already
1444 succeeded in init-ing, then return error.
1448 /* end the current list */
1451 /* now start cleaning up */
1453 va_start(clean_args
, mp
);
1456 cur_arg
= va_arg(clean_args
, mp_int
*);
1463 cur_arg
= va_arg(args
, mp_int
*);
1466 return res
; /* Assumed ok, if error flagged above. */
1471 #ifdef BN_MP_CLEAR_MULTI_C
1472 static void mp_clear_multi(mp_int
*mp
, ...)
1474 mp_int
* next_mp
= mp
;
1477 while (next_mp
!= NULL
) {
1479 next_mp
= va_arg(args
, mp_int
*);
1486 /* shift left a certain amount of digits */
1487 static int mp_lshd (mp_int
* a
, int b
)
1491 /* if its less than zero return */
1496 /* grow to fit the new digits */
1497 if (a
->alloc
< a
->used
+ b
) {
1498 if ((res
= mp_grow (a
, a
->used
+ b
)) != MP_OKAY
) {
1504 register mp_digit
*top
, *bottom
;
1506 /* increment the used by the shift amount then copy upwards */
1510 top
= a
->dp
+ a
->used
- 1;
1513 bottom
= a
->dp
+ a
->used
- 1 - b
;
1515 /* much like mp_rshd this is implemented using a sliding window
1516 * except the window goes the otherway around. Copying from
1517 * the bottom to the top. see bn_mp_rshd.c for more info.
1519 for (x
= a
->used
- 1; x
>= b
; x
--) {
1523 /* zero the lower digits */
1525 for (x
= 0; x
< b
; x
++) {
1533 /* returns the number of bits in an int */
1534 static int mp_count_bits (mp_int
* a
)
1544 /* get number of digits and add that */
1545 r
= (a
->used
- 1) * DIGIT_BIT
;
1547 /* take the last digit and count the bits in it */
1548 q
= a
->dp
[a
->used
- 1];
1549 while (q
> ((mp_digit
) 0)) {
1551 q
>>= ((mp_digit
) 1);
1557 /* calc a value mod 2**b */
1558 static int mp_mod_2d (mp_int
* a
, int b
, mp_int
* c
)
1562 /* if b is <= 0 then zero the int */
1568 /* if the modulus is larger than the value than return */
1569 if (b
>= (int) (a
->used
* DIGIT_BIT
)) {
1570 res
= mp_copy (a
, c
);
1575 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1579 /* zero digits above the last digit of the modulus */
1580 for (x
= (b
/ DIGIT_BIT
) + ((b
% DIGIT_BIT
) == 0 ? 0 : 1); x
< c
->used
; x
++) {
1583 /* clear the digit that is not completely outside/inside the modulus */
1584 c
->dp
[b
/ DIGIT_BIT
] &=
1585 (mp_digit
) ((((mp_digit
) 1) << (((mp_digit
) b
) % DIGIT_BIT
)) - ((mp_digit
) 1));
1591 #ifdef BN_MP_DIV_SMALL
1593 /* slower bit-bang division... also smaller */
1594 static int mp_div(mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
)
1596 mp_int ta
, tb
, tq
, q
;
1599 /* is divisor zero ? */
1600 if (mp_iszero (b
) == 1) {
1604 /* if a < b then q=0, r = a */
1605 if (mp_cmp_mag (a
, b
) == MP_LT
) {
1607 res
= mp_copy (a
, d
);
1617 /* init our temps */
1618 if ((res
= mp_init_multi(&ta
, &tb
, &tq
, &q
, NULL
) != MP_OKAY
)) {
1624 n
= mp_count_bits(a
) - mp_count_bits(b
);
1625 if (((res
= mp_abs(a
, &ta
)) != MP_OKAY
) ||
1626 ((res
= mp_abs(b
, &tb
)) != MP_OKAY
) ||
1627 ((res
= mp_mul_2d(&tb
, n
, &tb
)) != MP_OKAY
) ||
1628 ((res
= mp_mul_2d(&tq
, n
, &tq
)) != MP_OKAY
)) {
1633 if (mp_cmp(&tb
, &ta
) != MP_GT
) {
1634 if (((res
= mp_sub(&ta
, &tb
, &ta
)) != MP_OKAY
) ||
1635 ((res
= mp_add(&q
, &tq
, &q
)) != MP_OKAY
)) {
1639 if (((res
= mp_div_2d(&tb
, 1, &tb
, NULL
)) != MP_OKAY
) ||
1640 ((res
= mp_div_2d(&tq
, 1, &tq
, NULL
)) != MP_OKAY
)) {
1645 /* now q == quotient and ta == remainder */
1647 n2
= (a
->sign
== b
->sign
? MP_ZPOS
: MP_NEG
);
1650 c
->sign
= (mp_iszero(c
) == MP_YES
) ? MP_ZPOS
: n2
;
1654 d
->sign
= (mp_iszero(d
) == MP_YES
) ? MP_ZPOS
: n
;
1657 mp_clear_multi(&ta
, &tb
, &tq
, &q
, NULL
);
1663 /* integer signed division.
1664 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1665 * HAC pp.598 Algorithm 14.20
1667 * Note that the description in HAC is horribly
1668 * incomplete. For example, it doesn't consider
1669 * the case where digits are removed from 'x' in
1670 * the inner loop. It also doesn't consider the
1671 * case that y has fewer than three digits, etc..
1673 * The overall algorithm is as described as
1674 * 14.20 from HAC but fixed to treat these cases.
1676 static int mp_div (mp_int
* a
, mp_int
* b
, mp_int
* c
, mp_int
* d
)
1678 mp_int q
, x
, y
, t1
, t2
;
1679 int res
, n
, t
, i
, norm
, neg
;
1681 /* is divisor zero ? */
1682 if (mp_iszero (b
) == 1) {
1686 /* if a < b then q=0, r = a */
1687 if (mp_cmp_mag (a
, b
) == MP_LT
) {
1689 res
= mp_copy (a
, d
);
1699 if ((res
= mp_init_size (&q
, a
->used
+ 2)) != MP_OKAY
) {
1702 q
.used
= a
->used
+ 2;
1704 if ((res
= mp_init (&t1
)) != MP_OKAY
) {
1708 if ((res
= mp_init (&t2
)) != MP_OKAY
) {
1712 if ((res
= mp_init_copy (&x
, a
)) != MP_OKAY
) {
1716 if ((res
= mp_init_copy (&y
, b
)) != MP_OKAY
) {
1721 neg
= (a
->sign
== b
->sign
) ? MP_ZPOS
: MP_NEG
;
1722 x
.sign
= y
.sign
= MP_ZPOS
;
1724 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1725 norm
= mp_count_bits(&y
) % DIGIT_BIT
;
1726 if (norm
< (int)(DIGIT_BIT
-1)) {
1727 norm
= (DIGIT_BIT
-1) - norm
;
1728 if ((res
= mp_mul_2d (&x
, norm
, &x
)) != MP_OKAY
) {
1731 if ((res
= mp_mul_2d (&y
, norm
, &y
)) != MP_OKAY
) {
1738 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1742 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1743 if ((res
= mp_lshd (&y
, n
- t
)) != MP_OKAY
) { /* y = y*b**{n-t} */
1747 while (mp_cmp (&x
, &y
) != MP_LT
) {
1749 if ((res
= mp_sub (&x
, &y
, &x
)) != MP_OKAY
) {
1754 /* reset y by shifting it back down */
1755 mp_rshd (&y
, n
- t
);
1757 /* step 3. for i from n down to (t + 1) */
1758 for (i
= n
; i
>= (t
+ 1); i
--) {
1763 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1764 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1765 if (x
.dp
[i
] == y
.dp
[t
]) {
1766 q
.dp
[i
- t
- 1] = ((((mp_digit
)1) << DIGIT_BIT
) - 1);
1769 tmp
= ((mp_word
) x
.dp
[i
]) << ((mp_word
) DIGIT_BIT
);
1770 tmp
|= ((mp_word
) x
.dp
[i
- 1]);
1771 tmp
/= ((mp_word
) y
.dp
[t
]);
1772 if (tmp
> (mp_word
) MP_MASK
)
1774 q
.dp
[i
- t
- 1] = (mp_digit
) (tmp
& (mp_word
) (MP_MASK
));
1777 /* while (q{i-t-1} * (yt * b + y{t-1})) >
1778 xi * b**2 + xi-1 * b + xi-2
1782 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] + 1) & MP_MASK
;
1784 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1) & MP_MASK
;
1786 /* find left hand */
1788 t1
.dp
[0] = (t
- 1 < 0) ? 0 : y
.dp
[t
- 1];
1791 if ((res
= mp_mul_d (&t1
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
1795 /* find right hand */
1796 t2
.dp
[0] = (i
- 2 < 0) ? 0 : x
.dp
[i
- 2];
1797 t2
.dp
[1] = (i
- 1 < 0) ? 0 : x
.dp
[i
- 1];
1800 } while (mp_cmp_mag(&t1
, &t2
) == MP_GT
);
1802 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1803 if ((res
= mp_mul_d (&y
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
1807 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
1811 if ((res
= mp_sub (&x
, &t1
, &x
)) != MP_OKAY
) {
1815 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1816 if (x
.sign
== MP_NEG
) {
1817 if ((res
= mp_copy (&y
, &t1
)) != MP_OKAY
) {
1820 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
1823 if ((res
= mp_add (&x
, &t1
, &x
)) != MP_OKAY
) {
1827 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1UL) & MP_MASK
;
1831 /* now q is the quotient and x is the remainder
1832 * [which we have to normalize]
1835 /* get sign before writing to c */
1836 x
.sign
= x
.used
== 0 ? MP_ZPOS
: a
->sign
;
1845 mp_div_2d (&x
, norm
, &x
, NULL
);
1851 LBL_Y
:mp_clear (&y
);
1852 LBL_X
:mp_clear (&x
);
1853 LBL_T2
:mp_clear (&t2
);
1854 LBL_T1
:mp_clear (&t1
);
1855 LBL_Q
:mp_clear (&q
);
1865 #define TAB_SIZE 256
1868 static int s_mp_exptmod (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
)
1870 mp_int M
[TAB_SIZE
], res
, mu
;
1872 int err
, bitbuf
, bitcpy
, bitcnt
, mode
, digidx
, x
, y
, winsize
;
1873 int (*redux
)(mp_int
*,mp_int
*,mp_int
*);
1875 /* find window size */
1876 x
= mp_count_bits (X
);
1879 } else if (x
<= 36) {
1881 } else if (x
<= 140) {
1883 } else if (x
<= 450) {
1885 } else if (x
<= 1303) {
1887 } else if (x
<= 3529) {
1900 /* init first cell */
1901 if ((err
= mp_init(&M
[1])) != MP_OKAY
) {
1905 /* now init the second half of the array */
1906 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
1907 if ((err
= mp_init(&M
[x
])) != MP_OKAY
) {
1908 for (y
= 1<<(winsize
-1); y
< x
; y
++) {
1916 /* create mu, used for Barrett reduction */
1917 if ((err
= mp_init (&mu
)) != MP_OKAY
) {
1922 if ((err
= mp_reduce_setup (&mu
, P
)) != MP_OKAY
) {
1927 if ((err
= mp_reduce_2k_setup_l (P
, &mu
)) != MP_OKAY
) {
1930 redux
= mp_reduce_2k_l
;
1935 * The M table contains powers of the base,
1936 * e.g. M[x] = G**x mod P
1938 * The first half of the table is not
1939 * computed though accept for M[0] and M[1]
1941 if ((err
= mp_mod (G
, P
, &M
[1])) != MP_OKAY
) {
1945 /* compute the value at M[1<<(winsize-1)] by squaring
1946 * M[1] (winsize-1) times
1948 if ((err
= mp_copy (&M
[1], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
1952 for (x
= 0; x
< (winsize
- 1); x
++) {
1954 if ((err
= mp_sqr (&M
[1 << (winsize
- 1)],
1955 &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
1959 /* reduce modulo P */
1960 if ((err
= redux (&M
[1 << (winsize
- 1)], P
, &mu
)) != MP_OKAY
) {
1965 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1966 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1968 for (x
= (1 << (winsize
- 1)) + 1; x
< (1 << winsize
); x
++) {
1969 if ((err
= mp_mul (&M
[x
- 1], &M
[1], &M
[x
])) != MP_OKAY
) {
1972 if ((err
= redux (&M
[x
], P
, &mu
)) != MP_OKAY
) {
1978 if ((err
= mp_init (&res
)) != MP_OKAY
) {
1983 /* set initial mode and bit cnt */
1987 digidx
= X
->used
- 1;
1992 /* grab next digit as required */
1993 if (--bitcnt
== 0) {
1994 /* if digidx == -1 we are out of digits */
1998 /* read next digit and reset the bitcnt */
1999 buf
= X
->dp
[digidx
--];
2000 bitcnt
= (int) DIGIT_BIT
;
2003 /* grab the next msb from the exponent */
2004 y
= (buf
>> (mp_digit
)(DIGIT_BIT
- 1)) & 1;
2005 buf
<<= (mp_digit
)1;
2007 /* if the bit is zero and mode == 0 then we ignore it
2008 * These represent the leading zero bits before the first 1 bit
2009 * in the exponent. Technically this opt is not required but it
2010 * does lower the # of trivial squaring/reductions used
2012 if (mode
== 0 && y
== 0) {
2016 /* if the bit is zero and mode == 1 then we square */
2017 if (mode
== 1 && y
== 0) {
2018 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2021 if ((err
= redux (&res
, P
, &mu
)) != MP_OKAY
) {
2027 /* else we add it to the window */
2028 bitbuf
|= (y
<< (winsize
- ++bitcpy
));
2031 if (bitcpy
== winsize
) {
2032 /* ok window is filled so square as required and multiply */
2034 for (x
= 0; x
< winsize
; x
++) {
2035 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2038 if ((err
= redux (&res
, P
, &mu
)) != MP_OKAY
) {
2044 if ((err
= mp_mul (&res
, &M
[bitbuf
], &res
)) != MP_OKAY
) {
2047 if ((err
= redux (&res
, P
, &mu
)) != MP_OKAY
) {
2051 /* empty window and reset */
2058 /* if bits remain then square/multiply */
2059 if (mode
== 2 && bitcpy
> 0) {
2060 /* square then multiply if the bit is set */
2061 for (x
= 0; x
< bitcpy
; x
++) {
2062 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2065 if ((err
= redux (&res
, P
, &mu
)) != MP_OKAY
) {
2070 if ((bitbuf
& (1 << winsize
)) != 0) {
2072 if ((err
= mp_mul (&res
, &M
[1], &res
)) != MP_OKAY
) {
2075 if ((err
= redux (&res
, P
, &mu
)) != MP_OKAY
) {
2084 LBL_RES
:mp_clear (&res
);
2085 LBL_MU
:mp_clear (&mu
);
2088 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
2095 /* computes b = a*a */
2096 static int mp_sqr (mp_int
* a
, mp_int
* b
)
2100 #ifdef BN_MP_TOOM_SQR_C
2101 /* use Toom-Cook? */
2102 if (a
->used
>= TOOM_SQR_CUTOFF
) {
2103 res
= mp_toom_sqr(a
, b
);
2107 #ifdef BN_MP_KARATSUBA_SQR_C
2108 if (a
->used
>= KARATSUBA_SQR_CUTOFF
) {
2109 res
= mp_karatsuba_sqr (a
, b
);
2113 #ifdef BN_FAST_S_MP_SQR_C
2114 /* can we use the fast comba multiplier? */
2115 if ((a
->used
* 2 + 1) < MP_WARRAY
&&
2117 (1 << (sizeof(mp_word
) * CHAR_BIT
- 2*DIGIT_BIT
- 1))) {
2118 res
= fast_s_mp_sqr (a
, b
);
2121 #ifdef BN_S_MP_SQR_C
2122 res
= s_mp_sqr (a
, b
);
2124 #error mp_sqr could fail
2133 /* reduces a modulo n where n is of the form 2**p - d
2134 This differs from reduce_2k since "d" can be larger
2135 than a single digit.
2137 static int mp_reduce_2k_l(mp_int
*a
, mp_int
*n
, mp_int
*d
)
2142 if ((res
= mp_init(&q
)) != MP_OKAY
) {
2146 p
= mp_count_bits(n
);
2148 /* q = a/2**p, a = a mod 2**p */
2149 if ((res
= mp_div_2d(a
, p
, &q
, a
)) != MP_OKAY
) {
2154 if ((res
= mp_mul(&q
, d
, &q
)) != MP_OKAY
) {
2159 if ((res
= s_mp_add(a
, &q
, a
)) != MP_OKAY
) {
2163 if (mp_cmp_mag(a
, n
) != MP_LT
) {
2174 /* determines the setup value */
2175 static int mp_reduce_2k_setup_l(mp_int
*a
, mp_int
*d
)
2180 if ((res
= mp_init(&tmp
)) != MP_OKAY
) {
2184 if ((res
= mp_2expt(&tmp
, mp_count_bits(a
))) != MP_OKAY
) {
2188 if ((res
= s_mp_sub(&tmp
, a
, d
)) != MP_OKAY
) {
2198 /* computes a = 2**b
2200 * Simple algorithm which zeroes the int, grows it then just sets one bit
2203 static int mp_2expt (mp_int
* a
, int b
)
2207 /* zero a as per default */
2210 /* grow a to accomodate the single bit */
2211 if ((res
= mp_grow (a
, b
/ DIGIT_BIT
+ 1)) != MP_OKAY
) {
2215 /* set the used count of where the bit will go */
2216 a
->used
= b
/ DIGIT_BIT
+ 1;
2218 /* put the single bit in its place */
2219 a
->dp
[b
/ DIGIT_BIT
] = ((mp_digit
)1) << (b
% DIGIT_BIT
);
2225 /* pre-calculate the value required for Barrett reduction
2226 * For a given modulus "b" it calulates the value required in "a"
2228 static int mp_reduce_setup (mp_int
* a
, mp_int
* b
)
2232 if ((res
= mp_2expt (a
, b
->used
* 2 * DIGIT_BIT
)) != MP_OKAY
) {
2235 return mp_div (a
, b
, a
, NULL
);
2239 /* reduces x mod m, assumes 0 < x < m**2, mu is
2240 * precomputed via mp_reduce_setup.
2241 * From HAC pp.604 Algorithm 14.42
2243 static int mp_reduce (mp_int
* x
, mp_int
* m
, mp_int
* mu
)
2246 int res
, um
= m
->used
;
2249 if ((res
= mp_init_copy (&q
, x
)) != MP_OKAY
) {
2253 /* q1 = x / b**(k-1) */
2254 mp_rshd (&q
, um
- 1);
2256 /* according to HAC this optimization is ok */
2257 if (((unsigned long) um
) > (((mp_digit
)1) << (DIGIT_BIT
- 1))) {
2258 if ((res
= mp_mul (&q
, mu
, &q
)) != MP_OKAY
) {
2262 #ifdef BN_S_MP_MUL_HIGH_DIGS_C
2263 if ((res
= s_mp_mul_high_digs (&q
, mu
, &q
, um
)) != MP_OKAY
) {
2266 #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2267 if ((res
= fast_s_mp_mul_high_digs (&q
, mu
, &q
, um
)) != MP_OKAY
) {
2272 #error mp_reduce would always fail
2279 /* q3 = q2 / b**(k+1) */
2280 mp_rshd (&q
, um
+ 1);
2282 /* x = x mod b**(k+1), quick (no division) */
2283 if ((res
= mp_mod_2d (x
, DIGIT_BIT
* (um
+ 1), x
)) != MP_OKAY
) {
2287 /* q = q * m mod b**(k+1), quick (no division) */
2288 if ((res
= s_mp_mul_digs (&q
, m
, &q
, um
+ 1)) != MP_OKAY
) {
2293 if ((res
= mp_sub (x
, &q
, x
)) != MP_OKAY
) {
2297 /* If x < 0, add b**(k+1) to it */
2298 if (mp_cmp_d (x
, 0) == MP_LT
) {
2300 if ((res
= mp_lshd (&q
, um
+ 1)) != MP_OKAY
) {
2303 if ((res
= mp_add (x
, &q
, x
)) != MP_OKAY
) {
2308 /* Back off if it's too big */
2309 while (mp_cmp (x
, m
) != MP_LT
) {
2310 if ((res
= s_mp_sub (x
, m
, x
)) != MP_OKAY
) {
2322 /* multiplies |a| * |b| and only computes upto digs digits of result
2323 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
2324 * many digits of output are created.
2326 static int s_mp_mul_digs (mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
)
2329 int res
, pa
, pb
, ix
, iy
;
2332 mp_digit tmpx
, *tmpt
, *tmpy
;
2334 /* can we use the fast multiplier? */
2335 if (((digs
) < MP_WARRAY
) &&
2336 MIN (a
->used
, b
->used
) <
2337 (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
2338 return fast_s_mp_mul_digs (a
, b
, c
, digs
);
2341 if ((res
= mp_init_size (&t
, digs
)) != MP_OKAY
) {
2346 /* compute the digits of the product directly */
2348 for (ix
= 0; ix
< pa
; ix
++) {
2349 /* set the carry to zero */
2352 /* limit ourselves to making digs digits of output */
2353 pb
= MIN (b
->used
, digs
- ix
);
2355 /* setup some aliases */
2356 /* copy of the digit from a used within the nested loop */
2359 /* an alias for the destination shifted ix places */
2362 /* an alias for the digits of b */
2365 /* compute the columns of the output and propagate the carry */
2366 for (iy
= 0; iy
< pb
; iy
++) {
2367 /* compute the column as a mp_word */
2368 r
= ((mp_word
)*tmpt
) +
2369 ((mp_word
)tmpx
) * ((mp_word
)*tmpy
++) +
2372 /* the new column is the lower part of the result */
2373 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
2375 /* get the carry word from the result */
2376 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
2378 /* set carry if it is placed below digs */
2379 if (ix
+ iy
< digs
) {
2392 /* Fast (comba) multiplier
2394 * This is the fast column-array [comba] multiplier. It is
2395 * designed to compute the columns of the product first
2396 * then handle the carries afterwards. This has the effect
2397 * of making the nested loops that compute the columns very
2398 * simple and schedulable on super-scalar processors.
2400 * This has been modified to produce a variable number of
2401 * digits of output so if say only a half-product is required
2402 * you don't have to compute the upper half (a feature
2403 * required for fast Barrett reduction).
2405 * Based on Algorithm 14.12 on pp.595 of HAC.
2408 static int fast_s_mp_mul_digs (mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
)
2410 int olduse
, res
, pa
, ix
, iz
;
2411 mp_digit W
[MP_WARRAY
];
2412 register mp_word _W
;
2414 /* grow the destination as required */
2415 if (c
->alloc
< digs
) {
2416 if ((res
= mp_grow (c
, digs
)) != MP_OKAY
) {
2421 /* number of output digits to produce */
2422 pa
= MIN(digs
, a
->used
+ b
->used
);
2424 /* clear the carry */
2426 for (ix
= 0; ix
< pa
; ix
++) {
2429 mp_digit
*tmpx
, *tmpy
;
2431 /* get offsets into the two bignums */
2432 ty
= MIN(b
->used
-1, ix
);
2435 /* setup temp aliases */
2439 /* this is the number of times the loop will iterrate, essentially
2440 while (tx++ < a->used && ty-- >= 0) { ... }
2442 iy
= MIN(a
->used
-tx
, ty
+1);
2445 for (iz
= 0; iz
< iy
; ++iz
) {
2446 _W
+= ((mp_word
)*tmpx
++)*((mp_word
)*tmpy
--);
2451 W
[ix
] = ((mp_digit
)_W
) & MP_MASK
;
2453 /* make next carry */
2454 _W
= _W
>> ((mp_word
)DIGIT_BIT
);
2462 register mp_digit
*tmpc
;
2464 for (ix
= 0; ix
< pa
+1; ix
++) {
2465 /* now extract the previous digit [below the carry] */
2469 /* clear unused digits [that existed in the old copy of c] */
2470 for (; ix
< olduse
; ix
++) {
2479 /* init an mp_init for a given size */
2480 static int mp_init_size (mp_int
* a
, int size
)
2484 /* pad size so there are always extra digits */
2485 size
+= (MP_PREC
* 2) - (size
% MP_PREC
);
2488 a
->dp
= OPT_CAST(mp_digit
) XMALLOC (sizeof (mp_digit
) * size
);
2489 if (a
->dp
== NULL
) {
2493 /* set the members */
2498 /* zero the digits */
2499 for (x
= 0; x
< size
; x
++) {
2507 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2508 static int s_mp_sqr (mp_int
* a
, mp_int
* b
)
2511 int res
, ix
, iy
, pa
;
2513 mp_digit u
, tmpx
, *tmpt
;
2516 if ((res
= mp_init_size (&t
, 2*pa
+ 1)) != MP_OKAY
) {
2520 /* default used is maximum possible size */
2523 for (ix
= 0; ix
< pa
; ix
++) {
2524 /* first calculate the digit at 2*ix */
2525 /* calculate double precision result */
2526 r
= ((mp_word
) t
.dp
[2*ix
]) +
2527 ((mp_word
)a
->dp
[ix
])*((mp_word
)a
->dp
[ix
]);
2529 /* store lower part in result */
2530 t
.dp
[ix
+ix
] = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
2533 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
2535 /* left hand side of A[ix] * A[iy] */
2538 /* alias for where to store the results */
2539 tmpt
= t
.dp
+ (2*ix
+ 1);
2541 for (iy
= ix
+ 1; iy
< pa
; iy
++) {
2542 /* first calculate the product */
2543 r
= ((mp_word
)tmpx
) * ((mp_word
)a
->dp
[iy
]);
2545 /* now calculate the double precision result, note we use
2546 * addition instead of *2 since it's easier to optimize
2548 r
= ((mp_word
) *tmpt
) + r
+ r
+ ((mp_word
) u
);
2550 /* store lower part */
2551 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
2554 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
2556 /* propagate upwards */
2557 while (u
!= ((mp_digit
) 0)) {
2558 r
= ((mp_word
) *tmpt
) + ((mp_word
) u
);
2559 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
2560 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
2571 /* multiplies |a| * |b| and does not compute the lower digs digits
2572 * [meant to get the higher part of the product]
2574 static int s_mp_mul_high_digs (mp_int
* a
, mp_int
* b
, mp_int
* c
, int digs
)
2577 int res
, pa
, pb
, ix
, iy
;
2580 mp_digit tmpx
, *tmpt
, *tmpy
;
2582 /* can we use the fast multiplier? */
2583 #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2584 if (((a
->used
+ b
->used
+ 1) < MP_WARRAY
)
2585 && MIN (a
->used
, b
->used
) < (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
2586 return fast_s_mp_mul_high_digs (a
, b
, c
, digs
);
2590 if ((res
= mp_init_size (&t
, a
->used
+ b
->used
+ 1)) != MP_OKAY
) {
2593 t
.used
= a
->used
+ b
->used
+ 1;
2597 for (ix
= 0; ix
< pa
; ix
++) {
2598 /* clear the carry */
2601 /* left hand side of A[ix] * B[iy] */
2604 /* alias to the address of where the digits will be stored */
2605 tmpt
= &(t
.dp
[digs
]);
2607 /* alias for where to read the right hand side from */
2608 tmpy
= b
->dp
+ (digs
- ix
);
2610 for (iy
= digs
- ix
; iy
< pb
; iy
++) {
2611 /* calculate the double precision result */
2612 r
= ((mp_word
)*tmpt
) +
2613 ((mp_word
)tmpx
) * ((mp_word
)*tmpy
++) +
2616 /* get the lower part */
2617 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
2619 /* carry the carry */
2620 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
2631 #ifdef BN_MP_MONTGOMERY_SETUP_C
2632 /* setups the montgomery reduction stuff */
2634 mp_montgomery_setup (mp_int
* n
, mp_digit
* rho
)
2638 /* fast inversion mod 2**k
2640 * Based on the fact that
2642 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
2643 * => 2*X*A - X*X*A*A = 1
2644 * => 2*(1) - (1) = 1
2652 x
= (((b
+ 2) & 4) << 1) + b
; /* here x*a==1 mod 2**4 */
2653 x
*= 2 - b
* x
; /* here x*a==1 mod 2**8 */
2654 #if !defined(MP_8BIT)
2655 x
*= 2 - b
* x
; /* here x*a==1 mod 2**16 */
2657 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2658 x
*= 2 - b
* x
; /* here x*a==1 mod 2**32 */
2661 x
*= 2 - b
* x
; /* here x*a==1 mod 2**64 */
2664 /* rho = -1/m mod b */
2665 *rho
= (unsigned long)(((mp_word
)1 << ((mp_word
) DIGIT_BIT
)) - x
) & MP_MASK
;
2672 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2673 /* computes xR**-1 == x (mod N) via Montgomery Reduction
2675 * This is an optimized implementation of montgomery_reduce
2676 * which uses the comba method to quickly calculate the columns of the
2679 * Based on Algorithm 14.32 on pp.601 of HAC.
2681 int fast_mp_montgomery_reduce (mp_int
* x
, mp_int
* n
, mp_digit rho
)
2683 int ix
, res
, olduse
;
2684 mp_word W
[MP_WARRAY
];
2686 /* get old used count */
2689 /* grow a as required */
2690 if (x
->alloc
< n
->used
+ 1) {
2691 if ((res
= mp_grow (x
, n
->used
+ 1)) != MP_OKAY
) {
2696 /* first we have to get the digits of the input into
2697 * an array of double precision words W[...]
2700 register mp_word
*_W
;
2701 register mp_digit
*tmpx
;
2703 /* alias for the W[] array */
2706 /* alias for the digits of x*/
2709 /* copy the digits of a into W[0..a->used-1] */
2710 for (ix
= 0; ix
< x
->used
; ix
++) {
2714 /* zero the high words of W[a->used..m->used*2] */
2715 for (; ix
< n
->used
* 2 + 1; ix
++) {
2720 /* now we proceed to zero successive digits
2721 * from the least significant upwards
2723 for (ix
= 0; ix
< n
->used
; ix
++) {
2724 /* mu = ai * m' mod b
2726 * We avoid a double precision multiplication (which isn't required)
2727 * by casting the value down to a mp_digit. Note this requires
2728 * that W[ix-1] have the carry cleared (see after the inner loop)
2730 register mp_digit mu
;
2731 mu
= (mp_digit
) (((W
[ix
] & MP_MASK
) * rho
) & MP_MASK
);
2733 /* a = a + mu * m * b**i
2735 * This is computed in place and on the fly. The multiplication
2736 * by b**i is handled by offseting which columns the results
2739 * Note the comba method normally doesn't handle carries in the
2740 * inner loop In this case we fix the carry from the previous
2741 * column since the Montgomery reduction requires digits of the
2742 * result (so far) [see above] to work. This is
2743 * handled by fixing up one carry after the inner loop. The
2744 * carry fixups are done in order so after these loops the
2745 * first m->used words of W[] have the carries fixed
2749 register mp_digit
*tmpn
;
2750 register mp_word
*_W
;
2752 /* alias for the digits of the modulus */
2755 /* Alias for the columns set by an offset of ix */
2759 for (iy
= 0; iy
< n
->used
; iy
++) {
2760 *_W
++ += ((mp_word
)mu
) * ((mp_word
)*tmpn
++);
2764 /* now fix carry for next digit, W[ix+1] */
2765 W
[ix
+ 1] += W
[ix
] >> ((mp_word
) DIGIT_BIT
);
2768 /* now we have to propagate the carries and
2769 * shift the words downward [all those least
2770 * significant digits we zeroed].
2773 register mp_digit
*tmpx
;
2774 register mp_word
*_W
, *_W1
;
2776 /* nox fix rest of carries */
2778 /* alias for current word */
2781 /* alias for next word, where the carry goes */
2784 for (; ix
<= n
->used
* 2 + 1; ix
++) {
2785 *_W
++ += *_W1
++ >> ((mp_word
) DIGIT_BIT
);
2788 /* copy out, A = A/b**n
2790 * The result is A/b**n but instead of converting from an
2791 * array of mp_word to mp_digit than calling mp_rshd
2792 * we just copy them in the right order
2795 /* alias for destination word */
2798 /* alias for shifted double precision result */
2801 for (ix
= 0; ix
< n
->used
+ 1; ix
++) {
2802 *tmpx
++ = (mp_digit
)(*_W
++ & ((mp_word
) MP_MASK
));
2805 /* zero oldused digits, if the input a was larger than
2806 * m->used+1 we'll have to clear the digits
2808 for (; ix
< olduse
; ix
++) {
2813 /* set the max used and clamp */
2814 x
->used
= n
->used
+ 1;
2817 /* if A >= m then A = A - m */
2818 if (mp_cmp_mag (x
, n
) != MP_LT
) {
2819 return s_mp_sub (x
, n
, x
);
2826 #ifdef BN_MP_MUL_2_C
2828 static int mp_mul_2(mp_int
* a
, mp_int
* b
)
2830 int x
, res
, oldused
;
2832 /* grow to accomodate result */
2833 if (b
->alloc
< a
->used
+ 1) {
2834 if ((res
= mp_grow (b
, a
->used
+ 1)) != MP_OKAY
) {
2843 register mp_digit r
, rr
, *tmpa
, *tmpb
;
2845 /* alias for source */
2848 /* alias for dest */
2853 for (x
= 0; x
< a
->used
; x
++) {
2855 /* get what will be the *next* carry bit from the
2856 * MSB of the current digit
2858 rr
= *tmpa
>> ((mp_digit
)(DIGIT_BIT
- 1));
2860 /* now shift up this digit, add in the carry [from the previous] */
2861 *tmpb
++ = ((*tmpa
++ << ((mp_digit
)1)) | r
) & MP_MASK
;
2863 /* copy the carry that would be from the source
2864 * digit into the next iteration
2869 /* new leading digit? */
2871 /* add a MSB which is always 1 at this point */
2876 /* now zero any excess digits on the destination
2877 * that we didn't write to
2879 tmpb
= b
->dp
+ b
->used
;
2880 for (x
= b
->used
; x
< oldused
; x
++) {
2890 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2892 * shifts with subtractions when the result is greater than b.
2894 * The method is slightly modified to shift B unconditionally upto just under
2895 * the leading bit of b. This saves alot of multiple precision shifting.
2897 static int mp_montgomery_calc_normalization (mp_int
* a
, mp_int
* b
)
2901 /* how many bits of last digit does b use */
2902 bits
= mp_count_bits (b
) % DIGIT_BIT
;
2905 if ((res
= mp_2expt (a
, (b
->used
- 1) * DIGIT_BIT
+ bits
- 1)) != MP_OKAY
) {
2914 /* now compute C = A * B mod b */
2915 for (x
= bits
- 1; x
< (int)DIGIT_BIT
; x
++) {
2916 if ((res
= mp_mul_2 (a
, a
)) != MP_OKAY
) {
2919 if (mp_cmp_mag (a
, b
) != MP_LT
) {
2920 if ((res
= s_mp_sub (a
, b
, a
)) != MP_OKAY
) {
2931 #ifdef BN_MP_EXPTMOD_FAST_C
2932 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2934 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2935 * The value of k changes based on the size of the exponent.
2937 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2940 static int mp_exptmod_fast (mp_int
* G
, mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
)
2942 mp_int M
[TAB_SIZE
], res
;
2944 int err
, bitbuf
, bitcpy
, bitcnt
, mode
, digidx
, x
, y
, winsize
;
2946 /* use a pointer to the reduction algorithm. This allows us to use
2947 * one of many reduction algorithms without modding the guts of
2948 * the code with if statements everywhere.
2950 int (*redux
)(mp_int
*,mp_int
*,mp_digit
);
2952 /* find window size */
2953 x
= mp_count_bits (X
);
2956 } else if (x
<= 36) {
2958 } else if (x
<= 140) {
2960 } else if (x
<= 450) {
2962 } else if (x
<= 1303) {
2964 } else if (x
<= 3529) {
2977 /* init first cell */
2978 if ((err
= mp_init(&M
[1])) != MP_OKAY
) {
2982 /* now init the second half of the array */
2983 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
2984 if ((err
= mp_init(&M
[x
])) != MP_OKAY
) {
2985 for (y
= 1<<(winsize
-1); y
< x
; y
++) {
2993 /* determine and setup reduction code */
2995 #ifdef BN_MP_MONTGOMERY_SETUP_C
2996 /* now setup montgomery */
2997 if ((err
= mp_montgomery_setup (P
, &mp
)) != MP_OKAY
) {
3005 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3006 #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3007 if (((P
->used
* 2 + 1) < MP_WARRAY
) &&
3008 P
->used
< (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
3009 redux
= fast_mp_montgomery_reduce
;
3013 #ifdef BN_MP_MONTGOMERY_REDUCE_C
3014 /* use slower baseline Montgomery method */
3015 redux
= mp_montgomery_reduce
;
3021 } else if (redmode
== 1) {
3022 #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3023 /* setup DR reduction for moduli of the form B**k - b */
3024 mp_dr_setup(P
, &mp
);
3025 redux
= mp_dr_reduce
;
3031 #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3032 /* setup DR reduction for moduli of the form 2**k - b */
3033 if ((err
= mp_reduce_2k_setup(P
, &mp
)) != MP_OKAY
) {
3036 redux
= mp_reduce_2k
;
3044 if ((err
= mp_init (&res
)) != MP_OKAY
) {
3052 * The first half of the table is not computed though accept for M[0] and M[1]
3056 #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3057 /* now we need R mod m */
3058 if ((err
= mp_montgomery_calc_normalization (&res
, P
)) != MP_OKAY
) {
3066 /* now set M[1] to G * R mod m */
3067 if ((err
= mp_mulmod (G
, &res
, P
, &M
[1])) != MP_OKAY
) {
3072 if ((err
= mp_mod(G
, P
, &M
[1])) != MP_OKAY
) {
3077 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3078 if ((err
= mp_copy (&M
[1], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
3082 for (x
= 0; x
< (winsize
- 1); x
++) {
3083 if ((err
= mp_sqr (&M
[1 << (winsize
- 1)], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
3086 if ((err
= redux (&M
[1 << (winsize
- 1)], P
, mp
)) != MP_OKAY
) {
3091 /* create upper table */
3092 for (x
= (1 << (winsize
- 1)) + 1; x
< (1 << winsize
); x
++) {
3093 if ((err
= mp_mul (&M
[x
- 1], &M
[1], &M
[x
])) != MP_OKAY
) {
3096 if ((err
= redux (&M
[x
], P
, mp
)) != MP_OKAY
) {
3101 /* set initial mode and bit cnt */
3105 digidx
= X
->used
- 1;
3110 /* grab next digit as required */
3111 if (--bitcnt
== 0) {
3112 /* if digidx == -1 we are out of digits so break */
3116 /* read next digit and reset bitcnt */
3117 buf
= X
->dp
[digidx
--];
3118 bitcnt
= (int)DIGIT_BIT
;
3121 /* grab the next msb from the exponent */
3122 y
= (mp_digit
)(buf
>> (DIGIT_BIT
- 1)) & 1;
3123 buf
<<= (mp_digit
)1;
3125 /* if the bit is zero and mode == 0 then we ignore it
3126 * These represent the leading zero bits before the first 1 bit
3127 * in the exponent. Technically this opt is not required but it
3128 * does lower the # of trivial squaring/reductions used
3130 if (mode
== 0 && y
== 0) {
3134 /* if the bit is zero and mode == 1 then we square */
3135 if (mode
== 1 && y
== 0) {
3136 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
3139 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
3145 /* else we add it to the window */
3146 bitbuf
|= (y
<< (winsize
- ++bitcpy
));
3149 if (bitcpy
== winsize
) {
3150 /* ok window is filled so square as required and multiply */
3152 for (x
= 0; x
< winsize
; x
++) {
3153 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
3156 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
3162 if ((err
= mp_mul (&res
, &M
[bitbuf
], &res
)) != MP_OKAY
) {
3165 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
3169 /* empty window and reset */
3176 /* if bits remain then square/multiply */
3177 if (mode
== 2 && bitcpy
> 0) {
3178 /* square then multiply if the bit is set */
3179 for (x
= 0; x
< bitcpy
; x
++) {
3180 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
3183 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
3187 /* get next bit of the window */
3189 if ((bitbuf
& (1 << winsize
)) != 0) {
3191 if ((err
= mp_mul (&res
, &M
[1], &res
)) != MP_OKAY
) {
3194 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
3202 /* fixup result if Montgomery reduction is used
3203 * recall that any value in a Montgomery system is
3204 * actually multiplied by R mod n. So we have
3205 * to reduce one more time to cancel out the factor
3208 if ((err
= redux(&res
, P
, mp
)) != MP_OKAY
) {
3213 /* swap res with Y */
3216 LBL_RES
:mp_clear (&res
);
3219 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
3227 #ifdef BN_FAST_S_MP_SQR_C
3228 /* the jist of squaring...
3229 * you do like mult except the offset of the tmpx [one that
3230 * starts closer to zero] can't equal the offset of tmpy.
3231 * So basically you set up iy like before then you min it with
3232 * (ty-tx) so that it never happens. You double all those
3233 * you add in the inner loop
3235 After that loop you do the squares and add them in.
3238 static int fast_s_mp_sqr (mp_int
* a
, mp_int
* b
)
3240 int olduse
, res
, pa
, ix
, iz
;
3241 mp_digit W
[MP_WARRAY
], *tmpx
;
3244 /* grow the destination as required */
3245 pa
= a
->used
+ a
->used
;
3246 if (b
->alloc
< pa
) {
3247 if ((res
= mp_grow (b
, pa
)) != MP_OKAY
) {
3252 /* number of output digits to produce */
3254 for (ix
= 0; ix
< pa
; ix
++) {
3262 /* get offsets into the two bignums */
3263 ty
= MIN(a
->used
-1, ix
);
3266 /* setup temp aliases */
3270 /* this is the number of times the loop will iterrate, essentially
3271 while (tx++ < a->used && ty-- >= 0) { ... }
3273 iy
= MIN(a
->used
-tx
, ty
+1);
3275 /* now for squaring tx can never equal ty
3276 * we halve the distance since they approach at a rate of 2x
3277 * and we have to round because odd cases need to be executed
3279 iy
= MIN(iy
, (ty
-tx
+1)>>1);
3282 for (iz
= 0; iz
< iy
; iz
++) {
3283 _W
+= ((mp_word
)*tmpx
++)*((mp_word
)*tmpy
--);
3286 /* double the inner product and add carry */
3289 /* even columns have the square term in them */
3291 _W
+= ((mp_word
)a
->dp
[ix
>>1])*((mp_word
)a
->dp
[ix
>>1]);
3295 W
[ix
] = (mp_digit
)(_W
& MP_MASK
);
3297 /* make next carry */
3298 W1
= _W
>> ((mp_word
)DIGIT_BIT
);
3303 b
->used
= a
->used
+a
->used
;
3308 for (ix
= 0; ix
< pa
; ix
++) {
3309 *tmpb
++ = W
[ix
] & MP_MASK
;
3312 /* clear unused digits [that existed in the old copy of c] */
3313 for (; ix
< olduse
; ix
++) {
3323 #ifdef BN_MP_MUL_D_C
3324 /* multiply by a digit */
3326 mp_mul_d (mp_int
* a
, mp_digit b
, mp_int
* c
)
3328 mp_digit u
, *tmpa
, *tmpc
;
3330 int ix
, res
, olduse
;
3332 /* make sure c is big enough to hold a*b */
3333 if (c
->alloc
< a
->used
+ 1) {
3334 if ((res
= mp_grow (c
, a
->used
+ 1)) != MP_OKAY
) {
3339 /* get the original destinations used count */
3345 /* alias for a->dp [source] */
3348 /* alias for c->dp [dest] */
3354 /* compute columns */
3355 for (ix
= 0; ix
< a
->used
; ix
++) {
3356 /* compute product and carry sum for this term */
3357 r
= ((mp_word
) u
) + ((mp_word
)*tmpa
++) * ((mp_word
)b
);
3359 /* mask off higher bits to get a single digit */
3360 *tmpc
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
3362 /* send carry into next iteration */
3363 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
3366 /* store final carry [if any] and increment ix offset */
3370 /* now zero digits above the top */
3371 while (ix
++ < olduse
) {
3375 /* set used count */
3376 c
->used
= a
->used
+ 1;