Expand PMF_FN_* macros.
[netbsd-mini2440.git] / lib / libc / gdtoa / README
blobd201cfe89736668dcc577d27aa5cb098f42d9454
1 $NetBSD$
3 This directory contains source for a library of binary -> decimal
4 and decimal -> binary conversion routines, for single-, double-,
5 and extended-precision IEEE binary floating-point arithmetic, and
6 other IEEE-like binary floating-point, including "double double",
7 as in
9         T. J. Dekker, "A Floating-Point Technique for Extending the
10         Available Precision", Numer. Math. 18 (1971), pp. 224-242
12 and
14         "Inside Macintosh: PowerPC Numerics", Addison-Wesley, 1994
16 The conversion routines use double-precision floating-point arithmetic
17 and, where necessary, high precision integer arithmetic.  The routines
18 are generalizations of the strtod and dtoa routines described in
20         David M. Gay, "Correctly Rounded Binary-Decimal and
21         Decimal-Binary Conversions", Numerical Analysis Manuscript
22         No. 90-10, Bell Labs, Murray Hill, 1990;
23         http://cm.bell-labs.com/cm/cs/what/ampl/REFS/rounding.ps.gz
25 (based in part on papers by Clinger and Steele & White: see the
26 references in the above paper).
28 The present conversion routines should be able to use any of IEEE binary,
29 VAX, or IBM-mainframe double-precision arithmetic internally, but I (dmg)
30 have so far only had a chance to test them with IEEE double precision
31 arithmetic.
33 The core conversion routines are strtodg for decimal -> binary conversions
34 and gdtoa for binary -> decimal conversions.  These routines operate
35 on arrays of unsigned 32-bit integers of type ULong, a signed 32-bit
36 exponent of type Long, and arithmetic characteristics described in
37 struct FPI; FPI, Long, and ULong are defined in gdtoa.h.  File arith.h
38 is supposed to provide #defines that cause gdtoa.h to define its
39 types correctly.  File arithchk.c is source for a program that
40 generates a suitable arith.h on all systems where I've been able to
41 test it.
43 The core conversion routines are meant to be called by helper routines
44 that know details of the particular binary arithmetic of interest and
45 convert.  The present directory provides helper routines for 5 variants
46 of IEEE binary floating-point arithmetic, each indicated by one or
47 two letters:
49         f       IEEE single precision
50         d       IEEE double precision
51         x       IEEE extended precision, as on Intel 80x87
52                 and software emulations of Motorola 68xxx chips
53                 that do not pad the way the 68xxx does, but
54                 only store 80 bits
55         xL      IEEE extended precision, as on Motorola 68xxx chips
56         Q       quad precision, as on Sun Sparc chips
57         dd      double double, pairs of IEEE double numbers
58                 whose sum is the desired value
60 For decimal -> binary conversions, there are three families of
61 helper routines: one for round-nearest:
63         strtof
64         strtod
65         strtodd
66         strtopd
67         strtopf
68         strtopx
69         strtopxL
70         strtopQ
72 one with rounding direction specified:
74         strtorf
75         strtord
76         strtordd
77         strtorx
78         strtorxL
79         strtorQ
81 and one for computing an interval (at most one bit wide) that contains
82 the decimal number:
84         strtoIf
85         strtoId
86         strtoIdd
87         strtoIx
88         strtoIxL
89         strtoIQ
91 The latter call strtoIg, which makes one call on strtodg and adjusts
92 the result to provide the desired interval.  On systems where native
93 arithmetic can easily make one-ulp adjustments on values in the
94 desired floating-point format, it might be more efficient to use the
95 native arithmetic.  Routine strtodI is a variant of strtoId that
96 illustrates one way to do this for IEEE binary double-precision
97 arithmetic -- but whether this is more efficient remains to be seen.
99 Functions strtod and strtof have "natural" return types, float and
100 double -- strtod is specified by the C standard, and strtof appears
101 in the stdlib.h of some systems, such as (at least some) Linux systems.
102 The other functions write their results to their final argument(s):
103 to the final two argument for the strtoI... (interval) functions,
104 and to the final argument for the others (strtop... and strtor...).
105 Where possible, these arguments have "natural" return types (double*
106 or float*), to permit at least some type checking.  In reality, they
107 are viewed as arrays of ULong (or, for the "x" functions, UShort)
108 values. On systems where long double is the appropriate type, one can
109 pass long double* final argument(s) to these routines.  The int value
110 that these routines return is the return value from the call they make
111 on strtodg; see the enum of possible return values in gdtoa.h.
113 Source files g_ddfmt.c, misc.c, smisc.c, strtod.c, strtodg.c, and ulp.c
114 should use true IEEE double arithmetic (not, e.g., double extended),
115 at least for storing (and viewing the bits of) the variables declared
116 "double" within them.
118 One detail indicated in struct FPI is whether the target binary
119 arithmetic departs from the IEEE standard by flushing denormalized
120 numbers to 0.  On systems that do this, the helper routines for
121 conversion to double-double format (when compiled with
122 Sudden_Underflow #defined) penalize the bottom of the exponent
123 range so that they return a nonzero result only when the least
124 significant bit of the less significant member of the pair of
125 double values returned can be expressed as a normalized double
126 value.  An alternative would be to drop to 53-bit precision near
127 the bottom of the exponent range.  To get correct rounding, this
128 would (in general) require two calls on strtodg (one specifying
129 126-bit arithmetic, then, if necessary, one specifying 53-bit
130 arithmetic).
132 By default, the core routine strtodg and strtod set errno to ERANGE
133 if the result overflows to +Infinity or underflows to 0.  Compile
134 these routines with NO_ERRNO #defined to inhibit errno assignments.
136 Routine strtod is based on netlib's "dtoa.c from fp", and
137 (f = strtod(s,se)) is more efficient for some conversions than, say,
138 strtord(s,se,1,&f).  Parts of strtod require true IEEE double
139 arithmetic with the default rounding mode (round-to-nearest) and, on
140 systems with IEEE extended-precision registers, double-precision
141 (53-bit) rounding precision.  If the machine uses (the equivalent of)
142 Intel 80x87 arithmetic, the call
143         _control87(PC_53, MCW_PC);
144 does this with many compilers.  Whether this or another call is
145 appropriate depends on the compiler; for this to work, it may be
146 necessary to #include "float.h" or another system-dependent header
147 file.
149 Source file strtodnrp.c gives a strtod that does not require 53-bit
150 rounding precision on systems (such as Intel IA32 systems) that may
151 suffer double rounding due to use of extended-precision registers.
152 For some conversions this variant of strtod is less efficient than the
153 one in strtod.c when the latter is run with 53-bit rounding precision.
155 The values that the strto* routines return for NaNs are determined by
156 gd_qnan.h, which the makefile generates by running the program whose
157 source is qnan.c.  Note that the rules for distinguishing signaling
158 from quiet NaNs are system-dependent.  For cross-compilation, you need
159 to determine arith.h and gd_qnan.h suitably, e.g., using the
160 arithmetic of the target machine.
162 C99's hexadecimal floating-point constants are recognized by the
163 strto* routines (but this feature has not yet been heavily tested).
164 Compiling with NO_HEX_FP #defined disables this feature.
166 When compiled with -DINFNAN_CHECK, the strto* routines recognize C99's
167 NaN and Infinity syntax.  Moreover, unless No_Hex_NaN is #defined, the
168 strto* routines also recognize C99's NaN(...) syntax: they accept
169 (case insensitively) strings of the form NaN(x), where x is a string
170 of hexadecimal digits and spaces; if there is only one string of
171 hexadecimal digits, it is taken for the fraction bits of the resulting
172 NaN; if there are two or more strings of hexadecimal digits, each
173 string is assigned to the next available sequence of 32-bit words of
174 fractions bits (starting with the most significant), right-aligned in
175 each sequence.
177 For binary -> decimal conversions, I've provided just one family
178 of helper routines:
180         g_ffmt
181         g_dfmt
182         g_ddfmt
183         g_xfmt
184         g_xLfmt
185         g_Qfmt
187 which do a "%g" style conversion either to a specified number of decimal
188 places (if their ndig argument is positive), or to the shortest
189 decimal string that rounds to the given binary floating-point value
190 (if ndig <= 0).  They write into a buffer supplied as an argument
191 and return either a pointer to the end of the string (a null character)
192 in the buffer, if the buffer was long enough, or 0.  Other forms of
193 conversion are easily done with the help of gdtoa(), such as %e or %f
194 style and conversions with direction of rounding specified (so that, if
195 desired, the decimal value is either >= or <= the binary value).
197 For an example of more general conversions based on dtoa(), see
198 netlib's "printf.c from ampl/solvers".
200 For double-double -> decimal, g_ddfmt() assumes IEEE-like arithmetic
201 of precision max(126, #bits(input)) bits, where #bits(input) is the
202 number of mantissa bits needed to represent the sum of the two double
203 values in the input.
205 The makefile creates a library, gdtoa.a.  To use the helper
206 routines, a program only needs to include gdtoa.h.  All the
207 source files for gdtoa.a include a more extensive gdtoaimp.h;
208 among other things, gdtoaimp.h has #defines that make "internal"
209 names end in _D2A.  To make a "system" library, one could modify
210 these #defines to make the names start with __.
212 Various comments about possible #defines appear in gdtoaimp.h,
213 but for most purposes, arith.h should set suitable #defines.
215 Systems with preemptive scheduling of multiple threads require some
216 manual intervention.  On such systems, it's necessary to compile
217 dmisc.c, dtoa.c gdota.c, and misc.c with MULTIPLE_THREADS #defined,
218 and to provide (or suitably #define) two locks, acquired by
219 ACQUIRE_DTOA_LOCK(n) and freed by FREE_DTOA_LOCK(n) for n = 0 or 1.
220 (The second lock, accessed in pow5mult, ensures lazy evaluation of
221 only one copy of high powers of 5; omitting this lock would introduce
222 a small probability of wasting memory, but would otherwise be harmless.)
223 Routines that call dtoa or gdtoa directly must also invoke freedtoa(s)
224 to free the value s returned by dtoa or gdtoa.  It's OK to do so whether
225 or not MULTIPLE_THREADS is #defined, and the helper g_*fmt routines
226 listed above all do this indirectly (in gfmt_D2A(), which they all call).
228 By default, there is a private pool of memory of length 2000 bytes
229 for intermediate quantities, and MALLOC (see gdtoaimp.h) is called only
230 if the private pool does not suffice.   2000 is large enough that MALLOC
231 is called only under very unusual circumstances (decimal -> binary
232 conversion of very long strings) for conversions to and from double
233 precision.  For systems with preemptively scheduled multiple threads
234 or for conversions to extended or quad, it may be appropriate to
235 #define PRIVATE_MEM nnnn, where nnnn is a suitable value > 2000.
236 For extended and quad precisions, -DPRIVATE_MEM=20000 is probably
237 plenty even for many digits at the ends of the exponent range.
238 Use of the private pool avoids some overhead.
240 Directory test provides some test routines.  See its README.
241 I've also tested this stuff (except double double conversions)
242 with Vern Paxson's testbase program: see
244         V. Paxson and W. Kahan, "A Program for Testing IEEE Binary-Decimal
245         Conversion", manuscript, May 1991,
246         ftp://ftp.ee.lbl.gov/testbase-report.ps.Z .
248 (The same ftp directory has source for testbase.)
250 Some system-dependent additions to CFLAGS in the makefile:
252         HU-UX: -Aa -Ae
253         OSF (DEC Unix): -ieee_with_no_inexact
254         SunOS 4.1x: -DKR_headers -DBad_float_h
256 If you want to put this stuff into a shared library and your
257 operating system requires export lists for shared libraries,
258 the following would be an appropriate export list:
260         dtoa
261         freedtoa
262         g_Qfmt
263         g_ddfmt
264         g_dfmt
265         g_ffmt
266         g_xLfmt
267         g_xfmt
268         gdtoa
269         strtoIQ
270         strtoId
271         strtoIdd
272         strtoIf
273         strtoIx
274         strtoIxL
275         strtod
276         strtodI
277         strtodg
278         strtof
279         strtopQ
280         strtopd
281         strtopdd
282         strtopf
283         strtopx
284         strtopxL
285         strtorQ
286         strtord
287         strtordd
288         strtorf
289         strtorx
290         strtorxL
292 When time permits, I (dmg) hope to write in more detail about the
293 present conversion routines; for now, this README file must suffice.
294 Meanwhile, if you wish to write helper functions for other kinds of
295 IEEE-like arithmetic, some explanation of struct FPI and the bits
296 array may be helpful.  Both gdtoa and strtodg operate on a bits array
297 described by FPI *fpi.  The bits array is of type ULong, a 32-bit
298 unsigned integer type.  Floating-point numbers have fpi->nbits bits,
299 with the least significant 32 bits in bits[0], the next 32 bits in
300 bits[1], etc.  These numbers are regarded as integers multiplied by
301 2^e (i.e., 2 to the power of the exponent e), where e is the second
302 argument (be) to gdtoa and is stored in *exp by strtodg.  The minimum
303 and maximum exponent values fpi->emin and fpi->emax for normalized
304 floating-point numbers reflect this arrangement.  For example, the
305 P754 standard for binary IEEE arithmetic specifies doubles as having
306 53 bits, with normalized values of the form 1.xxxxx... times 2^(b-1023),
307 with 52 bits (the x's) and the biased exponent b represented explicitly;
308 b is an unsigned integer in the range 1 <= b <= 2046 for normalized
309 finite doubles, b = 0 for denormals, and b = 2047 for Infinities and NaNs.
310 To turn an IEEE double into the representation used by strtodg and gdtoa,
311 we multiply 1.xxxx... by 2^52 (to make it an integer) and reduce the
312 exponent e = (b-1023) by 52:
314         fpi->emin = 1 - 1023 - 52
315         fpi->emax = 1046 - 1023 - 52
317 In various wrappers for IEEE double, we actually write -53 + 1 rather
318 than -52, to emphasize that there are 53 bits including one implicit bit.
319 Field fpi->rounding indicates the desired rounding direction, with
320 possible values
321         FPI_Round_zero = toward 0,
322         FPI_Round_near = unbiased rounding -- the IEEE default,
323         FPI_Round_up = toward +Infinity, and
324         FPI_Round_down = toward -Infinity
325 given in gdtoa.h.
327 Field fpi->sudden_underflow indicates whether strtodg should return
328 denormals or flush them to zero.  Normal floating-point numbers have
329 bit fpi->nbits in the bits array on.  Denormals have it off, with
330 exponent = fpi->emin.  Strtodg provides distinct return values for normals
331 and denormals; see gdtoa.h.
333 Compiling g__fmt.c, strtod.c, and strtodg.c with -DUSE_LOCALE causes
334 the decimal-point character to be taken from the current locale; otherwise
335 it is '.'.
337 Please send comments to David M. Gay (dmg at acm dot org, with " at "
338 changed at "@" and " dot " changed to ".").