1 /* @(#)e_asin.c 5.1 93/09/24 */
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
10 * ====================================================
13 #include <sys/cdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: e_asin.c,v 1.11 1999/07/02 15:37:38 simonb Exp $");
20 * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
21 * we approximate asin(x) on [0,0.5] by
22 * asin(x) = x + x*x^2*R(x^2)
24 * R(x^2) is a rational approximation of (asin(x)-x)/x^3
25 * and its remez error is bounded by
26 * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
29 * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
30 * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
32 * asin(x) = pi/2 - 2*(s+s*z*R(z))
33 * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
34 * For x<=0.98, let pio4_hi = pio2_hi/2, then
36 * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
38 * asin(x) = pi/2 - 2*(s+s*z*R(z))
39 * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
40 * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
43 * if x is NaN, return x itself;
44 * if |x|>1, return NaN with invalid signal.
50 #include "math_private.h"
53 one
= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
55 pio2_hi
= 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
56 pio2_lo
= 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
57 pio4_hi
= 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
58 /* coefficient for R(x^2) */
59 pS0
= 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
60 pS1
= -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
61 pS2
= 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
62 pS3
= -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
63 pS4
= 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
64 pS5
= 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
65 qS1
= -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
66 qS2
= 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
67 qS3
= -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
68 qS4
= 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
71 __ieee754_asin(double x
)
79 if(ix
>= 0x3ff00000) { /* |x|>= 1 */
82 if(((ix
-0x3ff00000)|lx
)==0)
83 /* asin(1)=+-pi/2 with inexact */
84 return x
*pio2_hi
+x
*pio2_lo
;
85 return (x
-x
)/(x
-x
); /* asin(|x|>1) is NaN */
86 } else if (ix
<0x3fe00000) { /* |x|<0.5 */
87 if(ix
<0x3e400000) { /* if |x| < 2**-27 */
88 if(huge
+x
>one
) return x
;/* return x with inexact if x!=0*/
91 p
= t
*(pS0
+t
*(pS1
+t
*(pS2
+t
*(pS3
+t
*(pS4
+t
*pS5
)))));
92 q
= one
+t
*(qS1
+t
*(qS2
+t
*(qS3
+t
*qS4
)));
99 p
= t
*(pS0
+t
*(pS1
+t
*(pS2
+t
*(pS3
+t
*(pS4
+t
*pS5
)))));
100 q
= one
+t
*(qS1
+t
*(qS2
+t
*(qS3
+t
*qS4
)));
101 s
= __ieee754_sqrt(t
);
102 if(ix
>=0x3FEF3333) { /* if |x| > 0.975 */
104 t
= pio2_hi
-(2.0*(s
+s
*w
)-pio2_lo
);
110 p
= 2.0*s
*r
-(pio2_lo
-2.0*c
);
114 if(hx
>0) return t
; else return -t
;